431 lines
18 KiB
Python
431 lines
18 KiB
Python
# training with captions
|
||
# XXX dropped option: hypernetwork training
|
||
|
||
import argparse
|
||
import gc
|
||
import math
|
||
import os
|
||
import toml
|
||
from multiprocessing import Value
|
||
|
||
from tqdm import tqdm
|
||
import torch
|
||
from accelerate.utils import set_seed
|
||
import diffusers
|
||
from diffusers import DDPMScheduler
|
||
|
||
import library.train_util as train_util
|
||
import library.config_util as config_util
|
||
from library.config_util import (
|
||
ConfigSanitizer,
|
||
BlueprintGenerator,
|
||
)
|
||
import library.custom_train_functions as custom_train_functions
|
||
from library.custom_train_functions import apply_snr_weight
|
||
|
||
|
||
def train(args):
|
||
train_util.verify_training_args(args)
|
||
train_util.prepare_dataset_args(args, True)
|
||
|
||
cache_latents = args.cache_latents
|
||
|
||
if args.seed is not None:
|
||
set_seed(args.seed) # 乱数系列を初期化する
|
||
|
||
tokenizer = train_util.load_tokenizer(args)
|
||
|
||
blueprint_generator = BlueprintGenerator(ConfigSanitizer(False, True, True))
|
||
if args.dataset_config is not None:
|
||
print(f"Load dataset config from {args.dataset_config}")
|
||
user_config = config_util.load_user_config(args.dataset_config)
|
||
ignored = ["train_data_dir", "in_json"]
|
||
if any(getattr(args, attr) is not None for attr in ignored):
|
||
print(
|
||
"ignore following options because config file is found: {0} / 設定ファイルが利用されるため以下のオプションは無視されます: {0}".format(
|
||
", ".join(ignored)
|
||
)
|
||
)
|
||
else:
|
||
user_config = {
|
||
"datasets": [
|
||
{
|
||
"subsets": [
|
||
{
|
||
"image_dir": args.train_data_dir,
|
||
"metadata_file": args.in_json,
|
||
}
|
||
]
|
||
}
|
||
]
|
||
}
|
||
|
||
blueprint = blueprint_generator.generate(user_config, args, tokenizer=tokenizer)
|
||
train_dataset_group = config_util.generate_dataset_group_by_blueprint(blueprint.dataset_group)
|
||
|
||
current_epoch = Value("i", 0)
|
||
current_step = Value("i", 0)
|
||
ds_for_collater = train_dataset_group if args.max_data_loader_n_workers == 0 else None
|
||
collater = train_util.collater_class(current_epoch, current_step, ds_for_collater)
|
||
|
||
if args.debug_dataset:
|
||
train_util.debug_dataset(train_dataset_group)
|
||
return
|
||
if len(train_dataset_group) == 0:
|
||
print(
|
||
"No data found. Please verify the metadata file and train_data_dir option. / 画像がありません。メタデータおよびtrain_data_dirオプションを確認してください。"
|
||
)
|
||
return
|
||
|
||
if cache_latents:
|
||
assert (
|
||
train_dataset_group.is_latent_cacheable()
|
||
), "when caching latents, either color_aug or random_crop cannot be used / latentをキャッシュするときはcolor_augとrandom_cropは使えません"
|
||
|
||
# acceleratorを準備する
|
||
print("prepare accelerator")
|
||
accelerator, unwrap_model = train_util.prepare_accelerator(args)
|
||
|
||
# mixed precisionに対応した型を用意しておき適宜castする
|
||
weight_dtype, save_dtype = train_util.prepare_dtype(args)
|
||
|
||
# モデルを読み込む
|
||
text_encoder, vae, unet, load_stable_diffusion_format = train_util.load_target_model(args, weight_dtype)
|
||
|
||
# verify load/save model formats
|
||
if load_stable_diffusion_format:
|
||
src_stable_diffusion_ckpt = args.pretrained_model_name_or_path
