KohyaSS/networks/extract_lora_from_models.py

158 lines
5.7 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# extract approximating LoRA by svd from two SD models
# The code is based on https://github.com/cloneofsimo/lora/blob/develop/lora_diffusion/cli_svd.py
# Thanks to cloneofsimo!
import argparse
import os
import torch
from safetensors.torch import load_file, save_file
from tqdm import tqdm
import library.model_util as model_util
import lora
CLAMP_QUANTILE = 0.99
MIN_DIFF = 1e-6
def save_to_file(file_name, model, state_dict, dtype):
if dtype is not None:
for key in list(state_dict.keys()):
if type(state_dict[key]) == torch.Tensor:
state_dict[key] = state_dict[key].to(dtype)
if os.path.splitext(file_name)[1] == '.safetensors':
save_file(model, file_name)
else:
torch.save(model, file_name)
def svd(args):
def str_to_dtype(p):
if p == 'float':
return torch.float
if p == 'fp16':
return torch.float16
if p == 'bf16':
return torch.bfloat16
return None
save_dtype = str_to_dtype(args.save_precision)
print(f"loading SD model : {args.model_org}")
text_encoder_o, _, unet_o = model_util.load_models_from_stable_diffusion_checkpoint(args.v2, args.model_org)
print(f"loading SD model : {args.model_tuned}")
text_encoder_t, _, unet_t = model_util.load_models_from_stable_diffusion_checkpoint(args.v2, args.model_tuned)
# create LoRA network to extract weights
lora_network_o = lora.create_network(1.0, args.dim, None, text_encoder_o, unet_o)
lora_network_t = lora.create_network(1.0, args.dim, None, text_encoder_t, unet_t)
assert len(lora_network_o.text_encoder_loras) == len(
lora_network_t.text_encoder_loras), f"model version is different (SD1.x vs SD2.x) / それぞれのモデルのバージョンが違いますSD1.xベースとSD2.xベース "
# get diffs
diffs = {}
text_encoder_different = False
for i, (lora_o, lora_t) in enumerate(zip(lora_network_o.text_encoder_loras, lora_network_t.text_encoder_loras)):
lora_name = lora_o.lora_name
module_o = lora_o.org_module
module_t = lora_t.org_module
diff = module_t.weight - module_o.weight
# Text Encoder might be same
if torch.max(torch.abs(diff)) > MIN_DIFF:
text_encoder_different = True
diff = diff.float()
diffs[lora_name] = diff
if not text_encoder_different:
print("Text encoder is same. Extract U-Net only.")
lora_network_o.text_encoder_loras = []
diffs = {}
for i, (lora_o, lora_t) in enumerate(zip(lora_network_o.unet_loras, lora_network_t.unet_loras)):
lora_name = lora_o.lora_name
module_o = lora_o.org_module
module_t = lora_t.org_module
diff = module_t.weight - module_o.weight
diff = diff.float()
if args.device:
diff = diff.to(args.device)
diffs[lora_name] = diff
# make LoRA with svd
print("calculating by svd")
rank = args.dim
lora_weights = {}
with torch.no_grad():
for lora_name, mat in tqdm(list(diffs.items())):
conv2d = (len(mat.size()) == 4)
if conv2d:
mat = mat.squeeze()
U, S, Vh = torch.linalg.svd(mat)
U = U[:, :rank]
S = S[:rank]
U = U @ torch.diag(S)
Vh = Vh[:rank, :]
dist = torch.cat([U.flatten(), Vh.flatten()])
hi_val = torch.quantile(dist, CLAMP_QUANTILE)
low_val = -hi_val
U = U.clamp(low_val, hi_val)
Vh = Vh.clamp(low_val, hi_val)
lora_weights[lora_name] = (U, Vh)
# make state dict for LoRA
lora_network_o.apply_to(text_encoder_o, unet_o, text_encoder_different, True) # to make state dict
lora_sd = lora_network_o.state_dict()
print(f"LoRA has {len(lora_sd)} weights.")
for key in list(lora_sd.keys()):
lora_name = key.split('.')[0]
i = 0 if "lora_up" in key else 1
weights = lora_weights[lora_name][i]
# print(key, i, weights.size(), lora_sd[key].size())
if len(lora_sd[key].size()) == 4:
weights = weights.unsqueeze(2).unsqueeze(3)
assert weights.size() == lora_sd[key].size()
lora_sd[key] = weights
# load state dict to LoRA and save it
info = lora_network_o.load_state_dict(lora_sd)
print(f"Loading extracted LoRA weights: {info}")
dir_name = os.path.dirname(args.save_to)
if dir_name and not os.path.exists(dir_name):
os.makedirs(dir_name, exist_ok=True)
lora_network_o.save_weights(args.save_to, save_dtype)
print(f"LoRA weights are saved to: {args.save_to}")
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--v2", action='store_true',
help='load Stable Diffusion v2.x model / Stable Diffusion 2.xのモデルを読み込む')
parser.add_argument("--save_precision", type=str, default=None,
choices=[None, "float", "fp16", "bf16"], help="precision in saving, same to merging if omitted / 保存時に精度を変更して保存する、省略時はfloat")
parser.add_argument("--model_org", type=str, default=None,
help="Stable Diffusion original model: ckpt or safetensors file / 元モデル、ckptまたはsafetensors")
parser.add_argument("--model_tuned", type=str, default=None,
help="Stable Diffusion tuned model, LoRA is difference of `original to tuned`: ckpt or safetensors file / 派生モデル生成されるLoRAは元→派生の差分になります、ckptまたはsafetensors")
parser.add_argument("--save_to", type=str, default=None,
help="destination file name: ckpt or safetensors file / 保存先のファイル名、ckptまたはsafetensors")
parser.add_argument("--dim", type=int, default=4, help="dimension of LoRA (default 4) / LoRAの次元数デフォルト4")
parser.add_argument("--device", type=str, default=None, help="device to use, 'cuda' for GPU / 計算を行うデバイス、'cuda'でGPUを使う")
args = parser.parse_args()
svd(args)