Merge branch 'master' into varsize
This commit is contained in:
commit
18c001792a
2
.github/ISSUE_TEMPLATE/feature_request.yml
vendored
2
.github/ISSUE_TEMPLATE/feature_request.yml
vendored
@ -1,7 +1,7 @@
|
||||
name: Feature request
|
||||
description: Suggest an idea for this project
|
||||
title: "[Feature Request]: "
|
||||
labels: ["suggestion"]
|
||||
labels: ["enhancement"]
|
||||
|
||||
body:
|
||||
- type: checkboxes
|
||||
|
13
.github/workflows/on_pull_request.yaml
vendored
13
.github/workflows/on_pull_request.yaml
vendored
@ -19,22 +19,19 @@ jobs:
|
||||
- name: Checkout Code
|
||||
uses: actions/checkout@v3
|
||||
- name: Set up Python 3.10
|
||||
uses: actions/setup-python@v3
|
||||
uses: actions/setup-python@v4
|
||||
with:
|
||||
python-version: 3.10.6
|
||||
- uses: actions/cache@v2
|
||||
with:
|
||||
path: ~/.cache/pip
|
||||
key: ${{ runner.os }}-pip-${{ hashFiles('**/requirements.txt') }}
|
||||
restore-keys: |
|
||||
${{ runner.os }}-pip-
|
||||
cache: pip
|
||||
cache-dependency-path: |
|
||||
**/requirements*txt
|
||||
- name: Install PyLint
|
||||
run: |
|
||||
python -m pip install --upgrade pip
|
||||
pip install pylint
|
||||
# This lets PyLint check to see if it can resolve imports
|
||||
- name: Install dependencies
|
||||
run : |
|
||||
run: |
|
||||
export COMMANDLINE_ARGS="--skip-torch-cuda-test --exit"
|
||||
python launch.py
|
||||
- name: Analysing the code with pylint
|
||||
|
8
.github/workflows/run_tests.yaml
vendored
8
.github/workflows/run_tests.yaml
vendored
@ -14,11 +14,9 @@ jobs:
|
||||
uses: actions/setup-python@v4
|
||||
with:
|
||||
python-version: 3.10.6
|
||||
- uses: actions/cache@v3
|
||||
with:
|
||||
path: ~/.cache/pip
|
||||
key: ${{ runner.os }}-pip-${{ hashFiles('**/requirements.txt') }}
|
||||
restore-keys: ${{ runner.os }}-pip-
|
||||
cache: pip
|
||||
cache-dependency-path: |
|
||||
**/requirements*txt
|
||||
- name: Run tests
|
||||
run: python launch.py --tests basic_features --no-half --disable-opt-split-attention --use-cpu all --skip-torch-cuda-test
|
||||
- name: Upload main app stdout-stderr
|
||||
|
@ -4,7 +4,7 @@ titles = {
|
||||
"Sampling steps": "How many times to improve the generated image iteratively; higher values take longer; very low values can produce bad results",
|
||||
"Sampling method": "Which algorithm to use to produce the image",
|
||||
"GFPGAN": "Restore low quality faces using GFPGAN neural network",
|
||||
"Euler a": "Euler Ancestral - very creative, each can get a completely different picture depending on step count, setting steps to higher than 30-40 does not help",
|
||||
"Euler a": "Euler Ancestral - very creative, each can get a completely different picture depending on step count, setting steps higher than 30-40 does not help",
|
||||
"DDIM": "Denoising Diffusion Implicit Models - best at inpainting",
|
||||
"DPM adaptive": "Ignores step count - uses a number of steps determined by the CFG and resolution",
|
||||
|
||||
@ -74,7 +74,7 @@ titles = {
|
||||
"Style 1": "Style to apply; styles have components for both positive and negative prompts and apply to both",
|
||||
"Style 2": "Style to apply; styles have components for both positive and negative prompts and apply to both",
|
||||
"Apply style": "Insert selected styles into prompt fields",
|
||||
"Create style": "Save current prompts as a style. If you add the token {prompt} to the text, the style use that as placeholder for your prompt when you use the style in the future.",
|
||||
"Create style": "Save current prompts as a style. If you add the token {prompt} to the text, the style uses that as a placeholder for your prompt when you use the style in the future.",
|
||||
|
||||
"Checkpoint name": "Loads weights from checkpoint before making images. You can either use hash or a part of filename (as seen in settings) for checkpoint name. Recommended to use with Y axis for less switching.",
|
||||
"Inpainting conditioning mask strength": "Only applies to inpainting models. Determines how strongly to mask off the original image for inpainting and img2img. 1.0 means fully masked, which is the default behaviour. 0.0 means a fully unmasked conditioning. Lower values will help preserve the overall composition of the image, but will struggle with large changes.",
|
||||
@ -92,12 +92,12 @@ titles = {
|
||||
"Weighted sum": "Result = A * (1 - M) + B * M",
|
||||
"Add difference": "Result = A + (B - C) * M",
|
||||
|
||||
