KohyaSS/README-ja.md
bmaltais a49fb9cb8c 2023/02/11 (v20.7.2):
- ``lora_interrogator.py`` is added in ``networks`` folder. See ``python networks\lora_interrogator.py -h`` for usage.
        - For LoRAs where the activation word is unknown, this script compares the output of Text Encoder after applying LoRA to that of unapplied to find out which token is affected by LoRA. Hopefully you can figure out the activation word. LoRA trained with captions does not seem to be able to interrogate.
        - Batch size can be large (like 64 or 128).
    - ``train_textual_inversion.py`` now supports multiple init words.
    - Following feature is reverted to be the same as before. Sorry for confusion:
        > Now the number of data in each batch is limited to the number of actual images (not duplicated). Because a certain bucket may contain smaller number of actual images, so the batch may contain same (duplicated) images.
    - Add new tool to sort, group and average crop image in a dataset
2023-02-11 11:59:38 -05:00

6.1 KiB
Raw Blame History

リポジトリについて

Stable Diffusionの学習、画像生成、その他のスクリプトを入れたリポジトリです。

README in English ←更新情報はこちらにあります

GUIやPowerShellスクリプトなど、より使いやすくする機能がbmaltais氏のリポジトリで提供されています英語ですのであわせてご覧ください。bmaltais氏に感謝します。

以下のスクリプトがあります。

  • DreamBooth、U-NetおよびText Encoderの学習をサポート
  • fine-tuning、同上
  • 画像生成
  • モデル変換Stable Diffision ckpt/safetensorsとDiffusersの相互変換

使用法について

当リポジトリ内およびnote.comに記事がありますのでそちらをご覧ください将来的にはすべてこちらへ移すかもしれません

Windowsでの動作に必要なプログラム

Python 3.10.6およびGitが必要です。

PowerShellを使う場合、venvを使えるようにするためには以下の手順でセキュリティ設定を変更してください。 venvに限らずスクリプトの実行が可能になりますので注意してください。

  • PowerShellを管理者として開きます。
  • 「Set-ExecutionPolicy Unrestricted」と入力し、Yと答えます。
  • 管理者のPowerShellを閉じます。

Windows環境でのインストール

以下の例ではPyTorchは1.12.1CUDA 11.6版をインストールします。CUDA 11.3版やPyTorch 1.13を使う場合は適宜書き換えください。

なお、python -m venvの行で「python」とだけ表示された場合、py -m venvのようにpythonをpyに変更してください。

通常の管理者ではないPowerShellを開き以下を順に実行します。

git clone https://github.com/kohya-ss/sd-scripts.git
cd sd-scripts

python -m venv venv
.\venv\Scripts\activate

pip install torch==1.12.1+cu116 torchvision==0.13.1+cu116 --extra-index-url https://download.pytorch.org/whl/cu116
pip install --upgrade -r requirements.txt
pip install -U -I --no-deps https://github.com/C43H66N12O12S2/stable-diffusion-webui/releases/download/f/xformers-0.0.14.dev0-cp310-cp310-win_amd64.whl

cp .\bitsandbytes_windows\*.dll .\venv\Lib\site-packages\bitsandbytes\
cp .\bitsandbytes_windows\cextension.py .\venv\Lib\site-packages\bitsandbytes\cextension.py
cp .\bitsandbytes_windows\main.py .\venv\Lib\site-packages\bitsandbytes\cuda_setup\main.py

accelerate config

コマンドプロンプトでは以下になります。

git clone https://github.com/kohya-ss/sd-scripts.git
cd sd-scripts

python -m venv venv
.\venv\Scripts\activate

pip install torch==1.12.1+cu116 torchvision==0.13.1+cu116 --extra-index-url https://download.pytorch.org/whl/cu116
pip install --upgrade -r requirements.txt
pip install -U -I --no-deps https://github.com/C43H66N12O12S2/stable-diffusion-webui/releases/download/f/xformers-0.0.14.dev0-cp310-cp310-win_amd64.whl

copy /y .\bitsandbytes_windows\*.dll .\venv\Lib\site-packages\bitsandbytes\
copy /y .\bitsandbytes_windows\cextension.py .\venv\Lib\site-packages\bitsandbytes\cextension.py
copy /y .\bitsandbytes_windows\main.py .\venv\Lib\site-packages\bitsandbytes\cuda_setup\main.py

accelerate config

(注:python -m venv venv のほうが python -m venv --system-site-packages venv より安全そうなため書き換えました。globalなpythonにパッケージがインストールしてあると、後者だといろいろと問題が起きます。

accelerate configの質問には以下のように答えてください。bf16で学習する場合、最後の質問にはbf16と答えてください。

※0.15.0から日本語環境では選択のためにカーソルキーを押すと落ちます……。数字キーの0、1、2……で選択できますので、そちらを使ってください。

- This machine
- No distributed training
- NO
- NO
- NO
- all
- fp16

※場合によって ValueError: fp16 mixed precision requires a GPU というエラーが出ることがあるようです。この場合、6番目の質問 What GPU(s) (by id) should be used for training on this machine as a comma-separated list? [all]:に「0」と答えてください。id 0のGPUが使われます。

PyTorchとxformersのバージョンについて

他のバージョンでは学習がうまくいかない場合があるようです。特に他の理由がなければ指定のバージョンをお使いください。

アップグレード

新しいリリースがあった場合、以下のコマンドで更新できます。

cd sd-scripts
git pull
.\venv\Scripts\activate
pip install --use-pep517 --upgrade -r requirements.txt

コマンドが成功すれば新しいバージョンが使用できます。

謝意

LoRAの実装はcloneofsimo氏のリポジトリを基にしたものです。感謝申し上げます。

ライセンス

スクリプトのライセンスはASL 2.0ですがDiffusersおよびcloneofsimo氏のリポジトリ由来のものも同様、一部他のライセンスのコードを含みます。

Memory Efficient Attention Pytorch: MIT

bitsandbytes: MIT

BLIP: BSD-3-Clause