KohyaSS/lora_gui.py
2023-01-10 09:38:32 -05:00

904 lines
28 KiB
Python

# v1: initial release
# v2: add open and save folder icons
# v3: Add new Utilities tab for Dreambooth folder preparation
# v3.1: Adding captionning of images to utilities
import gradio as gr
import json
import math
import os
import subprocess
import pathlib
import shutil
import argparse
from library.common_gui import (
get_folder_path,
remove_doublequote,
get_file_path,
get_any_file_path,
get_saveasfile_path,
color_aug_changed,
save_inference_file,
set_pretrained_model_name_or_path_input,
)
from library.dreambooth_folder_creation_gui import (
gradio_dreambooth_folder_creation_tab,
)
from library.dataset_balancing_gui import gradio_dataset_balancing_tab
from library.utilities import utilities_tab
from library.merge_lora_gui import gradio_merge_lora_tab
from easygui import msgbox
folder_symbol = '\U0001f4c2' # 📂
refresh_symbol = '\U0001f504' # 🔄
save_style_symbol = '\U0001f4be' # 💾
document_symbol = '\U0001F4C4' # 📄
def save_configuration(
save_as,
file_path,
pretrained_model_name_or_path,
v2,
v_parameterization,
logging_dir,
train_data_dir,
reg_data_dir,
output_dir,
max_resolution,
lr_scheduler,
lr_warmup,
train_batch_size,
epoch,
save_every_n_epochs,
mixed_precision,
save_precision,
seed,
num_cpu_threads_per_process,
cache_latent,
caption_extention,
enable_bucket,
gradient_checkpointing,
full_fp16,
no_token_padding,
stop_text_encoder_training,
use_8bit_adam,
xformers,
save_model_as,
shuffle_caption,
save_state,
resume,
prior_loss_weight,
text_encoder_lr,
unet_lr,
network_dim,
lora_network_weights,
color_aug,
flip_aug,
clip_skip,
gradient_accumulation_steps,
mem_eff_attn,
output_name,
model_list,
max_token_length,
):
# Get list of function parameters and values
parameters = list(locals().items())
original_file_path = file_path
save_as_bool = True if save_as.get('label') == 'True' else False
if save_as_bool:
print('Save as...')
file_path = get_saveasfile_path(file_path)
else:
print('Save...')
if file_path == None or file_path == '':
file_path = get_saveasfile_path(file_path)
# print(file_path)
if file_path == None or file_path == '':
return original_file_path # In case a file_path was provided and the user decide to cancel the open action
# Return the values of the variables as a dictionary
variables = {
name: value
for name, value in parameters # locals().items()
if name
not in [
'file_path',
'save_as',
]
}
# Save the data to the selected file
with open(file_path, 'w') as file:
json.dump(variables, file, indent=2)
return file_path
def open_configuration(
file_path,
pretrained_model_name_or_path,
v2,
v_parameterization,
logging_dir,
train_data_dir,
reg_data_dir,
output_dir,
max_resolution,
lr_scheduler,
lr_warmup,
train_batch_size,
epoch,
save_every_n_epochs,
mixed_precision,
save_precision,
seed,
num_cpu_threads_per_process,
cache_latent,
caption_extention,
enable_bucket,
gradient_checkpointing,
full_fp16,
no_token_padding,
stop_text_encoder_training,
use_8bit_adam,
xformers,
save_model_as_dropdown,
shuffle_caption,
save_state,
resume,
prior_loss_weight,
text_encoder_lr,
unet_lr,
network_dim,
lora_network_weights,
color_aug,
flip_aug,
clip_skip,
gradient_accumulation_steps,
mem_eff_attn,
output_name,
model_list,
max_token_length,
):
# Get list of function parameters and values
parameters = list(locals().items())
original_file_path = file_path
file_path = get_file_path(file_path)
if not file_path == '' and not file_path == None:
# load variables from JSON file
with open(file_path, 'r') as f:
my_data = json.load(f)
print("Loading config...")