"Learning rate": "how fast should the training go. Low values will take longer to train, high values may fail to converge (not generate accurate results) and/or may break the embedding (This has happened if you see Loss: nan in the training info textbox. If this happens, you need to manually restore your embedding from an older not-broken backup).\n\nYou can set a single numeric value, or multiple learning rates using the syntax:\n\n rate_1:max_steps_1, rate_2:max_steps_2, ...\n\nEG: 0.005:100, 1e-3:1000, 1e-5\n\nWill train with rate of 0.005 for first 100 steps, then 1e-3 until 1000 steps, then 1e-5 for all remaining steps.",
|
||||
"Learning rate": "How fast should training go. Low values will take longer to train, high values may fail to converge (not generate accurate results) and/or may break the embedding (This has happened if you see Loss: nan in the training info textbox. If this happens, you need to manually restore your embedding from an older not-broken backup).\n\nYou can set a single numeric value, or multiple learning rates using the syntax:\n\n rate_1:max_steps_1, rate_2:max_steps_2, ...\n\nEG: 0.005:100, 1e-3:1000, 1e-5\n\nWill train with rate of 0.005 for first 100 steps, then 1e-3 until 1000 steps, then 1e-5 for all remaining steps.",
|
||||
|
||||
"Clip skip": "Early stopping parameter for CLIP model; 1 is stop at last layer as usual, 2 is stop at penultimate layer, etc.",
|
||||
|
||||
"Approx NN": "Cheap neural network approximation. Very fast compared to VAE, but produces pictures with 4 times smaller horizontal/vertical resoluton and lower quality.",
|
||||
"Approx cheap": "Very cheap approximation. Very fast compared to VAE, but produces pictures with 8 times smaller horizontal/vertical resoluton and extremely low quality.",
|
||||
"Approx NN": "Cheap neural network approximation. Very fast compared to VAE, but produces pictures with 4 times smaller horizontal/vertical resolution and lower quality.",
|
||||
"Approx cheap": "Very cheap approximation. Very fast compared to VAE, but produces pictures with 8 times smaller horizontal/vertical resolution and extremely low quality.",
|
||||
|
||||
"Hires. fix": "Use a two step process to partially create an image at smaller resolution, upscale, and then improve details in it without changing composition",
|
||||
"Hires steps": "Number of sampling steps for upscaled picture. If 0, uses same as for original.",
|
||||
|
25
javascript/hires_fix.js
Normal file
25
javascript/hires_fix.js
Normal file
@ -0,0 +1,25 @@
|
||||
|
||||
function setInactive(elem, inactive){
|
||||
console.log(elem)
|
||||
if(inactive){
|
||||
elem.classList.add('inactive')
|
||||
} else{
|
||||
elem.classList.remove('inactive')
|
||||
}
|
||||
}
|
||||
|
||||
function onCalcResolutionHires(enable, width, height, hr_scale, hr_resize_x, hr_resize_y){
|
||||
console.log(enable, width, height, hr_scale, hr_resize_x, hr_resize_y)
|
||||
|
||||
hrUpscaleBy = gradioApp().getElementById('txt2img_hr_scale')
|
||||
hrResizeX = gradioApp().getElementById('txt2img_hr_resize_x')
|
||||
hrResizeY = gradioApp().getElementById('txt2img_hr_resize_y')
|
||||
|
||||
gradioApp().getElementById('txt2img_hires_fix_row2').style.display = opts.use_old_hires_fix_width_height ? "none" : ""
|
||||
|
||||
setInactive(hrUpscaleBy, opts.use_old_hires_fix_width_height || hr_resize_x > 0 || hr_resize_y > 0)
|
||||
setInactive(hrResizeX, opts.use_old_hires_fix_width_height || hr_resize_x == 0)
|
||||
setInactive(hrResizeY, opts.use_old_hires_fix_width_height || hr_resize_y == 0)
|
||||
|
||||
return [enable, width, height, hr_scale, hr_resize_x, hr_resize_y]
|
||||
}
|
@ -11,7 +11,7 @@ from fastapi.security import HTTPBasic, HTTPBasicCredentials
|
||||
from secrets import compare_digest
|
||||
|
||||
import modules.shared as shared
|
||||
from modules import sd_samplers, deepbooru, sd_hijack, images
|
||||
from modules import sd_samplers, deepbooru, sd_hijack, images, scripts, ui
|
||||
from modules.api.models import *
|
||||
from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img, process_images
|
||||
from modules.extras import run_extras
|
||||
@ -28,8 +28,13 @@ def upscaler_to_index(name: str):
|
||||
try:
|
||||
return [x.name.lower() for x in shared.sd_upscalers].index(name.lower())
|
||||
except:
|
||||
raise HTTPException(status_code=400, detail=f"Invalid upscaler, needs to be on of these: {' , '.join([x.name for x in sd_upscalers])}")
|
||||
raise HTTPException(status_code=400, detail=f"Invalid upscaler, needs to be one of these: {' , '.join([x.name for x in sd_upscalers])}")
|
||||
|
||||
def script_name_to_index(name, scripts):
|
||||
try:
|
||||
