Merge branch 'master' into varsize

This commit is contained in:
AUTOMATIC1111 2023-01-09 22:45:39 +03:00 committed by GitHub
commit 18c001792a
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
19 changed files with 294 additions and 119 deletions

View File

@ -1,7 +1,7 @@
name: Feature request
description: Suggest an idea for this project
title: "[Feature Request]: "
labels: ["suggestion"]
labels: ["enhancement"]
body:
- type: checkboxes

View File

@ -19,22 +19,19 @@ jobs:
- name: Checkout Code
uses: actions/checkout@v3
- name: Set up Python 3.10
uses: actions/setup-python@v3
uses: actions/setup-python@v4
with:
python-version: 3.10.6
- uses: actions/cache@v2
with:
path: ~/.cache/pip
key: ${{ runner.os }}-pip-${{ hashFiles('**/requirements.txt') }}
restore-keys: |
${{ runner.os }}-pip-
cache: pip
cache-dependency-path: |
**/requirements*txt
- name: Install PyLint
run: |
python -m pip install --upgrade pip
pip install pylint
# This lets PyLint check to see if it can resolve imports
- name: Install dependencies
run : |
run: |
export COMMANDLINE_ARGS="--skip-torch-cuda-test --exit"
python launch.py
- name: Analysing the code with pylint

View File

@ -14,11 +14,9 @@ jobs:
uses: actions/setup-python@v4
with:
python-version: 3.10.6
- uses: actions/cache@v3
with:
path: ~/.cache/pip
key: ${{ runner.os }}-pip-${{ hashFiles('**/requirements.txt') }}
restore-keys: ${{ runner.os }}-pip-
cache: pip
cache-dependency-path: |
**/requirements*txt
- name: Run tests
run: python launch.py --tests basic_features --no-half --disable-opt-split-attention --use-cpu all --skip-torch-cuda-test
- name: Upload main app stdout-stderr

View File

@ -4,7 +4,7 @@ titles = {
"Sampling steps": "How many times to improve the generated image iteratively; higher values take longer; very low values can produce bad results",
"Sampling method": "Which algorithm to use to produce the image",
"GFPGAN": "Restore low quality faces using GFPGAN neural network",
"Euler a": "Euler Ancestral - very creative, each can get a completely different picture depending on step count, setting steps to higher than 30-40 does not help",
"Euler a": "Euler Ancestral - very creative, each can get a completely different picture depending on step count, setting steps higher than 30-40 does not help",
"DDIM": "Denoising Diffusion Implicit Models - best at inpainting",
"DPM adaptive": "Ignores step count - uses a number of steps determined by the CFG and resolution",
@ -74,7 +74,7 @@ titles = {
"Style 1": "Style to apply; styles have components for both positive and negative prompts and apply to both",
"Style 2": "Style to apply; styles have components for both positive and negative prompts and apply to both",
"Apply style": "Insert selected styles into prompt fields",
"Create style": "Save current prompts as a style. If you add the token {prompt} to the text, the style use that as placeholder for your prompt when you use the style in the future.",
"Create style": "Save current prompts as a style. If you add the token {prompt} to the text, the style uses that as a placeholder for your prompt when you use the style in the future.",
"Checkpoint name": "Loads weights from checkpoint before making images. You can either use hash or a part of filename (as seen in settings) for checkpoint name. Recommended to use with Y axis for less switching.",
"Inpainting conditioning mask strength": "Only applies to inpainting models. Determines how strongly to mask off the original image for inpainting and img2img. 1.0 means fully masked, which is the default behaviour. 0.0 means a fully unmasked conditioning. Lower values will help preserve the overall composition of the image, but will struggle with large changes.",
@ -92,12 +92,12 @@ titles = {
"Weighted sum": "Result = A * (1 - M) + B * M",
"Add difference": "Result = A + (B - C) * M",
"Learning rate": "how fast should the training go. Low values will take longer to train, high values may fail to converge (not generate accurate results) and/or may break the embedding (This has happened if you see Loss: nan in the training info textbox. If this happens, you need to manually restore your embedding from an older not-broken backup).\n\nYou can set a single numeric value, or multiple learning rates using the syntax:\n\n rate_1:max_steps_1, rate_2:max_steps_2, ...\n\nEG: 0.005:100, 1e-3:1000, 1e-5\n\nWill train with rate of 0.005 for first 100 steps, then 1e-3 until 1000 steps, then 1e-5 for all remaining steps.",
"Learning rate": "How fast should training go. Low values will take longer to train, high values may fail to converge (not generate accurate results) and/or may break the embedding (This has happened if you see Loss: nan in the training info textbox. If this happens, you need to manually restore your embedding from an older not-broken backup).\n\nYou can set a single numeric value, or multiple learning rates using the syntax:\n\n rate_1:max_steps_1, rate_2:max_steps_2, ...\n\nEG: 0.005:100, 1e-3:1000, 1e-5\n\nWill train with rate of 0.005 for first 100 steps, then 1e-3 until 1000 steps, then 1e-5 for all remaining steps.",
"Clip skip": "Early stopping parameter for CLIP model; 1 is stop at last layer as usual, 2 is stop at penultimate layer, etc.",
"Approx NN": "Cheap neural network approximation. Very fast compared to VAE, but produces pictures with 4 times smaller horizontal/vertical resoluton and lower quality.",
"Approx cheap": "Very cheap approximation. Very fast compared to VAE, but produces pictures with 8 times smaller horizontal/vertical resoluton and extremely low quality.",
"Approx NN": "Cheap neural network approximation. Very fast compared to VAE, but produces pictures with 4 times smaller horizontal/vertical resolution and lower quality.",
"Approx cheap": "Very cheap approximation. Very fast compared to VAE, but produces pictures with 8 times smaller horizontal/vertical resolution and extremely low quality.",
"Hires. fix": "Use a two step process to partially create an image at smaller resolution, upscale, and then improve details in it without changing composition",
"Hires steps": "Number of sampling steps for upscaled picture. If 0, uses same as for original.",

