2117 lines
87 KiB
Python
2117 lines
87 KiB
Python
# このスクリプトのライセンスは、train_dreambooth.pyと同じくApache License 2.0とします
|
||
# (c) 2022 Kohya S. @kohya_ss
|
||
|
||
# v7: another text encoder ckpt format, average loss, save epochs/global steps, show num of train/reg images,
|
||
# enable reg images in fine-tuning, add dataset_repeats option
|
||
# v8: supports Diffusers 0.7.2
|
||
# v9: add bucketing option
|
||
# v10: add min_bucket_reso/max_bucket_reso options, read captions for train/reg images in DreamBooth
|
||
# v11: Diffusers 0.9.0 is required. support for Stable Diffusion 2.0/v-parameterization
|
||
# add lr scheduler options, change handling folder/file caption, support loading DiffUser model from Huggingface
|
||
# support save_ever_n_epochs/save_state in DiffUsers model
|
||
# fix the issue that prior_loss_weight is applyed to train images
|
||
# v12: stop train text encode, tqdm smoothing
|
||
|
||
import time
|
||
from torch.autograd.function import Function
|
||
import argparse
|
||
import glob
|
||
import itertools
|
||
import math
|
||
import os
|
||
import random
|
||
|
||
from tqdm import tqdm
|
||
import torch
|
||
from torchvision import transforms
|
||
from accelerate import Accelerator
|
||
from accelerate.utils import set_seed
|
||
from transformers import CLIPTextModel, CLIPTokenizer, CLIPTextConfig
|
||
import diffusers
|
||
from diffusers import AutoencoderKL, DDPMScheduler, DDIMScheduler, StableDiffusionPipeline, UNet2DConditionModel
|
||
import albumentations as albu
|
||
import numpy as np
|
||
from PIL import Image
|
||
import cv2
|
||
from einops import rearrange
|
||
from torch import einsum
|
||
|
||
# Tokenizer: checkpointから読み込むのではなくあらかじめ提供されているものを使う
|
||
TOKENIZER_PATH = "openai/clip-vit-large-patch14"
|
||
V2_STABLE_DIFFUSION_PATH = "stabilityai/stable-diffusion-2" # ここからtokenizerだけ使う
|
||
|
||
# checkpointファイル名
|
||
LAST_CHECKPOINT_NAME = "last.ckpt"
|
||
LAST_STATE_NAME = "last-state"
|
||
LAST_DIFFUSERS_DIR_NAME = "last"
|
||
EPOCH_CHECKPOINT_NAME = "epoch-{:06d}.ckpt"
|
||
EPOCH_STATE_NAME = "epoch-{:06d}-state"
|
||
EPOCH_DIFFUSERS_DIR_NAME = "epoch-{:06d}"
|
||
|
||
|
||
# region dataset
|
||
|
||
|
||
def make_bucket_resolutions(max_reso, min_size=256, max_size=1024, divisible=64):
|
||
max_width, max_height = max_reso
|
||
max_area = (max_width // divisible) * (max_height // divisible)
|
||
|
||
resos = set()
|
||
|
||
size = int(math.sqrt(max_area)) * divisible
|
||
resos.add((size, size))
|
||
|
||
size = min_size
|
||
while size <= max_size:
|
||
width = size
|
||
height = min(max_size, (max_area // (width // divisible)) * divisible)
|
||
resos.add((width, height))
|
||
resos.add((height, width))
|
||
size += divisible
|
||
|
||
resos = list(resos)
|
||
resos.sort()
|
||
|
||
aspect_ratios = [w / h for w, h in resos]
|
||
return resos, aspect_ratios
|
||
|
||
|
||
class DreamBoothOrFineTuningDataset(torch.utils.data.Dataset):
|
||
def __init__(self, batch_size, fine_tuning, train_img_path_captions, reg_img_path_captions, tokenizer, resolution, prior_loss_weight, flip_aug, color_aug, face_crop_aug_range, random_crop, shuffle_caption, disable_padding, debug_dataset) -> None:
|
||
super().__init__()
|
||
|
||
self.batch_size = batch_size
|
||
self.fine_tuning = fine_tuning
|
||
self.train_img_path_captions = train_img_path_captions
|
||
self.reg_img_path_captions = reg_img_path_captions
|
||
self.tokenizer = tokenizer
|
||
self.width, self.height = resolution
|
||
self.size = min(self.width, self.height) # 短いほう
|
||
self.prior_loss_weight = prior_loss_weight
|
||
self.face_crop_aug_range = face_crop_aug_range
|
||
self.random_crop = random_crop
|
||
self.debug_dataset = debug_dataset
|
||
self.shuffle_caption = shuffle_caption
|
||
self.disable_padding = disable_padding
|
||
self.latents_cache = None
|
||
self.enable_bucket = False
|
||
|
||
# augmentation
|
||
flip_p = 0.5 if flip_aug else 0.0
|
||
if color_aug:
|
||
# わりと弱めの色合いaugmentation:brightness/contrastあたりは画像のpixel valueの最大値・最小値を変えてしまうのでよくないのではという想定でgamma/hue/saturationあたりを触る
|
||
self.aug = albu.Compose([
|
||
albu.OneOf([
|
||
# albu.RandomBrightnessContrast(0.05, 0.05, p=.2),
|
||
albu.HueSaturationValue(5, 8, 0, p=.2),
|
||
# albu.RGBShift(5, 5, 5, p=.1),
|
||
albu.RandomGamma((95, 105), p=.5),
|
||
], p=.33),
|
||
albu.HorizontalFlip(p=flip_p)
|
||
], p=1.)
|
||
elif flip_aug:
|
||
self.aug = albu.Compose([
|
||
albu.HorizontalFlip(p=flip_p)
|
||
], p=1.)
|
||
else:
|
||
self.aug = None
|
||
|
||
self.num_train_images = len(self.train_img_path_captions)
|
||
self.num_reg_images = len(self.reg_img_path_captions)
|
||
|
||
self.enable_reg_images = self.num_reg_images > 0
|
||
|
||
if self.enable_reg_images and self.num_train_images < self.num_reg_images:
|
||
print("some of reg images are not used / 正則化画像の数が多いので、一部使用されない正則化画像があります")
|
||
|
||
self.image_transforms = transforms.Compose(
|
||
[
|
||
transforms.ToTensor(),
|
||
transforms.Normalize([0.5], [0.5]),
|
||
]
|
||
)
|
||
|
||
# bucketingを行わない場合も呼び出し必須(ひとつだけbucketを作る)
|
||
def make_buckets_with_caching(self, enable_bucket, vae, min_size, max_size):
|
||
self.enable_bucket = enable_bucket
|
||
|
||
cache_latents = vae is not None
|
||
if cache_latents:
|
||
if enable_bucket:
|
||
print("cache latents with bucketing")
|
||
else:
|
||
print("cache latents")
|
||
else:
|
||
if enable_bucket:
|
||
print("make buckets")
|
||
else:
|
||
print("prepare dataset")
|
||
|
||
# bucketingを用意する
|
||
if enable_bucket:
|
||
bucket_resos, bucket_aspect_ratios = make_bucket_resolutions((self.width, self.height), min_size, max_size)
|
||
else:
|
||
# bucketはひとつだけ、すべての画像は同じ解像度
|
||
bucket_resos = [(self.width, self.height)]
|
||
bucket_aspect_ratios = [self.width / self.height]
|
||
bucket_aspect_ratios = np.array(bucket_aspect_ratios)
|
||
|
||
# 画像の解像度、latentをあらかじめ取得する
|
||
img_ar_errors = []
|
||
self.size_lat_cache = {}
|
||
for image_path, _ in tqdm(self.train_img_path_captions + self.reg_img_path_captions):
|
||
if image_path in self.size_lat_cache:
|
||
continue
|
||
|
||
image = self.load_image(image_path)[0]
|
||
image_height, image_width = image.shape[0:2]
|
||
|
||
if not enable_bucket:
|
||
# assert image_width == self.width and image_height == self.height, \
|
||
# f"all images must have specific resolution when bucketing is disabled / bucketを使わない場合、すべての画像のサイズを統一してください: {image_path}"
|
||
reso = (self.width, self.height)
|
||
else:
|
||
# bucketを決める
|
||
aspect_ratio = image_width / image_height
|
||
ar_errors = bucket_aspect_ratios - aspect_ratio
|
||
bucket_id = np.abs(ar_errors).argmin()
|
||
reso = bucket_resos[bucket_id]
|
||
ar_error = ar_errors[bucket_id]
|
||
img_ar_errors.append(ar_error)
|
||
|
||
if cache_latents:
|
||
image = self.resize_and_trim(image, reso)
|
||
|
||
# latentを取得する
|
||
if cache_latents:
|
||
img_tensor = self.image_transforms(image)
|
||
img_tensor = img_tensor.unsqueeze(0).to(device=vae.device, dtype=vae.dtype)
|
||
latents = vae.encode(img_tensor).latent_dist.sample().squeeze(0).to("cpu")
|
||
else:
|
||
latents = None
|
||
|
||
self.size_lat_cache[image_path] = (reso, latents)
|
||
|
||
# 画像をbucketに分割する
|
||
self.buckets = [[] for _ in range(len(bucket_resos))]
|
||
reso_to_index = {}
|
||
for i, reso in enumerate(bucket_resos):
|
||
reso_to_index[reso] = i
|
||
|
||
def split_to_buckets(is_reg, img_path_captions):
|
||
for image_path, caption in img_path_captions:
|
||
reso, _ = self.size_lat_cache[image_path]
|
||
bucket_index = reso_to_index[reso]
|
||
self.buckets[bucket_index].append((is_reg, image_path, caption))
|
||
|
||
split_to_buckets(False, self.train_img_path_captions)
|
||
|
||
if self.enable_reg_images:
|
||
l = []
|
||
while len(l) < len(self.train_img_path_captions):
|
||
l += self.reg_img_path_captions
|
||
l = l[:len(self.train_img_path_captions)]
|
||
split_to_buckets(True, l)
|
||
|
||
if enable_bucket:
|
||
print("number of images with repeats / 繰り返し回数込みの各bucketの画像枚数")
|
||
for i, (reso, imgs) in enumerate(zip(bucket_resos, self.buckets)):
|
||
print(f"bucket {i}: resolution {reso}, count: {len(imgs)}")
|
||
img_ar_errors = np.array(img_ar_errors)
|
||
print(f"mean ar error: {np.mean(np.abs(img_ar_errors))}")
|
||
|
||
# 参照用indexを作る
|
||
self.buckets_indices = []
|
||
for bucket_index, bucket in enumerate(self.buckets):
|
||
batch_count = int(math.ceil(len(bucket) / self.batch_size))
|
||
for batch_index in range(batch_count):
|
||
self.buckets_indices.append((bucket_index, batch_index))
|
||
|
||
self.shuffle_buckets()
|
||
self._length = len(self.buckets_indices)
|
||
|
||
# どのサイズにリサイズするか→トリミングする方向で
|
||
def resize_and_trim(self, image, reso):
|
||
image_height, image_width = image.shape[0:2]
|
||
ar_img = image_width / image_height
|
||
ar_reso = reso[0] / reso[1]
|
||
if ar_img > ar_reso: # 横が長い→縦を合わせる
|
||
scale = reso[1] / image_height
|
||
else:
|
||
scale = reso[0] / image_width
|
||
resized_size = (int(image_width * scale + .5), int(image_height * scale + .5))
|
||
|
||
image = cv2.resize(image, resized_size, interpolation=cv2.INTER_AREA) # INTER_AREAでやりたいのでcv2でリサイズ
|
||
if resized_size[0] > reso[0]:
|
||
trim_size = resized_size[0] - reso[0]
|
||
image = image[:, trim_size//2:trim_size//2 + reso[0]]
|
||
elif resized_size[1] > reso[1]:
|
||
trim_size = resized_size[1] - reso[1]
|
||
image = image[trim_size//2:trim_size//2 + reso[1]]
|
||
assert image.shape[0] == reso[1] and image.shape[1] == reso[0], \
|
||
f"internal error, illegal trimmed size: {image.shape}, {reso}"
|
||
return image
|
||
|
||
def shuffle_buckets(self):
|
||
random.shuffle(self.buckets_indices)
|
||
for bucket in self.buckets:
|
||
random.shuffle(bucket)
|
||
|
||
def load_image(self, image_path):
|
||
image = Image.open(image_path)
|
||
if not image.mode == "RGB":
|
||
image = image.convert("RGB")
|
||
img = np.array(image, np.uint8)
|
||
|
||
face_cx = face_cy = face_w = face_h = 0
|
||
if self.face_crop_aug_range is not None:
|
||
tokens = os.path.splitext(os.path.basename(image_path))[0].split('_')
|
||
if len(tokens) >= 5:
|
||
face_cx = int(tokens[-4])
|
||
face_cy = int(tokens[-3])
|
||
face_w = int(tokens[-2])
|
||
face_h = int(tokens[-1])
|
||
|
||
return img, face_cx, face_cy, face_w, face_h
