71 lines
2.9 KiB
Python
71 lines
2.9 KiB
Python
|
import torch
|
||
|
|
||
|
import network
|
||
|
from modules import devices
|
||
|
|
||
|
|
||
|
class ModuleTypeLora(network.ModuleType):
|
||
|
def create_module(self, net: network.Network, weights: network.NetworkWeights):
|
||
|
if all(x in weights.w for x in ["lora_up.weight", "lora_down.weight"]):
|
||
|
return NetworkModuleLora(net, weights)
|
||
|
|
||
|
return None
|
||
|
|
||
|
|
||
|
class NetworkModuleLora(network.NetworkModule):
|
||
|
def __init__(self, net: network.Network, weights: network.NetworkWeights):
|
||
|
super().__init__(net, weights)
|
||
|
|
||
|
self.up = self.create_module(weights.w["lora_up.weight"])
|
||
|
self.down = self.create_module(weights.w["lora_down.weight"])
|
||
|
self.alpha = weights.w["alpha"] if "alpha" in weights.w else None
|
||
|
|
||
|
def create_module(self, weight, none_ok=False):
|
||
|
if weight is None and none_ok:
|
||
|
return None
|
||
|
|
||
|
if type(self.sd_module) == torch.nn.Linear:
|
||
|
module = torch.nn.Linear(weight.shape[1], weight.shape[0], bias=False)
|
||
|
elif type(self.sd_module) == torch.nn.modules.linear.NonDynamicallyQuantizableLinear:
|
||
|
module = torch.nn.Linear(weight.shape[1], weight.shape[0], bias=False)
|
||
|
elif type(self.sd_module) == torch.nn.MultiheadAttention:
|
||
|
module = torch.nn.Linear(weight.shape[1], weight.shape[0], bias=False)
|
||
|
elif type(self.sd_module) == torch.nn.Conv2d and weight.shape[2:] == (1, 1):
|
||
|
module = torch.nn.Conv2d(weight.shape[1], weight.shape[0], (1, 1), bias=False)
|
||
|
elif type(self.sd_module) == torch.nn.Conv2d and weight.shape[2:] == (3, 3):
|
||
|
module = torch.nn.Conv2d(weight.shape[1], weight.shape[0], (3, 3), bias=False)
|
||
|
else:
|
||
|
print(f'Network layer {self.network_key} matched a layer with unsupported type: {type(self.sd_module).__name__}')
|
||
|
return None
|
||
|
|
||
|
with torch.no_grad():
|
||
|
module.weight.copy_(weight)
|
||
|
|
||
|
module.to(device=devices.cpu, dtype=devices.dtype)
|
||
|
module.weight.requires_grad_(False)
|
||
|
|
||
|
return module
|
||
|
|
||
|
def calc_updown(self, target):
|
||
|
up = self.up.weight.to(target.device, dtype=target.dtype)
|
||
|
down = self.down.weight.to(target.device, dtype=target.dtype)
|
||
|
|
||
|
if up.shape[2:] == (1, 1) and down.shape[2:] == (1, 1):
|
||
|
updown = (up.squeeze(2).squeeze(2) @ down.squeeze(2).squeeze(2)).unsqueeze(2).unsqueeze(3)
|
||
|
elif up.shape[2:] == (3, 3) or down.shape[2:] == (3, 3):
|
||
|
updown = torch.nn.functional.conv2d(down.permute(1, 0, 2, 3), up).permute(1, 0, 2, 3)
|
||
|
else:
|
||
|
updown = up @ down
|
||
|
|
||
|
updown = updown * self.network.multiplier * (self.alpha / self.up.weight.shape[1] if self.alpha else 1.0)
|
||
|
|
||
|
return updown
|
||
|
|
||
|
def forward(self, x, y):
|
||
|
self.up.to(device=devices.device)
|
||
|
self.down.to(device=devices.device)
|
||
|
|
||
|
return y + self.up(self.down(x)) * self.network.multiplier * (self.alpha / self.up.weight.shape[1] if self.alpha else 1.0)
|
||
|
|
||
|
|