25
javascript/hires_fix.js Normal file
View File

@ -0,0 +1,25 @@
function setInactive(elem, inactive){
console.log(elem)
if(inactive){
elem.classList.add('inactive')
} else{
elem.classList.remove('inactive')
}
}
function onCalcResolutionHires(enable, width, height, hr_scale, hr_resize_x, hr_resize_y){
console.log(enable, width, height, hr_scale, hr_resize_x, hr_resize_y)
hrUpscaleBy = gradioApp().getElementById('txt2img_hr_scale')
hrResizeX = gradioApp().getElementById('txt2img_hr_resize_x')
hrResizeY = gradioApp().getElementById('txt2img_hr_resize_y')
gradioApp().getElementById('txt2img_hires_fix_row2').style.display = opts.use_old_hires_fix_width_height ? "none" : ""
setInactive(hrUpscaleBy, opts.use_old_hires_fix_width_height || hr_resize_x > 0 || hr_resize_y > 0)
setInactive(hrResizeX, opts.use_old_hires_fix_width_height || hr_resize_x == 0)
setInactive(hrResizeY, opts.use_old_hires_fix_width_height || hr_resize_y == 0)
return [enable, width, height, hr_scale, hr_resize_x, hr_resize_y]
}

View File

@ -11,7 +11,7 @@ from fastapi.security import HTTPBasic, HTTPBasicCredentials
from secrets import compare_digest
import modules.shared as shared
from modules import sd_samplers, deepbooru, sd_hijack, images
from modules import sd_samplers, deepbooru, sd_hijack, images, scripts, ui
from modules.api.models import *
from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img, process_images
from modules.extras import run_extras
@ -28,8 +28,13 @@ def upscaler_to_index(name: str):
try:
return [x.name.lower() for x in shared.sd_upscalers].index(name.lower())
except:
raise HTTPException(status_code=400, detail=f"Invalid upscaler, needs to be on of these: {' , '.join([x.name for x in sd_upscalers])}")
raise HTTPException(status_code=400, detail=f"Invalid upscaler, needs to be one of these: {' , '.join([x.name for x in sd_upscalers])}")
def script_name_to_index(name, scripts):
try:
return [script.title().lower() for script in scripts].index(name.lower())
except:
raise HTTPException(status_code=422, detail=f"Script '{name}' not found")
def validate_sampler_name(name):
config = sd_samplers.all_samplers_map.get(name, None)
@ -143,7 +148,21 @@ class Api:
raise HTTPException(status_code=401, detail="Incorrect username or password", headers={"WWW-Authenticate": "Basic"})
def get_script(self, script_name, script_runner):
if script_name is None:
return None, None
if not script_runner.scripts:
script_runner.initialize_scripts(False)
ui.create_ui()
script_idx = script_name_to_index(script_name, script_runner.selectable_scripts)
script = script_runner.selectable_scripts[script_idx]
return script, script_idx
def text2imgapi(self, txt2imgreq: StableDiffusionTxt2ImgProcessingAPI):
script, script_idx = self.get_script(txt2imgreq.script_name, scripts.scripts_txt2img)
populate = txt2imgreq.copy(update={ # Override __init__ params
"sampler_name": validate_sampler_name(txt2imgreq.sampler_name or txt2imgreq.sampler_index),
"do_not_save_samples": True,
@ -153,14 +172,22 @@ class Api:
if populate.sampler_name:
populate.sampler_index = None # prevent a warning later on
args = vars(populate)
args.pop('script_name', None)
with self.queue_lock:
p = StableDiffusionProcessingTxt2Img(sd_model=shared.sd_model, **vars(populate))
p = StableDiffusionProcessingTxt2Img(sd_model=shared.sd_model, **args)
shared.state.begin()
processed = process_images(p)
if script is not None:
p.outpath_grids = opts.outdir_txt2img_grids
p.outpath_samples = opts.outdir_txt2img_samples
p.script_args = [script_idx + 1] + [None] * (script.args_from - 1) + p.script_args
processed = scripts.scripts_txt2img.run(p, *p.script_args)
else:
processed = process_images(p)
shared.state.end()
b64images = list(map(encode_pil_to_base64, processed.images))
return TextToImageResponse(images=b64images, parameters=vars(txt2imgreq), info=processed.js())
@ -170,6 +197,8 @@ class Api:
if init_images is None:
raise HTTPException(status_code=404, detail="Init image not found")
script, script_idx = self.get_script(img2imgreq.script_name, scripts.scripts_img2img)
mask = img2imgreq.mask
if mask:
mask = decode_base64_to_image(mask)
@ -186,13 +215,20 @@ class Api:
args = vars(populate)
args.pop('include_init_images', None) # this is meant to be done by "exclude": True in model, but it's for a reason that I cannot determine.
args.pop('script_name', None)
with self.queue_lock:
p = StableDiffusionProcessingImg2Img(sd_model=shared.sd_model, **args)
p.init_images = [decode_base64_to_image(x) for x in init_images]
shared.state.begin()
processed = process_images(p)
if script is not None:
p.outpath_grids = opts.outdir_img2img_grids
p.outpath_samples = opts.outdir_img2img_samples
p.script_args = [script_idx + 1] + [None] * (script.args_from - 1) + p.script_args
processed = scripts.scripts_img2img.run(p, *p.script_args)
else:
processed = process_images(p)
shared.state.end()
b64images = list(map(encode_pil_to_base64, processed.images))

