238 lines
8.8 KiB
Python
238 lines
8.8 KiB
Python
import gradio as gr
|
||
from easygui import msgbox
|
||
import subprocess
|
||
import os
|
||
import shutil
|
||
from .common_gui import get_folder_path, get_file_path
|
||
|
||
folder_symbol = '\U0001f4c2' # 📂
|
||
refresh_symbol = '\U0001f504' # 🔄
|
||
save_style_symbol = '\U0001f4be' # 💾
|
||
document_symbol = '\U0001F4C4' # 📄
|
||
PYTHON = "python3" if os.name == 'posix' else './venv/Scripts/python.exe'
|
||
|
||
def convert_model(
|
||
source_model_input,
|
||
source_model_type,
|
||
target_model_folder_input,
|
||
target_model_name_input,
|
||
target_model_type,
|
||
target_save_precision_type,
|
||
):
|
||
# Check for caption_text_input
|
||
if source_model_type == '':
|
||
msgbox('Invalid source model type')
|
||
return
|
||
|
||
# Check if source model exist
|
||
if os.path.isfile(source_model_input):
|
||
print('The provided source model is a file')
|
||
elif os.path.isdir(source_model_input):
|
||
print('The provided model is a folder')
|
||
else:
|
||
msgbox('The provided source model is neither a file nor a folder')
|
||
return
|
||
|
||
# Check if source model exist
|
||
if os.path.isdir(target_model_folder_input):
|
||
print('The provided model folder exist')
|
||
else:
|
||
msgbox('The provided target folder does not exist')
|
||
return
|
||
|
||
run_cmd = f'{PYTHON} "tools/convert_diffusers20_original_sd.py"'
|
||
|
||
v1_models = [
|
||
'runwayml/stable-diffusion-v1-5',
|
||
'CompVis/stable-diffusion-v1-4',
|
||
]
|
||
|
||
# check if v1 models
|
||
if str(source_model_type) in v1_models:
|
||
print('SD v1 model specified. Setting --v1 parameter')
|
||
run_cmd += ' --v1'
|
||
else:
|
||
print('SD v2 model specified. Setting --v2 parameter')
|
||
run_cmd += ' --v2'
|
||
|
||
if not target_save_precision_type == 'unspecified':
|
||
run_cmd += f' --{target_save_precision_type}'
|
||
|
||
if (
|
||
target_model_type == 'diffuser'
|
||
or target_model_type == 'diffuser_safetensors'
|
||
):
|
||
run_cmd += f' --reference_model="{source_model_type}"'
|
||
|
||
if target_model_type == 'diffuser_safetensors':
|
||
run_cmd += ' --use_safetensors'
|
||
|
||
run_cmd += f' "{source_model_input}"'
|
||
|
||
if (
|
||
target_model_type == 'diffuser'
|
||
or target_model_type == 'diffuser_safetensors'
|
||
):
|
||
target_model_path = os.path.join(
|
||
target_model_folder_input, target_model_name_input
|
||
)
|
||
run_cmd += f' "{target_model_path}"'
|
||
else:
|
||
target_model_path = os.path.join(
|
||
target_model_folder_input,
|
||
f'{target_model_name_input}.{target_model_type}',
|
||
)
|
||
run_cmd += f' "{target_model_path}"'
|
||
|
||
print(run_cmd)
|
||
|
||
# Run the command
|
||
os.system(run_cmd)
|
||
|
||
if (
|
||
not target_model_type == 'diffuser'
|
||
or target_model_type == 'diffuser_safetensors'
|
||
):
|
||
|
||
v2_models = [
|
||
'stabilityai/stable-diffusion-2-1-base',
|
||
'stabilityai/stable-diffusion-2-base',
|
||
]
|
||
v_parameterization = [
|
||
'stabilityai/stable-diffusion-2-1',
|
||
'stabilityai/stable-diffusion-2',
|
||
]
|
||
|
||
if str(source_model_type) in v2_models:
|
||
inference_file = os.path.join(
|
||
target_model_folder_input, f'{target_model_name_input}.yaml'
|
||
)
|
||
print(f'Saving v2-inference.yaml as {inference_file}')
|
||
shutil.copy(
|
||
f'./v2_inference/v2-inference.yaml',
|
||
f'{inference_file}',
|
||
)
|
||
|
||
if str(source_model_type) in v_parameterization:
|
||
inference_file = os.path.join(
|
||
target_model_folder_input, f'{target_model_name_input}.yaml'
|
||
)
|
||
print(f'Saving v2-inference-v.yaml as {inference_file}')
|
||
shutil.copy(
|
||
f'./v2_inference/v2-inference-v.yaml',
|
||
f'{inference_file}',
|
||
)
|
||
|
||
|
||
# parser = argparse.ArgumentParser()
|
||
# parser.add_argument("--v1", action='store_true',
|
||
# help='load v1.x model (v1 or v2 is required to load checkpoint) / 1.xのモデルを読み込む')
|
||
# parser.add_argument("--v2", action='store_true',
|
