2023-01-10 14:08:29 +03:00
|
|
|
import ldm.modules.encoders.modules
|
|
|
|
import open_clip
|
|
|
|
import torch
|
2023-01-10 16:51:04 +03:00
|
|
|
import transformers.utils.hub
|
2023-01-10 14:08:29 +03:00
|
|
|
|
|
|
|
|
|
|
|
class DisableInitialization:
|
|
|
|
"""
|
2023-01-10 16:51:04 +03:00
|
|
|
When an object of this class enters a `with` block, it starts:
|
|
|
|
- preventing torch's layer initialization functions from working
|
|
|
|
- changes CLIP and OpenCLIP to not download model weights
|
|
|
|
- changes CLIP to not make requests to check if there is a new version of a file you already have
|
2023-01-10 14:08:29 +03:00
|
|
|
|
2023-01-10 16:51:04 +03:00
|
|
|
When it leaves the block, it reverts everything to how it was before.
|
|
|
|
|
|
|
|
Use it like this:
|
2023-01-10 14:08:29 +03:00
|
|
|
```
|
|
|
|
with DisableInitialization():
|
|
|
|
do_things()
|
|
|
|
```
|
|
|
|
"""
|
|
|
|
|
2023-01-11 18:54:04 +03:00
|
|
|
def __init__(self):
|
|
|
|
self.replaced = []
|
|
|
|
|
|
|
|
def replace(self, obj, field, func):
|
|
|
|
original = getattr(obj, field, None)
|
|
|
|
if original is None:
|
|
|
|
return None
|
|
|
|
|
|
|
|
self.replaced.append((obj, field, original))
|
|
|
|
setattr(obj, field, func)
|
|
|
|
|
|
|
|
return original
|
|
|
|
|
2023-01-10 14:08:29 +03:00
|
|
|
def __enter__(self):
|
|
|
|
def do_nothing(*args, **kwargs):
|
|
|
|
pass
|
|
|
|
|
|
|
|
def create_model_and_transforms_without_pretrained(*args, pretrained=None, **kwargs):
|
|
|
|
return self.create_model_and_transforms(*args, pretrained=None, **kwargs)
|
|
|
|
|
|
|
|
def CLIPTextModel_from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs):
|
2023-01-22 08:20:48 +03:00
|
|
|
res = self.CLIPTextModel_from_pretrained(None, *model_args, config=pretrained_model_name_or_path, state_dict={}, **kwargs)
|
|
|
|
res.name_or_path = pretrained_model_name_or_path
|
|
|
|
return res
|
2023-01-10 14:08:29 +03:00
|
|
|
|
2023-01-10 17:46:59 +03:00
|
|
|
def transformers_modeling_utils_load_pretrained_model(*args, **kwargs):
|
|
|
|
args = args[0:3] + ('/', ) + args[4:] # resolved_archive_file; must set it to something to prevent what seems to be a bug
|
|
|
|
return self.transformers_modeling_utils_load_pretrained_model(*args, **kwargs)
|
|
|
|
|
|
|
|
def transformers_utils_hub_get_file_from_cache(original, url, *args, **kwargs):
|
2023-01-10 16:51:04 +03:00
|
|
|
|
|
|
|
# this file is always 404, prevent making request
|
2023-01-11 18:54:04 +03:00
|
|
|
if url == 'https://huggingface.co/openai/clip-vit-large-patch14/resolve/main/added_tokens.json' or url == 'openai/clip-vit-large-patch14' and args[0] == 'added_tokens.json':
|
|
|
|
return None
|
2023-01-10 16:51:04 +03:00
|
|
|
|
|
|
|
try:
|
2023-01-11 18:54:04 +03:00
|
|
|
res = original(url, *args, local_files_only=True, **kwargs)
|
|
|
|
if res is None:
|
|
|
|
res = original(url, *args, local_files_only=False, **kwargs)
|
|
|
|
return res
|
2023-01-10 16:51:04 +03:00
|
|
|
except Exception as e:
|
2023-01-10 17:46:59 +03:00
|
|
|
return original(url, *args, local_files_only=False, **kwargs)
|
|
|
|
|
|
|
|
def transformers_utils_hub_get_from_cache(url, *args, local_files_only=False, **kwargs):
|
|
|
|
return transformers_utils_hub_get_file_from_cache(self.transformers_utils_hub_get_from_cache, url, *args, **kwargs)
|
|
|
|
|
|
|
|
def transformers_tokenization_utils_base_cached_file(url, *args, local_files_only=False, **kwargs):
|
|
|
|
return transformers_utils_hub_get_file_from_cache(self.transformers_tokenization_utils_base_cached_file, url, *args, **kwargs)
|
|
|
|
|
|
|
|
def transformers_configuration_utils_cached_file(url, *args, local_files_only=False, **kwargs):
|
|
|
|
return transformers_utils_hub_get_file_from_cache(self.transformers_configuration_utils_cached_file, url, *args, **kwargs)
|
2023-01-10 16:51:04 +03:00
|
|
|
|
2023-01-11 18:54:04 +03:00
|
|
|
self.replace(torch.nn.init, 'kaiming_uniform_', do_nothing)
|
|
|
|
self.replace(torch.nn.init, '_no_grad_normal_', do_nothing)
|
|
|
|
self.replace(torch.nn.init, '_no_grad_uniform_', do_nothing)
|
|
|
|
self.create_model_and_transforms = self.replace(open_clip, 'create_model_and_transforms', create_model_and_transforms_without_pretrained)
|
|
|
|
self.CLIPTextModel_from_pretrained = self.replace(ldm.modules.encoders.modules.CLIPTextModel, 'from_pretrained', CLIPTextModel_from_pretrained)
|
|
|
|
self.transformers_modeling_utils_load_pretrained_model = self.replace(transformers.modeling_utils.PreTrainedModel, '_load_pretrained_model', transformers_modeling_utils_load_pretrained_model)
|
|
|
|
self.transformers_tokenization_utils_base_cached_file = self.replace(transformers.tokenization_utils_base, 'cached_file', transformers_tokenization_utils_base_cached_file)
|
|
|
|
self.transformers_configuration_utils_cached_file = self.replace(transformers.configuration_utils, 'cached_file', transformers_configuration_utils_cached_file)
|
|
|
|
self.transformers_utils_hub_get_from_cache = self.replace(transformers.utils.hub, 'get_from_cache', transformers_utils_hub_get_from_cache)
|
2023-01-10 14:08:29 +03:00
|
|
|
|
|
|
|
def __exit__(self, exc_type, exc_val, exc_tb):
|
2023-01-11 18:54:04 +03:00
|
|
|
for obj, field, original in self.replaced:
|
|
|
|
setattr(obj, field, original)
|
|
|
|
|
|
|
|
self.replaced.clear()
|
2023-01-10 14:08:29 +03:00
|
|
|
|