View File

@ -100,13 +100,13 @@ class PydanticModelGenerator:
StableDiffusionTxt2ImgProcessingAPI = PydanticModelGenerator(
"StableDiffusionProcessingTxt2Img",
StableDiffusionProcessingTxt2Img,
[{"key": "sampler_index", "type": str, "default": "Euler"}]
[{"key": "sampler_index", "type": str, "default": "Euler"}, {"key": "script_name", "type": str, "default": None}, {"key": "script_args", "type": list, "default": []}]
).generate_model()
StableDiffusionImg2ImgProcessingAPI = PydanticModelGenerator(
"StableDiffusionProcessingImg2Img",
StableDiffusionProcessingImg2Img,
[{"key": "sampler_index", "type": str, "default": "Euler"}, {"key": "init_images", "type": list, "default": None}, {"key": "denoising_strength", "type": float, "default": 0.75}, {"key": "mask", "type": str, "default": None}, {"key": "include_init_images", "type": bool, "default": False, "exclude" : True}]
[{"key": "sampler_index", "type": str, "default": "Euler"}, {"key": "init_images", "type": list, "default": None}, {"key": "denoising_strength", "type": float, "default": 0.75}, {"key": "mask", "type": str, "default": None}, {"key": "include_init_images", "type": bool, "default": False, "exclude" : True}, {"key": "script_name", "type": str, "default": None}, {"key": "script_args", "type": list, "default": []}]
).generate_model()
class TextToImageResponse(BaseModel):

View File

@ -197,6 +197,15 @@ def restore_old_hires_fix_params(res):
firstpass_width = res.get('First pass size-1', None)
firstpass_height = res.get('First pass size-2', None)
if shared.opts.use_old_hires_fix_width_height:
hires_width = int(res.get("Hires resize-1", None))
hires_height = int(res.get("Hires resize-2", None))
if hires_width is not None and hires_height is not None:
res['Size-1'] = hires_width
res['Size-2'] = hires_height
return
if firstpass_width is None or firstpass_height is None:
return
@ -205,12 +214,8 @@ def restore_old_hires_fix_params(res):
height = int(res.get("Size-2", 512))
if firstpass_width == 0 or firstpass_height == 0:
# old algorithm for auto-calculating first pass size
desired_pixel_count = 512 * 512
actual_pixel_count = width * height
scale = math.sqrt(desired_pixel_count / actual_pixel_count)
firstpass_width = math.ceil(scale * width / 64) * 64
firstpass_height = math.ceil(scale * height / 64) * 64
from modules import processing
firstpass_width, firstpass_height = processing.old_hires_fix_first_pass_dimensions(width, height)
res['Size-1'] = firstpass_width
res['Size-2'] = firstpass_height