else:
file_path = original_file_path # In case a file_path was provided and the user decide to cancel the open action
my_data = {}
values = [file_path]
for key, value in parameters:
# Set the value in the dictionary to the corresponding value in `my_data`, or the default value if not found
if not key in ['file_path']:
values.append(my_data.get(key, value))
return tuple(values)
def train_model(
pretrained_model_name_or_path,
v2,
v_parameterization,
logging_dir,
train_data_dir,
reg_data_dir,
output_dir,
max_resolution,
lr_scheduler,
lr_warmup,
train_batch_size,
epoch,
save_every_n_epochs,
mixed_precision,
save_precision,
seed,
num_cpu_threads_per_process,
cache_latent,
caption_extension,
enable_bucket,
gradient_checkpointing,
full_fp16,
no_token_padding,
stop_text_encoder_training_pct,
use_8bit_adam,
xformers,
save_model_as,
shuffle_caption,
save_state,
resume,
prior_loss_weight,
text_encoder_lr,
unet_lr,
network_dim,
lora_network_weights,
color_aug,
flip_aug,
clip_skip,
gradient_accumulation_steps,
mem_eff_attn,
output_name,
model_list, # Keep this. Yes, it is unused here but required given the common list used
max_token_length,
):
if pretrained_model_name_or_path == '':
msgbox('Source model information is missing')
return
if train_data_dir == '':
msgbox('Image folder path is missing')
return
if not os.path.exists(train_data_dir):
msgbox('Image folder does not exist')
return
if reg_data_dir != '':
if not os.path.exists(reg_data_dir):
msgbox('Regularisation folder does not exist')
return
if output_dir == '':
msgbox('Output folder path is missing')
return
# If string is empty set string to 0.
if text_encoder_lr == '':
text_encoder_lr = 0
if unet_lr == '':
unet_lr = 0
if (float(text_encoder_lr) == 0) and (float(unet_lr) == 0):
msgbox(
'At least one Learning Rate value for "Text encoder" or "Unet" need to be provided'
)
return
# Get a list of all subfolders in train_data_dir
subfolders = [
f
for f in os.listdir(train_data_dir)
if os.path.isdir(os.path.join(train_data_dir, f))
]
total_steps = 0
# Loop through each subfolder and extract the number of repeats
for folder in subfolders:
# Extract the number of repeats from the folder name
repeats = int(folder.split('_')[0])
# Count the number of images in the folder
num_images = len(
[
f
for f in os.listdir(os.path.join(train_data_dir, folder))
if f.endswith('.jpg')
or f.endswith('.jpeg')
or f.endswith('.png')
or f.endswith('.webp')
]
)
# Calculate the total number of steps for this folder
steps = repeats * num_images
total_steps += steps
# Print the result
print(f'Folder {folder}: {steps} steps')
# calculate max_train_steps
max_train_steps = int(
math.ceil(
float(total_steps)
/ int(train_batch_size)
* int(epoch)
# * int(reg_factor)
)
)
print(f'max_train_steps = {max_train_steps}')
# calculate stop encoder training
if stop_text_encoder_training_pct == None:
stop_text_encoder_training = 0
else:
stop_text_encoder_training = math.ceil(
float(max_train_steps) / 100 * int(stop_text_encoder_training_pct)
)
print(f'stop_text_encoder_training = {stop_text_encoder_training}')
lr_warmup_steps = round(float(int(lr_warmup) * int(max_train_steps) / 100))
print(f'lr_warmup_steps = {lr_warmup_steps}')
run_cmd = f'accelerate launch --num_cpu_threads_per_process={num_cpu_threads_per_process} "train_network.py"'
if v2:
run_cmd += ' --v2'
if v_parameterization:
run_cmd += ' --v_parameterization'
if cache_latent:
run_cmd += ' --cache_latents'
if enable_bucket:
run_cmd += ' --enable_bucket'
if gradient_checkpointing:
run_cmd += ' --gradient_checkpointing'
if full_fp16:
run_cmd += ' --full_fp16'
if no_token_padding:
run_cmd += ' --no_token_padding'
if use_8bit_adam:
run_cmd += ' --use_8bit_adam'
if xformers:
run_cmd += ' --xformers'
if shuffle_caption:
run_cmd += ' --shuffle_caption'
if save_state:
run_cmd += ' --save_state'
if color_aug:
run_cmd += ' --color_aug'
if flip_aug:
run_cmd += ' --flip_aug'
if mem_eff_attn:
run_cmd += ' --mem_eff_attn'
run_cmd += (
f' --pretrained_model_name_or_path="{pretrained_model_name_or_path}"'
)
run_cmd += f' --train_data_dir="{train_data_dir}"'
if len(reg_data_dir):
run_cmd += f' --reg_data_dir="{reg_data_dir}"'
run_cmd += f' --resolution={max_resolution}'
run_cmd += f' --output_dir="{output_dir}"'
run_cmd += f' --train_batch_size={train_batch_size}'
# run_cmd += f' --learning_rate={learning_rate}'
run_cmd += f' --lr_scheduler={lr_scheduler}'
run_cmd += f' --lr_warmup_steps={lr_warmup_steps}'
run_cmd += f' --max_train_steps={max_train_steps}'
run_cmd += f' --use_8bit_adam'
run_cmd += f' --xformers'
run_cmd += f' --mixed_precision={mixed_precision}'
run_cmd += f' --save_every_n_epochs={save_every_n_epochs}'
run_cmd += f' --seed={seed}'
run_cmd += f' --save_precision={save_precision}'
run_cmd += f' --logging_dir="{logging_dir}"'
if not caption_extension == '':
run_cmd += f' --caption_extension={caption_extension}'
if not stop_text_encoder_training == 0:
run_cmd += (
f' --stop_text_encoder_training={stop_text_encoder_training}'
)
if not save_model_as == 'same as source model':
run_cmd += f' --save_model_as={save_model_as}'
if not resume == '':
run_cmd += f' --resume="{resume}"'
if not float(prior_loss_weight) == 1.0:
run_cmd += f' --prior_loss_weight={prior_loss_weight}'
run_cmd += f' --network_module=networks.lora'
if not float(text_encoder_lr) == 0:
run_cmd += f' --text_encoder_lr={text_encoder_lr}'
else:
run_cmd += f' --network_train_unet_only'
if not float(unet_lr) == 0:
run_cmd += f' --unet_lr={unet_lr}'
else:
run_cmd += f' --network_train_text_encoder_only'
# if network_train == 'Text encoder only':
# run_cmd += f' --network_train_text_encoder_only'
# elif network_train == 'Unet only':
# run_cmd += f' --network_train_unet_only'
run_cmd += f' --network_dim={network_dim}'
if not lora_network_weights == '':
run_cmd += f' --network_weights="{lora_network_weights}"'
if int(clip_skip) > 1:
run_cmd += f' --clip_skip={str(clip_skip)}'
if int(gradient_accumulation_steps) > 1:
run_cmd += f' --gradient_accumulation_steps={int(gradient_accumulation_steps)}'
# if not vae == '':
# run_cmd += f' --vae="{vae}"'
if not output_name == '':
run_cmd += f' --output_name="{output_name}"'
if (int(max_token_length) > 75):
run_cmd += f' --max_token_length={max_token_length}'
print(run_cmd)
# Run the command
subprocess.run(run_cmd)
# check if output_dir/last is a folder... therefore it is a diffuser model
last_dir = pathlib.Path(f'{output_dir}/{output_name}')
if not last_dir.is_dir():
# Copy inference model for v2 if required
save_inference_file(output_dir, v2, v_parameterization, output_name)
def UI(username, password):
css = ''
if os.path.exists('./style.css'):
with open(os.path.join('./style.css'), 'r', encoding='utf8') as file:
print('Load CSS...')