|
||
src_diffusers_model_path = None
|
||
else:
|
||
src_stable_diffusion_ckpt = None
|
||
src_diffusers_model_path = args.pretrained_model_name_or_path
|
||
|
||
if args.save_model_as is None:
|
||
save_stable_diffusion_format = load_stable_diffusion_format
|
||
use_safetensors = args.use_safetensors
|
||
else:
|
||
save_stable_diffusion_format = args.save_model_as.lower() == "ckpt" or args.save_model_as.lower() == "safetensors"
|
||
use_safetensors = args.use_safetensors or ("safetensors" in args.save_model_as.lower())
|
||
|
||
# Diffusers版のxformers使用フラグを設定する関数
|
||
def set_diffusers_xformers_flag(model, valid):
|
||
# model.set_use_memory_efficient_attention_xformers(valid) # 次のリリースでなくなりそう
|
||
# pipeが自動で再帰的にset_use_memory_efficient_attention_xformersを探すんだって(;´Д`)
|
||
# U-Netだけ使う時にはどうすればいいのか……仕方ないからコピって使うか
|
||
# 0.10.2でなんか巻き戻って個別に指定するようになった(;^ω^)
|
||
|
||
# Recursively walk through all the children.
|
||
# Any children which exposes the set_use_memory_efficient_attention_xformers method
|
||
# gets the message
|
||
def fn_recursive_set_mem_eff(module: torch.nn.Module):
|
||
if hasattr(module, "set_use_memory_efficient_attention_xformers"):
|
||
module.set_use_memory_efficient_attention_xformers(valid)
|
||
|
||
for child in module.children():
|
||
fn_recursive_set_mem_eff(child)
|
||
|
||
fn_recursive_set_mem_eff(model)
|
||
|
||
# モデルに xformers とか memory efficient attention を組み込む
|
||
if args.diffusers_xformers:
|
||
print("Use xformers by Diffusers")
|
||
set_diffusers_xformers_flag(unet, True)
|
||
else:
|
||
# Windows版のxformersはfloatで学習できないのでxformersを使わない設定も可能にしておく必要がある
|
||
print("Disable Diffusers' xformers")
|
||
set_diffusers_xformers_flag(unet, False)
|
||
train_util.replace_unet_modules(unet, args.mem_eff_attn, args.xformers)
|
||
|
||
# 学習を準備する
|
||
if cache_latents:
|
||
vae.to(accelerator.device, dtype=weight_dtype)
|
||
vae.requires_grad_(False)
|
||
vae.eval()
|
||
with torch.no_grad():
|
||
train_dataset_group.cache_latents(vae, args.vae_batch_size)
|
||
vae.to("cpu")
|
||
if torch.cuda.is_available():
|
||
torch.cuda.empty_cache()
|
||
gc.collect()
|
||
|
||
# 学習を準備する:モデルを適切な状態にする
|
||
training_models = []
|
||
if args.gradient_checkpointing:
|
||
unet.enable_gradient_checkpointing()
|
||
training_models.append(unet)
|
||
|
||
if args.train_text_encoder:
|
||
print("enable text encoder training")
|
||
if args.gradient_checkpointing:
|
||
text_encoder.gradient_checkpointing_enable()
|
||
training_models.append(text_encoder)
|
||
else:
|
||
text_encoder.to(accelerator.device, dtype=weight_dtype)
|
||
text_encoder.requires_grad_(False) # text encoderは学習しない
|
||
if args.gradient_checkpointing:
|
||
text_encoder.gradient_checkpointing_enable()
|
||
text_encoder.train() # required for gradient_checkpointing
|
||
else:
|
||
text_encoder.eval()
|
||
|
||
if not cache_latents:
|
||
vae.requires_grad_(False)
|
||
vae.eval()
|
||
vae.to(accelerator.device, dtype=weight_dtype)
|
||
|
||
for m in training_models:
|
||
m.requires_grad_(True)
|
||
params = []
|
||
for m in training_models:
|
||
params.extend(m.parameters())
|
||
params_to_optimize = params
|
||
|
||
# 学習に必要なクラスを準備する
|
||
print("prepare optimizer, data loader etc.")