View File

@ -98,7 +98,7 @@ class StableDiffusionProcessing():
"""
The first set of paramaters: sd_models -> do_not_reload_embeddings represent the minimum required to create a StableDiffusionProcessing
"""
def __init__(self, sd_model=None, outpath_samples=None, outpath_grids=None, prompt: str = "", styles: List[str] = None, seed: int = -1, subseed: int = -1, subseed_strength: float = 0, seed_resize_from_h: int = -1, seed_resize_from_w: int = -1, seed_enable_extras: bool = True, sampler_name: str = None, batch_size: int = 1, n_iter: int = 1, steps: int = 50, cfg_scale: float = 7.0, width: int = 512, height: int = 512, restore_faces: bool = False, tiling: bool = False, do_not_save_samples: bool = False, do_not_save_grid: bool = False, extra_generation_params: Dict[Any, Any] = None, overlay_images: Any = None, negative_prompt: str = None, eta: float = None, do_not_reload_embeddings: bool = False, denoising_strength: float = 0, ddim_discretize: str = None, s_churn: float = 0.0, s_tmax: float = None, s_tmin: float = 0.0, s_noise: float = 1.0, override_settings: Dict[str, Any] = None, override_settings_restore_afterwards: bool = True, sampler_index: int = None):
def __init__(self, sd_model=None, outpath_samples=None, outpath_grids=None, prompt: str = "", styles: List[str] = None, seed: int = -1, subseed: int = -1, subseed_strength: float = 0, seed_resize_from_h: int = -1, seed_resize_from_w: int = -1, seed_enable_extras: bool = True, sampler_name: str = None, batch_size: int = 1, n_iter: int = 1, steps: int = 50, cfg_scale: float = 7.0, width: int = 512, height: int = 512, restore_faces: bool = False, tiling: bool = False, do_not_save_samples: bool = False, do_not_save_grid: bool = False, extra_generation_params: Dict[Any, Any] = None, overlay_images: Any = None, negative_prompt: str = None, eta: float = None, do_not_reload_embeddings: bool = False, denoising_strength: float = 0, ddim_discretize: str = None, s_churn: float = 0.0, s_tmax: float = None, s_tmin: float = 0.0, s_noise: float = 1.0, override_settings: Dict[str, Any] = None, override_settings_restore_afterwards: bool = True, sampler_index: int = None, script_args: list = None):
if sampler_index is not None:
print("sampler_index argument for StableDiffusionProcessing does not do anything; use sampler_name", file=sys.stderr)
@ -149,7 +149,7 @@ class StableDiffusionProcessing():
self.seed_resize_from_w = 0
self.scripts = None
self.script_args = None
self.script_args = script_args
self.all_prompts = None
self.all_negative_prompts = None
self.all_seeds = None
@ -687,6 +687,18 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
return res
def old_hires_fix_first_pass_dimensions(width, height):
"""old algorithm for auto-calculating first pass size"""
desired_pixel_count = 512 * 512
actual_pixel_count = width * height
scale = math.sqrt(desired_pixel_count / actual_pixel_count)
width = math.ceil(scale * width / 64) * 64
height = math.ceil(scale * height / 64) * 64
return width, height
class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
sampler = None
@ -703,16 +715,26 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
self.hr_upscale_to_y = hr_resize_y
if firstphase_width != 0 or firstphase_height != 0:
print("firstphase_width/firstphase_height no longer supported; use hr_scale", file=sys.stderr)
self.hr_scale = self.width / firstphase_width
self.hr_upscale_to_x = self.width
self.hr_upscale_to_y = self.height
self.width = firstphase_width
self.height = firstphase_height
self.truncate_x = 0
self.truncate_y = 0
self.applied_old_hires_behavior_to = None
def init(self, all_prompts, all_seeds, all_subseeds):
if self.enable_hr:
if opts.use_old_hires_fix_width_height and self.applied_old_hires_behavior_to != (self.width, self.height):
self.hr_resize_x = self.width
self.hr_resize_y = self.height
self.hr_upscale_to_x = self.width
self.hr_upscale_to_y = self.height
self.width, self.height = old_hires_fix_first_pass_dimensions(self.width, self.height)
self.applied_old_hires_behavior_to = (self.width, self.height)
if self.hr_resize_x == 0 and self.hr_resize_y == 0:
self.extra_generation_params["Hires upscale"] = self.hr_scale
self.hr_upscale_to_x = int(self.width * self.hr_scale)