return [script.title().lower() for script in scripts].index(name.lower())
|
||||
except:
|
||||
raise HTTPException(status_code=422, detail=f"Script '{name}' not found")
|
||||
|
||||
def validate_sampler_name(name):
|
||||
config = sd_samplers.all_samplers_map.get(name, None)
|
||||
@ -143,7 +148,21 @@ class Api:
|
||||
|
||||
raise HTTPException(status_code=401, detail="Incorrect username or password", headers={"WWW-Authenticate": "Basic"})
|
||||
|
||||
def get_script(self, script_name, script_runner):
|
||||
if script_name is None:
|
||||
return None, None
|
||||
|
||||
if not script_runner.scripts:
|
||||
script_runner.initialize_scripts(False)
|
||||
ui.create_ui()
|
||||
|
||||
script_idx = script_name_to_index(script_name, script_runner.selectable_scripts)
|
||||
script = script_runner.selectable_scripts[script_idx]
|
||||
return script, script_idx
|
||||
|
||||
def text2imgapi(self, txt2imgreq: StableDiffusionTxt2ImgProcessingAPI):
|
||||
script, script_idx = self.get_script(txt2imgreq.script_name, scripts.scripts_txt2img)
|
||||
|
||||
populate = txt2imgreq.copy(update={ # Override __init__ params
|
||||
"sampler_name": validate_sampler_name(txt2imgreq.sampler_name or txt2imgreq.sampler_index),
|
||||
"do_not_save_samples": True,
|
||||
@ -153,14 +172,22 @@ class Api:
|
||||
if populate.sampler_name:
|
||||
populate.sampler_index = None # prevent a warning later on
|
||||
|
||||
args = vars(populate)
|
||||
args.pop('script_name', None)
|
||||
|
||||
with self.queue_lock:
|
||||
p = StableDiffusionProcessingTxt2Img(sd_model=shared.sd_model, **vars(populate))
|
||||
p = StableDiffusionProcessingTxt2Img(sd_model=shared.sd_model, **args)
|
||||
|
||||
shared.state.begin()
|
||||
if script is not None:
|
||||
p.outpath_grids = opts.outdir_txt2img_grids
|
||||
p.outpath_samples = opts.outdir_txt2img_samples
|
||||
p.script_args = [script_idx + 1] + [None] * (script.args_from - 1) + p.script_args
|
||||
processed = scripts.scripts_txt2img.run(p, *p.script_args)
|
||||
else:
|
||||
processed = process_images(p)
|
||||
shared.state.end()
|
||||
|
||||
|
||||
b64images = list(map(encode_pil_to_base64, processed.images))
|
||||
|
||||
return TextToImageResponse(images=b64images, parameters=vars(txt2imgreq), info=processed.js())
|
||||
@ -170,6 +197,8 @@ class Api:
|
||||
if init_images is None:
|
||||
raise HTTPException(status_code=404, detail="Init image not found")
|
||||
|
||||
script, script_idx = self.get_script(img2imgreq.script_name, scripts.scripts_img2img)
|
||||
|
||||
mask = img2imgreq.mask
|
||||
if mask:
|
||||
mask = decode_base64_to_image(mask)
|
||||
@ -186,12 +215,19 @@ class Api:
|
||||
|
||||
args = vars(populate)
|
||||
args.pop('include_init_images', None) # this is meant to be done by "exclude": True in model, but it's for a reason that I cannot determine.
|
||||
args.pop('script_name', None)
|
||||
|
||||
with self.queue_lock:
|
||||
p = StableDiffusionProcessingImg2Img(sd_model=shared.sd_model, **args)
|
||||
p.init_images = [decode_base64_to_image(x) for x in init_images]
|
||||
|
||||
shared.state.begin()
|
||||
if script is not None:
|
||||
p.outpath_grids = opts.outdir_img2img_grids
|
||||
p.outpath_samples = opts.outdir_img2img_samples
|
||||
p.script_args = [script_idx + 1] + [None] * (script.args_from - 1) + p.script_args
|
||||
processed = scripts.scripts_img2img.run(p, *p.script_args)
|
||||
else:
|
||||
processed = process_images(p)
|
||||
shared.state.end()
|
||||
|
||||
|
@ -100,13 +100,13 @@ class PydanticModelGenerator:
|
||||
StableDiffusionTxt2ImgProcessingAPI = PydanticModelGenerator(
|
||||
"StableDiffusionProcessingTxt2Img",
|
||||
StableDiffusionProcessingTxt2Img,
|
||||
[{"key": "sampler_index", "type": str, "default": "Euler"}]
|
||||
[{"key": "sampler_index", "type": str, "default": "Euler"}, {"key": "script_name", "type": str, "default": None}, {"key": "script_args", "type": list, "default": []}]
|
||||
).generate_model()
|
||||
|
||||
StableDiffusionImg2ImgProcessingAPI = PydanticModelGenerator(
|
||||
"StableDiffusionProcessingImg2Img",
|
||||
StableDiffusionProcessingImg2Img,
|
||||
[{"key": "sampler_index", "type": str, "default": "Euler"}, {"key": "init_images", "type": list, "default": None}, {"key": "denoising_strength", "type": float, "default": 0.75}, {"key": "mask", "type": str, "default": None}, {"key": "include_init_images", "type": bool, "default": False, "exclude" : True}]
|
||||