css += file.read() + '\n'
interface = gr.Blocks(css=css)
with interface:
with gr.Tab('LoRA'):
(
train_data_dir_input,
reg_data_dir_input,
output_dir_input,
logging_dir_input,
) = lora_tab()
with gr.Tab('Utilities'):
utilities_tab(
train_data_dir_input=train_data_dir_input,
reg_data_dir_input=reg_data_dir_input,
output_dir_input=output_dir_input,
logging_dir_input=logging_dir_input,
enable_copy_info_button=True,
)
# Show the interface
if not username == '':
interface.launch(auth=(username, password))
else:
interface.launch()
def lora_tab(
train_data_dir_input=gr.Textbox(),
reg_data_dir_input=gr.Textbox(),
output_dir_input=gr.Textbox(),
logging_dir_input=gr.Textbox(),
):
dummy_db_true = gr.Label(value=True, visible=False)
dummy_db_false = gr.Label(value=False, visible=False)
gr.Markdown(
'Train a custom model using kohya train network LoRA python code...'
)
with gr.Accordion('Configuration file', open=False):
with gr.Row():
button_open_config = gr.Button('Open 📂', elem_id='open_folder')
button_save_config = gr.Button('Save 💾', elem_id='open_folder')
button_save_as_config = gr.Button(
'Save as... 💾', elem_id='open_folder'
)
config_file_name = gr.Textbox(
label='',
placeholder="type the configuration file path or use the 'Open' button above to select it...",
interactive=True,
)
# config_file_name.change(
# remove_doublequote,
# inputs=[config_file_name],
# outputs=[config_file_name],
# )
with gr.Tab('Source model'):
# Define the input elements
with gr.Row():
pretrained_model_name_or_path = gr.Textbox(
label='Pretrained model name or path',
placeholder='enter the path to custom model or name of pretrained model',
)
pretrained_model_name_or_path_file = gr.Button(
document_symbol, elem_id='open_folder_small'
)
pretrained_model_name_or_path_file.click(
get_any_file_path,
inputs=[pretrained_model_name_or_path],
outputs=pretrained_model_name_or_path,
)
pretrained_model_name_or_path_folder = gr.Button(
folder_symbol, elem_id='open_folder_small'
)
pretrained_model_name_or_path_folder.click(
get_folder_path,
outputs=pretrained_model_name_or_path,
)
model_list = gr.Dropdown(
label='(Optional) Model Quick Pick',
choices=[
'custom',
'stabilityai/stable-diffusion-2-1-base',
'stabilityai/stable-diffusion-2-base',
'stabilityai/stable-diffusion-2-1',
'stabilityai/stable-diffusion-2',
'runwayml/stable-diffusion-v1-5',
'CompVis/stable-diffusion-v1-4',
],
)
save_model_as_dropdown = gr.Dropdown(
label='Save trained model as',
choices=[
'same as source model',
'ckpt',
'diffusers',
'diffusers_safetensors',
'safetensors',
],
value='same as source model',
)
with gr.Row():
v2 = gr.Checkbox(label='v2', value=True)
v_parameterization = gr.Checkbox(
label='v_parameterization', value=False
)
pretrained_model_name_or_path.change(
remove_doublequote,
inputs=[pretrained_model_name_or_path],
outputs=[pretrained_model_name_or_path],
)
model_list.change(
set_pretrained_model_name_or_path_input,
inputs=[model_list, v2, v_parameterization],
outputs=[
pretrained_model_name_or_path,
v2,
v_parameterization,
],
)
with gr.Tab('Folders'):
with gr.Row():
train_data_dir = gr.Textbox(
label='Image folder',
placeholder='Folder where the training folders containing the images are located',
)
train_data_dir_folder = gr.Button(
'📂', elem_id='open_folder_small'
)
train_data_dir_folder.click(
get_folder_path, outputs=train_data_dir
)
reg_data_dir = gr.Textbox(
label='Regularisation folder',
placeholder='(Optional) Folder where where the regularization folders containing the images are located',