View File

@ -83,10 +83,12 @@ class StableDiffusionModelHijack:
clip = None
optimization_method = None
embedding_db = modules.textual_inversion.textual_inversion.EmbeddingDatabase(cmd_opts.embeddings_dir)
embedding_db = modules.textual_inversion.textual_inversion.EmbeddingDatabase()
def __init__(self):
self.embedding_db.add_embedding_dir(cmd_opts.embeddings_dir)
def hijack(self, m):
if type(m.cond_stage_model) == xlmr.BertSeriesModelWithTransformation:
model_embeddings = m.cond_stage_model.roberta.embeddings
model_embeddings.token_embedding = EmbeddingsWithFixes(model_embeddings.word_embeddings, self)
@ -117,7 +119,6 @@ class StableDiffusionModelHijack:
self.layers = flatten(m)
def undo_hijack(self, m):
if type(m.cond_stage_model) == xlmr.BertSeriesModelWithTransformation:
m.cond_stage_model = m.cond_stage_model.wrapped

View File

@ -247,9 +247,9 @@ class FrozenCLIPEmbedderWithCustomWordsBase(torch.nn.Module):
# restoring original mean is likely not correct, but it seems to work well to prevent artifacts that happen otherwise
batch_multipliers = torch.asarray(batch_multipliers).to(devices.device)
original_mean = z.mean()
z *= batch_multipliers.reshape(batch_multipliers.shape + (1,)).expand(z.shape)
z = z * batch_multipliers.reshape(batch_multipliers.shape + (1,)).expand(z.shape)
new_mean = z.mean()
z *= original_mean / new_mean
z = z * (original_mean / new_mean)
return z

View File

@ -1,8 +1,9 @@
import torch
import safetensors.torch
import os
import collections
from collections import namedtuple
from modules import shared, devices, script_callbacks
from modules import shared, devices, script_callbacks, sd_models
from modules.paths import models_path
import glob
from copy import deepcopy
@ -72,8 +73,10 @@ def refresh_vae_list(vae_path=vae_path, model_path=model_path):
candidates = [
*glob.iglob(os.path.join(model_path, '**/*.vae.ckpt'), recursive=True),
*glob.iglob(os.path.join(model_path, '**/*.vae.pt'), recursive=True),
*glob.iglob(os.path.join(model_path, '**/*.vae.safetensors'), recursive=True),
*glob.iglob(os.path.join(vae_path, '**/*.ckpt'), recursive=True),
*glob.iglob(os.path.join(vae_path, '**/*.pt'), recursive=True)
*glob.iglob(os.path.join(vae_path, '**/*.pt'), recursive=True),
*glob.iglob(os.path.join(vae_path, '**/*.safetensors'), recursive=True),
]
if shared.cmd_opts.vae_path is not None and os.path.isfile(shared.cmd_opts.vae_path):
candidates.append(shared.cmd_opts.vae_path)
@ -137,6 +140,12 @@ def resolve_vae(checkpoint_file=None, vae_file="auto"):
if os.path.isfile(vae_file_try):
vae_file = vae_file_try
print(f"Using VAE found similar to selected model: {vae_file}")
# if still not found, try look for ".vae.safetensors" beside model
if vae_file == "auto":
vae_file_try = model_path + ".vae.safetensors"
if os.path.isfile(vae_file_try):
vae_file = vae_file_try
print(f"Using VAE found similar to selected model: {vae_file}")
# No more fallbacks for auto
if vae_file == "auto":
vae_file = None
@ -163,8 +172,9 @@ def load_vae(model, vae_file=None):
assert os.path.isfile(vae_file), f"VAE file doesn't exist: {vae_file}"
print(f"Loading VAE weights from: {vae_file}")
store_base_vae(model)
vae_ckpt = torch.load(vae_file, map_location=shared.weight_load_location)
vae_dict_1 = {k: v for k, v in vae_ckpt["state_dict"].items() if k[0:4] != "loss" and k not in vae_ignore_keys}
vae_ckpt = sd_models.read_state_dict(vae_file, map_location=shared.weight_load_location)
vae_dict_1 = {k: v for k, v in vae_ckpt.items() if k[0:4] != "loss" and k not in vae_ignore_keys}
_load_vae_dict(model, vae_dict_1)
if cache_enabled:
@ -195,10 +205,12 @@ def _load_vae_dict(model, vae_dict_1):
model.first_stage_model.load_state_dict(vae_dict_1)
model.first_stage_model.to(devices.dtype_vae)
def clear_loaded_vae():
global loaded_vae_file
loaded_vae_file = None
def reload_vae_weights(sd_model=None, vae_file="auto"):
from modules import lowvram, devices, sd_hijack

