add textual inversion hashes to infotext

This commit is contained in:
AUTOMATIC1111 2023-07-15 08:41:22 +03:00
parent 127635409a
commit 2b1bae0d75
6 changed files with 33 additions and 8 deletions

View File

@ -732,10 +732,11 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
p.setup_conds()
if len(model_hijack.comments) > 0:
for comment in model_hijack.comments:
comments[comment] = 1
p.extra_generation_params.update(model_hijack.extra_generation_params)
if p.n_iter > 1:
shared.state.job = f"Batch {n+1} out of {p.n_iter}"

View File

@ -147,7 +147,6 @@ def undo_weighted_forward(sd_model):
class StableDiffusionModelHijack:
fixes = None
comments = []
layers = None
circular_enabled = False
clip = None
@ -156,6 +155,9 @@ class StableDiffusionModelHijack:
embedding_db = modules.textual_inversion.textual_inversion.EmbeddingDatabase()
def __init__(self):
self.extra_generation_params = {}
self.comments = []
self.embedding_db.add_embedding_dir(cmd_opts.embeddings_dir)
def apply_optimizations(self, option=None):
@ -236,6 +238,7 @@ class StableDiffusionModelHijack:
def clear_comments(self):
self.comments = []
self.extra_generation_params = {}
def get_prompt_lengths(self, text):
if self.clip is None:

View File

@ -229,9 +229,18 @@ class FrozenCLIPEmbedderWithCustomWordsBase(torch.nn.Module):
z = self.process_tokens(tokens, multipliers)
zs.append(z)
if len(used_embeddings) > 0:
embeddings_list = ", ".join([f'{name} [{embedding.checksum()}]' for name, embedding in used_embeddings.items()])
self.hijack.comments.append(f"Used embeddings: {embeddings_list}")
if opts.textual_inversion_add_hashes_to_infotext and used_embeddings:
hashes = []
for name, embedding in used_embeddings.items():
shorthash = embedding.shorthash
if not shorthash:
continue
name = name.replace(":", "").replace(",", "")
hashes.append(f"{name}: {shorthash}")
if hashes:
self.hijack.extra_generation_params["TI hashes"] = ", ".join(hashes)
return torch.hstack(zs)

View File

@ -472,6 +472,7 @@ options_templates.update(options_section(('extra_networks', "Extra Networks"), {
"extra_networks_card_height": OptionInfo(0, "Card height for Extra Networks").info("in pixels"),
"extra_networks_add_text_separator": OptionInfo(" ", "Extra networks separator").info("extra text to add before <...> when adding extra network to prompt"),
"ui_extra_networks_tab_reorder": OptionInfo("", "Extra networks tab order").needs_restart(),
"textual_inversion_add_hashes_to_infotext": OptionInfo(True, "Add Textual Inversion hashes to infotext"),
"sd_hypernetwork": OptionInfo("None", "Add hypernetwork to prompt", gr.Dropdown, lambda: {"choices": ["None", *hypernetworks]}, refresh=reload_hypernetworks),
}))

View File

@ -13,7 +13,7 @@ import numpy as np
from PIL import Image, PngImagePlugin
from torch.utils.tensorboard import SummaryWriter
from modules import shared, devices, sd_hijack, processing, sd_models, images, sd_samplers, sd_hijack_checkpoint, errors
from modules import shared, devices, sd_hijack, processing, sd_models, images, sd_samplers, sd_hijack_checkpoint, errors, hashes
import modules.textual_inversion.dataset
from modules.textual_inversion.learn_schedule import LearnRateScheduler
@ -49,6 +49,8 @@ class Embedding:
self.sd_checkpoint_name = None
self.optimizer_state_dict = None
self.filename = None
self.hash = None
self.shorthash = None
def save(self, filename):
embedding_data = {
@ -82,6 +84,10 @@ class Embedding:
self.cached_checksum = f'{const_hash(self.vec.reshape(-1) * 100) & 0xffff:04x}'
return self.cached_checksum
def set_hash(self, v):
self.hash = v
self.shorthash = self.hash[0:12]
class DirWithTextualInversionEmbeddings:
def __init__(self, path):
@ -199,6 +205,7 @@ class EmbeddingDatabase:
embedding.vectors = vec.shape[0]
embedding.shape = vec.shape[-1]
embedding.filename = path
embedding.set_hash(hashes.sha256(embedding.filename, "textual_inversion/" + name) or '')
if self.expected_shape == -1 or self.expected_shape == embedding.shape:
self.register_embedding(embedding, shared.sd_model)

View File

@ -231,6 +231,10 @@ button.custom-button{
padding-top: 0.5em;
}
.html-log .comments:empty{
padding-top: 0;
}
.html-log .performance {
font-size: 0.85em;
color: #444;