163 lines
6.8 KiB
Python
163 lines
6.8 KiB
Python
import argparse
|
||
import glob
|
||
import os
|
||
import json
|
||
import random
|
||
|
||
from PIL import Image
|
||
from tqdm import tqdm
|
||
import numpy as np
|
||
import torch
|
||
from torchvision import transforms
|
||
from torchvision.transforms.functional import InterpolationMode
|
||
from blip.blip import blip_decoder
|
||
import library.train_util as train_util
|
||
|
||
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
||
|
||
|
||
IMAGE_SIZE = 384
|
||
|
||
# 正方形でいいのか? という気がするがソースがそうなので
|
||
IMAGE_TRANSFORM = transforms.Compose([
|
||
transforms.Resize((IMAGE_SIZE, IMAGE_SIZE), interpolation=InterpolationMode.BICUBIC),
|
||
transforms.ToTensor(),
|
||
transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))
|
||
])
|
||
|
||
# 共通化したいが微妙に処理が異なる……
|
||
class ImageLoadingTransformDataset(torch.utils.data.Dataset):
|
||
def __init__(self, image_paths):
|
||
self.images = image_paths
|
||
|
||
def __len__(self):
|
||
return len(self.images)
|
||
|
||
def __getitem__(self, idx):
|
||
img_path = self.images[idx]
|
||
|
||
try:
|
||
image = Image.open(img_path).convert("RGB")
|
||
# convert to tensor temporarily so dataloader will accept it
|
||
tensor = IMAGE_TRANSFORM(image)
|
||
except Exception as e:
|
||
print(f"Could not load image path / 画像を読み込めません: {img_path}, error: {e}")
|
||
return None
|
||
|
||
return (tensor, img_path)
|
||
|
||
|
||
def collate_fn_remove_corrupted(batch):
|
||
"""Collate function that allows to remove corrupted examples in the
|
||
dataloader. It expects that the dataloader returns 'None' when that occurs.
|
||
The 'None's in the batch are removed.
|
||
"""
|
||
# Filter out all the Nones (corrupted examples)
|
||
batch = list(filter(lambda x: x is not None, batch))
|
||
return batch
|
||
|
||
|
||
def main(args):
|
||
# fix the seed for reproducibility
|
||
seed = args.seed # + utils.get_rank()
|
||
torch.manual_seed(seed)
|
||
np.random.seed(seed)
|
||
random.seed(seed)
|
||
|
||
if not os.path.exists("blip"):
|
||
args.train_data_dir = os.path.abspath(args.train_data_dir) # convert to absolute path
|
||
|
||
cwd = os.getcwd()
|
||
print('Current Working Directory is: ', cwd)
|
||
os.chdir('finetune')
|
||
|
||
print(f"load images from {args.train_data_dir}")
|
||
image_paths = train_util.glob_images(args.train_data_dir)
|
||
print(f"found {len(image_paths)} images.")