View File

@ -398,6 +398,7 @@ options_templates.update(options_section(('sd', "Stable Diffusion"), {
options_templates.update(options_section(('compatibility', "Compatibility"), {
"use_old_emphasis_implementation": OptionInfo(False, "Use old emphasis implementation. Can be useful to reproduce old seeds."),
"use_old_karras_scheduler_sigmas": OptionInfo(False, "Use old karras scheduler sigmas (0.1 to 10)."),
"use_old_hires_fix_width_height": OptionInfo(False, "For hires fix, use width/height sliders to set final resolution rather than first pass (disables Upscale by, Resize width/height to)."),
}))
options_templates.update(options_section(('interrogate', "Interrogate Options"), {

View File

@ -15,7 +15,8 @@ import torch
from torch import Tensor
from torch.utils.checkpoint import checkpoint
import math
from typing import Optional, NamedTuple, Protocol, List
from typing import Optional, NamedTuple, List
def narrow_trunc(
input: Tensor,
@ -25,12 +26,14 @@ def narrow_trunc(
) -> Tensor:
return torch.narrow(input, dim, start, length if input.shape[dim] >= start + length else input.shape[dim] - start)
class AttnChunk(NamedTuple):
exp_values: Tensor
exp_weights_sum: Tensor
max_score: Tensor
class SummarizeChunk(Protocol):
class SummarizeChunk:
@staticmethod
def __call__(
query: Tensor,
@ -38,7 +41,8 @@ class SummarizeChunk(Protocol):
value: Tensor,
) -> AttnChunk: ...
class ComputeQueryChunkAttn(Protocol):
class ComputeQueryChunkAttn:
@staticmethod
def __call__(
query: Tensor,
@ -46,6 +50,7 @@ class ComputeQueryChunkAttn(Protocol):
value: Tensor,
) -> Tensor: ...
def _summarize_chunk(
query: Tensor,
key: Tensor,
@ -66,6 +71,7 @@ def _summarize_chunk(
max_score = max_score.squeeze(-1)
return AttnChunk(exp_values, exp_weights.sum(dim=-1), max_score)
def _query_chunk_attention(
query: Tensor,
key: Tensor,
@ -106,6 +112,7 @@ def _query_chunk_attention(
all_weights = torch.unsqueeze(chunk_weights, -1).sum(dim=0)
return all_values / all_weights
# TODO: refactor CrossAttention#get_attention_scores to share code with this
def _get_attention_scores_no_kv_chunking(
query: Tensor,
@ -125,10 +132,12 @@ def _get_attention_scores_no_kv_chunking(
hidden_states_slice = torch.bmm(attn_probs, value)
return hidden_states_slice
class ScannedChunk(NamedTuple):
chunk_idx: int
attn_chunk: AttnChunk
def efficient_dot_product_attention(
query: Tensor,
key: Tensor,