|
||
|
||
# いい感じに切り出す
|
||
def crop_target(self, image, face_cx, face_cy, face_w, face_h):
|
||
height, width = image.shape[0:2]
|
||
if height == self.height and width == self.width:
|
||
return image
|
||
|
||
# 画像サイズはsizeより大きいのでリサイズする
|
||
face_size = max(face_w, face_h)
|
||
min_scale = max(self.height / height, self.width / width) # 画像がモデル入力サイズぴったりになる倍率(最小の倍率)
|
||
min_scale = min(1.0, max(min_scale, self.size / (face_size * self.face_crop_aug_range[1]))) # 指定した顔最小サイズ
|
||
max_scale = min(1.0, max(min_scale, self.size / (face_size * self.face_crop_aug_range[0]))) # 指定した顔最大サイズ
|
||
if min_scale >= max_scale: # range指定がmin==max
|
||
scale = min_scale
|
||
else:
|
||
scale = random.uniform(min_scale, max_scale)
|
||
|
||
nh = int(height * scale + .5)
|
||
nw = int(width * scale + .5)
|
||
assert nh >= self.height and nw >= self.width, f"internal error. small scale {scale}, {width}*{height}"
|
||
image = cv2.resize(image, (nw, nh), interpolation=cv2.INTER_AREA)
|
||
face_cx = int(face_cx * scale + .5)
|
||
face_cy = int(face_cy * scale + .5)
|
||
height, width = nh, nw
|
||
|
||
# 顔を中心として448*640とかへを切り出す
|
||
for axis, (target_size, length, face_p) in enumerate(zip((self.height, self.width), (height, width), (face_cy, face_cx))):
|
||
p1 = face_p - target_size // 2 # 顔を中心に持ってくるための切り出し位置
|
||
|
||
if self.random_crop:
|
||
# 背景も含めるために顔を中心に置く確率を高めつつずらす
|
||
range = max(length - face_p, face_p) # 画像の端から顔中心までの距離の長いほう
|
||
p1 = p1 + (random.randint(0, range) + random.randint(0, range)) - range # -range ~ +range までのいい感じの乱数
|
||
else:
|
||
# range指定があるときのみ、すこしだけランダムに(わりと適当)
|
||
if self.face_crop_aug_range[0] != self.face_crop_aug_range[1]:
|
||
if face_size > self.size // 10 and face_size >= 40:
|
||
p1 = p1 + random.randint(-face_size // 20, +face_size // 20)
|
||
|
||
p1 = max(0, min(p1, length - target_size))
|
||
|
||
if axis == 0:
|
||
image = image[p1:p1 + target_size, :]
|
||
else:
|
||
image = image[:, p1:p1 + target_size]
|
||
|
||
return image
|
||
|
||
def __len__(self):
|
||
return self._length
|
||
|
||
def __getitem__(self, index):
|
||
if index == 0:
|
||
self.shuffle_buckets()
|
||
|
||
bucket = self.buckets[self.buckets_indices[index][0]]
|
||
image_index = self.buckets_indices[index][1] * self.batch_size
|
||
|
||
latents_list = []
|
||
images = []
|
||
captions = []
|
||
loss_weights = []
|
||
|
||
for is_reg, image_path, caption in bucket[image_index:image_index + self.batch_size]:
|
||
loss_weights.append(self.prior_loss_weight if is_reg else 1.0)
|
||
|
||
# image/latentsを処理する
|
||
reso, latents = self.size_lat_cache[image_path]
|
||
|
||
if latents is None:
|
||
# 画像を読み込み必要ならcropする
|
||
img, face_cx, face_cy, face_w, face_h = self.load_image(image_path)
|
||
im_h, im_w = img.shape[0:2]
|
||
|
||
if self.enable_bucket:
|
||
img = self.resize_and_trim(img, reso)
|
||
else:
|
||
if face_cx > 0: # 顔位置情報あり
|
||
img = self.crop_target(img, face_cx, face_cy, face_w, face_h)
|
||
elif im_h > self.height or im_w > self.width:
|
||
assert self.random_crop, f"image too large, and face_crop_aug_range and random_crop are disabled / 画像サイズが大きいのでface_crop_aug_rangeかrandom_cropを有効にしてください"
|
||
if im_h > self.height:
|
||
p = random.randint(0, im_h - self.height)
|
||
img = img[p:p + self.height]
|
||
if im_w > self.width:
|
||
p = random.randint(0, im_w - self.width)
|
||
img = img[:, p:p + self.width]
|
||
|
||
im_h, im_w = img.shape[0:2]
|
||
assert im_h == self.height and im_w == self.width, f"image size is small / 画像サイズが小さいようです: {image_path}"
|
||
|
||
# augmentation
|
||
if self.aug is not None:
|
||
img = self.aug(image=img)['image']
|
||
|
||
image = self.image_transforms(img) # -1.0~1.0のtorch.Tensorになる
|
||
else:
|
||
image = None
|
||
|
||
images.append(image)
|
||
latents_list.append(latents)
|
||
|
||
# captionを処理する
|
||
if self.shuffle_caption: # captionのshuffleをする
|
||
tokens = caption.strip().split(",")
|
||
random.shuffle(tokens)
|
||
caption = ",".join(tokens).strip()
|
||
captions.append(caption)
|
||
|
||
# input_idsをpadしてTensor変換
|
||
if self.disable_padding:
|
||
# paddingしない:padding==Trueはバッチの中の最大長に合わせるだけ(やはりバグでは……?)
|
||
input_ids = self.tokenizer(captions, padding=True, truncation=True, return_tensors="pt").input_ids
|
||
else:
|
||
# paddingする
|
||
input_ids = self.tokenizer(captions, padding='max_length', truncation=True, return_tensors='pt').input_ids
|
||
|
||
example = {}
|
||
example['loss_weights'] = torch.FloatTensor(loss_weights)
|
||
example['input_ids'] = input_ids
|
||
if images[0] is not None:
|
||
images = torch.stack(images)
|
||
images = images.to(memory_format=torch.contiguous_format).float()
|
||
else:
|
||
images = None
|
||
example['images'] = images
|
||
example['latents'] = torch.stack(latents_list) if latents_list[0] is not None else None
|
||
if self.debug_dataset:
|
||
example['image_paths'] = [image_path for _, image_path, _ in bucket[image_index:image_index + self.batch_size]]
|
||
example['captions'] = captions
|
||
return example
|
||
# endregion
|
||
|
||
|
||
# region モジュール入れ替え部
|
||
"""
|
||
高速化のためのモジュール入れ替え
|
||
"""
|
||
|
||
# FlashAttentionを使うCrossAttention
|
||
# based on https://github.com/lucidrains/memory-efficient-attention-pytorch/blob/main/memory_efficient_attention_pytorch/flash_attention.py
|
||
# LICENSE MIT https://github.com/lucidrains/memory-efficient-attention-pytorch/blob/main/LICENSE
|
||
|
||
# constants
|
||
|
||
EPSILON = 1e-6
|
||
|
||
# helper functions
|
||
|
||
|
||
def exists(val):
|
||
return val is not None
|
||
|
||
|
||
def default(val, d):
|
||
return val if exists(val) else d
|
||
|
||
# flash attention forwards and backwards
|
||
|
||
# https://arxiv.org/abs/2205.14135
|
||
|
||
|
||
class FlashAttentionFunction(Function):
|
||
@ staticmethod
|
||
@ torch.no_grad()
|
||
def forward(ctx, q, k, v, mask, causal, q_bucket_size, k_bucket_size):
|
||
""" Algorithm 2 in the paper """
|
||
|
||
device = q.device
|
||
dtype = q.dtype
|
||
max_neg_value = -torch.finfo(q.dtype).max
|
||
qk_len_diff = max(k.shape[-2] - q.shape[-2], 0)
|
||
|
||
o = torch.zeros_like(q)
|
||
all_row_sums = torch.zeros((*q.shape[:-1], 1), dtype=dtype, device=device)
|
||
all_row_maxes = torch.full((*q.shape[:-1], 1), max_neg_value, dtype=dtype, device=device)
|
||
|
||
scale = (q.shape[-1] ** -0.5)
|
||
|
||
if not exists(mask):
|
||
mask = (None,) * math.ceil(q.shape[-2] / q_bucket_size)
|
||
else:
|
||
mask = rearrange(mask, 'b n -> b 1 1 n')
|
||
mask = mask.split(q_bucket_size, dim=-1)
|
||
|
||
row_splits = zip(
|
||
q.split(q_bucket_size, dim=-2),
|
||
o.split(q_bucket_size, dim=-2),
|
||
mask,
|
||
all_row_sums.split(q_bucket_size, dim=-2),
|
||
all_row_maxes.split(q_bucket_size, dim=-2),
|
||
)
|
||
|
||
for ind, (qc, oc, row_mask, row_sums, row_maxes) in enumerate(row_splits):
|
||
q_start_index = ind * q_bucket_size - qk_len_diff
|
||
|
||
col_splits = zip(
|
||
k.split(k_bucket_size, dim=-2),
|
||
v.split(k_bucket_size, dim=-2),
|
||
)
|
||
|
||
for k_ind, (kc, vc) in enumerate(col_splits):
|
||
k_start_index = k_ind * k_bucket_size
|
||
|
||
attn_weights = einsum('... i d, ... j d -> ... i j', qc, kc) * scale
|
||
|
||
if exists(row_mask):
|
||
attn_weights.masked_fill_(~row_mask, max_neg_value)
|
||
|
||
if causal and q_start_index < (k_start_index + k_bucket_size - 1):
|
||
causal_mask = torch.ones((qc.shape[-2], kc.shape[-2]), dtype=torch.bool,
|
||
device=device).triu(q_start_index - k_start_index + 1)
|
||
attn_weights.masked_fill_(causal_mask, max_neg_value)
|
||
|
||
block_row_maxes = attn_weights.amax(dim=-1, keepdims=True)
|
||
attn_weights -= block_row_maxes
|
||
exp_weights = torch.exp(attn_weights)
|
||
|
||
if exists(row_mask):
|
||
exp_weights.masked_fill_(~row_mask, 0.)
|
||
|
||
block_row_sums = exp_weights.sum(dim=-1, keepdims=True).clamp(min=EPSILON)
|
||
|
||
new_row_maxes = torch.maximum(block_row_maxes, row_maxes)
|
||
|
||
exp_values = einsum('... i j, ... j d -> ... i d', exp_weights, vc)
|
||
|
||
exp_row_max_diff = torch.exp(row_maxes - new_row_maxes)
|
||
exp_block_row_max_diff = torch.exp(block_row_maxes - new_row_maxes)
|
||
|
||
new_row_sums = exp_row_max_diff * row_sums + exp_block_row_max_diff * block_row_sums
|
||
|
||
oc.mul_((row_sums / new_row_sums) * exp_row_max_diff).add_((exp_block_row_max_diff / new_row_sums) * exp_values)
|
||
|
||
row_maxes.copy_(new_row_maxes)
|
||
row_sums.copy_(new_row_sums)
|
||
|
||
ctx.args = (causal, scale, mask, q_bucket_size, k_bucket_size)
|
||
ctx.save_for_backward(q, k, v, o, all_row_sums, all_row_maxes)
|
||
|
||
return o
|
||
|
||
@ staticmethod
|
||
@ torch.no_grad()
|
||
def backward(ctx, do):
|
||
""" Algorithm 4 in the paper """
|
||
|
||
causal, scale, mask, q_bucket_size, k_bucket_size = ctx.args
|
||
q, k, v, o, l, m = ctx.saved_tensors
|
||
|
||
device = q.device
|
||
|
||
max_neg_value = -torch.finfo(q.dtype).max
|
||
qk_len_diff = max(k.shape[-2] - q.shape[-2], 0)
|
||
|
||
dq = torch.zeros_like(q)
|
||
dk = torch.zeros_like(k)
|
||
dv = torch.zeros_like(v)
|
||
|
||
row_splits = zip(
|
||
q.split(q_bucket_size, dim=-2),
|
||
o.split(q_bucket_size, dim=-2),
|
||
do.split(q_bucket_size, dim=-2),
|
||
mask,
|
||
l.split(q_bucket_size, dim=-2),
|
||
m.split(q_bucket_size, dim=-2),
|
||
dq.split(q_bucket_size, dim=-2)
|
||
)
|
||
|
||
for ind, (qc, oc, doc, row_mask, lc, mc, dqc) in enumerate(row_splits):
|
||
q_start_index = ind * q_bucket_size - qk_len_diff
|
||
|
||
col_splits = zip(
|
||
k.split(k_bucket_size, dim=-2),
|
||
v.split(k_bucket_size, dim=-2),
|
||
dk.split(k_bucket_size, dim=-2),
|
||
dv.split(k_bucket_size, dim=-2),
|
||
)
|
||
|
||
for k_ind, (kc, vc, dkc, dvc) in enumerate(col_splits):
|
||
k_start_index = k_ind * k_bucket_size
|
||
|
||
attn_weights = einsum('... i d, ... j d -> ... i j', qc, kc) * scale
|
||
|
||
if causal and q_start_index < (k_start_index + k_bucket_size - 1):
|
||
causal_mask = torch.ones((qc.shape[-2], kc.shape[-2]), dtype=torch.bool,
|
||
device=device).triu(q_start_index - k_start_index + 1)
|
||
attn_weights.masked_fill_(causal_mask, max_neg_value)
|
||
|
||
exp_attn_weights = torch.exp(attn_weights - mc)
|
||
|
||
if exists(row_mask):
|
||
exp_attn_weights.masked_fill_(~row_mask, 0.)