|
||
_, _, optimizer = train_util.get_optimizer(args, trainable_params=params_to_optimize)
|
||
|
||
# dataloaderを準備する
|
||
# DataLoaderのプロセス数:0はメインプロセスになる
|
||
n_workers = min(args.max_data_loader_n_workers, os.cpu_count() - 1) # cpu_count-1 ただし最大で指定された数まで
|
||
train_dataloader = torch.utils.data.DataLoader(
|
||
train_dataset_group,
|
||
batch_size=1,
|
||
shuffle=True,
|
||
collate_fn=collater,
|
||
num_workers=n_workers,
|
||
persistent_workers=args.persistent_data_loader_workers,
|
||
)
|
||
|
||
# 学習ステップ数を計算する
|
||
if args.max_train_epochs is not None:
|
||
args.max_train_steps = args.max_train_epochs * math.ceil(
|
||
len(train_dataloader) / accelerator.num_processes / args.gradient_accumulation_steps
|
||
)
|
||
print(f"override steps. steps for {args.max_train_epochs} epochs is / 指定エポックまでのステップ数: {args.max_train_steps}")
|
||
|
||
# データセット側にも学習ステップを送信
|
||
train_dataset_group.set_max_train_steps(args.max_train_steps)
|
||
|
||
# lr schedulerを用意する
|
||
lr_scheduler = train_util.get_scheduler_fix(args, optimizer, accelerator.num_processes)
|
||
|
||
# 実験的機能:勾配も含めたfp16学習を行う モデル全体をfp16にする
|
||
if args.full_fp16:
|
||
assert (
|
||
args.mixed_precision == "fp16"
|
||
), "full_fp16 requires mixed precision='fp16' / full_fp16を使う場合はmixed_precision='fp16'を指定してください。"
|
||
print("enable full fp16 training.")
|
||
unet.to(weight_dtype)
|
||
text_encoder.to(weight_dtype)
|
||
|
||
# acceleratorがなんかよろしくやってくれるらしい
|
||
if args.train_text_encoder:
|
||
unet, text_encoder, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
|
||
unet, text_encoder, optimizer, train_dataloader, lr_scheduler
|
||
)
|
||
else:
|
||
unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(unet, optimizer, train_dataloader, lr_scheduler)
|
||
|
||
# 実験的機能:勾配も含めたfp16学習を行う PyTorchにパッチを当ててfp16でのgrad scaleを有効にする
|
||
if args.full_fp16:
|
||
train_util.patch_accelerator_for_fp16_training(accelerator)
|
||
|
||
# resumeする
|
||
if args.resume is not None:
|
||
print(f"resume training from state: {args.resume}")
|
||
accelerator.load_state(args.resume)
|
||
|
||
# epoch数を計算する
|
||
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
|
||
num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
|
||
if (args.save_n_epoch_ratio is not None) and (args.save_n_epoch_ratio > 0):
|
||
args.save_every_n_epochs = math.floor(num_train_epochs / args.save_n_epoch_ratio) or 1
|
||
|
||
# 学習する
|
||
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
|
||
print("running training / 学習開始")
|
||
print(f" num examples / サンプル数: {train_dataset_group.num_train_images}")
|
||
print(f" num batches per epoch / 1epochのバッチ数: {len(train_dataloader)}")
|
||
print(f" num epochs / epoch数: {num_train_epochs}")
|
||
print(f" batch size per device / バッチサイズ: {args.train_batch_size}")
|
||
print(f" total train batch size (with parallel & distributed & accumulation) / 総バッチサイズ(並列学習、勾配合計含む): {total_batch_size}")
|
||
print(f" gradient accumulation steps / 勾配を合計するステップ数 = {args.gradient_accumulation_steps}")
|
||
print(f" total optimization steps / 学習ステップ数: {args.max_train_steps}")
|
||
|
||
progress_bar = tqdm(range(args.max_train_steps), smoothing=0, disable=not accelerator.is_local_main_process, desc="steps")
|
||
global_step = 0
|
||
|
||