View File

@ -66,17 +66,41 @@ class Embedding:
return self.cached_checksum
class DirWithTextualInversionEmbeddings:
def __init__(self, path):
self.path = path
self.mtime = None
def has_changed(self):
if not os.path.isdir(self.path):
return False
mt = os.path.getmtime(self.path)
if self.mtime is None or mt > self.mtime:
return True
def update(self):
if not os.path.isdir(self.path):
return
self.mtime = os.path.getmtime(self.path)
class EmbeddingDatabase:
def __init__(self, embeddings_dir):
def __init__(self):
self.ids_lookup = {}
self.word_embeddings = {}
self.skipped_embeddings = {}
self.dir_mtime = None
self.embeddings_dir = embeddings_dir
self.expected_shape = -1
self.embedding_dirs = {}
def add_embedding_dir(self, path):
self.embedding_dirs[path] = DirWithTextualInversionEmbeddings(path)
def clear_embedding_dirs(self):
self.embedding_dirs.clear()
def register_embedding(self, embedding, model):
self.word_embeddings[embedding.name] = embedding
ids = model.cond_stage_model.tokenize([embedding.name])[0]
@ -93,65 +117,62 @@ class EmbeddingDatabase:
vec = shared.sd_model.cond_stage_model.encode_embedding_init_text(",", 1)
return vec.shape[1]
def load_textual_inversion_embeddings(self, force_reload = False):
mt = os.path.getmtime(self.embeddings_dir)
if not force_reload and self.dir_mtime is not None and mt <= self.dir_mtime:
return
def load_from_file(self, path, filename):
name, ext = os.path.splitext(filename)
ext = ext.upper()
self.dir_mtime = mt
self.ids_lookup.clear()
self.word_embeddings.clear()
self.skipped_embeddings.clear()
self.expected_shape = self.get_expected_shape()
def process_file(path, filename):
name, ext = os.path.splitext(filename)
ext = ext.upper()
if ext in ['.PNG', '.WEBP', '.JXL', '.AVIF']:
embed_image = Image.open(path)
if hasattr(embed_image, 'text') and 'sd-ti-embedding' in embed_image.text:
data = embedding_from_b64(embed_image.text['sd-ti-embedding'])
name = data.get('name', name)
else:
data = extract_image_data_embed(embed_image)
name = data.get('name', name)
elif ext in ['.BIN', '.PT']:
data = torch.load(path, map_location="cpu")
else:
if ext in ['.PNG', '.WEBP', '.JXL', '.AVIF']:
_, second_ext = os.path.splitext(name)
if second_ext.upper() == '.PREVIEW':
return
# textual inversion embeddings
if 'string_to_param' in data:
param_dict = data['string_to_param']
if hasattr(param_dict, '_parameters'):
param_dict = getattr(param_dict, '_parameters') # fix for torch 1.12.1 loading saved file from torch 1.11
assert len(param_dict) == 1, 'embedding file has multiple terms in it'
emb = next(iter(param_dict.items()))[1]
# diffuser concepts
elif type(data) == dict and type(next(iter(data.values()))) == torch.Tensor:
assert len(data.keys()) == 1, 'embedding file has multiple terms in it'
emb = next(iter(data.values()))
if len(emb.shape) == 1:
emb = emb.unsqueeze(0)
embed_image = Image.open(path)
if hasattr(embed_image, 'text') and 'sd-ti-embedding' in embed_image.text:
data = embedding_from_b64(embed_image.text['sd-ti-embedding'])
name = data.get('name', name)
else:
raise Exception(f"Couldn't identify {filename} as neither textual inversion embedding nor diffuser concept.")
data = extract_image_data_embed(embed_image)
name = data.get('name', name)
elif ext in ['.BIN', '.PT']:
data = torch.load(path, map_location="cpu")
else:
return
vec = emb.detach().to(devices.device, dtype=torch.float32)
embedding = Embedding(vec, name)
embedding.step = data.get('step', None)
embedding.sd_checkpoint = data.get('sd_checkpoint', None)
embedding.sd_checkpoint_name = data.get('sd_checkpoint_name', None)
embedding.vectors = vec.shape[0]
embedding.shape = vec.shape[-1]
# textual inversion embeddings
if 'string_to_param' in data:
param_dict = data['string_to_param']
if hasattr(param_dict, '_parameters'):
param_dict = getattr(param_dict, '_parameters') # fix for torch 1.12.1 loading saved file from torch 1.11
assert len(param_dict) == 1, 'embedding file has multiple terms in it'
emb = next(iter(param_dict.items()))[1]
# diffuser concepts
elif type(data) == dict and type(next(iter(data.values()))) == torch.Tensor:
assert len(data.keys()) == 1, 'embedding file has multiple terms in it'
if self.expected_shape == -1 or self.expected_shape == embedding.shape:
self.register_embedding(embedding, shared.sd_model)
else:
self.skipped_embeddings[name] = embedding
emb = next(iter(data.values()))
if len(emb.shape) == 1:
emb = emb.unsqueeze(0)
else:
raise Exception(f"Couldn't identify {filename} as neither textual inversion embedding nor diffuser concept.")
for root, dirs, fns in os.walk(self.embeddings_dir):
vec = emb.detach().to(devices.device, dtype=torch.float32)
embedding = Embedding(vec, name)
embedding.step = data.get('step', None)
embedding.sd_checkpoint = data.get('sd_checkpoint', None)
embedding.sd_checkpoint_name = data.get('sd_checkpoint_name', None)
embedding.vectors = vec.shape[0]
embedding.shape = vec.shape[-1]
if self.expected_shape == -1 or self.expected_shape == embedding.shape:
self.register_embedding(embedding, shared.sd_model)
else:
self.skipped_embeddings[name] = embedding
def load_from_dir(self, embdir):
if not os.path.isdir(embdir.path):
return
for root, dirs, fns in os.walk(embdir.path):
for fn in fns:
try:
fullfn = os.path.join(root, fn)
@ -159,12 +180,32 @@ class EmbeddingDatabase:
if os.stat(fullfn).st_size == 0:
continue
process_file(fullfn, fn)
self.load_from_file(fullfn, fn)
except Exception:
print(f"Error loading embedding {fn}:", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
continue
def load_textual_inversion_embeddings(self, force_reload=False):
if not force_reload:
need_reload = False
for path, embdir in self.embedding_dirs.items():
if embdir.has_changed():
need_reload = True
break
if not need_reload:
return
self.ids_lookup.clear()
self.word_embeddings.clear()
self.skipped_embeddings.clear()
self.expected_shape = self.get_expected_shape()
for path, embdir in self.embedding_dirs.items():
self.load_from_dir(embdir)
embdir.update()
print(f"Textual inversion embeddings loaded({len(self.word_embeddings)}): {', '.join(self.word_embeddings.keys())}")
if len(self.skipped_embeddings) > 0:
print(f"Textual inversion embeddings skipped({len(self.skipped_embeddings)}): {', '.join(self.skipped_embeddings.keys())}")
@ -247,11 +288,11 @@ def validate_train_inputs(model_name, learn_rate, batch_size, gradient_step, dat
assert os.path.isfile(template_file), "Prompt template file doesn't exist"
assert steps, "Max steps is empty or 0"
assert isinstance(steps, int), "Max steps must be integer"
assert steps > 0 , "Max steps must be positive"
assert steps > 0, "Max steps must be positive"
assert isinstance(save_model_every, int), "Save {name} must be integer"
assert save_model_every >= 0 , "Save {name} must be positive or 0"
assert save_model_every >= 0, "Save {name} must be positive or 0"
assert isinstance(create_image_every, int), "Create image must be integer"
assert create_image_every >= 0 , "Create image must be positive or 0"
assert create_image_every >= 0, "Create image must be positive or 0"
if save_model_every or create_image_every:
assert log_directory, "Log directory is empty"