|
||
|
||
p = exp_attn_weights / lc
|
||
|
||
dv_chunk = einsum('... i j, ... i d -> ... j d', p, doc)
|
||
dp = einsum('... i d, ... j d -> ... i j', doc, vc)
|
||
|
||
D = (doc * oc).sum(dim=-1, keepdims=True)
|
||
ds = p * scale * (dp - D)
|
||
|
||
dq_chunk = einsum('... i j, ... j d -> ... i d', ds, kc)
|
||
dk_chunk = einsum('... i j, ... i d -> ... j d', ds, qc)
|
||
|
||
dqc.add_(dq_chunk)
|
||
dkc.add_(dk_chunk)
|
||
dvc.add_(dv_chunk)
|
||
|
||
return dq, dk, dv, None, None, None, None
|
||
|
||
|
||
def replace_unet_modules(unet: diffusers.models.unet_2d_condition.UNet2DConditionModel, mem_eff_attn, xformers):
|
||
if mem_eff_attn:
|
||
replace_unet_cross_attn_to_memory_efficient()
|
||
elif xformers:
|
||
replace_unet_cross_attn_to_xformers()
|
||
|
||
|
||
def replace_unet_cross_attn_to_memory_efficient():
|
||
print("Replace CrossAttention.forward to use FlashAttention")
|
||
flash_func = FlashAttentionFunction
|
||
|
||
def forward_flash_attn(self, x, context=None, mask=None):
|
||
q_bucket_size = 512
|
||
k_bucket_size = 1024
|
||
|
||
h = self.heads
|
||
q = self.to_q(x)
|
||
|
||
context = context if context is not None else x
|
||
context = context.to(x.dtype)
|
||
k = self.to_k(context)
|
||
v = self.to_v(context)
|
||
del context, x
|
||
|
||
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h=h), (q, k, v))
|
||
|
||
out = flash_func.apply(q, k, v, mask, False, q_bucket_size, k_bucket_size)
|
||
|
||
out = rearrange(out, 'b h n d -> b n (h d)')
|
||
|
||
# diffusers 0.6.0
|
||
if type(self.to_out) is torch.nn.Sequential:
|
||
return self.to_out(out)
|
||
|
||
# diffusers 0.7.0~
|
||
out = self.to_out[0](out)
|
||
out = self.to_out[1](out)
|
||
return out
|
||
|
||
diffusers.models.attention.CrossAttention.forward = forward_flash_attn
|
||
|
||
|
||
def replace_unet_cross_attn_to_xformers():
|
||
print("Replace CrossAttention.forward to use xformers")
|
||
try:
|
||
import xformers.ops
|
||
except ImportError:
|
||
raise ImportError("No xformers / xformersがインストールされていないようです")
|
||
|
||
def forward_xformers(self, x, context=None, mask=None):
|
||
h = self.heads
|
||
q_in = self.to_q(x)
|
||
|
||
context = default(context, x)
|
||
context = context.to(x.dtype)
|
||
|
||
k_in = self.to_k(context)
|
||
v_in = self.to_v(context)
|
||
|
||
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b n h d', h=h), (q_in, k_in, v_in)) # new format
|
||
# q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q_in, k_in, v_in)) # legacy format
|
||
del q_in, k_in, v_in
|
||
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None) # 最適なのを選んでくれる
|
||
|
||
out = rearrange(out, 'b n h d -> b n (h d)', h=h)
|
||
# out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
|
||
|
||
# diffusers 0.6.0
|
||
if type(self.to_out) is torch.nn.Sequential:
|
||
return self.to_out(out)
|
||
|
||
# diffusers 0.7.0~
|
||
out = self.to_out[0](out)
|
||
out = self.to_out[1](out)
|
||
return out
|
||
|
||
diffusers.models.attention.CrossAttention.forward = forward_xformers
|
||
# endregion
|
||
|
||
|
||
# region checkpoint変換、読み込み、書き込み ###############################
|
||
|
||
# DiffUsers版StableDiffusionのモデルパラメータ
|
||
NUM_TRAIN_TIMESTEPS = 1000
|
||
BETA_START = 0.00085
|
||
BETA_END = 0.0120
|
||
|
||
UNET_PARAMS_MODEL_CHANNELS = 320
|
||
UNET_PARAMS_CHANNEL_MULT = [1, 2, 4, 4]
|
||
UNET_PARAMS_ATTENTION_RESOLUTIONS = [4, 2, 1]
|
||
UNET_PARAMS_IMAGE_SIZE = 32 # unused
|
||
UNET_PARAMS_IN_CHANNELS = 4
|
||
UNET_PARAMS_OUT_CHANNELS = 4
|
||
UNET_PARAMS_NUM_RES_BLOCKS = 2
|
||
UNET_PARAMS_CONTEXT_DIM = 768
|
||
UNET_PARAMS_NUM_HEADS = 8
|
||
|
||
VAE_PARAMS_Z_CHANNELS = 4
|
||
VAE_PARAMS_RESOLUTION = 256
|
||
VAE_PARAMS_IN_CHANNELS = 3
|
||
VAE_PARAMS_OUT_CH = 3
|
||
VAE_PARAMS_CH = 128
|
||
VAE_PARAMS_CH_MULT = [1, 2, 4, 4]
|
||
VAE_PARAMS_NUM_RES_BLOCKS = 2
|
||
|
||
# V2
|
||
V2_UNET_PARAMS_ATTENTION_HEAD_DIM = [5, 10, 20, 20]
|
||
V2_UNET_PARAMS_CONTEXT_DIM = 1024
|
||
|
||
|
||
# region StableDiffusion->Diffusersの変換コード
|
||
# convert_original_stable_diffusion_to_diffusers をコピーしている(ASL 2.0)
|
||
|
||
|
||
def shave_segments(path, n_shave_prefix_segments=1):
|
||
"""
|
||
Removes segments. Positive values shave the first segments, negative shave the last segments.
|
||
"""
|
||
if n_shave_prefix_segments >= 0:
|
||
return ".".join(path.split(".")[n_shave_prefix_segments:])
|
||
else:
|
||
return ".".join(path.split(".")[:n_shave_prefix_segments])
|
||
|
||
|
||
def renew_resnet_paths(old_list, n_shave_prefix_segments=0):
|
||
"""
|
||
Updates paths inside resnets to the new naming scheme (local renaming)
|
||
"""
|
||
mapping = []
|
||
for old_item in old_list:
|
||
new_item = old_item.replace("in_layers.0", "norm1")
|
||
new_item = new_item.replace("in_layers.2", "conv1")
|
||
|
||
new_item = new_item.replace("out_layers.0", "norm2")
|
||
new_item = new_item.replace("out_layers.3", "conv2")
|
||
|
||
new_item = new_item.replace("emb_layers.1", "time_emb_proj")
|
||
new_item = new_item.replace("skip_connection", "conv_shortcut")
|
||
|
||
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
|
||
|
||
mapping.append({"old": old_item, "new": new_item})
|
||
|
||
return mapping
|
||
|
||
|
||
def renew_vae_resnet_paths(old_list, n_shave_prefix_segments=0):
|
||
"""
|
||
Updates paths inside resnets to the new naming scheme (local renaming)
|
||
"""
|
||
mapping = []
|
||
for old_item in old_list:
|
||
new_item = old_item
|
||
|
||
new_item = new_item.replace("nin_shortcut", "conv_shortcut")
|
||
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
|
||
|
||
mapping.append({"old": old_item, "new": new_item})
|
||
|
||
return mapping
|
||
|
||
|
||
def renew_attention_paths(old_list, n_shave_prefix_segments=0):
|
||
"""
|
||
Updates paths inside attentions to the new naming scheme (local renaming)
|
||
"""
|
||
mapping = []
|
||
for old_item in old_list:
|
||
new_item = old_item
|
||
|
||
# new_item = new_item.replace('norm.weight', 'group_norm.weight')
|
||
# new_item = new_item.replace('norm.bias', 'group_norm.bias')
|
||
|
||
# new_item = new_item.replace('proj_out.weight', 'proj_attn.weight')
|
||
# new_item = new_item.replace('proj_out.bias', 'proj_attn.bias')
|
||
|
||
# new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
|
||
|
||
mapping.append({"old": old_item, "new": new_item})
|
||
|
||
return mapping
|
||
|
||
|
||
def renew_vae_attention_paths(old_list, n_shave_prefix_segments=0):
|
||
"""
|
||
Updates paths inside attentions to the new naming scheme (local renaming)
|
||
"""
|
||
mapping = []
|
||
for old_item in old_list:
|
||
new_item = old_item
|
||
|
||
new_item = new_item.replace("norm.weight", "group_norm.weight")
|
||
new_item = new_item.replace("norm.bias", "group_norm.bias")
|
||
|
||
new_item = new_item.replace("q.weight", "query.weight")
|
||
new_item = new_item.replace("q.bias", "query.bias")
|
||
|
||
new_item = new_item.replace("k.weight", "key.weight")
|
||
new_item = new_item.replace("k.bias", "key.bias")
|
||
|
||
new_item = new_item.replace("v.weight", "value.weight")
|
||
new_item = new_item.replace("v.bias", "value.bias")
|
||
|
||
new_item = new_item.replace("proj_out.weight", "proj_attn.weight")
|
||
new_item = new_item.replace("proj_out.bias", "proj_attn.bias")
|
||
|
||
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
|
||
|
||
mapping.append({"old": old_item, "new": new_item})
|
||
|
||
return mapping
|
||
|
||
|
||
def assign_to_checkpoint(
|
||
paths, checkpoint, old_checkpoint, attention_paths_to_split=None, additional_replacements=None, config=None
|
||
):
|
||
"""
|
||
This does the final conversion step: take locally converted weights and apply a global renaming
|
||
to them. It splits attention layers, and takes into account additional replacements
|
||
that may arise.
|
||
|
||
Assigns the weights to the new checkpoint.
|
||
"""
|
||
assert isinstance(paths, list), "Paths should be a list of dicts containing 'old' and 'new' keys."
|
||
|
||
# Splits the attention layers into three variables.
|
||
if attention_paths_to_split is not None:
|
||
for path, path_map in attention_paths_to_split.items():
|
||
old_tensor = old_checkpoint[path]
|
||
channels = old_tensor.shape[0] // 3
|
||
|
||
target_shape = (-1, channels) if len(old_tensor.shape) == 3 else (-1)
|
||
|
||
num_heads = old_tensor.shape[0] // config["num_head_channels"] // 3
|
||
|
||
old_tensor = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:])
|
||
query, key, value = old_tensor.split(channels // num_heads, dim=1)
|
||
|
||
checkpoint[path_map["query"]] = query.reshape(target_shape)
|
||
checkpoint[path_map["key"]] = key.reshape(target_shape)
|
||
checkpoint[path_map["value"]] = value.reshape(target_shape)
|
||
|
||
for path in paths:
|
||
new_path = path["new"]
|
||
|
||
# These have already been assigned
|
||
if attention_paths_to_split is not None and new_path in attention_paths_to_split:
|
||
continue
|
||
|
||
# Global renaming happens here
|
||
new_path = new_path.replace("middle_block.0", "mid_block.resnets.0")
|
||
new_path = new_path.replace("middle_block.1", "mid_block.attentions.0")
|
||
new_path = new_path.replace("middle_block.2", "mid_block.resnets.1")
|
||
|
||
if additional_replacements is not None:
|
||
for replacement in additional_replacements:
|
||
new_path = new_path.replace(replacement["old"], replacement["new"])
|
||
|
||
# proj_attn.weight has to be converted from conv 1D to linear
|
||
if "proj_attn.weight" in new_path:
|
||
checkpoint[new_path] = old_checkpoint[path["old"]][:, :, 0]
|
||
else:
|
||
checkpoint[new_path] = old_checkpoint[path["old"]]
|
||
|
||
|
||
def conv_attn_to_linear(checkpoint):
|
||
keys = list(checkpoint.keys())
|
||
attn_keys = ["query.weight", "key.weight", "value.weight"]
|
||
for key in keys:
|
||
if ".".join(key.split(".")[-2:]) in attn_keys:
|
||
if checkpoint[key].ndim > 2:
|
||
checkpoint[key] = checkpoint[key][:, :, 0, 0]
|
||
elif "proj_attn.weight" in key:
|
||
if checkpoint[key].ndim > 2:
|
||
checkpoint[key] = checkpoint[key][:, :, 0]
|
||
|
||
|
||
def linear_transformer_to_conv(checkpoint):
|
||
keys = list(checkpoint.keys())
|
||
tf_keys = ["proj_in.weight", "proj_out.weight"]
|
||
for key in keys:
|
||
if ".".join(key.split(".")[-2:]) in tf_keys:
|
||
if checkpoint[key].ndim == 2:
|
||
checkpoint[key] = checkpoint[key].unsqueeze(2).unsqueeze(2)
|
||
|
||
|
||
def convert_ldm_unet_checkpoint(v2, checkpoint, config):
|
||
"""
|
||
Takes a state dict and a config, and returns a converted checkpoint.