[{"key": "sampler_index", "type": str, "default": "Euler"}, {"key": "init_images", "type": list, "default": None}, {"key": "denoising_strength", "type": float, "default": 0.75}, {"key": "mask", "type": str, "default": None}, {"key": "include_init_images", "type": bool, "default": False, "exclude" : True}, {"key": "script_name", "type": str, "default": None}, {"key": "script_args", "type": list, "default": []}]
|
||||
).generate_model()
|
||||
|
||||
class TextToImageResponse(BaseModel):
|
||||
|
@ -197,6 +197,15 @@ def restore_old_hires_fix_params(res):
|
||||
firstpass_width = res.get('First pass size-1', None)
|
||||
firstpass_height = res.get('First pass size-2', None)
|
||||
|
||||
if shared.opts.use_old_hires_fix_width_height:
|
||||
hires_width = int(res.get("Hires resize-1", None))
|
||||
hires_height = int(res.get("Hires resize-2", None))
|
||||
|
||||
if hires_width is not None and hires_height is not None:
|
||||
res['Size-1'] = hires_width
|
||||
res['Size-2'] = hires_height
|
||||
return
|
||||
|
||||
if firstpass_width is None or firstpass_height is None:
|
||||
return
|
||||
|
||||
@ -205,12 +214,8 @@ def restore_old_hires_fix_params(res):
|
||||
height = int(res.get("Size-2", 512))
|
||||
|
||||
if firstpass_width == 0 or firstpass_height == 0:
|
||||
# old algorithm for auto-calculating first pass size
|
||||
desired_pixel_count = 512 * 512
|
||||
actual_pixel_count = width * height
|
||||
scale = math.sqrt(desired_pixel_count / actual_pixel_count)
|
||||
firstpass_width = math.ceil(scale * width / 64) * 64
|
||||
firstpass_height = math.ceil(scale * height / 64) * 64
|
||||
from modules import processing
|
||||
firstpass_width, firstpass_height = processing.old_hires_fix_first_pass_dimensions(width, height)
|
||||
|
||||
res['Size-1'] = firstpass_width
|
||||
res['Size-2'] = firstpass_height
|
||||
|
@ -98,7 +98,7 @@ class StableDiffusionProcessing():
|
||||
"""
|
||||
The first set of paramaters: sd_models -> do_not_reload_embeddings represent the minimum required to create a StableDiffusionProcessing
|
||||
"""
|
||||
def __init__(self, sd_model=None, outpath_samples=None, outpath_grids=None, prompt: str = "", styles: List[str] = None, seed: int = -1, subseed: int = -1, subseed_strength: float = 0, seed_resize_from_h: int = -1, seed_resize_from_w: int = -1, seed_enable_extras: bool = True, sampler_name: str = None, batch_size: int = 1, n_iter: int = 1, steps: int = 50, cfg_scale: float = 7.0, width: int = 512, height: int = 512, restore_faces: bool = False, tiling: bool = False, do_not_save_samples: bool = False, do_not_save_grid: bool = False, extra_generation_params: Dict[Any, Any] = None, overlay_images: Any = None, negative_prompt: str = None, eta: float = None, do_not_reload_embeddings: bool = False, denoising_strength: float = 0, ddim_discretize: str = None, s_churn: float = 0.0, s_tmax: float = None, s_tmin: float = 0.0, s_noise: float = 1.0, override_settings: Dict[str, Any] = None, override_settings_restore_afterwards: bool = True, sampler_index: int = None):
|
||||
def __init__(self, sd_model=None, outpath_samples=None, outpath_grids=None, prompt: str = "", styles: List[str] = None, seed: int = -1, subseed: int = -1, subseed_strength: float = 0, seed_resize_from_h: int = -1, seed_resize_from_w: int = -1, seed_enable_extras: bool = True, sampler_name: str = None, batch_size: int = 1, n_iter: int = 1, steps: int = 50, cfg_scale: float = 7.0, width: int = 512, height: int = 512, restore_faces: bool = False, tiling: bool = False, do_not_save_samples: bool = False, do_not_save_grid: bool = False, extra_generation_params: Dict[Any, Any] = None, overlay_images: Any = None, negative_prompt: str = None, eta: float = None, do_not_reload_embeddings: bool = False, denoising_strength: float = 0, ddim_discretize: str = None, s_churn: float = 0.0, s_tmax: float = None, s_tmin: float = 0.0, s_noise: float = 1.0, override_settings: Dict[str, Any] = None, override_settings_restore_afterwards: bool = True, sampler_index: int = None, script_args: list = None):
|
||||
if sampler_index is not None:
|
||||
print("sampler_index argument for StableDiffusionProcessing does not do anything; use sampler_name", file=sys.stderr)
|
||||
|
||||
@ -149,7 +149,7 @@ class StableDiffusionProcessing():
|
||||
self.seed_resize_from_w = 0
|
||||
|
||||
self.scripts = None
|
||||
self.script_args = None
|
||||
self.script_args = script_args
|
||||
self.all_prompts = None
|
||||
self.all_negative_prompts = None
|
||||
self.all_seeds = None
|
||||
@ -687,6 +687,18 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
|
||||
return res
|
||||
|
||||
|
||||
def old_hires_fix_first_pass_dimensions(width, height):
