174 lines
5.0 KiB
Python
174 lines
5.0 KiB
Python
import gradio as gr
|
|
from easygui import msgbox
|
|
import subprocess
|
|
import os
|
|
from .common_gui import get_saveasfilename_path, get_file_path
|
|
|
|
PYTHON = 'python3' if os.name == 'posix' else './venv/Scripts/python.exe'
|
|
folder_symbol = '\U0001f4c2' # 📂
|
|
refresh_symbol = '\U0001f504' # 🔄
|
|
save_style_symbol = '\U0001f4be' # 💾
|
|
document_symbol = '\U0001F4C4' # 📄
|
|
|
|
|
|
def resize_lora(
|
|
model,
|
|
new_rank,
|
|
save_to,
|
|
save_precision,
|
|
device,
|
|
dynamic_method,
|
|
dynamic_param,
|
|
verbose,
|
|
):
|
|
# Check for caption_text_input
|
|
if model == '':
|
|
msgbox('Invalid model file')
|
|
return
|
|
|
|
# Check if source model exist
|
|
if not os.path.isfile(model):
|
|
msgbox('The provided model is not a file')
|
|
return
|
|
|
|
if dynamic_method == 'sv_ratio':
|
|
if float(dynamic_param) < 2:
|
|
msgbox(
|
|
f'Dynamic parameter for {dynamic_method} need to be 2 or greater...'
|
|
)
|
|
return
|
|
|
|
if dynamic_method == 'sv_fro' or dynamic_method == 'sv_cumulative':
|
|
if float(dynamic_param) < 0 or float(dynamic_param) > 1:
|
|
msgbox(
|
|
f'Dynamic parameter for {dynamic_method} need to be between 0 and 1...'
|
|
)
|
|
return
|
|
|
|
# Check if save_to end with one of the defines extension. If not add .safetensors.
|
|
if not save_to.endswith(('.pt', '.safetensors')):
|
|
save_to += '.safetensors'
|
|
|
|
if device == '':
|
|
device = 'cuda'
|
|
|
|
run_cmd = f'{PYTHON} "{os.path.join("networks","resize_lora.py")}"'
|
|
run_cmd += f' --save_precision {save_precision}'
|
|
run_cmd += f' --save_to {save_to}'
|
|
run_cmd += f' --model {model}'
|
|
run_cmd += f' --new_rank {new_rank}'
|
|
run_cmd += f' --device {device}'
|
|
if not dynamic_method == 'None':
|
|
run_cmd += f' --dynamic_method {dynamic_method}'
|
|
run_cmd += f' --dynamic_param {dynamic_param}'
|
|
if verbose:
|
|
run_cmd += f' --verbose'
|
|
|
|
print(run_cmd)
|
|
|
|
# Run the command
|
|
if os.name == 'posix':
|
|
os.system(run_cmd)
|
|
else:
|
|
subprocess.run(run_cmd)
|
|
|
|
|
|
###
|
|
# Gradio UI
|
|
###
|
|
|
|
|
|
def gradio_resize_lora_tab():
|
|
with gr.Tab('Resize LoRA'):
|
|
gr.Markdown('This utility can resize a LoRA.')
|
|
|
|
lora_ext = gr.Textbox(value='*.safetensors *.pt', visible=False)
|
|
lora_ext_name = gr.Textbox(value='LoRA model types', visible=False)
|
|
|
|
with gr.Row():
|
|
model = gr.Textbox(
|
|
label='Source LoRA',
|
|
placeholder='Path to the LoRA to resize',
|
|
interactive=True,
|
|
)
|
|
button_lora_a_model_file = gr.Button(
|
|
folder_symbol, elem_id='open_folder_small'
|
|
)
|
|
button_lora_a_model_file.click(
|
|
get_file_path,
|
|
inputs=[model, lora_ext, lora_ext_name],
|
|
outputs=model,
|
|
show_progress=False,
|
|
)
|
|
with gr.Row():
|
|
new_rank = gr.Slider(
|
|
label='Desired LoRA rank',
|
|
minimum=1,
|
|
maximum=1024,
|
|
step=1,
|
|
value=4,
|
|
interactive=True,
|
|
)
|
|
|
|
with gr.Row():
|
|
dynamic_method = gr.Dropdown(
|
|
choices=['None', 'sv_ratio', 'sv_fro', 'sv_cumulative'],
|
|
value='sv_fro',
|
|
label='Dynamic method',
|
|
interactive=True,
|
|
)
|
|
dynamic_param = gr.Textbox(
|
|
label='Dynamic parameter',
|
|
value='0.9',
|
|
interactive=True,
|
|
placeholder='Value for the dynamic method selected.',
|
|
)
|
|
verbose = gr.Checkbox(label='Verbose', value=False)
|
|
with gr.Row():
|
|
save_to = gr.Textbox(
|
|
label='Save to',
|
|
placeholder='path for the LoRA file to save...',
|
|
interactive=True,
|
|
)
|
|
button_save_to = gr.Button(
|
|
folder_symbol, elem_id='open_folder_small'
|
|
)
|
|
button_save_to.click(
|
|
get_saveasfilename_path,
|
|
inputs=[save_to, lora_ext, lora_ext_name],
|
|
outputs=save_to,
|
|
show_progress=False,
|
|
)
|
|
save_precision = gr.Dropdown(
|
|
label='Save precision',
|
|
choices=['fp16', 'bf16', 'float'],
|
|
value='fp16',
|
|
interactive=True,
|
|
)
|
|
device = gr.Dropdown(
|
|
label='Device',
|
|
choices=[
|
|
'cpu',
|
|
'cuda',
|
|
],
|
|
value='cuda',
|
|
interactive=True,
|
|
)
|
|
|
|
convert_button = gr.Button('Resize model')
|
|
|
|
convert_button.click(
|
|
resize_lora,
|
|
inputs=[
|
|
model,
|
|
new_rank,
|
|
save_to,
|
|
save_precision,
|
|
device,
|
|
dynamic_method,
|
|
dynamic_param,
|
|
verbose,
|
|
],
|
|
show_progress=False,
|
|
)
|