From 467cae167a3066ffa2b2a5e6f16dd42642219aba Mon Sep 17 00:00:00 2001 From: TinkTheBoush Date: Tue, 1 Nov 2022 23:29:12 +0900 Subject: [PATCH 01/57] append_tag_shuffle --- modules/hypernetworks/hypernetwork.py | 4 ++-- modules/textual_inversion/dataset.py | 10 ++++++++-- modules/textual_inversion/textual_inversion.py | 4 ++-- modules/ui.py | 3 +++ 4 files changed, 15 insertions(+), 6 deletions(-) diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py index a11e01d6..7630fb81 100644 --- a/modules/hypernetworks/hypernetwork.py +++ b/modules/hypernetworks/hypernetwork.py @@ -331,7 +331,7 @@ def report_statistics(loss_info:dict): -def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log_directory, training_width, training_height, steps, create_image_every, save_hypernetwork_every, template_file, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height): +def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log_directory, training_width, training_height, steps, create_image_every, save_hypernetwork_every, template_file, preview_from_txt2img, shuffle_tags, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height): # images allows training previews to have infotext. Importing it at the top causes a circular import problem. from modules import images @@ -376,7 +376,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log # dataset loading may take a while, so input validations and early returns should be done before this shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..." with torch.autocast("cuda"): - ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=hypernetwork_name, model=shared.sd_model, device=devices.device, template_file=template_file, include_cond=True, batch_size=batch_size) + ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=hypernetwork_name, shuffle_tags=shuffle_tags, model=shared.sd_model, device=devices.device, template_file=template_file, include_cond=True, batch_size=batch_size) if unload: shared.sd_model.cond_stage_model.to(devices.cpu) diff --git a/modules/textual_inversion/dataset.py b/modules/textual_inversion/dataset.py index ad726577..e9d97cc1 100644 --- a/modules/textual_inversion/dataset.py +++ b/modules/textual_inversion/dataset.py @@ -24,7 +24,7 @@ class DatasetEntry: class PersonalizedBase(Dataset): - def __init__(self, data_root, width, height, repeats, flip_p=0.5, placeholder_token="*", model=None, device=None, template_file=None, include_cond=False, batch_size=1): + def __init__(self, data_root, width, height, repeats, flip_p=0.5, placeholder_token="*", shuffle_tags=True, model=None, device=None, template_file=None, include_cond=False, batch_size=1): re_word = re.compile(shared.opts.dataset_filename_word_regex) if len(shared.opts.dataset_filename_word_regex) > 0 else None self.placeholder_token = placeholder_token @@ -33,6 +33,7 @@ class PersonalizedBase(Dataset): self.width = width self.height = height self.flip = transforms.RandomHorizontalFlip(p=flip_p) + self.shuffle_tags = shuffle_tags self.dataset = [] @@ -98,7 +99,12 @@ class PersonalizedBase(Dataset): def create_text(self, filename_text): text = random.choice(self.lines) text = text.replace("[name]", self.placeholder_token) - text = text.replace("[filewords]", filename_text) + if self.tag_shuffle: + tags = filename_text.split(',') + random.shuffle(tags) + text = text.replace("[filewords]", ','.join(tags)) + else: + text = text.replace("[filewords]", filename_text) return text def __len__(self): diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py index e0babb46..64700e23 100644 --- a/modules/textual_inversion/textual_inversion.py +++ b/modules/textual_inversion/textual_inversion.py @@ -224,7 +224,7 @@ def validate_train_inputs(model_name, learn_rate, batch_size, data_root, templat if save_model_every or create_image_every: assert log_directory, "Log directory is empty" -def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_directory, training_width, training_height, steps, create_image_every, save_embedding_every, template_file, save_image_with_stored_embedding, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height): +def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_directory, training_width, training_height, steps, create_image_every, save_embedding_every, template_file, save_image_with_stored_embedding, preview_from_txt2img, shuffle_tags, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height): save_embedding_every = save_embedding_every or 0 create_image_every = create_image_every or 0 validate_train_inputs(embedding_name, learn_rate, batch_size, data_root, template_file, steps, save_embedding_every, create_image_every, log_directory, name="embedding") @@ -271,7 +271,7 @@ def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_direc # dataset loading may take a while, so input validations and early returns should be done before this shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..." with torch.autocast("cuda"): - ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=embedding_name, model=shared.sd_model, device=devices.device, template_file=template_file, batch_size=batch_size) + ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=embedding_name, shuffle_tags=shuffle_tags, model=shared.sd_model, device=devices.device, template_file=template_file, batch_size=batch_size) embedding.vec.requires_grad = True optimizer = torch.optim.AdamW([embedding.vec], lr=scheduler.learn_rate) diff --git a/modules/ui.py b/modules/ui.py index 2c15abb7..ad383979 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -1267,6 +1267,7 @@ def create_ui(wrap_gradio_gpu_call): save_embedding_every = gr.Number(label='Save a copy of embedding to log directory every N steps, 0 to disable', value=500, precision=0) save_image_with_stored_embedding = gr.Checkbox(label='Save images with embedding in PNG chunks', value=True) preview_from_txt2img = gr.Checkbox(label='Read parameters (prompt, etc...) from txt2img tab when making previews', value=False) + shuffle_tags = gr.Checkbox(label='Shuffleing tags by "," when create texts', value=True) with gr.Row(): interrupt_training = gr.Button(value="Interrupt") @@ -1361,6 +1362,7 @@ def create_ui(wrap_gradio_gpu_call): template_file, save_image_with_stored_embedding, preview_from_txt2img, + shuffle_tags, *txt2img_preview_params, ], outputs=[ @@ -1385,6 +1387,7 @@ def create_ui(wrap_gradio_gpu_call): save_embedding_every, template_file, preview_from_txt2img, + shuffle_tags, *txt2img_preview_params, ], outputs=[ From 86b7fc6e5ed56327fa12b444ca2444b13eb98aa8 Mon Sep 17 00:00:00 2001 From: thesved <2893181+thesved@users.noreply.github.com> Date: Thu, 3 Nov 2022 19:44:47 +0100 Subject: [PATCH 02/57] Make DDIM and PLMS work on Mac OS Fix register_buffer error on Mac OS --- modules/sd_hijack_inpainting.py | 19 ++++++++++++++++++- 1 file changed, 18 insertions(+), 1 deletion(-) diff --git a/modules/sd_hijack_inpainting.py b/modules/sd_hijack_inpainting.py index fd92a335..202b42cf 100644 --- a/modules/sd_hijack_inpainting.py +++ b/modules/sd_hijack_inpainting.py @@ -1,4 +1,5 @@ import torch +import modules.devices as devices from einops import repeat from omegaconf import ListConfig @@ -314,6 +315,20 @@ class LatentInpaintDiffusion(LatentDiffusion): self.masked_image_key = masked_image_key assert self.masked_image_key in concat_keys self.concat_keys = concat_keys + + +# ================================================================================================= +# Fix register buffer bug for Mac OS, Viktor Tabori, viktor.doklist.com/start-here +# ================================================================================================= +def register_buffer(self, name, attr): + if type(attr) == torch.Tensor: + optimal_type = devices.get_optimal_device() + if attr.device != optimal_type: + if getattr(torch, 'has_mps', False): + attr = attr.to(device="mps", dtype=torch.float32) + else: + attr = attr.to(optimal_type) + setattr(self, name, attr) def should_hijack_inpainting(checkpoint_info): @@ -326,6 +341,8 @@ def do_inpainting_hijack(): ldm.models.diffusion.ddim.DDIMSampler.p_sample_ddim = p_sample_ddim ldm.models.diffusion.ddim.DDIMSampler.sample = sample_ddim + ldm.models.diffusion.ddim.DDIMSampler.register_buffer = register_buffer ldm.models.diffusion.plms.PLMSSampler.p_sample_plms = p_sample_plms - ldm.models.diffusion.plms.PLMSSampler.sample = sample_plms \ No newline at end of file + ldm.models.diffusion.plms.PLMSSampler.sample = sample_plms + ldm.models.diffusion.plms.PLMSSampler.register_buffer = register_buffer From 821e2b883dbb42a187bc37379175cd55b7cd7e81 Mon Sep 17 00:00:00 2001 From: TinkTheBoush Date: Fri, 4 Nov 2022 19:39:03 +0900 Subject: [PATCH 03/57] change option position to Training setting --- modules/hypernetworks/hypernetwork.py | 4 ++-- modules/shared.py | 1 + modules/textual_inversion/dataset.py | 5 ++--- modules/textual_inversion/textual_inversion.py | 4 ++-- 4 files changed, 7 insertions(+), 7 deletions(-) diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py index 7630fb81..a11e01d6 100644 --- a/modules/hypernetworks/hypernetwork.py +++ b/modules/hypernetworks/hypernetwork.py @@ -331,7 +331,7 @@ def report_statistics(loss_info:dict): -def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log_directory, training_width, training_height, steps, create_image_every, save_hypernetwork_every, template_file, preview_from_txt2img, shuffle_tags, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height): +def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log_directory, training_width, training_height, steps, create_image_every, save_hypernetwork_every, template_file, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height): # images allows training previews to have infotext. Importing it at the top causes a circular import problem. from modules import images @@ -376,7 +376,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log # dataset loading may take a while, so input validations and early returns should be done before this shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..." with torch.autocast("cuda"): - ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=hypernetwork_name, shuffle_tags=shuffle_tags, model=shared.sd_model, device=devices.device, template_file=template_file, include_cond=True, batch_size=batch_size) + ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=hypernetwork_name, model=shared.sd_model, device=devices.device, template_file=template_file, include_cond=True, batch_size=batch_size) if unload: shared.sd_model.cond_stage_model.to(devices.cpu) diff --git a/modules/shared.py b/modules/shared.py index 1ccb269a..e1d9bdf1 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -290,6 +290,7 @@ options_templates.update(options_section(('system', "System"), { options_templates.update(options_section(('training', "Training"), { "unload_models_when_training": OptionInfo(False, "Move VAE and CLIP to RAM when training if possible. Saves VRAM."), + "shuffle_tags": OptionInfo(False, "Shuffleing tags by "," when create texts."), "dataset_filename_word_regex": OptionInfo("", "Filename word regex"), "dataset_filename_join_string": OptionInfo(" ", "Filename join string"), "training_image_repeats_per_epoch": OptionInfo(1, "Number of repeats for a single input image per epoch; used only for displaying epoch number", gr.Number, {"precision": 0}), diff --git a/modules/textual_inversion/dataset.py b/modules/textual_inversion/dataset.py index e9d97cc1..df278dc2 100644 --- a/modules/textual_inversion/dataset.py +++ b/modules/textual_inversion/dataset.py @@ -24,7 +24,7 @@ class DatasetEntry: class PersonalizedBase(Dataset): - def __init__(self, data_root, width, height, repeats, flip_p=0.5, placeholder_token="*", shuffle_tags=True, model=None, device=None, template_file=None, include_cond=False, batch_size=1): + def __init__(self, data_root, width, height, repeats, flip_p=0.5, placeholder_token="*", model=None, device=None, template_file=None, include_cond=False, batch_size=1): re_word = re.compile(shared.opts.dataset_filename_word_regex) if len(shared.opts.dataset_filename_word_regex) > 0 else None self.placeholder_token = placeholder_token @@ -33,7 +33,6 @@ class PersonalizedBase(Dataset): self.width = width self.height = height self.flip = transforms.RandomHorizontalFlip(p=flip_p) - self.shuffle_tags = shuffle_tags self.dataset = [] @@ -99,7 +98,7 @@ class PersonalizedBase(Dataset): def create_text(self, filename_text): text = random.choice(self.lines) text = text.replace("[name]", self.placeholder_token) - if self.tag_shuffle: + if shared.opts.shuffle_tags: tags = filename_text.split(',') random.shuffle(tags) text = text.replace("[filewords]", ','.join(tags)) diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py