)
reg_data_dir_folder = gr.Button(
'📂', elem_id='open_folder_small'
)
reg_data_dir_folder.click(
get_folder_path, outputs=reg_data_dir
)
with gr.Row():
output_dir = gr.Textbox(
label='Output folder',
placeholder='Folder to output trained model',
)
output_dir_folder = gr.Button(
'📂', elem_id='open_folder_small'
)
output_dir_folder.click(
get_folder_path, outputs=output_dir
)
logging_dir = gr.Textbox(
label='Logging folder',
placeholder='Optional: enable logging and output TensorBoard log to this folder',
)
logging_dir_folder = gr.Button(
'📂', elem_id='open_folder_small'
)
logging_dir_folder.click(
get_folder_path, outputs=logging_dir
)
with gr.Row():
output_name = gr.Textbox(
label='Model output name',
placeholder='Name of the model to output',
value='last',
interactive=True,
)
train_data_dir.change(
remove_doublequote,
inputs=[train_data_dir],
outputs=[train_data_dir],
)
reg_data_dir.change(
remove_doublequote,
inputs=[reg_data_dir],
outputs=[reg_data_dir],
)
output_dir.change(
remove_doublequote,
inputs=[output_dir],
outputs=[output_dir],
)
logging_dir.change(
remove_doublequote,
inputs=[logging_dir],
outputs=[logging_dir],
)
with gr.Tab('Training parameters'):
with gr.Row():
lora_network_weights = gr.Textbox(
label='LoRA network weights',
placeholder='{Optional) Path to existing LoRA network weights to resume training',
)
lora_network_weights_file = gr.Button(
document_symbol, elem_id='open_folder_small'
)
lora_network_weights_file.click(
get_any_file_path,
inputs=[lora_network_weights],
outputs=lora_network_weights,
)
with gr.Row():
lr_scheduler = gr.Dropdown(
label='LR Scheduler',
choices=[
'constant',
'constant_with_warmup',
'cosine',
'cosine_with_restarts',
'linear',
'polynomial',
],
value='cosine',
)
lr_warmup = gr.Textbox(label='LR warmup (% of steps)', value=10)
with gr.Row():
text_encoder_lr = gr.Textbox(
label='Text Encoder learning rate',
value="5e-5",
placeholder='Optional',
)
unet_lr = gr.Textbox(
label='Unet learning rate', value="1e-3", placeholder='Optional'
)
network_dim = gr.Slider(
minimum=1,
maximum=128,
label='Network Dimension',
value=8,
step=1,
interactive=True,
)
with gr.Row():
train_batch_size = gr.Slider(
minimum=1,
maximum=32,
label='Train batch size',
value=1,
step=1,
)
epoch = gr.Textbox(label='Epoch', value=1)
save_every_n_epochs = gr.Textbox(
label='Save every N epochs', value=1
)
with gr.Row():
mixed_precision = gr.Dropdown(
label='Mixed precision',
choices=[
'no',
'fp16',
'bf16',
],
value='fp16',
)
save_precision = gr.Dropdown(
label='Save precision',
choices=[
'float',
'fp16',
'bf16',
],
value='fp16',
)
num_cpu_threads_per_process = gr.Slider(
minimum=1,
maximum=os.cpu_count(),
step=1,
label='Number of CPU threads per process',
value=os.cpu_count(),
)
with gr.Row():
seed = gr.Textbox(label='Seed', value=1234)
max_resolution = gr.Textbox(
label='Max resolution',
value='512,512',
placeholder='512,512',
)
with gr.Row():
caption_extention = gr.Textbox(
label='Caption Extension',
placeholder='(Optional) Extension for caption files. default: .caption',
)
stop_text_encoder_training = gr.Slider(
minimum=0,
maximum=100,
value=0,
step=1,
label='Stop text encoder training',
)
with gr.Row():
enable_bucket = gr.Checkbox(
label='Enable buckets', value=True
)
cache_latent = gr.Checkbox(label='Cache latent', value=True)
use_8bit_adam = gr.Checkbox(
label='Use 8bit adam', value=True
)
xformers = gr.Checkbox(label='Use xformers', value=True)
with gr.Accordion('Advanced Configuration', open=False):
with gr.Row():