|
||||
"""old algorithm for auto-calculating first pass size"""
|
||||
|
||||
desired_pixel_count = 512 * 512
|
||||
actual_pixel_count = width * height
|
||||
scale = math.sqrt(desired_pixel_count / actual_pixel_count)
|
||||
width = math.ceil(scale * width / 64) * 64
|
||||
height = math.ceil(scale * height / 64) * 64
|
||||
|
||||
return width, height
|
||||
|
||||
|
||||
class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
|
||||
sampler = None
|
||||
|
||||
@ -703,16 +715,26 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
|
||||
self.hr_upscale_to_y = hr_resize_y
|
||||
|
||||
if firstphase_width != 0 or firstphase_height != 0:
|
||||
print("firstphase_width/firstphase_height no longer supported; use hr_scale", file=sys.stderr)
|
||||
self.hr_scale = self.width / firstphase_width
|
||||
self.hr_upscale_to_x = self.width
|
||||
self.hr_upscale_to_y = self.height
|
||||
self.width = firstphase_width
|
||||
self.height = firstphase_height
|
||||
|
||||
self.truncate_x = 0
|
||||
self.truncate_y = 0
|
||||
self.applied_old_hires_behavior_to = None
|
||||
|
||||
def init(self, all_prompts, all_seeds, all_subseeds):
|
||||
if self.enable_hr:
|
||||
if opts.use_old_hires_fix_width_height and self.applied_old_hires_behavior_to != (self.width, self.height):
|
||||
self.hr_resize_x = self.width
|
||||
self.hr_resize_y = self.height
|
||||
self.hr_upscale_to_x = self.width
|
||||
self.hr_upscale_to_y = self.height
|
||||
|
||||
self.width, self.height = old_hires_fix_first_pass_dimensions(self.width, self.height)
|
||||
self.applied_old_hires_behavior_to = (self.width, self.height)
|
||||
|
||||
if self.hr_resize_x == 0 and self.hr_resize_y == 0:
|
||||
self.extra_generation_params["Hires upscale"] = self.hr_scale
|
||||
self.hr_upscale_to_x = int(self.width * self.hr_scale)
|
||||
|
@ -83,10 +83,12 @@ class StableDiffusionModelHijack:
|
||||
clip = None
|
||||
optimization_method = None
|
||||
|
||||
embedding_db = modules.textual_inversion.textual_inversion.EmbeddingDatabase(cmd_opts.embeddings_dir)
|
||||
embedding_db = modules.textual_inversion.textual_inversion.EmbeddingDatabase()
|
||||
|
||||
def __init__(self):
|
||||
self.embedding_db.add_embedding_dir(cmd_opts.embeddings_dir)
|
||||
|
||||
def hijack(self, m):
|
||||
|
||||
if type(m.cond_stage_model) == xlmr.BertSeriesModelWithTransformation:
|
||||
model_embeddings = m.cond_stage_model.roberta.embeddings
|
||||
model_embeddings.token_embedding = EmbeddingsWithFixes(model_embeddings.word_embeddings, self)
|
||||
@ -117,7 +119,6 @@ class StableDiffusionModelHijack:
|
||||
self.layers = flatten(m)
|
||||
|
||||
def undo_hijack(self, m):
|
||||
|
||||
if type(m.cond_stage_model) == xlmr.BertSeriesModelWithTransformation:
|
||||
m.cond_stage_model = m.cond_stage_model.wrapped
|
||||
|
||||
|
@ -247,9 +247,9 @@ class FrozenCLIPEmbedderWithCustomWordsBase(torch.nn.Module):
|
||||
# restoring original mean is likely not correct, but it seems to work well to prevent artifacts that happen otherwise
|
||||
batch_multipliers = torch.asarray(batch_multipliers).to(devices.device)
|
||||
original_mean = z.mean()
|
||||
z *= batch_multipliers.reshape(batch_multipliers.shape + (1,)).expand(z.shape)
|
||||
z = z * batch_multipliers.reshape(batch_multipliers.shape + (1,)).expand(z.shape)
|
||||
new_mean = z.mean()
|
||||
z *= original_mean / new_mean
|
||||
z = z * (original_mean / new_mean)
|
||||
|
||||
return z
|
||||
|
||||
|
@ -1,8 +1,9 @@
|
||||
import torch
|
||||
import safetensors.torch
|
||||
import os
|
||||
import collections
|
||||
from collections import namedtuple
|
||||
from modules import shared, devices, script_callbacks
|
||||
from modules import shared, devices, script_callbacks, sd_models
|
||||
from modules.paths import models_path
|
||||
import glob
|
||||
from copy import deepcopy
|
||||
@ -72,8 +73,10 @@ def refresh_vae_list(vae_path=vae_path, model_path=model_path):
|
||||
candidates = [
|
||||
*glob.iglob(os.path.join(model_path, '**/*.vae.ckpt'), recursive=True),
|
||||
*glob.iglob(os.path.join(model_path, '**/*.vae.pt'), recursive=True),
|
||||
*glob.iglob(os.path.join(model_path, '**/*.vae.safetensors'), recursive=True),
|
||||
*glob.iglob(os.path.join(vae_path, '**/*.ckpt'), recursive=True),
|
||||
*glob.iglob(os.path.join(vae_path, '**/*.pt'), recursive=True)
|
||||
*glob.iglob(os.path.join(vae_path, '**/*.pt'), recursive=True),
|
||||
*glob.iglob(os.path.join(vae_path, '**/*.safetensors'), recursive=True),
|
||||
]
|
||||
if shared.cmd_opts.vae_path is not None and os.path.isfile(shared.cmd_opts.vae_path):