index 82dde931..0aeb0459 100644 --- a/modules/textual_inversion/textual_inversion.py +++ b/modules/textual_inversion/textual_inversion.py @@ -224,7 +224,7 @@ def validate_train_inputs(model_name, learn_rate, batch_size, data_root, templat if save_model_every or create_image_every: assert log_directory, "Log directory is empty" -def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_directory, training_width, training_height, steps, create_image_every, save_embedding_every, template_file, save_image_with_stored_embedding, preview_from_txt2img, shuffle_tags, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height): +def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_directory, training_width, training_height, steps, create_image_every, save_embedding_every, template_file, save_image_with_stored_embedding, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height): save_embedding_every = save_embedding_every or 0 create_image_every = create_image_every or 0 validate_train_inputs(embedding_name, learn_rate, batch_size, data_root, template_file, steps, save_embedding_every, create_image_every, log_directory, name="embedding") @@ -272,7 +272,7 @@ def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_direc # dataset loading may take a while, so input validations and early returns should be done before this shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..." with torch.autocast("cuda"): - ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=embedding_name, shuffle_tags=shuffle_tags, model=shared.sd_model, device=devices.device, template_file=template_file, batch_size=batch_size) + ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=embedding_name, model=shared.sd_model, device=devices.device, template_file=template_file, batch_size=batch_size) if unload: shared.sd_model.first_stage_model.to(devices.cpu) From 45b65e87e0ef64b3e457f7d20c62d591cdcd0e7b Mon Sep 17 00:00:00 2001 From: TinkTheBoush Date: Fri, 4 Nov 2022 19:48:28 +0900 Subject: [PATCH 04/57] remove ui option --- modules/ui.py | 3 --- 1 file changed, 3 deletions(-) diff --git a/modules/ui.py b/modules/ui.py index 6f3836c6..45cd8c3f 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -1269,7 +1269,6 @@ def create_ui(wrap_gradio_gpu_call): save_embedding_every = gr.Number(label='Save a copy of embedding to log directory every N steps, 0 to disable', value=500, precision=0) save_image_with_stored_embedding = gr.Checkbox(label='Save images with embedding in PNG chunks', value=True) preview_from_txt2img = gr.Checkbox(label='Read parameters (prompt, etc...) from txt2img tab when making previews', value=False) - shuffle_tags = gr.Checkbox(label='Shuffleing tags by "," when create texts', value=True) with gr.Row(): interrupt_training = gr.Button(value="Interrupt") @@ -1364,7 +1363,6 @@ def create_ui(wrap_gradio_gpu_call): template_file, save_image_with_stored_embedding, preview_from_txt2img, - shuffle_tags, *txt2img_preview_params, ], outputs=[ @@ -1389,7 +1387,6 @@ def create_ui(wrap_gradio_gpu_call): save_embedding_every, template_file, preview_from_txt2img, - shuffle_tags, *txt2img_preview_params, ], outputs=[ From 99b05addb1c98169d78957f13efef308aef0af94 Mon Sep 17 00:00:00 2001 From: Bruno Seoane Date: Sat, 5 Nov 2022 18:46:47 -0300 Subject: [PATCH 05/57] Fix options endpoint not showing the full list of options --- modules/api/models.py | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/modules/api/models.py b/modules/api/models.py index f89da1ff..0ea62155 100644 --- a/modules/api/models.py +++ b/modules/api/models.py @@ -168,9 +168,9 @@ class ProgressResponse(BaseModel): current_image: str = Field(default=None, title="Current image", description="The current image in base64 format. opts.show_progress_every_n_steps is required for this to work.") fields = {} -for key, value in opts.data.items(): - metadata = opts.data_labels.get(key) - optType = opts.typemap.get(type(value), type(value)) +for key, metadata in opts.data_labels.items(): + value = opts.data.get(key) + optType = opts.typemap.get(type(metadata.default), type(value)) if (metadata is not None): fields.update({key: (Optional[optType], Field( From 0ebf66b575f008a027097946eb2f6845feffd010 