WebUI/extensions-builtin/Lora/network_lora.py

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

71 lines
2.9 KiB
Python
Raw Normal View History

import torch
import network
from modules import devices
class ModuleTypeLora(network.ModuleType):
def create_module(self, net: network.Network, weights: network.NetworkWeights):
if all(x in weights.w for x in ["lora_up.weight", "lora_down.weight"]):
return NetworkModuleLora(net, weights)
return None
class NetworkModuleLora(network.NetworkModule):
def __init__(self, net: network.Network, weights: network.NetworkWeights):
super().__init__(net, weights)
self.up = self.create_module(weights.w["lora_up.weight"])
self.down = self.create_module(weights.w["lora_down.weight"])
self.alpha = weights.w["alpha"] if "alpha" in weights.w else None
def create_module(self, weight, none_ok=False):
if weight is None and none_ok:
return None
if type(self.sd_module) == torch.nn.Linear:
module = torch.nn.Linear(weight.shape[1], weight.shape[0], bias=False)
elif type(self.sd_module) == torch.nn.modules.linear.NonDynamicallyQuantizableLinear:
module = torch.nn.Linear(weight.shape[1], weight.shape[0], bias=False)
elif type(self.sd_module) == torch.nn.MultiheadAttention:
module = torch.nn.Linear(weight.shape[1], weight.shape[0], bias=False)
elif type(self.sd_module) == torch.nn.Conv2d and weight.shape[2:] == (1, 1):
module = torch.nn.Conv2d(weight.shape[1], weight.shape[0], (1, 1), bias=False)
elif type(self.sd_module) == torch.nn.Conv2d and weight.shape[2:] == (3, 3):
module = torch.nn.Conv2d(weight.shape[1], weight.shape[0], (3, 3), bias=False)
else:
print(f'Network layer {self.network_key} matched a layer with unsupported type: {type(self.sd_module).__name__}')
return None
with torch.no_grad():
module.weight.copy_(weight)
module.to(device=devices.cpu, dtype=devices.dtype)
module.weight.requires_grad_(False)
return module
def calc_updown(self, target):
up = self.up.weight.to(target.device, dtype=target.dtype)
down = self.down.weight.to(target.device, dtype=target.dtype)
if up.shape[2:] == (1, 1) and down.shape[2:] == (1, 1):
updown = (up.squeeze(2).squeeze(2) @ down.squeeze(2).squeeze(2)).unsqueeze(2).unsqueeze(3)
elif up.shape[2:] == (3, 3) or down.shape[2:] == (3, 3):
updown = torch.nn.functional.conv2d(down.permute(1, 0, 2, 3), up).permute(1, 0, 2, 3)
else:
updown = up @ down
updown = updown * self.network.multiplier * (self.alpha / self.up.weight.shape[1] if self.alpha else 1.0)
return updown
def forward(self, x, y):
self.up.to(device=devices.device)
self.down.to(device=devices.device)
return y + self.up(self.down(x)) * self.network.multiplier * (self.alpha / self.up.weight.shape[1] if self.alpha else 1.0)