|
||
"""
|
||
|
||
# extract state_dict for UNet
|
||
unet_state_dict = {}
|
||
unet_key = "model.diffusion_model."
|
||
keys = list(checkpoint.keys())
|
||
for key in keys:
|
||
if key.startswith(unet_key):
|
||
unet_state_dict[key.replace(unet_key, "")] = checkpoint.pop(key)
|
||
|
||
new_checkpoint = {}
|
||
|
||
new_checkpoint["time_embedding.linear_1.weight"] = unet_state_dict["time_embed.0.weight"]
|
||
new_checkpoint["time_embedding.linear_1.bias"] = unet_state_dict["time_embed.0.bias"]
|
||
new_checkpoint["time_embedding.linear_2.weight"] = unet_state_dict["time_embed.2.weight"]
|
||
new_checkpoint["time_embedding.linear_2.bias"] = unet_state_dict["time_embed.2.bias"]
|
||
|
||
new_checkpoint["conv_in.weight"] = unet_state_dict["input_blocks.0.0.weight"]
|
||
new_checkpoint["conv_in.bias"] = unet_state_dict["input_blocks.0.0.bias"]
|
||
|
||
new_checkpoint["conv_norm_out.weight"] = unet_state_dict["out.0.weight"]
|
||
new_checkpoint["conv_norm_out.bias"] = unet_state_dict["out.0.bias"]
|
||
new_checkpoint["conv_out.weight"] = unet_state_dict["out.2.weight"]
|
||
new_checkpoint["conv_out.bias"] = unet_state_dict["out.2.bias"]
|
||
|
||
# Retrieves the keys for the input blocks only
|
||
num_input_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "input_blocks" in layer})
|
||
input_blocks = {
|
||
layer_id: [key for key in unet_state_dict if f"input_blocks.{layer_id}" in key]
|
||
for layer_id in range(num_input_blocks)
|
||
}
|
||
|
||
# Retrieves the keys for the middle blocks only
|
||
num_middle_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "middle_block" in layer})
|
||
middle_blocks = {
|
||
layer_id: [key for key in unet_state_dict if f"middle_block.{layer_id}" in key]
|
||
for layer_id in range(num_middle_blocks)
|
||
}
|
||
|
||
# Retrieves the keys for the output blocks only
|
||
num_output_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "output_blocks" in layer})
|
||
output_blocks = {
|
||
layer_id: [key for key in unet_state_dict if f"output_blocks.{layer_id}" in key]
|
||
for layer_id in range(num_output_blocks)
|
||
}
|
||
|
||
for i in range(1, num_input_blocks):
|
||
block_id = (i - 1) // (config["layers_per_block"] + 1)
|
||
layer_in_block_id = (i - 1) % (config["layers_per_block"] + 1)
|
||
|
||
resnets = [
|
||
key for key in input_blocks[i] if f"input_blocks.{i}.0" in key and f"input_blocks.{i}.0.op" not in key
|
||
]
|
||
attentions = [key for key in input_blocks[i] if f"input_blocks.{i}.1" in key]
|
||
|
||
if f"input_blocks.{i}.0.op.weight" in unet_state_dict:
|
||
new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.weight"] = unet_state_dict.pop(
|
||
f"input_blocks.{i}.0.op.weight"
|
||
)
|
||
new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.bias"] = unet_state_dict.pop(
|
||
f"input_blocks.{i}.0.op.bias"
|
||
)
|
||
|
||
paths = renew_resnet_paths(resnets)
|
||
meta_path = {"old": f"input_blocks.{i}.0", "new": f"down_blocks.{block_id}.resnets.{layer_in_block_id}"}
|
||
assign_to_checkpoint(
|
||
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
|
||
)
|
||
|
||
if len(attentions):
|
||
paths = renew_attention_paths(attentions)
|
||
meta_path = {"old": f"input_blocks.{i}.1", "new": f"down_blocks.{block_id}.attentions.{layer_in_block_id}"}
|
||
assign_to_checkpoint(
|
||
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
|
||
)
|
||
|
||
resnet_0 = middle_blocks[0]
|
||
attentions = middle_blocks[1]
|
||
resnet_1 = middle_blocks[2]
|
||
|
||
resnet_0_paths = renew_resnet_paths(resnet_0)
|
||
assign_to_checkpoint(resnet_0_paths, new_checkpoint, unet_state_dict, config=config)
|
||
|
||
resnet_1_paths = renew_resnet_paths(resnet_1)
|
||
assign_to_checkpoint(resnet_1_paths, new_checkpoint, unet_state_dict, config=config)
|
||
|
||
attentions_paths = renew_attention_paths(attentions)
|
||
meta_path = {"old": "middle_block.1", "new": "mid_block.attentions.0"}
|
||
assign_to_checkpoint(
|
||
attentions_paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
|
||
)
|
||
|
||
for i in range(num_output_blocks):
|
||
block_id = i // (config["layers_per_block"] + 1)
|
||
layer_in_block_id = i % (config["layers_per_block"] + 1)
|
||
output_block_layers = [shave_segments(name, 2) for name in output_blocks[i]]
|
||
output_block_list = {}
|
||
|
||
for layer in output_block_layers:
|
||
layer_id, layer_name = layer.split(".")[0], shave_segments(layer, 1)
|
||
if layer_id in output_block_list:
|
||
output_block_list[layer_id].append(layer_name)
|
||
else:
|
||
output_block_list[layer_id] = [layer_name]
|
||
|
||
if len(output_block_list) > 1:
|
||
resnets = [key for key in output_blocks[i] if f"output_blocks.{i}.0" in key]
|
||
attentions = [key for key in output_blocks[i] if f"output_blocks.{i}.1" in key]
|
||
|
||
resnet_0_paths = renew_resnet_paths(resnets)
|
||
paths = renew_resnet_paths(resnets)
|
||
|
||
meta_path = {"old": f"output_blocks.{i}.0", "new": f"up_blocks.{block_id}.resnets.{layer_in_block_id}"}
|
||
assign_to_checkpoint(
|
||
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
|
||
)
|
||
|
||
if ["conv.weight", "conv.bias"] in output_block_list.values():
|
||
index = list(output_block_list.values()).index(["conv.weight", "conv.bias"])
|
||
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.weight"] = unet_state_dict[
|
||
f"output_blocks.{i}.{index}.conv.weight"
|
||
]
|
||
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.bias"] = unet_state_dict[
|
||
f"output_blocks.{i}.{index}.conv.bias"
|
||
]
|
||
|
||
# Clear attentions as they have been attributed above.
|
||
if len(attentions) == 2:
|
||
attentions = []
|
||
|
||
if len(attentions):
|
||
paths = renew_attention_paths(attentions)
|
||
meta_path = {
|
||
"old": f"output_blocks.{i}.1",
|
||
"new": f"up_blocks.{block_id}.attentions.{layer_in_block_id}",
|
||
}
|
||
assign_to_checkpoint(
|
||
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
|
||
)
|
||
else:
|
||
resnet_0_paths = renew_resnet_paths(output_block_layers, n_shave_prefix_segments=1)
|
||
for path in resnet_0_paths:
|
||
old_path = ".".join(["output_blocks", str(i), path["old"]])
|
||
new_path = ".".join(["up_blocks", str(block_id), "resnets", str(layer_in_block_id), path["new"]])
|
||
|
||
new_checkpoint[new_path] = unet_state_dict[old_path]
|
||
|
||
# SDのv2では1*1のconv2dがlinearに変わっているので、linear->convに変換する
|
||
if v2:
|
||
linear_transformer_to_conv(new_checkpoint)
|
||
|
||
return new_checkpoint
|
||
|
||
|
||
def convert_ldm_vae_checkpoint(checkpoint, config):
|
||
# extract state dict for VAE
|
||
vae_state_dict = {}
|
||
vae_key = "first_stage_model."
|
||
keys = list(checkpoint.keys())
|
||
for key in keys:
|
||
if key.startswith(vae_key):
|
||
vae_state_dict[key.replace(vae_key, "")] = checkpoint.get(key)
|
||
|
||
new_checkpoint = {}
|
||
|
||
new_checkpoint["encoder.conv_in.weight"] = vae_state_dict["encoder.conv_in.weight"]
|
||
new_checkpoint["encoder.conv_in.bias"] = vae_state_dict["encoder.conv_in.bias"]
|
||
new_checkpoint["encoder.conv_out.weight"] = vae_state_dict["encoder.conv_out.weight"]
|
||
new_checkpoint["encoder.conv_out.bias"] = vae_state_dict["encoder.conv_out.bias"]
|
||
new_checkpoint["encoder.conv_norm_out.weight"] = vae_state_dict["encoder.norm_out.weight"]
|
||
new_checkpoint["encoder.conv_norm_out.bias"] = vae_state_dict["encoder.norm_out.bias"]
|
||
|
||
new_checkpoint["decoder.conv_in.weight"] = vae_state_dict["decoder.conv_in.weight"]
|
||
new_checkpoint["decoder.conv_in.bias"] = vae_state_dict["decoder.conv_in.bias"]
|
||
new_checkpoint["decoder.conv_out.weight"] = vae_state_dict["decoder.conv_out.weight"]
|
||
new_checkpoint["decoder.conv_out.bias"] = vae_state_dict["decoder.conv_out.bias"]
|
||
new_checkpoint["decoder.conv_norm_out.weight"] = vae_state_dict["decoder.norm_out.weight"]
|
||
new_checkpoint["decoder.conv_norm_out.bias"] = vae_state_dict["decoder.norm_out.bias"]
|
||
|
||
new_checkpoint["quant_conv.weight"] = vae_state_dict["quant_conv.weight"]
|
||
new_checkpoint["quant_conv.bias"] = vae_state_dict["quant_conv.bias"]
|
||
new_checkpoint["post_quant_conv.weight"] = vae_state_dict["post_quant_conv.weight"]
|
||
new_checkpoint["post_quant_conv.bias"] = vae_state_dict["post_quant_conv.bias"]
|
||
|
||
# Retrieves the keys for the encoder down blocks only
|
||
num_down_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "encoder.down" in layer})
|
||
down_blocks = {
|
||
layer_id: [key for key in vae_state_dict if f"down.{layer_id}" in key] for layer_id in range(num_down_blocks)
|
||
}
|
||
|
||
# Retrieves the keys for the decoder up blocks only
|
||
num_up_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "decoder.up" in layer})
|
||
up_blocks = {
|
||
layer_id: [key for key in vae_state_dict if f"up.{layer_id}" in key] for layer_id in range(num_up_blocks)
|
||
}
|
||
|
||
for i in range(num_down_blocks):
|
||
resnets = [key for key in down_blocks[i] if f"down.{i}" in key and f"down.{i}.downsample" not in key]
|
||
|
||
if f"encoder.down.{i}.downsample.conv.weight" in vae_state_dict:
|
||
new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.weight"] = vae_state_dict.pop(
|
||
f"encoder.down.{i}.downsample.conv.weight"
|
||
)
|
||
new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.bias"] = vae_state_dict.pop(
|
||
f"encoder.down.{i}.downsample.conv.bias"
|
||
)
|
||
|
||
paths = renew_vae_resnet_paths(resnets)
|
||
meta_path = {"old": f"down.{i}.block", "new": f"down_blocks.{i}.resnets"}
|
||
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
|
||
|
||
mid_resnets = [key for key in vae_state_dict if "encoder.mid.block" in key]
|
||
num_mid_res_blocks = 2
|
||
for i in range(1, num_mid_res_blocks + 1):
|
||
resnets = [key for key in mid_resnets if f"encoder.mid.block_{i}" in key]
|
||
|
||
paths = renew_vae_resnet_paths(resnets)
|
||
meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"}
|
||
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
|
||
|
||
mid_attentions = [key for key in vae_state_dict if "encoder.mid.attn" in key]
|
||
paths = renew_vae_attention_paths(mid_attentions)
|
||
meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"}
|
||
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
|
||
conv_attn_to_linear(new_checkpoint)
|
||
|
||
for i in range(num_up_blocks):
|
||
block_id = num_up_blocks - 1 - i
|
||
resnets = [
|
||
key for key in up_blocks[block_id] if f"up.{block_id}" in key and f"up.{block_id}.upsample" not in key
|
||
]
|
||
|
||
if f"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict:
|
||
new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.weight"] = vae_state_dict[
|
||
f"decoder.up.{block_id}.upsample.conv.weight"
|
||
]
|
||
new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.bias"] = vae_state_dict[
|
||
f"decoder.up.{block_id}.upsample.conv.bias"
|
||
]
|
||
|
||
paths = renew_vae_resnet_paths(resnets)
|
||
meta_path = {"old": f"up.{block_id}.block", "new": f"up_blocks.{i}.resnets"}
|
||
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
|
||
|
||
mid_resnets = [key for key in vae_state_dict if "decoder.mid.block" in key]
|
||
num_mid_res_blocks = 2
|
||
for i in range(1, num_mid_res_blocks + 1):
|
||
resnets = [key for key in mid_resnets if f"decoder.mid.block_{i}" in key]
|
||
|
||
paths = renew_vae_resnet_paths(resnets)
|
||
meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"}
|
||
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
|
||
|
||
mid_attentions = [key for key in vae_state_dict if "decoder.mid.attn" in key]
|
||
paths = renew_vae_attention_paths(mid_attentions)
|
||
meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"}
|
||
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
|
||
conv_attn_to_linear(new_checkpoint)
|
||
return new_checkpoint
|
||
|
||
|
||
def create_unet_diffusers_config(v2):
|
||
"""
|
||
Creates a config for the diffusers based on the config of the LDM model.