noise_scheduler = DDPMScheduler(
|
||
beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000, clip_sample=False
|
||
)
|
||
|
||
if accelerator.is_main_process:
|
||
accelerator.init_trackers("finetuning")
|
||
|
||
for epoch in range(num_train_epochs):
|
||
print(f"epoch {epoch+1}/{num_train_epochs}")
|
||
current_epoch.value = epoch + 1
|
||
|
||
for m in training_models:
|
||
m.train()
|
||
|
||
loss_total = 0
|
||
for step, batch in enumerate(train_dataloader):
|
||
current_step.value = global_step
|
||
with accelerator.accumulate(training_models[0]): # 複数モデルに対応していない模様だがとりあえずこうしておく
|
||
with torch.no_grad():
|
||
if "latents" in batch and batch["latents"] is not None:
|
||
latents = batch["latents"].to(accelerator.device)
|
||
else:
|
||
# latentに変換
|
||
latents = vae.encode(batch["images"].to(dtype=weight_dtype)).latent_dist.sample()
|
||
latents = latents * 0.18215
|
||
b_size = latents.shape[0]
|
||
|
||
with torch.set_grad_enabled(args.train_text_encoder):
|
||
# Get the text embedding for conditioning
|
||
input_ids = batch["input_ids"].to(accelerator.device)
|
||
encoder_hidden_states = train_util.get_hidden_states(
|
||
args, input_ids, tokenizer, text_encoder, None if not args.full_fp16 else weight_dtype
|
||
)
|
||
|
||
# Sample noise that we'll add to the latents
|
||
noise = torch.randn_like(latents, device=latents.device)
|
||
if args.noise_offset:
|
||
# https://www.crosslabs.org//blog/diffusion-with-offset-noise
|
||
noise += args.noise_offset * torch.randn((latents.shape[0], latents.shape[1], 1, 1), device=latents.device)
|
||
|
||
# Sample a random timestep for each image
|
||
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (b_size,), device=latents.device)
|
||
timesteps = timesteps.long()
|
||
|
||
# Add noise to the latents according to the noise magnitude at each timestep
|
||
# (this is the forward diffusion process)
|
||
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
|
||
|
||
# Predict the noise residual
|
||
noise_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample
|
||
|
||
if args.v_parameterization:
|
||
# v-parameterization training
|
||
target = noise_scheduler.get_velocity(latents, noise, timesteps)
|
||
else:
|
||
target = noise
|
||
|
||
if args.min_snr_gamma:
|
||
# do not mean over batch dimension for snr weight
|
||
loss = torch.nn.functional.mse_loss(noise_pred.float(), target.float(), reduction="none")
|
||
loss = loss.mean([1, 2, 3])
|
||
loss = apply_snr_weight(loss, timesteps, noise_scheduler, args.min_snr_gamma)
|
||
loss = loss.mean() # mean over batch dimension
|
||
else:
|
||
loss = torch.nn.functional.mse_loss(noise_pred.float(), target.float(), reduction="mean")
|
||
|
||
accelerator.backward(loss)
|
||
if accelerator.sync_gradients and args.max_grad_norm != 0.0:
|
||
params_to_clip = []
|
||
for m in training_models:
|
||
params_to_clip.extend(m.parameters())
|
||
accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm)
|
||
|
||
optimizer.step()
|
||
lr_scheduler.step()
|
||
optimizer.zero_grad(set_to_none=True)
|
||
|
||
# Checks if the accelerator has performed an optimization step behind the scenes
|
||
if accelerator.sync_gradients:
|
||
progress_bar.update(1)
|
||
global_step += 1
|
||
|
||