|
||||
candidates.append(shared.cmd_opts.vae_path)
|
||||
@ -137,6 +140,12 @@ def resolve_vae(checkpoint_file=None, vae_file="auto"):
|
||||
if os.path.isfile(vae_file_try):
|
||||
vae_file = vae_file_try
|
||||
print(f"Using VAE found similar to selected model: {vae_file}")
|
||||
# if still not found, try look for ".vae.safetensors" beside model
|
||||
if vae_file == "auto":
|
||||
vae_file_try = model_path + ".vae.safetensors"
|
||||
if os.path.isfile(vae_file_try):
|
||||
vae_file = vae_file_try
|
||||
print(f"Using VAE found similar to selected model: {vae_file}")
|
||||
# No more fallbacks for auto
|
||||
if vae_file == "auto":
|
||||
vae_file = None
|
||||
@ -163,8 +172,9 @@ def load_vae(model, vae_file=None):
|
||||
assert os.path.isfile(vae_file), f"VAE file doesn't exist: {vae_file}"
|
||||
print(f"Loading VAE weights from: {vae_file}")
|
||||
store_base_vae(model)
|
||||
vae_ckpt = torch.load(vae_file, map_location=shared.weight_load_location)
|
||||
vae_dict_1 = {k: v for k, v in vae_ckpt["state_dict"].items() if k[0:4] != "loss" and k not in vae_ignore_keys}
|
||||
|
||||
vae_ckpt = sd_models.read_state_dict(vae_file, map_location=shared.weight_load_location)
|
||||
vae_dict_1 = {k: v for k, v in vae_ckpt.items() if k[0:4] != "loss" and k not in vae_ignore_keys}
|
||||
_load_vae_dict(model, vae_dict_1)
|
||||
|
||||
if cache_enabled:
|
||||
@ -195,10 +205,12 @@ def _load_vae_dict(model, vae_dict_1):
|
||||
model.first_stage_model.load_state_dict(vae_dict_1)
|
||||
model.first_stage_model.to(devices.dtype_vae)
|
||||
|
||||
|
||||
def clear_loaded_vae():
|
||||
global loaded_vae_file
|
||||
loaded_vae_file = None
|
||||
|
||||
|
||||
def reload_vae_weights(sd_model=None, vae_file="auto"):
|
||||
from modules import lowvram, devices, sd_hijack
|
||||
|
||||
|
@ -398,6 +398,7 @@ options_templates.update(options_section(('sd', "Stable Diffusion"), {
|
||||
options_templates.update(options_section(('compatibility', "Compatibility"), {
|
||||
"use_old_emphasis_implementation": OptionInfo(False, "Use old emphasis implementation. Can be useful to reproduce old seeds."),
|
||||
"use_old_karras_scheduler_sigmas": OptionInfo(False, "Use old karras scheduler sigmas (0.1 to 10)."),
|
||||
"use_old_hires_fix_width_height": OptionInfo(False, "For hires fix, use width/height sliders to set final resolution rather than first pass (disables Upscale by, Resize width/height to)."),
|
||||
}))
|
||||
|
||||
options_templates.update(options_section(('interrogate', "Interrogate Options"), {
|
||||
|
@ -15,7 +15,8 @@ import torch
|
||||
from torch import Tensor
|
||||
from torch.utils.checkpoint import checkpoint
|
||||
import math
|
||||
from typing import Optional, NamedTuple, Protocol, List
|
||||
from typing import Optional, NamedTuple, List
|
||||
|
||||
|
||||
def narrow_trunc(
|
||||
input: Tensor,
|
||||
@ -25,12 +26,14 @@ def narrow_trunc(
|
||||
) -> Tensor:
|
||||
return torch.narrow(input, dim, start, length if input.shape[dim] >= start + length else input.shape[dim] - start)
|
||||
|
||||
|
||||
class AttnChunk(NamedTuple):
|
||||
exp_values: Tensor
|
||||
exp_weights_sum: Tensor
|
||||
max_score: Tensor
|
||||
|
||||
class SummarizeChunk(Protocol):
|
||||
|
||||
class SummarizeChunk:
|
||||
@staticmethod
|
||||
def __call__(
|
||||
query: Tensor,
|
||||
@ -38,7 +41,8 @@ class SummarizeChunk(Protocol):
|
||||
value: Tensor,
|
||||
) -> AttnChunk: ...
|
||||
|
||||
class ComputeQueryChunkAttn(Protocol):
|
||||
|
||||
class ComputeQueryChunkAttn:
|
||||
@staticmethod
|
||||
def __call__(
|
||||
query: Tensor,
|
||||
@ -46,6 +50,7 @@ class ComputeQueryChunkAttn(Protocol):
|
||||
value: Tensor,
|
||||
) -> Tensor: ...
|
||||
|
||||
|
||||
def _summarize_chunk(
|
||||
query: Tensor,
|
||||
key: Tensor,
|
||||
@ -66,6 +71,7 @@ def _summarize_chunk(
|
||||
max_score = max_score.squeeze(-1)
|
||||
return AttnChunk(exp_values, exp_weights.sum(dim=-1), max_score)
|
||||
|
||||
|
||||
def _query_chunk_attention(
|
||||
query: Tensor,
|
||||
key: Tensor,
|
||||
@ -106,6 +112,7 @@ def _query_chunk_attention(
|
||||
all_weights = torch.unsqueeze(chunk_weights, -1).sum(dim=0)
|
||||
return all_values / all_weights
|
||||
|
||||
|
||||
# TODO: refactor CrossAttention#get_attention_scores to share code with this
|
||||
def _get_attention_scores_no_kv_chunking(
|
||||
query: Tensor,
|
||||
@ -125,10 +132,12 @@ def _get_attention_scores_no_kv_chunking(
|
||||
hidden_states_slice = torch.bmm(attn_probs, value)
|
||||
return hidden_states_slice