|
||
"""
|
||
# unet_params = original_config.model.params.unet_config.params
|
||
|
||
block_out_channels = [UNET_PARAMS_MODEL_CHANNELS * mult for mult in UNET_PARAMS_CHANNEL_MULT]
|
||
|
||
down_block_types = []
|
||
resolution = 1
|
||
for i in range(len(block_out_channels)):
|
||
block_type = "CrossAttnDownBlock2D" if resolution in UNET_PARAMS_ATTENTION_RESOLUTIONS else "DownBlock2D"
|
||
down_block_types.append(block_type)
|
||
if i != len(block_out_channels) - 1:
|
||
resolution *= 2
|
||
|
||
up_block_types = []
|
||
for i in range(len(block_out_channels)):
|
||
block_type = "CrossAttnUpBlock2D" if resolution in UNET_PARAMS_ATTENTION_RESOLUTIONS else "UpBlock2D"
|
||
up_block_types.append(block_type)
|
||
resolution //= 2
|
||
|
||
config = dict(
|
||
sample_size=UNET_PARAMS_IMAGE_SIZE,
|
||
in_channels=UNET_PARAMS_IN_CHANNELS,
|
||
out_channels=UNET_PARAMS_OUT_CHANNELS,
|
||
down_block_types=tuple(down_block_types),
|
||
up_block_types=tuple(up_block_types),
|
||
block_out_channels=tuple(block_out_channels),
|
||
layers_per_block=UNET_PARAMS_NUM_RES_BLOCKS,
|
||
cross_attention_dim=UNET_PARAMS_CONTEXT_DIM if not v2 else V2_UNET_PARAMS_CONTEXT_DIM,
|
||
attention_head_dim=UNET_PARAMS_NUM_HEADS if not v2 else V2_UNET_PARAMS_ATTENTION_HEAD_DIM,
|
||
)
|
||
|
||
return config
|
||
|
||
|
||
def create_vae_diffusers_config():
|
||
"""
|
||
Creates a config for the diffusers based on the config of the LDM model.
|
||
"""
|
||
# vae_params = original_config.model.params.first_stage_config.params.ddconfig
|
||
# _ = original_config.model.params.first_stage_config.params.embed_dim
|
||
block_out_channels = [VAE_PARAMS_CH * mult for mult in VAE_PARAMS_CH_MULT]
|
||
down_block_types = ["DownEncoderBlock2D"] * len(block_out_channels)
|
||
up_block_types = ["UpDecoderBlock2D"] * len(block_out_channels)
|
||
|
||
config = dict(
|
||
sample_size=VAE_PARAMS_RESOLUTION,
|
||
in_channels=VAE_PARAMS_IN_CHANNELS,
|
||
out_channels=VAE_PARAMS_OUT_CH,
|
||
down_block_types=tuple(down_block_types),
|
||
up_block_types=tuple(up_block_types),
|
||
block_out_channels=tuple(block_out_channels),
|
||
latent_channels=VAE_PARAMS_Z_CHANNELS,
|
||
layers_per_block=VAE_PARAMS_NUM_RES_BLOCKS,
|
||
)
|
||
return config
|
||
|
||
|
||
def convert_ldm_clip_checkpoint_v1(checkpoint):
|
||
keys = list(checkpoint.keys())
|
||
text_model_dict = {}
|
||
for key in keys:
|
||
if key.startswith("cond_stage_model.transformer"):
|
||
text_model_dict[key[len("cond_stage_model.transformer."):]] = checkpoint[key]
|
||
return text_model_dict
|
||
|
||
|
||
def convert_ldm_clip_checkpoint_v2(checkpoint, max_length):
|
||
# 嫌になるくらい違うぞ!
|
||
def convert_key(key):
|
||
if not key.startswith("cond_stage_model"):
|
||
return None
|
||
|
||
# common conversion
|
||
key = key.replace("cond_stage_model.model.transformer.", "text_model.encoder.")
|
||
key = key.replace("cond_stage_model.model.", "text_model.")
|
||
|
||
if "resblocks" in key:
|
||
# resblocks conversion
|
||
key = key.replace(".resblocks.", ".layers.")
|
||
if ".ln_" in key:
|
||
key = key.replace(".ln_", ".layer_norm")
|
||
elif ".mlp." in key:
|
||
key = key.replace(".c_fc.", ".fc1.")
|
||
key = key.replace(".c_proj.", ".fc2.")
|
||
elif '.attn.out_proj' in key:
|
||
key = key.replace(".attn.out_proj.", ".self_attn.out_proj.")
|
||
elif '.attn.in_proj' in key:
|
||
key = None # 特殊なので後で処理する
|
||
else:
|
||
raise ValueError(f"unexpected key in SD: {key}")
|
||
elif '.positional_embedding' in key:
|
||
key = key.replace(".positional_embedding", ".embeddings.position_embedding.weight")
|
||
elif '.text_projection' in key:
|
||
key = None # 使われない???
|
||
elif '.logit_scale' in key:
|
||
key = None # 使われない???
|
||
elif '.token_embedding' in key:
|
||
key = key.replace(".token_embedding.weight", ".embeddings.token_embedding.weight")
|
||
elif '.ln_final' in key:
|
||
key = key.replace(".ln_final", ".final_layer_norm")
|
||
return key
|
||
|
||
keys = list(checkpoint.keys())
|
||
new_sd = {}
|
||
for key in keys:
|
||
# remove resblocks 23
|
||
if '.resblocks.23.' in key:
|
||
continue
|
||
new_key = convert_key(key)
|
||
if new_key is None:
|
||
continue
|
||
new_sd[new_key] = checkpoint[key]
|
||
|
||
# attnの変換
|
||
for key in keys:
|
||
if '.resblocks.23.' in key:
|
||
continue
|
||
if '.resblocks' in key and '.attn.in_proj_' in key:
|
||
# 三つに分割
|
||
values = torch.chunk(checkpoint[key], 3)
|
||
|
||
key_suffix = ".weight" if "weight" in key else ".bias"
|
||
key_pfx = key.replace("cond_stage_model.model.transformer.resblocks.", "text_model.encoder.layers.")
|
||
key_pfx = key_pfx.replace("_weight", "")
|
||
key_pfx = key_pfx.replace("_bias", "")
|
||
key_pfx = key_pfx.replace(".attn.in_proj", ".self_attn.")
|
||
new_sd[key_pfx + "q_proj" + key_suffix] = values[0]
|
||
new_sd[key_pfx + "k_proj" + key_suffix] = values[1]
|
||
new_sd[key_pfx + "v_proj" + key_suffix] = values[2]
|
||
|
||
# position_idsの追加
|
||
new_sd["text_model.embeddings.position_ids"] = torch.Tensor([list(range(max_length))]).to(torch.int64)
|
||
return new_sd
|
||
|
||
# endregion
|
||
|
||
|
||
# region Diffusers->StableDiffusion の変換コード
|
||
# convert_diffusers_to_original_stable_diffusion をコピーしている(ASL 2.0)
|
||
|
||
def conv_transformer_to_linear(checkpoint):
|
||
keys = list(checkpoint.keys())
|
||
tf_keys = ["proj_in.weight", "proj_out.weight"]
|
||
for key in keys:
|
||
if ".".join(key.split(".")[-2:]) in tf_keys:
|
||
if checkpoint[key].ndim > 2:
|
||
checkpoint[key] = checkpoint[key][:, :, 0, 0]
|
||
|
||
|
||
def convert_unet_state_dict_to_sd(v2, unet_state_dict):
|
||
unet_conversion_map = [
|
||
# (stable-diffusion, HF Diffusers)
|
||
("time_embed.0.weight", "time_embedding.linear_1.weight"),
|
||
("time_embed.0.bias", "time_embedding.linear_1.bias"),
|
||
("time_embed.2.weight", "time_embedding.linear_2.weight"),
|
||
("time_embed.2.bias", "time_embedding.linear_2.bias"),
|
||
("input_blocks.0.0.weight", "conv_in.weight"),
|
||
("input_blocks.0.0.bias", "conv_in.bias"),
|
||
("out.0.weight", "conv_norm_out.weight"),
|
||
("out.0.bias", "conv_norm_out.bias"),
|
||
("out.2.weight", "conv_out.weight"),
|
||
("out.2.bias", "conv_out.bias"),
|
||
]
|
||
|
||
unet_conversion_map_resnet = [
|
||
# (stable-diffusion, HF Diffusers)
|
||
("in_layers.0", "norm1"),
|
||
("in_layers.2", "conv1"),
|
||
("out_layers.0", "norm2"),
|
||
("out_layers.3", "conv2"),
|
||
("emb_layers.1", "time_emb_proj"),
|
||
("skip_connection", "conv_shortcut"),
|
||
]
|
||
|
||
unet_conversion_map_layer = []
|
||
for i in range(4):
|
||
# loop over downblocks/upblocks
|
||
|
||
for j in range(2):
|
||
# loop over resnets/attentions for downblocks
|
||
hf_down_res_prefix = f"down_blocks.{i}.resnets.{j}."
|
||
sd_down_res_prefix = f"input_blocks.{3*i + j + 1}.0."
|
||
unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix))
|
||
|
||
if i < 3:
|
||
# no attention layers in down_blocks.3
|
||
hf_down_atn_prefix = f"down_blocks.{i}.attentions.{j}."
|
||
sd_down_atn_prefix = f"input_blocks.{3*i + j + 1}.1."
|
||
unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix))
|
||
|
||
for j in range(3):
|
||
# loop over resnets/attentions for upblocks
|
||
hf_up_res_prefix = f"up_blocks.{i}.resnets.{j}."
|
||
sd_up_res_prefix = f"output_blocks.{3*i + j}.0."
|
||
unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix))
|
||
|
||
if i > 0:
|
||
# no attention layers in up_blocks.0
|
||
hf_up_atn_prefix = f"up_blocks.{i}.attentions.{j}."
|
||
sd_up_atn_prefix = f"output_blocks.{3*i + j}.1."
|
||
unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix))
|
||
|
||
if i < 3:
|
||
# no downsample in down_blocks.3
|
||
hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0.conv."
|
||
sd_downsample_prefix = f"input_blocks.{3*(i+1)}.0.op."
|
||
unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix))
|
||
|
||
# no upsample in up_blocks.3
|
||
hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0."
|
||
sd_upsample_prefix = f"output_blocks.{3*i + 2}.{1 if i == 0 else 2}."
|
||
unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix))
|
||
|
||
hf_mid_atn_prefix = "mid_block.attentions.0."
|
||
sd_mid_atn_prefix = "middle_block.1."
|
||
unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix))
|
||
|
||
for j in range(2):
|
||
hf_mid_res_prefix = f"mid_block.resnets.{j}."
|
||
sd_mid_res_prefix = f"middle_block.{2*j}."
|
||
unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix))
|
||
|
||
# buyer beware: this is a *brittle* function,
|
||
# and correct output requires that all of these pieces interact in
|
||
# the exact order in which I have arranged them.
|
||
mapping = {k: k for k in unet_state_dict.keys()}
|
||
for sd_name, hf_name in unet_conversion_map:
|
||
mapping[hf_name] = sd_name
|
||
for k, v in mapping.items():
|
||
if "resnets" in k:
|
||
for sd_part, hf_part in unet_conversion_map_resnet:
|
||
v = v.replace(hf_part, sd_part)
|
||
mapping[k] = v
|
||
for k, v in mapping.items():
|
||
for sd_part, hf_part in unet_conversion_map_layer:
|
||
v = v.replace(hf_part, sd_part)
|
||
mapping[k] = v
|
||
new_state_dict = {v: unet_state_dict[k] for k, v in mapping.items()}
|
||
|
||
if v2:
|
||
conv_transformer_to_linear(new_state_dict)
|
||
|
||
return new_state_dict
|
||
|
||
# endregion
|
||
|
||
|
||
def load_checkpoint_with_text_encoder_conversion(ckpt_path):
|
||
# text encoderの格納形式が違うモデルに対応する ('text_model'がない)
|
||
TEXT_ENCODER_KEY_REPLACEMENTS = [
|
||
('cond_stage_model.transformer.embeddings.', 'cond_stage_model.transformer.text_model.embeddings.'),
|
||
('cond_stage_model.transformer.encoder.', 'cond_stage_model.transformer.text_model.encoder.'),
|
||
('cond_stage_model.transformer.final_layer_norm.', 'cond_stage_model.transformer.text_model.final_layer_norm.')