full_fp16 = gr.Checkbox(
label='Full fp16 training (experimental)', value=False
)
no_token_padding = gr.Checkbox(
label='No token padding', value=False
)
gradient_checkpointing = gr.Checkbox(
label='Gradient checkpointing', value=False
)
gradient_accumulation_steps = gr.Number(
label='Gradient accumulate steps', value='1'
)
shuffle_caption = gr.Checkbox(
label='Shuffle caption', value=False
)
with gr.Row():
prior_loss_weight = gr.Number(
label='Prior loss weight', value=1.0
)
color_aug = gr.Checkbox(
label='Color augmentation', value=False
)
flip_aug = gr.Checkbox(label='Flip augmentation', value=False)
color_aug.change(
color_aug_changed,
inputs=[color_aug],
outputs=[cache_latent],
)
clip_skip = gr.Slider(
label='Clip skip', value='1', minimum=1, maximum=12, step=1
)
mem_eff_attn = gr.Checkbox(
label='Memory efficient attention', value=False
)
with gr.Row():
save_state = gr.Checkbox(
label='Save training state', value=False
)
resume = gr.Textbox(
label='Resume from saved training state',
placeholder='path to "last-state" state folder to resume from',
)
resume_button = gr.Button('📂', elem_id='open_folder_small')
resume_button.click(get_folder_path, outputs=resume)
# vae = gr.Textbox(
# label='VAE',
# placeholder='(Optiona) path to checkpoint of vae to replace for training',
# )
# vae_button = gr.Button('📂', elem_id='open_folder_small')
# vae_button.click(get_any_file_path, outputs=vae)
max_token_length = gr.Dropdown(
label='Max Token Length',
choices=[
'75',
'150',
'225',
],
value='75',
)
with gr.Tab('Tools'):
gr.Markdown(
'This section provide Dreambooth tools to help setup your dataset...'
)
gradio_dreambooth_folder_creation_tab(
train_data_dir_input=train_data_dir,
reg_data_dir_input=reg_data_dir,
output_dir_input=output_dir,
logging_dir_input=logging_dir,
)
gradio_dataset_balancing_tab()
gradio_merge_lora_tab()
button_run = gr.Button('Train model')
settings_list = [
pretrained_model_name_or_path,
v2,
v_parameterization,
logging_dir,
train_data_dir,
reg_data_dir,
output_dir,
max_resolution,
lr_scheduler,
lr_warmup,
train_batch_size,
epoch,
save_every_n_epochs,
mixed_precision,
save_precision,
seed,
num_cpu_threads_per_process,
cache_latent,
caption_extention,
enable_bucket,
gradient_checkpointing,
full_fp16,
no_token_padding,
stop_text_encoder_training,
use_8bit_adam,
xformers,
save_model_as_dropdown,
shuffle_caption,
save_state,
resume,
prior_loss_weight,
text_encoder_lr,
unet_lr,
network_dim,
lora_network_weights,
color_aug,
flip_aug,
clip_skip,
gradient_accumulation_steps,
mem_eff_attn,
output_name,
model_list,
max_token_length
]
button_open_config.click(
open_configuration,
inputs=[config_file_name] + settings_list,
outputs=[config_file_name] + settings_list,
)
button_save_config.click(
save_configuration,
inputs=[dummy_db_false, config_file_name] + settings_list,
outputs=[config_file_name],
)
button_save_as_config.click(
save_configuration,
inputs=[dummy_db_true, config_file_name] + settings_list,
outputs=[config_file_name],
)
button_run.click(
train_model,
inputs=settings_list,
)
return (
train_data_dir,
reg_data_dir,
output_dir,
logging_dir,
)
if __name__ == '__main__':
# torch.cuda.set_per_process_memory_fraction(0.48)
parser = argparse.ArgumentParser()
parser.add_argument(
'--username', type=str, default='', help='Username for authentication'
)
parser.add_argument(
'--password', type=str, default='', help='Password for authentication'
)
args = parser.parse_args()
UI(username=args.username, password=args.password)