|
||
|
||
print(f"loading BLIP caption: {args.caption_weights}")
|
||
model = blip_decoder(pretrained=args.caption_weights, image_size=IMAGE_SIZE, vit='large', med_config="./blip/med_config.json")
|
||
model.eval()
|
||
model = model.to(DEVICE)
|
||
print("BLIP loaded")
|
||
|
||
# captioningする
|
||
def run_batch(path_imgs):
|
||
imgs = torch.stack([im for _, im in path_imgs]).to(DEVICE)
|
||
|
||
with torch.no_grad():
|
||
if args.beam_search:
|
||
captions = model.generate(imgs, sample=False, num_beams=args.num_beams,
|
||
max_length=args.max_length, min_length=args.min_length)
|
||
else:
|
||
captions = model.generate(imgs, sample=True, top_p=args.top_p, max_length=args.max_length, min_length=args.min_length)
|
||
|
||
for (image_path, _), caption in zip(path_imgs, captions):
|
||
with open(os.path.splitext(image_path)[0] + args.caption_extension, "wt", encoding='utf-8') as f:
|
||
f.write(caption + "\n")
|
||
if args.debug:
|
||
print(image_path, caption)
|
||
|
||
# 読み込みの高速化のためにDataLoaderを使うオプション
|
||
if args.max_data_loader_n_workers is not None:
|
||
dataset = ImageLoadingTransformDataset(image_paths)
|
||
data = torch.utils.data.DataLoader(dataset, batch_size=args.batch_size, shuffle=False,
|
||
num_workers=args.max_data_loader_n_workers, collate_fn=collate_fn_remove_corrupted, drop_last=False)
|
||
else:
|
||
data = [[(None, ip)] for ip in image_paths]
|
||
|
||
b_imgs = []
|
||
for data_entry in tqdm(data, smoothing=0.0):
|
||
for data in data_entry:
|
||
if data is None:
|
||
continue
|
||
|
||
img_tensor, image_path = data
|
||
if img_tensor is None:
|
||
try:
|
||
raw_image = Image.open(image_path)
|
||
if raw_image.mode != 'RGB':
|
||
raw_image = raw_image.convert("RGB")
|
||
img_tensor = IMAGE_TRANSFORM(raw_image)
|
||
except Exception as e:
|
||
print(f"Could not load image path / 画像を読み込めません: {image_path}, error: {e}")
|
||
continue
|
||
|
||
b_imgs.append((image_path, img_tensor))
|
||
if len(b_imgs) >= args.batch_size:
|
||
run_batch(b_imgs)
|
||
b_imgs.clear()
|
||
if len(b_imgs) > 0:
|
||
run_batch(b_imgs)
|
||
|
||
print("done!")
|
||
|
||
|
||
if __name__ == '__main__':
|
||
parser = argparse.ArgumentParser()
|
||
parser.add_argument("train_data_dir", type=str, help="directory for train images / 学習画像データのディレクトリ")
|
||
parser.add_argument("--caption_weights", type=str, default="https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_large_caption.pth",
|
||
help="BLIP caption weights (model_large_caption.pth) / BLIP captionの重みファイル(model_large_caption.pth)")
|
||
parser.add_argument("--caption_extention", type=str, default=None,
|
||
help="extension of caption file (for backward compatibility) / 出力されるキャプションファイルの拡張子(スペルミスしていたのを残してあります)")
|
||
parser.add_argument("--caption_extension", type=str, default=".caption", help="extension of caption file / 出力されるキャプションファイルの拡張子")
|
||
parser.add_argument("--beam_search", action="store_true",
|
||
help="use beam search (default Nucleus sampling) / beam searchを使う(このオプション未指定時はNucleus sampling)")
|
||
parser.add_argument("--batch_size", type=int, default=1, help="batch size in inference / 推論時のバッチサイズ")
|
||
parser.add_argument("--max_data_loader_n_workers", type=int, default=None,
|
||
help="enable image reading by DataLoader with this number of workers (faster) / DataLoaderによる画像読み込みを有効にしてこのワーカー数を適用する(読み込みを高速化)")
|
||
parser.add_argument("--num_beams", type=int, default=1, help="num of beams in beam search /beam search時のビーム数(多いと精度が上がるが時間がかかる)")
|
||
parser.add_argument("--top_p", type=float, default=0.9, help="top_p in Nucleus sampling / Nucleus sampling時のtop_p")
|
||
parser.add_argument("--max_length", type=int, default=75, help="max length of caption / captionの最大長")
|
||
parser.add_argument("--min_length", type=int, default=5, help="min length of caption / captionの最小長")
|
||
parser.add_argument('--seed', default=42, type=int, help='seed for reproducibility / 再現性を確保するための乱数seed')
|
||
parser.add_argument("--debug", action="store_true", help="debug mode")
|
||
|
||
args = parser.parse_args()
|
||
|
||
# スペルミスしていたオプションを復元する
|
||
if args.caption_extention is not None:
|
||
args.caption_extension = args.caption_extention
|
||
|
||
main(args)
|