|
||
]
|
||
|
||
checkpoint = torch.load(ckpt_path, map_location="cpu")
|
||
state_dict = checkpoint["state_dict"]
|
||
|
||
key_reps = []
|
||
for rep_from, rep_to in TEXT_ENCODER_KEY_REPLACEMENTS:
|
||
for key in state_dict.keys():
|
||
if key.startswith(rep_from):
|
||
new_key = rep_to + key[len(rep_from):]
|
||
key_reps.append((key, new_key))
|
||
|
||
for key, new_key in key_reps:
|
||
state_dict[new_key] = state_dict[key]
|
||
del state_dict[key]
|
||
|
||
return checkpoint
|
||
|
||
|
||
def load_models_from_stable_diffusion_checkpoint(v2, ckpt_path, dtype=None):
|
||
checkpoint = load_checkpoint_with_text_encoder_conversion(ckpt_path)
|
||
state_dict = checkpoint["state_dict"]
|
||
if dtype is not None:
|
||
for k, v in state_dict.items():
|
||
if type(v) is torch.Tensor:
|
||
state_dict[k] = v.to(dtype)
|
||
|
||
# Convert the UNet2DConditionModel model.
|
||
unet_config = create_unet_diffusers_config(v2)
|
||
converted_unet_checkpoint = convert_ldm_unet_checkpoint(v2, state_dict, unet_config)
|
||
|
||
unet = UNet2DConditionModel(**unet_config)
|
||
info = unet.load_state_dict(converted_unet_checkpoint)
|
||
print("loading u-net:", info)
|
||
|
||
# Convert the VAE model.
|
||
vae_config = create_vae_diffusers_config()
|
||
converted_vae_checkpoint = convert_ldm_vae_checkpoint(state_dict, vae_config)
|
||
|
||
vae = AutoencoderKL(**vae_config)
|
||
info = vae.load_state_dict(converted_vae_checkpoint)
|
||
print("loadint vae:", info)
|
||
|
||
# convert text_model
|
||
if v2:
|
||
converted_text_encoder_checkpoint = convert_ldm_clip_checkpoint_v2(state_dict, 77)
|
||
cfg = CLIPTextConfig(
|
||
vocab_size=49408,
|
||
hidden_size=1024,
|
||
intermediate_size=4096,
|
||
num_hidden_layers=23,
|
||
num_attention_heads=16,
|
||
max_position_embeddings=77,
|
||
hidden_act="gelu",
|
||
layer_norm_eps=1e-05,
|
||
dropout=0.0,
|
||
attention_dropout=0.0,
|
||
initializer_range=0.02,
|
||
initializer_factor=1.0,
|
||
pad_token_id=1,
|
||
bos_token_id=0,
|
||
eos_token_id=2,
|
||
model_type="clip_text_model",
|
||
projection_dim=512,
|
||
torch_dtype="float32",
|
||
transformers_version="4.25.0.dev0",
|
||
)
|
||
text_model = CLIPTextModel._from_config(cfg)
|
||
info = text_model.load_state_dict(converted_text_encoder_checkpoint)
|
||
else:
|
||
converted_text_encoder_checkpoint = convert_ldm_clip_checkpoint_v1(state_dict)
|
||
text_model = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14")
|
||
info = text_model.load_state_dict(converted_text_encoder_checkpoint)
|
||
print("loading text encoder:", info)
|
||
|
||
return text_model, vae, unet
|
||
|
||
|
||
def convert_text_encoder_state_dict_to_sd_v2(checkpoint):
|
||
def convert_key(key):
|
||
# position_idsの除去
|
||
if ".position_ids" in key:
|
||
return None
|
||
|
||
# common
|
||
key = key.replace("text_model.encoder.", "transformer.")
|
||
key = key.replace("text_model.", "")
|
||
if "layers" in key:
|
||
# resblocks conversion
|
||
key = key.replace(".layers.", ".resblocks.")
|
||
if ".layer_norm" in key:
|
||
key = key.replace(".layer_norm", ".ln_")
|
||
elif ".mlp." in key:
|
||
key = key.replace(".fc1.", ".c_fc.")
|
||
key = key.replace(".fc2.", ".c_proj.")
|
||
elif '.self_attn.out_proj' in key:
|
||
key = key.replace(".self_attn.out_proj.", ".attn.out_proj.")
|
||
elif '.self_attn.' in key:
|
||
key = None # 特殊なので後で処理する
|
||
else:
|
||
raise ValueError(f"unexpected key in DiffUsers model: {key}")
|
||
elif '.position_embedding' in key:
|
||
key = key.replace("embeddings.position_embedding.weight", "positional_embedding")
|
||
elif '.token_embedding' in key:
|
||
key = key.replace("embeddings.token_embedding.weight", "token_embedding.weight")
|
||
elif 'final_layer_norm' in key:
|
||
key = key.replace("final_layer_norm", "ln_final")
|
||
return key
|
||
|
||
keys = list(checkpoint.keys())
|
||
new_sd = {}
|
||
for key in keys:
|
||
new_key = convert_key(key)
|
||
if new_key is None:
|
||
continue
|
||
new_sd[new_key] = checkpoint[key]
|
||
|
||
# attnの変換
|
||
for key in keys:
|
||
if 'layers' in key and 'q_proj' in key:
|
||
# 三つを結合
|
||
key_q = key
|
||
key_k = key.replace("q_proj", "k_proj")
|
||
key_v = key.replace("q_proj", "v_proj")
|
||
|
||
value_q = checkpoint[key_q]
|
||
value_k = checkpoint[key_k]
|
||
value_v = checkpoint[key_v]
|
||
value = torch.cat([value_q, value_k, value_v])
|
||
|
||
new_key = key.replace("text_model.encoder.layers.", "transformer.resblocks.")
|
||
new_key = new_key.replace(".self_attn.q_proj.", ".attn.in_proj_")
|
||
new_sd[new_key] = value
|
||
|
||
return new_sd
|
||
|
||
|
||
def save_stable_diffusion_checkpoint(v2, output_file, text_encoder, unet, ckpt_path, epochs, steps, save_dtype=None):
|
||
# VAEがメモリ上にないので、もう一度VAEを含めて読み込む
|
||
checkpoint = load_checkpoint_with_text_encoder_conversion(ckpt_path)
|
||
state_dict = checkpoint["state_dict"]
|
||
|
||
def assign_new_sd(prefix, sd):
|
||
for k, v in sd.items():
|
||
key = prefix + k
|
||
assert key in state_dict, f"Illegal key in save SD: {key}"
|
||
if save_dtype is not None:
|
||
v = v.detach().clone().to("cpu").to(save_dtype)
|
||
state_dict[key] = v
|
||
|
||
# Convert the UNet model
|
||
unet_state_dict = convert_unet_state_dict_to_sd(v2, unet.state_dict())
|
||
assign_new_sd("model.diffusion_model.", unet_state_dict)
|
||
|
||
# Convert the text encoder model
|
||
if v2:
|
||
text_enc_dict = convert_text_encoder_state_dict_to_sd_v2(text_encoder.state_dict())
|
||
assign_new_sd("cond_stage_model.model.", text_enc_dict)
|
||
else:
|
||
text_enc_dict = text_encoder.state_dict()
|
||
assign_new_sd("cond_stage_model.transformer.", text_enc_dict)
|
||
|
||
# Put together new checkpoint
|
||
new_ckpt = {'state_dict': state_dict}
|
||
|
||
if 'epoch' in checkpoint:
|
||
epochs += checkpoint['epoch']
|
||
if 'global_step' in checkpoint:
|
||
steps += checkpoint['global_step']
|
||
|
||
new_ckpt['epoch'] = epochs
|
||
new_ckpt['global_step'] = steps
|
||
|
||
torch.save(new_ckpt, output_file)
|
||
|
||
|
||
def save_diffusers_checkpoint(v2, output_dir, text_encoder, unet, pretrained_model_name_or_path, save_dtype):
|
||
pipeline = StableDiffusionPipeline(
|
||
unet=unet,
|
||
text_encoder=text_encoder,
|
||
vae=AutoencoderKL.from_pretrained(pretrained_model_name_or_path, subfolder="vae"),
|
||
scheduler=DDIMScheduler.from_pretrained(pretrained_model_name_or_path, subfolder="scheduler"),
|
||
tokenizer=CLIPTokenizer.from_pretrained(pretrained_model_name_or_path, subfolder="tokenizer"),
|
||
safety_checker=None,
|
||
feature_extractor=None,
|
||
requires_safety_checker=None,
|
||
)
|
||
pipeline.save_pretrained(output_dir)
|
||
|
||
# endregion
|
||
|
||
|
||
def collate_fn(examples):
|
||
return examples[0]
|
||
|
||
|
||
def train(args):
|
||
if args.caption_extention is not None:
|
||
args.caption_extension = args.caption_extention
|
||
args.caption_extention = None
|
||
|
||
fine_tuning = args.fine_tuning
|
||
cache_latents = args.cache_latents
|
||
|
||
# latentsをキャッシュする場合のオプション設定を確認する
|
||
if cache_latents:
|
||
assert not args.flip_aug and not args.color_aug, "when caching latents, augmentation cannot be used / latentをキャッシュするときはaugmentationは使えません"
|
||
|
||
# その他のオプション設定を確認する
|
||
if args.v_parameterization and not args.v2:
|
||
print("v_parameterization should be with v2 / v1でv_parameterizationを使用することは想定されていません")
|
||
if args.v2 and args.clip_skip is not None:
|
||
print("v2 with clip_skip will be unexpected / v2でclip_skipを使用することは想定されていません")
|
||
|
||
# モデル形式のオプション設定を確認する:
|
||
# v11からDiffUsersから直接落としてくるのもOK(ただし認証がいるやつは未対応)、またv11からDiffUsersも途中保存に対応した
|
||
use_stable_diffusion_format = os.path.isfile(args.pretrained_model_name_or_path)
|
||
|
||
# 乱数系列を初期化する
|
||
if args.seed is not None:
|
||
set_seed(args.seed)
|
||
|
||
# 学習データを用意する
|
||
def read_caption(img_path):
|
||
# captionの候補ファイル名を作る
|
||
base_name = os.path.splitext(img_path)[0]
|
||
base_name_face_det = base_name
|
||
tokens = base_name.split("_")
|
||
if len(tokens) >= 5:
|
||
base_name_face_det = "_".join(tokens[:-4])
|
||
cap_paths = [base_name + args.caption_extension, base_name_face_det + args.caption_extension]
|
||
|
||
caption = None
|
||
for cap_path in cap_paths:
|
||
if os.path.isfile(cap_path):
|
||
with open(cap_path, "rt", encoding='utf-8') as f:
|
||
caption = f.readlines()[0].strip()
|
||
break
|
||
return caption
|
||
|
||
def load_dreambooth_dir(dir):
|
||
tokens = os.path.basename(dir).split('_')
|
||
try:
|
||
n_repeats = int(tokens[0])
|
||
except ValueError as e:
|
||
return 0, []
|
||
|
||
caption_by_folder = '_'.join(tokens[1:])
|
||
|
||
print(f"found directory {n_repeats}_{caption_by_folder}")
|
||
|
||
img_paths = glob.glob(os.path.join(dir, "*.png")) + glob.glob(os.path.join(dir, "*.jpg")) + \
|
||
glob.glob(os.path.join(dir, "*.webp"))
|
||
|
||
# 画像ファイルごとにプロンプトを読み込み、もしあればそちらを使う(v11から仕様変更した)
|
||
captions = []
|
||
for img_path in img_paths:
|
||
cap_for_img = read_caption(img_path)
|
||
captions.append(caption_by_folder if cap_for_img is None else cap_for_img)
|
||
|
||
return n_repeats, list(zip(img_paths, captions))
|
||
|
||
print("prepare train images.")
|
||
train_img_path_captions = []
|
||
|
||
if fine_tuning:
|
||
img_paths = glob.glob(os.path.join(args.train_data_dir, "*.png")) + \
|
||
glob.glob(os.path.join(args.train_data_dir, "*.jpg")) + glob.glob(os.path.join(args.train_data_dir, "*.webp"))
|
||
for img_path in tqdm(img_paths):
|
||
caption = read_caption(img_path)
|
||
assert caption is not None and len(
|
||
caption) > 0, f"no caption for image. check caption_extension option / キャプションファイルが見つからないかcaptionが空です。caption_extensionオプションを確認してください: {img_path}"
|
||
|
||
train_img_path_captions.append((img_path, caption))
|
||
|
||
if args.dataset_repeats is not None:
|
||
l = []
|
||
for _ in range(args.dataset_repeats):
|
||
l.extend(train_img_path_captions)
|
||
train_img_path_captions = l
|
||
else:
|
||
train_dirs = os.listdir(args.train_data_dir)
|
||
for dir in train_dirs:
|
||
n_repeats, img_caps = load_dreambooth_dir(os.path.join(args.train_data_dir, dir))
|
||
for _ in range(n_repeats):
|
||
train_img_path_captions.extend(img_caps)
|
||
print(f"{len(train_img_path_captions)} train images with repeating.")
|
||
|
||
reg_img_path_captions = []
|
||
if args.reg_data_dir:
|
||
print("prepare reg images.")
|
||
reg_dirs = os.listdir(args.reg_data_dir)
|
||
for dir in reg_dirs:
|
||
n_repeats, img_caps = load_dreambooth_dir(os.path.join(args.reg_data_dir, dir))
|
||
for _ in range(n_repeats):
|
||
reg_img_path_captions.extend(img_caps)
|
||
print(f"{len(reg_img_path_captions)} reg images.")
