KohyaSS/tools/convert_diffusers20_original_sd.py
2023-01-29 11:10:06 -05:00

90 lines
4.9 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# convert Diffusers v1.x/v2.0 model to original Stable Diffusion
import argparse
import os
import torch
from diffusers import StableDiffusionPipeline
import library.model_util as model_util
def convert(args):
# 引数を確認する
load_dtype = torch.float16 if args.fp16 else None
save_dtype = None
if args.fp16:
save_dtype = torch.float16
elif args.bf16:
save_dtype = torch.bfloat16
elif args.float:
save_dtype = torch.float
is_load_ckpt = os.path.isfile(args.model_to_load)
is_save_ckpt = len(os.path.splitext(args.model_to_save)[1]) > 0
assert not is_load_ckpt or args.v1 != args.v2, f"v1 or v2 is required to load checkpoint / checkpointの読み込みにはv1/v2指定が必要です"
assert is_save_ckpt or args.reference_model is not None, f"reference model is required to save as Diffusers / Diffusers形式での保存には参照モデルが必要です"
# モデルを読み込む
msg = "checkpoint" if is_load_ckpt else ("Diffusers" + (" as fp16" if args.fp16 else ""))
print(f"loading {msg}: {args.model_to_load}")
if is_load_ckpt:
v2_model = args.v2
text_encoder, vae, unet = model_util.load_models_from_stable_diffusion_checkpoint(v2_model, args.model_to_load)
else:
pipe = StableDiffusionPipeline.from_pretrained(args.model_to_load, torch_dtype=load_dtype, tokenizer=None, safety_checker=None)
text_encoder = pipe.text_encoder
vae = pipe.vae
unet = pipe.unet
if args.v1 == args.v2:
# 自動判定する
v2_model = unet.config.cross_attention_dim == 1024
print("checking model version: model is " + ('v2' if v2_model else 'v1'))
else:
v2_model = not args.v1
# 変換して保存する
msg = ("checkpoint" + ("" if save_dtype is None else f" in {save_dtype}")) if is_save_ckpt else "Diffusers"
print(f"converting and saving as {msg}: {args.model_to_save}")
if is_save_ckpt:
original_model = args.model_to_load if is_load_ckpt else None
key_count = model_util.save_stable_diffusion_checkpoint(v2_model, args.model_to_save, text_encoder, unet,
original_model, args.epoch, args.global_step, save_dtype, vae)
print(f"model saved. total converted state_dict keys: {key_count}")
else:
print(f"copy scheduler/tokenizer config from: {args.reference_model}")
model_util.save_diffusers_checkpoint(v2_model, args.model_to_save, text_encoder, unet, args.reference_model, vae, args.use_safetensors)
print(f"model saved.")
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--v1", action='store_true',
help='load v1.x model (v1 or v2 is required to load checkpoint) / 1.xのモデルを読み込む')
parser.add_argument("--v2", action='store_true',
help='load v2.0 model (v1 or v2 is required to load checkpoint) / 2.0のモデルを読み込む')
parser.add_argument("--fp16", action='store_true',
help='load as fp16 (Diffusers only) and save as fp16 (checkpoint only) / fp16形式で読み込みDiffusers形式のみ対応、保存するcheckpointのみ対応')
parser.add_argument("--bf16", action='store_true', help='save as bf16 (checkpoint only) / bf16形式で保存するcheckpointのみ対応')
parser.add_argument("--float", action='store_true',
help='save as float (checkpoint only) / float(float32)形式で保存するcheckpointのみ対応')
parser.add_argument("--epoch", type=int, default=0, help='epoch to write to checkpoint / checkpointに記録するepoch数の値')
parser.add_argument("--global_step", type=int, default=0,
help='global_step to write to checkpoint / checkpointに記録するglobal_stepの値')
parser.add_argument("--reference_model", type=str, default=None,
help="reference model for schduler/tokenizer, required in saving Diffusers, copy schduler/tokenizer from this / scheduler/tokenizerのコピー元のDiffusersモデル、Diffusers形式で保存するときに必要")
parser.add_argument("--use_safetensors", action='store_true',
help="use safetensors format to save Diffusers model (checkpoint depends on the file extension) / Duffusersモデルをsafetensors形式で保存するcheckpointは拡張子で自動判定")
parser.add_argument("model_to_load", type=str, default=None,
help="model to load: checkpoint file or Diffusers model's directory / 読み込むモデル、checkpointかDiffusers形式モデルのディレクトリ")
parser.add_argument("model_to_save", type=str, default=None,
help="model to save: checkpoint (with extension) or Diffusers model's directory (without extension) / 変換後のモデル、拡張子がある場合はcheckpoint、ない場合はDiffusesモデルとして保存")
args = parser.parse_args()
convert(args)