diff --git a/modules/processing.py b/modules/processing.py index e544c2e1..f299e04d 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -186,7 +186,7 @@ class StableDiffusionProcessing: return conditioning def edit_image_conditioning(self, source_image): - conditioning_image = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(source_image)) + conditioning_image = self.sd_model.encode_first_stage(source_image).mode() return conditioning_image diff --git a/modules/sd_samplers_kdiffusion.py b/modules/sd_samplers_kdiffusion.py index aa7f106b..31ee22d3 100644 --- a/modules/sd_samplers_kdiffusion.py +++ b/modules/sd_samplers_kdiffusion.py @@ -77,9 +77,9 @@ class CFGDenoiser(torch.nn.Module): batch_size = len(conds_list) repeats = [len(conds_list[i]) for i in range(batch_size)] - x_in = torch.cat([torch.stack([x[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [x]) - image_cond_in = torch.cat([torch.stack([image_cond[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [image_cond]) - sigma_in = torch.cat([torch.stack([sigma[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [sigma]) + x_in = torch.cat([torch.stack([x[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [x] + [x]) + sigma_in = torch.cat([torch.stack([sigma[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [sigma] + [sigma]) + image_cond_in = torch.cat([torch.stack([image_cond[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [image_cond] + [image_cond]) denoiser_params = CFGDenoiserParams(x_in, image_cond_in, sigma_in, state.sampling_step, state.sampling_steps) cfg_denoiser_callback(denoiser_params) @@ -88,7 +88,7 @@ class CFGDenoiser(torch.nn.Module): sigma_in = denoiser_params.sigma if tensor.shape[1] == uncond.shape[1]: - cond_in = torch.cat([tensor, uncond]) + cond_in = torch.cat([tensor, uncond, uncond]) if shared.batch_cond_uncond: x_out = self.inner_model(x_in, sigma_in, cond={"c_crossattn": [cond_in], "c_concat": [image_cond_in]})