View File

@ -267,7 +267,7 @@ def calc_resolution_hires(enable, width, height, hr_scale, hr_resize_x, hr_resiz
with devices.autocast():
p.init([""], [0], [0])
return f"resize: from <span class='resolution'>{width}x{height}</span> to <span class='resolution'>{p.hr_upscale_to_x}x{p.hr_upscale_to_y}</span>"
return f"resize: from <span class='resolution'>{p.width}x{p.height}</span> to <span class='resolution'>{p.hr_resize_x or p.hr_upscale_to_x}x{p.hr_resize_y or p.hr_upscale_to_y}</span>"
def apply_styles(prompt, prompt_neg, style1_name, style2_name):
@ -745,15 +745,20 @@ def create_ui():
custom_inputs = modules.scripts.scripts_txt2img.setup_ui()
hr_resolution_preview_inputs = [enable_hr, width, height, hr_scale, hr_resize_x, hr_resize_y]
hr_resolution_preview_args = dict(
fn=calc_resolution_hires,
inputs=hr_resolution_preview_inputs,
outputs=[hr_final_resolution],
show_progress=False
)
for input in hr_resolution_preview_inputs:
input.change(**hr_resolution_preview_args)
input.change(
fn=calc_resolution_hires,
inputs=hr_resolution_preview_inputs,
outputs=[hr_final_resolution],
show_progress=False,
)
input.change(
None,
_js="onCalcResolutionHires",
inputs=hr_resolution_preview_inputs,
outputs=[],
show_progress=False,
)
txt2img_gallery, generation_info, html_info, html_log = create_output_panel("txt2img", opts.outdir_txt2img_samples)
parameters_copypaste.bind_buttons({"txt2img": txt2img_paste}, None, txt2img_prompt)

View File

@ -25,6 +25,8 @@ class Script(scripts.Script):
return [info, overlap, upscaler_index, scale_factor]
def run(self, p, _, overlap, upscaler_index, scale_factor):
if isinstance(upscaler_index, str):
upscaler_index = [x.name.lower() for x in shared.sd_upscalers].index(upscaler_index.lower())
processing.fix_seed(p)
upscaler = shared.sd_upscalers[upscaler_index]

View File

@ -512,7 +512,7 @@ input[type="range"]{
border: none;
background: none;
flex: unset;
gap: 0.5em;
gap: 1em;
}
#quicksettings > div > div{
@ -521,6 +521,17 @@ input[type="range"]{
padding: 0;
}
#quicksettings > div > div > div > div > label > span {
position: relative;
margin-right: 9em;
margin-bottom: -1em;
}
#quicksettings > div > div > label > span {
position: relative;
margin-bottom: -1em;
}
canvas[key="mask"] {
z-index: 12 !important;
filter: invert();
@ -659,6 +670,10 @@ footer {
min-width: auto;
}
.inactive{
opacity: 0.5;
}
/* The following handles localization for right-to-left (RTL) languages like Arabic.
The rtl media type will only be activated by the logic in javascript/localization.js.
If you change anything above, you need to make sure it is RTL compliant by just running

View File

@ -50,6 +50,12 @@ class TestImg2ImgWorking(unittest.TestCase):
self.simple_img2img["mask"] = encode_pil_to_base64(Image.open(r"test/test_files/mask_basic.png"))
self.assertEqual(requests.post(self.url_img2img, json=self.simple_img2img).status_code, 200)
def test_img2img_sd_upscale_performed(self):
self.simple_img2img["script_name"] = "sd upscale"
self.simple_img2img["script_args"] = ["", 8, "Lanczos", 2.0]
self.assertEqual(requests.post(self.url_img2img, json=self.simple_img2img).status_code, 200)
if __name__ == "__main__":
unittest.main()