train_util.sample_images(
|
||
accelerator, args, None, global_step, accelerator.device, vae, tokenizer, text_encoder, unet
|
||
)
|
||
|
||
current_loss = loss.detach().item() # 平均なのでbatch sizeは関係ないはず
|
||
if args.logging_dir is not None:
|
||
logs = {"loss": current_loss, "lr": float(lr_scheduler.get_last_lr()[0])}
|
||
if args.optimizer_type.lower() == "DAdaptation".lower(): # tracking d*lr value
|
||
logs["lr/d*lr"] = (
|
||
lr_scheduler.optimizers[0].param_groups[0]["d"] * lr_scheduler.optimizers[0].param_groups[0]["lr"]
|
||
)
|
||
accelerator.log(logs, step=global_step)
|
||
|
||
# TODO moving averageにする
|
||
loss_total += current_loss
|
||
avr_loss = loss_total / (step + 1)
|
||
logs = {"loss": avr_loss} # , "lr": lr_scheduler.get_last_lr()[0]}
|
||
progress_bar.set_postfix(**logs)
|
||
|
||
if global_step >= args.max_train_steps:
|
||
break
|
||
|
||
if args.logging_dir is not None:
|
||
logs = {"loss/epoch": loss_total / len(train_dataloader)}
|
||
accelerator.log(logs, step=epoch + 1)
|
||
|
||
accelerator.wait_for_everyone()
|
||
|
||
if args.save_every_n_epochs is not None:
|
||
src_path = src_stable_diffusion_ckpt if save_stable_diffusion_format else src_diffusers_model_path
|
||
train_util.save_sd_model_on_epoch_end(
|
||
args,
|
||
accelerator,
|
||
src_path,
|
||
save_stable_diffusion_format,
|
||
use_safetensors,
|
||
save_dtype,
|
||
epoch,
|
||
num_train_epochs,
|
||
global_step,
|
||
unwrap_model(text_encoder),
|
||
unwrap_model(unet),
|
||
vae,
|
||
)
|
||
|
||
train_util.sample_images(accelerator, args, epoch + 1, global_step, accelerator.device, vae, tokenizer, text_encoder, unet)
|
||
|
||
is_main_process = accelerator.is_main_process
|
||
if is_main_process:
|
||
unet = unwrap_model(unet)
|
||
text_encoder = unwrap_model(text_encoder)
|
||
|
||
accelerator.end_training()
|
||
|
||
if args.save_state:
|
||
train_util.save_state_on_train_end(args, accelerator)
|
||
|
||
del accelerator # この後メモリを使うのでこれは消す
|
||
|
||
if is_main_process:
|
||
src_path = src_stable_diffusion_ckpt if save_stable_diffusion_format else src_diffusers_model_path
|
||
train_util.save_sd_model_on_train_end(
|
||
args, src_path, save_stable_diffusion_format, use_safetensors, save_dtype, epoch, global_step, text_encoder, unet, vae
|
||
)
|
||
print("model saved.")
|
||
|
||
|
||
def setup_parser() -> argparse.ArgumentParser:
|
||
parser = argparse.ArgumentParser()
|
||
|
||
train_util.add_sd_models_arguments(parser)
|
||
train_util.add_dataset_arguments(parser, False, True, True)
|
||
train_util.add_training_arguments(parser, False)
|
||
train_util.add_sd_saving_arguments(parser)
|
||
train_util.add_optimizer_arguments(parser)
|
||
config_util.add_config_arguments(parser)
|
||
custom_train_functions.add_custom_train_arguments(parser)
|
||
|
||
parser.add_argument("--diffusers_xformers", action="store_true", help="use xformers by diffusers / Diffusersでxformersを使用する")
|
||
parser.add_argument("--train_text_encoder", action="store_true", help="train text encoder / text encoderも学習する")
|
||
|
||
return parser
|
||
|
||
|
||
if __name__ == "__main__":
|
||
parser = setup_parser()
|
||
|
||
args = parser.parse_args()
|
||
args = train_util.read_config_from_file(args, parser)
|
||
|
||
train(args)
|