|
||
|
||
# データセットを準備する
|
||
resolution = tuple([int(r) for r in args.resolution.split(',')])
|
||
if len(resolution) == 1:
|
||
resolution = (resolution[0], resolution[0])
|
||
assert len(resolution) == 2, \
|
||
f"resolution must be 'size' or 'width,height' / resolutionは'サイズ'または'幅','高さ'で指定してください: {args.resolution}"
|
||
|
||
if args.enable_bucket:
|
||
assert min(resolution) >= args.min_bucket_reso, f"min_bucket_reso must be equal or greater than resolution / min_bucket_resoは解像度の数値以上で指定してください"
|
||
assert max(resolution) <= args.max_bucket_reso, f"max_bucket_reso must be equal or less than resolution / max_bucket_resoは解像度の数値以下で指定してください"
|
||
|
||
if args.face_crop_aug_range is not None:
|
||
face_crop_aug_range = tuple([float(r) for r in args.face_crop_aug_range.split(',')])
|
||
assert len(
|
||
face_crop_aug_range) == 2, f"face_crop_aug_range must be two floats / face_crop_aug_rangeは'下限,上限'で指定してください: {args.face_crop_aug_range}"
|
||
else:
|
||
face_crop_aug_range = None
|
||
|
||
# tokenizerを読み込む
|
||
print("prepare tokenizer")
|
||
if args.v2:
|
||
tokenizer = CLIPTokenizer.from_pretrained(V2_STABLE_DIFFUSION_PATH, subfolder="tokenizer")
|
||
else:
|
||
tokenizer = CLIPTokenizer.from_pretrained(TOKENIZER_PATH)
|
||
|
||
print("prepare dataset")
|
||
train_dataset = DreamBoothOrFineTuningDataset(args.train_batch_size, fine_tuning, train_img_path_captions, reg_img_path_captions, tokenizer, resolution,
|
||
args.prior_loss_weight, args.flip_aug, args.color_aug, face_crop_aug_range, args.random_crop,
|
||
args.shuffle_caption, args.no_token_padding, args.debug_dataset)
|
||
|
||
if args.debug_dataset:
|
||
train_dataset.make_buckets_with_caching(args.enable_bucket, None, args.min_bucket_reso,
|
||
args.max_bucket_reso) # デバッグ用にcacheなしで作る
|
||
print(f"Total dataset length (steps) / データセットの長さ(ステップ数): {len(train_dataset)}")
|
||
print("Escape for exit. / Escキーで中断、終了します")
|
||
for example in train_dataset:
|
||
for im, cap, lw in zip(example['images'], example['captions'], example['loss_weights']):
|
||
im = ((im.numpy() + 1.0) * 127.5).astype(np.uint8)
|
||
im = np.transpose(im, (1, 2, 0)) # c,H,W -> H,W,c
|
||
im = im[:, :, ::-1] # RGB -> BGR (OpenCV)
|
||
print(f'size: {im.shape[1]}*{im.shape[0]}, caption: "{cap}", loss weight: {lw}')
|
||
cv2.imshow("img", im)
|
||
k = cv2.waitKey()
|
||
cv2.destroyAllWindows()
|
||
if k == 27:
|
||
break
|
||
if k == 27:
|
||
break
|
||
return
|
||
|
||
# acceleratorを準備する
|
||
# gradient accumulationは複数モデルを学習する場合には対応していないとのことなので、1固定にする
|
||
print("prepare accelerator")
|
||
if args.logging_dir is None:
|
||
log_with = None
|
||
logging_dir = None
|
||
else:
|
||
log_with = "tensorboard"
|
||
logging_dir = args.logging_dir + "/" + time.strftime('%Y%m%d%H%M%S', time.localtime())
|
||
accelerator = Accelerator(gradient_accumulation_steps=1, mixed_precision=args.mixed_precision,
|
||
log_with=log_with, logging_dir=logging_dir)
|
||
|
||
# mixed precisionに対応した型を用意しておき適宜castする
|
||
weight_dtype = torch.float32
|
||
if args.mixed_precision == "fp16":
|
||
weight_dtype = torch.float16
|
||
elif args.mixed_precision == "bf16":
|
||
weight_dtype = torch.bfloat16
|
||
|
||
save_dtype = None
|
||
if args.save_precision == "fp16":
|
||
save_dtype = torch.float16
|
||
elif args.save_precision == "bf16":
|
||
save_dtype = torch.bfloat16
|
||
elif args.save_precision == "float":
|
||
save_dtype = torch.float32
|
||
|
||
# モデルを読み込む
|
||
if use_stable_diffusion_format:
|
||
print("load StableDiffusion checkpoint")
|
||
text_encoder, vae, unet = load_models_from_stable_diffusion_checkpoint(args.v2, args.pretrained_model_name_or_path)
|
||
else:
|
||
print("load Diffusers pretrained models")
|
||
pipe = StableDiffusionPipeline.from_pretrained(args.pretrained_model_name_or_path, tokenizer=None, safety_checker=None)
|
||
# , torch_dtype=weight_dtype) ここでtorch_dtypeを指定すると学習時にエラーになる
|
||
text_encoder = pipe.text_encoder
|
||
vae = pipe.vae
|
||
unet = pipe.unet
|
||
del pipe
|
||
|
||
# モデルに xformers とか memory efficient attention を組み込む
|
||
replace_unet_modules(unet, args.mem_eff_attn, args.xformers)
|
||
|
||
# 学習を準備する
|
||
if cache_latents:
|
||
vae.to(accelerator.device, dtype=weight_dtype)
|
||
vae.requires_grad_(False)
|
||
vae.eval()
|
||
with torch.no_grad():
|
||
train_dataset.make_buckets_with_caching(args.enable_bucket, vae, args.min_bucket_reso, args.max_bucket_reso)
|
||
del vae
|
||
if torch.cuda.is_available():
|
||
torch.cuda.empty_cache()
|
||
else:
|
||
train_dataset.make_buckets_with_caching(args.enable_bucket, None, args.min_bucket_reso, args.max_bucket_reso)
|
||
vae.requires_grad_(False)
|
||
vae.eval()
|
||
|
||
unet.requires_grad_(True) # 念のため追加
|
||
text_encoder.requires_grad_(True)
|
||
|
||
if args.gradient_checkpointing:
|
||
unet.enable_gradient_checkpointing()
|
||
text_encoder.gradient_checkpointing_enable()
|
||
|
||
# 学習に必要なクラスを準備する
|
||
print("prepare optimizer, data loader etc.")
|
||
|
||
# 8-bit Adamを使う
|
||
if args.use_8bit_adam:
|
||
try:
|
||
import bitsandbytes as bnb
|
||
except ImportError:
|
||
raise ImportError("No bitsand bytes / bitsandbytesがインストールされていないようです")
|
||
print("use 8-bit Adam optimizer")
|
||
optimizer_class = bnb.optim.AdamW8bit
|
||
else:
|
||
optimizer_class = torch.optim.AdamW
|
||
|
||
trainable_params = (itertools.chain(unet.parameters(), text_encoder.parameters()))
|
||
|
||
# betaやweight decayはdiffusers DreamBoothもDreamBooth SDもデフォルト値のようなのでオプションはとりあえず省略
|
||
optimizer = optimizer_class(trainable_params, lr=args.learning_rate)
|
||
|
||
# dataloaderを準備する
|
||
# DataLoaderのプロセス数:0はメインプロセスになる
|
||
n_workers = min(8, os.cpu_count() - 1) # cpu_count-1 ただし最大8
|
||
train_dataloader = torch.utils.data.DataLoader(
|
||
train_dataset, batch_size=1, shuffle=False, collate_fn=collate_fn, num_workers=n_workers)
|
||
|
||
# lr schedulerを用意する
|
||
lr_scheduler = diffusers.optimization.get_scheduler(
|
||
args.lr_scheduler, optimizer, num_warmup_steps=args.lr_warmup_steps, num_training_steps=args.max_train_steps)
|
||
|
||
# acceleratorがなんかよろしくやってくれるらしい
|
||
unet, text_encoder, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
|
||
unet, text_encoder, optimizer, train_dataloader, lr_scheduler)
|
||
|
||
if not cache_latents:
|
||
vae.to(accelerator.device, dtype=weight_dtype)
|
||
|
||
# resumeする
|
||
if args.resume is not None:
|
||
print(f"resume training from state: {args.resume}")
|
||
accelerator.load_state(args.resume)
|
||
|
||
# epoch数を計算する
|
||
num_train_epochs = math.ceil(args.max_train_steps / len(train_dataloader))
|
||
|
||
# 学習する
|
||
total_batch_size = args.train_batch_size # * accelerator.num_processes
|
||
print("running training / 学習開始")
|
||
print(f" num train images * repeats / 学習画像の数×繰り返し回数: {train_dataset.num_train_images}")
|
||
print(f" num reg images / 正則化画像の数: {train_dataset.num_reg_images}")
|
||
print(f" num examples / サンプル数: {train_dataset.num_train_images * (2 if train_dataset.enable_reg_images else 1)}")
|
||
print(f" num batches per epoch / 1epochのバッチ数: {len(train_dataloader)}")
|
||
print(f" num epochs / epoch数: {num_train_epochs}")
|
||
print(f" batch size per device / バッチサイズ: {args.train_batch_size}")
|
||
print(f" total train batch size (with parallel & distributed) / 総バッチサイズ(並列学習含む): {total_batch_size}")
|
||
print(f" total optimization steps / 学習ステップ数: {args.max_train_steps}")
|
||
|
||
progress_bar = tqdm(range(args.max_train_steps), smoothing=0, disable=not accelerator.is_local_main_process, desc="steps")
|
||
global_step = 0
|
||
|
||
# v12で更新:clip_sample=Falseに
|
||
# Diffusersのtrain_dreambooth.pyがconfigから持ってくるように変更されたので、clip_sample=Falseになるため、それに合わせる
|
||
# 既存の1.4/1.5/2.0はすべてschdulerのconfigは(クラス名を除いて)同じ
|
||
# よくソースを見たら学習時は関係ないや(;'∀')
|
||
noise_scheduler = DDPMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear",
|
||
num_train_timesteps=1000, clip_sample=False)
|
||
|
||
if accelerator.is_main_process:
|
||
accelerator.init_trackers("dreambooth")
|
||
|
||
# 以下 train_dreambooth.py からほぼコピペ
|
||
for epoch in range(num_train_epochs):
|
||
print(f"epoch {epoch+1}/{num_train_epochs}")
|
||
unet.train()
|
||
text_encoder.train()
|
||
|
||
loss_total = 0
|
||
for step, batch in enumerate(train_dataloader):
|
||
with accelerator.accumulate(unet):
|
||
with torch.no_grad():
|
||
# latentに変換
|
||
if cache_latents:
|
||
latents = batch["latents"].to(accelerator.device)
|
||
else:
|
||
latents = vae.encode(batch["images"].to(dtype=weight_dtype)).latent_dist.sample()
|
||
latents = latents * 0.18215
|
||
|
||
# Sample noise that we'll add to the latents
|
||
noise = torch.randn_like(latents, device=latents.device)
|
||
b_size = latents.shape[0]
|
||
|
||
# Sample a random timestep for each image
|
||
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (b_size,), device=latents.device)
|
||
timesteps = timesteps.long()
|
||
|
||
# Add noise to the latents according to the noise magnitude at each timestep
|
||
# (this is the forward diffusion process)
|
||
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
|
||
|
||
# 指定したステップ数までText Encoderを学習する
|
||
train_text_encoder = args.stop_text_encoder_training is None or global_step < args.stop_text_encoder_training
|
||
with torch.set_grad_enabled(train_text_encoder):
|
||
# Get the text embedding for conditioning
|
||
if args.clip_skip is None:
|
||
encoder_hidden_states = text_encoder(batch["input_ids"])[0]
|
||
else:
|
||
enc_out = text_encoder(batch["input_ids"], output_hidden_states=True, return_dict=True)
|
||
encoder_hidden_states = enc_out['hidden_states'][-args.clip_skip]
|
||
encoder_hidden_states = text_encoder.text_model.final_layer_norm(encoder_hidden_states)
|
||
|
||
# Predict the noise residual
|
||
noise_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample
|
||
|
||
if args.v_parameterization:
|
||
# v-parameterization training
|
||
# こうしたい:
|
||
# target = noise_scheduler.get_v(latents, noise, timesteps)
|
||
|
||
# StabilityAiのddpm.pyのコード:
|
||
# elif self.parameterization == "v":
|
||
# target = self.get_v(x_start, noise, t)
|
||
# ...
|
||
# def get_v(self, x, noise, t):
|
||
# return (
|
||
# extract_into_tensor(self.sqrt_alphas_cumprod, t, x.shape) * noise -
|
||
# extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x.shape) * x
|
||
# )
|
||
|
||
# scheduling_ddim.pyのコード:
|
||
# elif self.config.prediction_type == "v_prediction":
|
||
# pred_original_sample = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output
|
||
# # predict V
|
||
# model_output = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample
|
||
|
||
# これでいいかな?:
|
||
alpha_prod_t = noise_scheduler.alphas_cumprod[timesteps]
|
||
beta_prod_t = 1 - alpha_prod_t
|
||
alpha_prod_t = torch.reshape(alpha_prod_t, (len(alpha_prod_t), 1, 1, 1)) # broadcastされないらしいのでreshape
|
||
beta_prod_t = torch.reshape(beta_prod_t, (len(beta_prod_t), 1, 1, 1))
|
||
target = (alpha_prod_t ** 0.5) * noise - (beta_prod_t ** 0.5) * latents
|
||
else:
|
||
target = noise
|
||
|
||
loss = torch.nn.functional.mse_loss(noise_pred.float(), target.float(), reduction="none")
|
||
loss = loss.mean([1, 2, 3])
|
||
|
||
loss_weights = batch["loss_weights"] # 各sampleごとのweight
|
||
loss = loss * loss_weights
|
||
|
||
loss = loss.mean() # 平均なのでbatch_sizeで割る必要なし
|
||
|
||
accelerator.backward(loss)
|
||
if accelerator.sync_gradients:
|
||
params_to_clip = (itertools.chain(unet.parameters(), text_encoder.parameters()))
|
||
accelerator.clip_grad_norm_(params_to_clip, 1.0) # args.max_grad_norm)
|
||
|
||
optimizer.step()
|
||
lr_scheduler.step()
|
||
optimizer.zero_grad(set_to_none=True)
|
||
|
||
# Checks if the accelerator has performed an optimization step behind the scenes
|
||
if accelerator.sync_gradients:
|
||
progress_bar.update(1)
|
||
global_step += 1
|
||
|
||
if global_step == args.stop_text_encoder_training:
|
||
print(f"stop text encoder training at step {global_step}")
|
||
|
||
current_loss = loss.detach().item()
|
||
if args.logging_dir is not None:
|
||
logs = {"loss": current_loss, "lr": lr_scheduler.get_last_lr()[0]}
|
||
accelerator.log(logs, step=global_step)
|
||
|
||
loss_total += current_loss
|
||
avr_loss = loss_total / (step+1)
|
||
logs = {"loss": avr_loss} # , "lr": lr_scheduler.get_last_lr()[0]}
|
||
progress_bar.set_postfix(**logs)
|
||
|
||
if global_step >= args.max_train_steps:
|
||
break
|
||
|
||
if args.logging_dir is not None:
|
||
logs = {"epoch_loss": loss_total / len(train_dataloader)}
|
||
accelerator.log(logs, step=epoch+1)
|
||
|
||
accelerator.wait_for_everyone()
|
||
|
||
if args.save_every_n_epochs is not None:
|
||
if (epoch + 1) % args.save_every_n_epochs == 0 and (epoch + 1) < num_train_epochs:
|
||
print("saving checkpoint.")
|
||
if use_stable_diffusion_format:
|
||
os.makedirs(args.output_dir, exist_ok=True)
|
||
ckpt_file = os.path.join(args.output_dir, EPOCH_CHECKPOINT_NAME.format(epoch + 1))
|
||
save_stable_diffusion_checkpoint(args.v2, ckpt_file, accelerator.unwrap_model(text_encoder), accelerator.unwrap_model(unet),
|
||
args.pretrained_model_name_or_path, epoch + 1, global_step, save_dtype)
|
||
else:
|
||
out_dir = os.path.join(args.output_dir, EPOCH_DIFFUSERS_DIR_NAME.format(epoch + 1))
|
||
os.makedirs(out_dir, exist_ok=True)
|
||
save_diffusers_checkpoint(args.v2, out_dir, accelerator.unwrap_model(text_encoder),
|
||
accelerator.unwrap_model(unet), args.pretrained_model_name_or_path, save_dtype)
|
||
|
||
if args.save_state:
|
||
print("saving state.")
|
||
accelerator.save_state(os.path.join(args.output_dir, EPOCH_STATE_NAME.format(epoch + 1)))
|
||
|
||
is_main_process = accelerator.is_main_process
|
||
if is_main_process:
|
||
unet = accelerator.unwrap_model(unet)
|
||
text_encoder = accelerator.unwrap_model(text_encoder)
|
||
|
||
accelerator.end_training()
|
||
|
||
if args.save_state:
|
||
print("saving last state.")
|
||
accelerator.save_state(os.path.join(args.output_dir, LAST_STATE_NAME))
|
||
|
||
del accelerator # この後メモリを使うのでこれは消す
|
||
|
||
if is_main_process:
|
||
os.makedirs(args.output_dir, exist_ok=True)
|
||
if use_stable_diffusion_format:
|
||
ckpt_file = os.path.join(args.output_dir, LAST_CHECKPOINT_NAME)
|
||
print(f"save trained model as StableDiffusion checkpoint to {ckpt_file}")
|
||
save_stable_diffusion_checkpoint(args.v2, ckpt_file, text_encoder, unet,
|
||
args.pretrained_model_name_or_path, epoch, global_step, save_dtype)
|
||
else:
|
||
# Create the pipeline using using the trained modules and save it.
|
||
print(f"save trained model as Diffusers to {args.output_dir}")
|
||
out_dir = os.path.join(args.output_dir, LAST_DIFFUSERS_DIR_NAME)
|
||
os.makedirs(out_dir, exist_ok=True)
|
||
save_diffusers_checkpoint(args.v2, out_dir, text_encoder, unet, args.pretrained_model_name_or_path, save_dtype)
|
||
print("model saved.")
|
||
|
||
|
||
if __name__ == '__main__':
|
||
# torch.cuda.set_per_process_memory_fraction(0.48)
|
||
parser = argparse.ArgumentParser()
|
||
parser.add_argument("--v2", action='store_true',
|
||
help='load Stable Diffusion v2.0 model / Stable Diffusion 2.0のモデルを読み込む')
|
||
parser.add_argument("--v_parameterization", action='store_true',
|
||
help='enable v-parameterization training / v-parameterization学習を有効にする')
|
||
parser.add_argument("--pretrained_model_name_or_path", type=str, default=None,
|
||
help="pretrained model to train, directory to Diffusers model or StableDiffusion checkpoint / 学習元モデル、Diffusers形式モデルのディレクトリまたはStableDiffusionのckptファイル")
|
||
parser.add_argument("--fine_tuning", action="store_true",
|
||
help="fine tune the model instead of DreamBooth / DreamBoothではなくfine tuningする")
|
||
parser.add_argument("--shuffle_caption", action="store_true",
|
||
help="shuffle comma-separated caption / コンマで区切られたcaptionの各要素をshuffleする")
|
||
parser.add_argument("--caption_extention", type=str, default=None,
|
||
help="extension of caption files (backward compatiblity) / 読み込むcaptionファイルの拡張子(スペルミスを残してあります)")
|
||
parser.add_argument("--caption_extension", type=str, default=".caption", help="extension of caption files / 読み込むcaptionファイルの拡張子")
|
||
parser.add_argument("--train_data_dir", type=str, default=None, help="directory for train images / 学習画像データのディレクトリ")
|
||
parser.add_argument("--reg_data_dir", type=str, default=None, help="directory for regularization images / 正則化画像データのディレクトリ")
|
||
parser.add_argument("--dataset_repeats", type=int, default=None,
|
||
help="repeat dataset in fine tuning / fine tuning時にデータセットを繰り返す回数")
|
||
parser.add_argument("--output_dir", type=str, default=None,
|
||
help="directory to output trained model (default format is same to input) / 学習後のモデル出力先ディレクトリ(デフォルトの保存形式は読み込んだ形式と同じ)")
|
||
# parser.add_argument("--save_as_sd", action='store_true',
|
||
# help="save the model as StableDiffusion checkpoint / 学習後のモデルをStableDiffusionのcheckpointとして保存する")
|
||
parser.add_argument("--save_every_n_epochs", type=int, default=None,
|
||
help="save checkpoint every N epochs / 学習中のモデルを指定エポックごとに保存します")
|
||
parser.add_argument("--save_state", action="store_true",
|
||
help="save training state additionally (including optimizer states etc.) / optimizerなど学習状態も含めたstateを追加で保存する")
|
||
parser.add_argument("--resume", type=str, default=None, help="saved state to resume training / 学習再開するモデルのstate")
|
||
parser.add_argument("--prior_loss_weight", type=float, default=1.0, help="loss weight for regularization images / 正則化画像のlossの重み")
|
||
parser.add_argument("--no_token_padding", action="store_true",
|
||
help="disable token padding (same as Diffuser's DreamBooth) / トークンのpaddingを無効にする(Diffusers版DreamBoothと同じ動作)")
|
||
parser.add_argument("--stop_text_encoder_training", type=int, default=None, help="steps to stop text encoder training / Text Encoderの学習を止めるステップ数")
|
||
parser.add_argument("--color_aug", action="store_true", help="enable weak color augmentation / 学習時に色合いのaugmentationを有効にする")
|
||
parser.add_argument("--flip_aug", action="store_true", help="enable horizontal flip augmentation / 学習時に左右反転のaugmentationを有効にする")
|
||
parser.add_argument("--face_crop_aug_range", type=str, default=None,
|
||
help="enable face-centered crop augmentation and its range (e.g. 2.0,4.0) / 学習時に顔を中心とした切り出しaugmentationを有効にするときは倍率を指定する(例:2.0,4.0)")
|
||
parser.add_argument("--random_crop", action="store_true",
|
||
help="enable random crop (for style training in face-centered crop augmentation) / ランダムな切り出しを有効にする(顔を中心としたaugmentationを行うときに画風の学習用に指定する)")
|
||
parser.add_argument("--debug_dataset", action="store_true",
|
||
help="show images for debugging (do not train) / デバッグ用に学習データを画面表示する(学習は行わない)")
|
||
parser.add_argument("--resolution", type=str, default=None,
|
||
help="resolution in training ('size' or 'width,height') / 学習時の画像解像度('サイズ'指定、または'幅,高さ'指定)")
|
||
parser.add_argument("--train_batch_size", type=int, default=1,
|
||
help="batch size for training (1 means one train or reg data, not train/reg pair) / 学習時のバッチサイズ(1でtrain/regをそれぞれ1件ずつ学習)")
|
||
parser.add_argument("--use_8bit_adam", action="store_true",
|
||
help="use 8bit Adam optimizer (requires bitsandbytes) / 8bit Adamオプティマイザを使う(bitsandbytesのインストールが必要)")
|
||
parser.add_argument("--mem_eff_attn", action="store_true",
|
||
help="use memory efficient attention for CrossAttention / CrossAttentionに省メモリ版attentionを使う")
|
||
parser.add_argument("--xformers", action="store_true",
|
||
help="use xformers for CrossAttention / CrossAttentionにxformersを使う")
|
||
parser.add_argument("--cache_latents", action="store_true",
|
||
help="cache latents to reduce memory (augmentations must be disabled) / メモリ削減のためにlatentをcacheする(augmentationは使用不可)")
|
||
parser.add_argument("--enable_bucket", action="store_true",
|
||
help="enable buckets for multi aspect ratio training / 複数解像度学習のためのbucketを有効にする")
|
||
parser.add_argument("--min_bucket_reso", type=int, default=256, help="minimum resolution for buckets / bucketの最小解像度")
|
||
parser.add_argument("--max_bucket_reso", type=int, default=1024, help="maximum resolution for buckets / bucketの最小解像度")
|
||
parser.add_argument("--learning_rate", type=float, default=2.0e-6, help="learning rate / 学習率")
|
||
parser.add_argument("--max_train_steps", type=int, default=1600, help="training steps / 学習ステップ数")
|
||
parser.add_argument("--seed", type=int, default=None, help="random seed for training / 学習時の乱数のseed")
|
||
parser.add_argument("--gradient_checkpointing", action="store_true",
|
||
help="enable gradient checkpointing / grandient checkpointingを有効にする")
|
||
parser.add_argument("--mixed_precision", type=str, default="no",
|
||
choices=["no", "fp16", "bf16"], help="use mixed precision / 混合精度を使う場合、その精度")
|
||
parser.add_argument("--save_precision", type=str, default=None,
|
||
choices=[None, "float", "fp16", "bf16"], help="precision in saving (available in StableDiffusion checkpoint) / 保存時に精度を変更して保存する(StableDiffusion形式での保存時のみ有効)")
|
||
parser.add_argument("--clip_skip", type=int, default=None,
|
||
help="use output of nth layer from back of text encoder (n>=1) / text encoderの後ろからn番目の層の出力を用いる(nは1以上)")
|
||
parser.add_argument("--logging_dir", type=str, default=None,
|
||
help="enable logging and output TensorBoard log to this directory / ログ出力を有効にしてこのディレクトリにTensorBoard用のログを出力する")
|
||
parser.add_argument("--lr_scheduler", type=str, default="constant",
|
||
help="scheduler to use for learning rate / 学習率のスケジューラ: linear, cosine, cosine_with_restarts, polynomial, constant (default), constant_with_warmup")
|
||
parser.add_argument("--lr_warmup_steps", type=int, default=0,
|
||
help="Number of steps for the warmup in the lr scheduler (default is 0) / 学習率のスケジューラをウォームアップするステップ数(デフォルト0)")
|
||
|
||
args = parser.parse_args()
|
||
train(args)
|