Mon Sep 17 00:00:00 2001 From: Bruno Seoane Date: Sat, 5 Nov 2022 18:58:19 -0300 Subject: [PATCH 06/57] Fix set config endpoint --- modules/api/api.py | 12 ++++-------- 1 file changed, 4 insertions(+), 8 deletions(-) diff --git a/modules/api/api.py b/modules/api/api.py index 112000b8..a924c83a 100644 --- a/modules/api/api.py +++ b/modules/api/api.py @@ -230,14 +230,10 @@ class Api: return options - def set_config(self, req: OptionsModel): - # currently req has all options fields even if you send a dict like { "send_seed": false }, which means it will - # overwrite all options with default values. - raise RuntimeError('Setting options via API is not supported') - - reqDict = vars(req) - for o in reqDict: - setattr(shared.opts, o, reqDict[o]) + def set_config(self, req: Dict[str, Any]): + + for o in req: + setattr(shared.opts, o, req[o]) shared.opts.save(shared.config_filename) return From 3c72055c22425dcde0739b5246e3501f4a3ec794 Mon Sep 17 00:00:00 2001 From: Bruno Seoane Date: Sat, 5 Nov 2022 19:05:15 -0300 Subject: [PATCH 07/57] Add skip endpoint --- modules/api/api.py | 6 ++++++ 1 file changed, 6 insertions(+) diff --git a/modules/api/api.py b/modules/api/api.py index a924c83a..c7ceb787 100644 --- a/modules/api/api.py +++ b/modules/api/api.py @@ -64,6 +64,7 @@ class Api: self.app.add_api_route("/sdapi/v1/png-info", self.pnginfoapi, methods=["POST"], response_model=PNGInfoResponse) self.app.add_api_route("/sdapi/v1/progress", self.progressapi, methods=["GET"], response_model=ProgressResponse) self.app.add_api_route("/sdapi/v1/interrupt", self.interruptapi, methods=["POST"]) + self.app.add_api_route("/sdapi/v1/skip", self.skip, methods=["POST"]) self.app.add_api_route("/sdapi/v1/options", self.get_config, methods=["GET"], response_model=OptionsModel) self.app.add_api_route("/sdapi/v1/options", self.set_config, methods=["POST"]) self.app.add_api_route("/sdapi/v1/cmd-flags", self.get_cmd_flags, methods=["GET"], response_model=FlagsModel) @@ -219,6 +220,11 @@ class Api: return {} + def skip(self): + shared.state.skip() + + return + def get_config(self): options = {} for key in shared.opts.data.keys(): From 7f63980e479c7ffaec907fb659b5024e96eb72e7 Mon Sep 17 00:00:00 2001 From: Bruno Seoane Date: Sat, 5 Nov 2022 19:09:13 -0300 Subject: [PATCH 08/57] Remove unnecesary return --- modules/api/api.py | 2 -- 1 file changed, 2 deletions(-) diff --git a/modules/api/api.py b/modules/api/api.py index c7ceb787..33e6c6dc 100644 --- a/modules/api/api.py +++ b/modules/api/api.py @@ -223,8 +223,6 @@ class Api: def skip(self): shared.state.skip() - return - def get_config(self): options = {} for key in shared.opts.data.keys(): From 67c8e11be74180be19341aebbd6a246c37a79fbb Mon Sep 17 00:00:00 2001 From: snowmeow2 Date: Mon, 7 Nov 2022 02:32:06 +0800 Subject: [PATCH 09/57] Adding DeepDanbooru to the interrogation API --- modules/api/api.py | 16 ++++++++++++++-- modules/api/models.py | 1 + 2 files changed, 15 insertions(+), 2 deletions(-) diff --git a/modules/api/api.py b/modules/api/api.py index 688469ad..596a6616 100644 --- a/modules/api/api.py +++ b/modules/api/api.py @@ -15,6 +15,9 @@ from modules.sd_models import checkpoints_list from modules.realesrgan_model import get_realesrgan_models from typing import List +if shared.cmd_opts.deepdanbooru: + from modules.deepbooru import get_deepbooru_tags + def upscaler_to_index(name: str): try: return [x.name.lower() for x in shared.sd_upscalers].index(name.lower()) @@ -220,11 +223,20 @@ class Api: if image_b64 is None: raise HTTPException(status_code=404, detail="Image not found") - img = self.__base64_to_image(image_b64) + img = decode_base64_to_image(image_b64) + img = img.convert('RGB') # Override object param with self.queue_lock: - processed = shared.interrogator.interrogate(img) + if interrogatereq.model == "clip": + processed = shared.interrogator.interrogate(img) + elif interrogatereq.model == "deepdanbooru": + if shared.cmd_opts.deepdanbooru: + processed = get_deepbooru_tags(img) + else: + raise HTTPException(status_code=404, detail="Model not found. Add --deepdanbooru when launching for using the model.") + else: + raise HTTPException(status_code=404, detail="Model not found") return InterrogateResponse(caption=processed) diff --git a/modules/api/models.py b/modules/api/models.py index 34dbfa16..f9cd929e 100644 --- a/modules/api/models.py +++ b/modules/api/models.py @@ -170,6 +170,7 @@ class ProgressResponse(BaseModel): class InterrogateRequest(BaseModel): image: str = Field(default="", title="Image", description="Image to work on, must be a Base64 string containing the image's data.") + model: str = Field(default="clip", title="Model", description="The interrogate model used.") class InterrogateResponse(BaseModel): caption: str = Field(default=None, title="Caption", description="The generated caption for the image.") From c5334fc56b3d44976425da2e6d0a303ae96836a1 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Tue, 8 Nov 2022 08:35:01 +0300 Subject: [PATCH 10/57] fix javascript duplication bug after pressing the restart UI button --- modules/ui.py | 7 ++++--- 1 file changed, 4 insertions(+), 3 deletions(-) diff --git a/modules/ui.py b/modules/ui.py index 34c31ef1..67cf1d6a 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -1752,7 +1752,7 @@ def create_ui(wrap_gradio_gpu_call): return demo -def load_javascript(raw_response): +def reload_javascript(): with open(os.path.join(script_path, "script.js"), "r", encoding="utf8") as jsfile: javascript = f'' @@ -1768,7 +1768,7 @@ def load_javascript(raw_response): javascript += f"\n" def template_response(*args, **kwargs): - res = raw_response(*args, **kwargs) + res = shared.GradioTemplateResponseOriginal(*args, **kwargs) res.body = res.body.replace( b'', f'{javascript}'.encode("utf8")) res.init_headers() @@ -1777,4 +1777,5 @@ def load_javascript(raw_response): gradio.routes.templates.TemplateResponse = template_response -reload_javascript = partial(load_javascript, gradio.routes.templates.TemplateResponse) +if not hasattr(shared, 'GradioTemplateResponseOriginal'): + shared.GradioTemplateResponseOriginal = gradio.routes.templates.TemplateResponse From 8011be33c36eb7aa9e9498fc714614034e07f67a Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Tue, 8 Nov 2022 08:37:05 +0300 Subject: [PATCH 11/57] move functions out of main body for image preprocessing for easier hijacking --- modules/textual_inversion/preprocess.py | 162 ++++++++++++++---------- 1 file changed, 93 insertions(+), 69 deletions(-) diff --git a/modules/textual_inversion/preprocess.py b/modules/textual_inversion/preprocess.py index e13b1894..488aa5b5 100644 --- a/modules/textual_inversion/preprocess.py +++ b/modules/textual_inversion/preprocess.py @@ -35,6 +35,84 @@ def preprocess(process_src, process_dst, process_width, process_height, preproce deepbooru.release_process() +def listfiles(dirname): + return os.listdir(dirname) + + +class PreprocessParams: + src = None + dstdir = None + subindex = 0 + flip = False + process_caption = False + process_caption_deepbooru = False + preprocess_txt_action = None + + +def save_pic_with_caption(image, index, params: PreprocessParams, existing_caption=None): + caption = "" + + if params.process_caption: + caption += shared.interrogator.generate_caption(image) + + if params.process_caption_deepbooru: + if len(caption) > 0: + caption += ", " + caption += deepbooru.get_tags_from_process(image) + + filename_part = params.src + filename_part = os.path.splitext(filename_part)[0] + filename_part = os.path.basename(filename_part) + + basename = f"{index:05}-{params.subindex}-{filename_part}" + image.save(os.path.join(params.dstdir, f"{basename}.png")) + + if params.preprocess_txt_action == 'prepend' and existing_caption: + caption = existing_caption + ' ' + caption + elif params.preprocess_txt_action == 'append' and existing_caption: + caption = caption + ' ' + existing_caption + elif params.preprocess_txt_action == 'copy' and existing_caption: + caption = existing_caption + + caption = caption.strip() + + if len(caption) > 0: + with open(os.path.join(params.dstdir, f"{basename}.txt"), "w", encoding="utf8") as file: + file.write(caption) + + params.subindex += 1 + + +def save_pic(image, index, params, existing_caption=None): + save_pic_with_caption(image, index, params, existing_caption=existing_caption) + + if params.flip: + save_pic_with_caption(ImageOps.mirror(image), index, params, existing_caption=existing_caption) + + +def