||
# help='load v2.0 model (v1 or v2 is required to load checkpoint) / 2.0のモデルを読み込む')
|
||
# parser.add_argument("--fp16", action='store_true',
|
||
# help='load as fp16 (Diffusers only) and save as fp16 (checkpoint only) / fp16形式で読み込み(Diffusers形式のみ対応)、保存する(checkpointのみ対応)')
|
||
# parser.add_argument("--bf16", action='store_true', help='save as bf16 (checkpoint only) / bf16形式で保存する(checkpointのみ対応)')
|
||
# parser.add_argument("--float", action='store_true',
|
||
# help='save as float (checkpoint only) / float(float32)形式で保存する(checkpointのみ対応)')
|
||
# parser.add_argument("--epoch", type=int, default=0, help='epoch to write to checkpoint / checkpointに記録するepoch数の値')
|
||
# parser.add_argument("--global_step", type=int, default=0,
|
||
# help='global_step to write to checkpoint / checkpointに記録するglobal_stepの値')
|
||
# parser.add_argument("--reference_model", type=str, default=None,
|
||
# help="reference model for schduler/tokenizer, required in saving Diffusers, copy schduler/tokenizer from this / scheduler/tokenizerのコピー元のDiffusersモデル、Diffusers形式で保存するときに必要")
|
||
|
||
# parser.add_argument("model_to_load", type=str, default=None,
|
||
# help="model to load: checkpoint file or Diffusers model's directory / 読み込むモデル、checkpointかDiffusers形式モデルのディレクトリ")
|
||
# parser.add_argument("model_to_save", type=str, default=None,
|
||
# help="model to save: checkpoint (with extension) or Diffusers model's directory (without extension) / 変換後のモデル、拡張子がある場合はcheckpoint、ない場合はDiffusesモデルとして保存")
|
||
|
||
|
||
###
|
||
# Gradio UI
|
||
###
|
||
|
||
|
||
def gradio_convert_model_tab():
|
||
with gr.Tab('Convert model'):
|
||
gr.Markdown(
|
||
'This utility can be used to convert from one stable diffusion model format to another.'
|
||
)
|
||
with gr.Row():
|
||
source_model_input = gr.Textbox(
|
||
label='Source model',
|
||
placeholder='path to source model folder of file to convert...',
|
||
interactive=True,
|
||
)
|
||
button_source_model_dir = gr.Button(
|
||
folder_symbol, elem_id='open_folder_small'
|
||
)
|
||
button_source_model_dir.click(
|
||
get_folder_path, outputs=source_model_input
|
||
)
|
||
|
||
button_source_model_file = gr.Button(
|
||
document_symbol, elem_id='open_folder_small'
|
||
)
|
||
button_source_model_file.click(
|
||
get_file_path,
|
||
inputs=[source_model_input],
|
||
outputs=source_model_input,
|
||
)
|
||
|
||
source_model_type = gr.Dropdown(
|
||
label='Source model type',
|
||
choices=[
|
||
'stabilityai/stable-diffusion-2-1-base',
|
||
'stabilityai/stable-diffusion-2-base',
|
||
'stabilityai/stable-diffusion-2-1',
|
||
'stabilityai/stable-diffusion-2',
|
||
'runwayml/stable-diffusion-v1-5',
|
||
'CompVis/stable-diffusion-v1-4',
|
||
],
|
||
)
|
||
with gr.Row():
|
||
target_model_folder_input = gr.Textbox(
|
||
label='Target model folder',
|
||
placeholder='path to target model folder of file name to create...',
|
||
interactive=True,
|
||
)
|
||
button_target_model_folder = gr.Button(
|
||
folder_symbol, elem_id='open_folder_small'
|
||
)
|
||
button_target_model_folder.click(
|
||
get_folder_path, outputs=target_model_folder_input
|
||
)
|
||
|
||
target_model_name_input = gr.Textbox(
|
||
label='Target model name',
|
||
placeholder='target model name...',
|
||
interactive=True,
|
||
)
|
||
target_model_type = gr.Dropdown(
|
||
label='Target model type',
|
||
choices=[
|
||
'diffuser',
|
||
'diffuser_safetensors',
|
||
'ckpt',
|
||
'safetensors',
|
||
],
|
||
)
|
||
target_save_precision_type = gr.Dropdown(
|
||
label='Target model precision',
|
||
choices=['unspecified', 'fp16', 'bf16', 'float'],
|
||
value='unspecified',
|
||
)
|
||
|
||
convert_button = gr.Button('Convert model')
|
||
|
||
convert_button.click(
|
||
convert_model,
|
||
inputs=[
|
||
source_model_input,
|
||
source_model_type,
|
||
target_model_folder_input,
|
||
target_model_name_input,
|
||
target_model_type,
|
||
target_save_precision_type,
|
||
],
|
||
)
|