|
||||
|
||||
|
||||
class ScannedChunk(NamedTuple):
|
||||
chunk_idx: int
|
||||
attn_chunk: AttnChunk
|
||||
|
||||
|
||||
def efficient_dot_product_attention(
|
||||
query: Tensor,
|
||||
key: Tensor,
|
||||
|
@ -66,17 +66,41 @@ class Embedding:
|
||||
return self.cached_checksum
|
||||
|
||||
|
||||
class DirWithTextualInversionEmbeddings:
|
||||
def __init__(self, path):
|
||||
self.path = path
|
||||
self.mtime = None
|
||||
|
||||
def has_changed(self):
|
||||
if not os.path.isdir(self.path):
|
||||
return False
|
||||
|
||||
mt = os.path.getmtime(self.path)
|
||||
if self.mtime is None or mt > self.mtime:
|
||||
return True
|
||||
|
||||
def update(self):
|
||||
if not os.path.isdir(self.path):
|
||||
return
|
||||
|
||||
self.mtime = os.path.getmtime(self.path)
|
||||
|
||||
|
||||
class EmbeddingDatabase:
|
||||
def __init__(self, embeddings_dir):
|
||||
def __init__(self):
|
||||
self.ids_lookup = {}
|
||||
self.word_embeddings = {}
|
||||
self.skipped_embeddings = {}
|
||||
self.dir_mtime = None
|
||||
self.embeddings_dir = embeddings_dir
|
||||
self.expected_shape = -1
|
||||
self.embedding_dirs = {}
|
||||
|
||||
def add_embedding_dir(self, path):
|
||||
self.embedding_dirs[path] = DirWithTextualInversionEmbeddings(path)
|
||||
|
||||
def clear_embedding_dirs(self):
|
||||
self.embedding_dirs.clear()
|
||||
|
||||
def register_embedding(self, embedding, model):
|
||||
|
||||
self.word_embeddings[embedding.name] = embedding
|
||||
|
||||
ids = model.cond_stage_model.tokenize([embedding.name])[0]
|
||||
@ -93,22 +117,15 @@ class EmbeddingDatabase:
|
||||
vec = shared.sd_model.cond_stage_model.encode_embedding_init_text(",", 1)
|
||||
return vec.shape[1]
|
||||
|
||||
def load_textual_inversion_embeddings(self, force_reload = False):
|
||||
mt = os.path.getmtime(self.embeddings_dir)
|
||||
if not force_reload and self.dir_mtime is not None and mt <= self.dir_mtime:
|
||||
return
|
||||
|
||||
self.dir_mtime = mt
|
||||
self.ids_lookup.clear()
|
||||
self.word_embeddings.clear()
|
||||
self.skipped_embeddings.clear()
|
||||
self.expected_shape = self.get_expected_shape()
|
||||
|
||||
def process_file(path, filename):
|
||||
def load_from_file(self, path, filename):
|
||||
name, ext = os.path.splitext(filename)
|
||||
ext = ext.upper()
|
||||
|
||||
if ext in ['.PNG', '.WEBP', '.JXL', '.AVIF']:
|
||||
_, second_ext = os.path.splitext(name)
|
||||
if second_ext.upper() == '.PREVIEW':
|
||||
return
|
||||
|
||||
embed_image = Image.open(path)
|
||||
if hasattr(embed_image, 'text') and 'sd-ti-embedding' in embed_image.text:
|
||||
data = embedding_from_b64(embed_image.text['sd-ti-embedding'])
|
||||
@ -151,7 +168,11 @@ class EmbeddingDatabase:
|
||||
else:
|
||||
self.skipped_embeddings[name] = embedding
|
||||
|
||||
for root, dirs, fns in os.walk(self.embeddings_dir):
|
||||
def load_from_dir(self, embdir):
|
||||
if not os.path.isdir(embdir.path):
|
||||
return
|
||||
|
||||
for root, dirs, fns in os.walk(embdir.path):
|
||||
for fn in fns:
|
||||
try:
|
||||
fullfn = os.path.join(root, fn)
|
||||
@ -159,12 +180,32 @@ class EmbeddingDatabase:
|
||||
if os.stat(fullfn).st_size == 0:
|
||||
continue
|
||||
|
||||
process_file(fullfn, fn)
|
||||
self.load_from_file(fullfn, fn)
|
||||
except Exception:
|
||||
print(f"Error loading embedding {fn}:", file=sys.stderr)
|
||||
print(traceback.format_exc(), file=sys.stderr)
|
||||
continue
|
||||
|
||||
def load_textual_inversion_embeddings(self, force_reload=False):
|
||||
if not force_reload:
|
||||
need_reload = False
|
||||
for path, embdir in self.embedding_dirs.items():
|
||||
if embdir.has_changed():
|
||||
need_reload = True
|
||||
break
|
||||
|
||||
if not need_reload:
|
||||
return
|
||||
|
||||
self.ids_lookup.clear()
|
||||
self.word_embeddings.clear()
|
||||
self.skipped_embeddings.clear()
|
||||
self.expected_shape = self.get_expected_shape()
|
||||
|
||||
for path, embdir in self.embedding_dirs.items():
|
||||
self.load_from_dir(embdir)
|
||||
embdir.update()
|
||||
|
||||
print(f"Textual inversion embeddings loaded({len(self.word_embeddings)}): {', '.join(self.word_embeddings.keys())}")
|
||||
if len(self.skipped_embeddings) > 0:
|
||||
print(f"Textual inversion embeddings skipped({len(self.skipped_embeddings)}): {', '.join(self.skipped_embeddings.keys())}")
|
||||
@ -247,11 +288,11 @@ def validate_train_inputs(model_name, learn_rate, batch_size, gradient_step, dat
|
||||
assert os.path.isfile(template_file), "Prompt template file doesn't exist"
|
||||
assert steps, "Max steps is empty or 0"
|
