87 lines
2.8 KiB
PowerShell
87 lines
2.8 KiB
PowerShell
# This powershell script will create a model using the fine tuning dreambooth method. It will require landscape,
|
|
# portrait and square images.
|
|
#
|
|
# Adjust the script to your own needs
|
|
|
|
# Sylvia Ritter
|
|
# variable values
|
|
$pretrained_model_name_or_path = "D:\models\v1-5-pruned-mse-vae.ckpt"
|
|
$data_dir = "D:\test\squat"
|
|
$train_dir = "D:\test\"
|
|
$resolution = "512,512"
|
|
|
|
$image_num = Get-ChildItem $data_dir -Recurse -File -Include *.png | Measure-Object | %{$_.Count}
|
|
|
|
Write-Output "image_num: $image_num"
|
|
|
|
$learning_rate = 1e-6
|
|
$dataset_repeats = 40
|
|
$train_batch_size = 8
|
|
$epoch = 1
|
|
$save_every_n_epochs=1
|
|
$mixed_precision="fp16"
|
|
$num_cpu_threads_per_process=6
|
|
|
|
# You should not have to change values past this point
|
|
|
|
$output_dir = $train_dir + "\model"
|
|
$repeats = $image_num * $dataset_repeats
|
|
$mts = [Math]::Ceiling($repeats / $train_batch_size * $epoch)
|
|
|
|
Write-Output "Repeats: $repeats"
|
|
|
|
.\venv\Scripts\activate
|
|
|
|
accelerate launch --num_cpu_threads_per_process $num_cpu_threads_per_process train_db_fixed-ber.py `
|
|
--pretrained_model_name_or_path=$pretrained_model_name_or_path `
|
|
--train_data_dir=$data_dir `
|
|
--output_dir=$output_dir `
|
|
--resolution=$resolution `
|
|
--train_batch_size=$train_batch_size `
|
|
--learning_rate=$learning_rate `
|
|
--max_train_steps=$mts `
|
|
--use_8bit_adam `
|
|
--xformers `
|
|
--mixed_precision=$mixed_precision `
|
|
--cache_latents `
|
|
--save_every_n_epochs=$save_every_n_epochs `
|
|
--fine_tuning `
|
|
--dataset_repeats=$dataset_repeats `
|
|
--save_precision="fp16"
|
|
|
|
# 2nd pass at half the dataset repeat value
|
|
|
|
accelerate launch --num_cpu_threads_per_process $num_cpu_threads_per_process train_db_fixed.py `
|
|
--pretrained_model_name_or_path=$output_dir"\last.ckpt" `
|
|
--train_data_dir=$data_dir `
|
|
--output_dir=$output_dir"2" `
|
|
--resolution=$resolution `
|
|
--train_batch_size=$train_batch_size `
|
|
--learning_rate=$learning_rate `
|
|
--max_train_steps=$([Math]::Ceiling($mts/2)) `
|
|
--use_8bit_adam `
|
|
--xformers `
|
|
--mixed_precision=$mixed_precision `
|
|
--cache_latents `
|
|
--save_every_n_epochs=$save_every_n_epochs `
|
|
--fine_tuning `
|
|
--dataset_repeats=$([Math]::Ceiling($dataset_repeats/2)) `
|
|
--save_precision="fp16"
|
|
|
|
accelerate launch --num_cpu_threads_per_process $num_cpu_threads_per_process train_db_fixed-ber.py `
|
|
--pretrained_model_name_or_path=$output_dir"\last.ckpt" `
|
|
--train_data_dir=$data_dir `
|
|
--output_dir=$output_dir"2" `
|
|
--resolution=$resolution `
|
|
--train_batch_size=$train_batch_size `
|
|
--learning_rate=$learning_rate `
|
|
--max_train_steps=$mts `
|
|
--use_8bit_adam `
|
|
--xformers `
|
|
--mixed_precision=$mixed_precision `
|
|
--cache_latents `
|
|
--save_every_n_epochs=$save_every_n_epochs `
|
|
--fine_tuning `
|
|
--dataset_repeats=$dataset_repeats `
|
|
--save_precision="fp16"
|
|
|