||||
assert isinstance(steps, int), "Max steps must be integer"
|
||||
assert steps > 0 , "Max steps must be positive"
|
||||
assert steps > 0, "Max steps must be positive"
|
||||
assert isinstance(save_model_every, int), "Save {name} must be integer"
|
||||
assert save_model_every >= 0 , "Save {name} must be positive or 0"
|
||||
assert save_model_every >= 0, "Save {name} must be positive or 0"
|
||||
assert isinstance(create_image_every, int), "Create image must be integer"
|
||||
assert create_image_every >= 0 , "Create image must be positive or 0"
|
||||
assert create_image_every >= 0, "Create image must be positive or 0"
|
||||
if save_model_every or create_image_every:
|
||||
assert log_directory, "Log directory is empty"
|
||||
|
||||
|
@ -267,7 +267,7 @@ def calc_resolution_hires(enable, width, height, hr_scale, hr_resize_x, hr_resiz
|
||||
with devices.autocast():
|
||||
p.init([""], [0], [0])
|
||||
|
||||
return f"resize: from <span class='resolution'>{width}x{height}</span> to <span class='resolution'>{p.hr_upscale_to_x}x{p.hr_upscale_to_y}</span>"
|
||||
return f"resize: from <span class='resolution'>{p.width}x{p.height}</span> to <span class='resolution'>{p.hr_resize_x or p.hr_upscale_to_x}x{p.hr_resize_y or p.hr_upscale_to_y}</span>"
|
||||
|
||||
|
||||
def apply_styles(prompt, prompt_neg, style1_name, style2_name):
|
||||
@ -745,15 +745,20 @@ def create_ui():
|
||||
custom_inputs = modules.scripts.scripts_txt2img.setup_ui()
|
||||
|
||||
hr_resolution_preview_inputs = [enable_hr, width, height, hr_scale, hr_resize_x, hr_resize_y]
|
||||
hr_resolution_preview_args = dict(
|
||||
for input in hr_resolution_preview_inputs:
|
||||
input.change(
|
||||
fn=calc_resolution_hires,
|
||||
inputs=hr_resolution_preview_inputs,
|
||||
outputs=[hr_final_resolution],
|
||||
show_progress=False
|
||||
show_progress=False,
|
||||
)
|
||||
input.change(
|
||||
None,
|
||||
_js="onCalcResolutionHires",
|
||||
inputs=hr_resolution_preview_inputs,
|
||||
outputs=[],
|
||||
show_progress=False,
|
||||
)
|
||||
|
||||
for input in hr_resolution_preview_inputs:
|
||||
input.change(**hr_resolution_preview_args)
|
||||
|
||||
txt2img_gallery, generation_info, html_info, html_log = create_output_panel("txt2img", opts.outdir_txt2img_samples)
|
||||
parameters_copypaste.bind_buttons({"txt2img": txt2img_paste}, None, txt2img_prompt)
|
||||
|
@ -25,6 +25,8 @@ class Script(scripts.Script):
|
||||
return [info, overlap, upscaler_index, scale_factor]
|
||||
|
||||
def run(self, p, _, overlap, upscaler_index, scale_factor):
|
||||
if isinstance(upscaler_index, str):
|
||||
upscaler_index = [x.name.lower() for x in shared.sd_upscalers].index(upscaler_index.lower())
|
||||
processing.fix_seed(p)
|
||||
upscaler = shared.sd_upscalers[upscaler_index]
|
||||
|
||||
|
17
style.css
17
style.css
@ -512,7 +512,7 @@ input[type="range"]{
|
||||
border: none;
|
||||
background: none;
|
||||
flex: unset;
|
||||
gap: 0.5em;
|
||||
gap: 1em;
|
||||
}
|
||||
|
||||
#quicksettings > div > div{
|
||||
@ -521,6 +521,17 @@ input[type="range"]{
|
||||
padding: 0;
|
||||
}
|
||||
|
||||
#quicksettings > div > div > div > div > label > span {
|
||||
position: relative;
|
||||
margin-right: 9em;
|
||||
margin-bottom: -1em;
|
||||
}
|
||||
|
||||
#quicksettings > div > div > label > span {
|
||||
position: relative;
|
||||
margin-bottom: -1em;
|
||||
}
|
||||
|
||||
canvas[key="mask"] {
|
||||
z-index: 12 !important;
|
||||
filter: invert();
|
||||
@ -659,6 +670,10 @@ footer {
|
||||
min-width: auto;
|
||||
}
|
||||
|
||||
.inactive{
|
||||
opacity: 0.5;
|
||||
}
|
||||
|
||||
/* The following handles localization for right-to-left (RTL) languages like Arabic.
|
||||
The rtl media type will only be activated by the logic in javascript/localization.js.
|
||||
If you change anything above, you need to make sure it is RTL compliant by just running
|
||||
|
@ -50,6 +50,12 @@ class TestImg2ImgWorking(unittest.TestCase):
|
||||
self.simple_img2img["mask"] = encode_pil_to_base64(Image.open(r"test/test_files/mask_basic.png"))
|
||||
self.assertEqual(requests.post(self.url_img2img, json=self.simple_img2img).status_code, 200)
|
||||
|
||||
def test_img2img_sd_upscale_performed(self):
|
||||
self.simple_img2img["script_name"] = "sd upscale"
|
||||
self.simple_img2img["script_args"] = ["", 8, "Lanczos", 2.0]
|
||||
|
||||
self.assertEqual(requests.post(self.url_img2img, json=self.simple_img2img).status_code, 200)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
||||
|
Loading…
Reference in New Issue
Block a user