split_pic(image, inverse_xy, width, height, overlap_ratio): + if inverse_xy: + from_w, from_h = image.height, image.width + to_w, to_h = height, width + else: + from_w, from_h = image.width, image.height + to_w, to_h = width, height + h = from_h * to_w // from_w + if inverse_xy: + image = image.resize((h, to_w)) + else: + image = image.resize((to_w, h)) + + split_count = math.ceil((h - to_h * overlap_ratio) / (to_h * (1.0 - overlap_ratio))) + y_step = (h - to_h) / (split_count - 1) + for i in range(split_count): + y = int(y_step * i) + if inverse_xy: + splitted = image.crop((y, 0, y + to_h, to_w)) + else: + splitted = image.crop((0, y, to_w, y + to_h)) + yield splitted + def preprocess_work(process_src, process_dst, process_width, process_height, preprocess_txt_action, process_flip, process_split, process_caption, process_caption_deepbooru=False, split_threshold=0.5, overlap_ratio=0.2, process_focal_crop=False, process_focal_crop_face_weight=0.9, process_focal_crop_entropy_weight=0.3, process_focal_crop_edges_weight=0.5, process_focal_crop_debug=False): width = process_width @@ -48,82 +126,28 @@ def preprocess_work(process_src, process_dst, process_width, process_height, pre os.makedirs(dst, exist_ok=True) - files = os.listdir(src) + files = listfiles(src) shared.state.textinfo = "Preprocessing..." shared.state.job_count = len(files) - def save_pic_with_caption(image, index, existing_caption=None): - caption = "" - - if process_caption: - caption += shared.interrogator.generate_caption(image) - - if process_caption_deepbooru: - if len(caption) > 0: - caption += ", " - caption += deepbooru.get_tags_from_process(image) - - filename_part = filename - filename_part = os.path.splitext(filename_part)[0] - filename_part = os.path.basename(filename_part) - - basename = f"{index:05}-{subindex[0]}-{filename_part}" - image.save(os.path.join(dst, f"{basename}.png")) - - if preprocess_txt_action == 'prepend' and existing_caption: - caption = existing_caption + ' ' + caption - elif preprocess_txt_action == 'append' and existing_caption: - caption = caption + ' ' + existing_caption - elif preprocess_txt_action == 'copy' and existing_caption: - caption = existing_caption - - caption = caption.strip() - - if len(caption) > 0: - with open(os.path.join(dst, f"{basename}.txt"), "w", encoding="utf8") as file: - file.write(caption) - - subindex[0] += 1 - - def save_pic(image, index, existing_caption=None): - save_pic_with_caption(image, index, existing_caption=existing_caption) - - if process_flip: - save_pic_with_caption(ImageOps.mirror(image), index, existing_caption=existing_caption) - - def split_pic(image, inverse_xy): - if inverse_xy: - from_w, from_h = image.height, image.width - to_w, to_h = height, width - else: - from_w, from_h = image.width, image.height - to_w, to_h = width, height - h = from_h * to_w // from_w - if inverse_xy: - image = image.resize((h, to_w)) - else: - image = image.resize((to_w, h)) - - split_count = math.ceil((h - to_h * overlap_ratio) / (to_h * (1.0 - overlap_ratio))) - y_step = (h - to_h) / (split_count - 1) - for i in range(split_count): - y = int(y_step * i) - if inverse_xy: - splitted = image.crop((y, 0, y + to_h, to_w)) - else: - splitted = image.crop((0, y, to_w, y + to_h)) - yield splitted - + params = PreprocessParams() + params.dstdir = dst + params.flip = process_flip + params.process_caption = process_caption + params.process_caption_deepbooru = process_caption_deepbooru + params.preprocess_txt_action = preprocess_txt_action for index, imagefile in enumerate(tqdm.tqdm(files)): - subindex = [0] + params.subindex = 0 filename = os.path.join(src, imagefile) try: img = Image.open(filename).convert("RGB") except Exception: continue + params.src = filename + existing_caption = None existing_caption_filename = os.path.splitext(filename)[0] + '.txt' if os.path.exists(existing_caption_filename): @@ -143,8 +167,8 @@ def preprocess_work(process_src, process_dst, process_width, process_height, pre process_default_resize = True if process_split and ratio < 1.0 and ratio <= split_threshold: - for splitted in split_pic(img, inverse_xy): - save_pic(splitted, index, existing_caption=existing_caption) + for splitted in split_pic(img, inverse_xy, width, height, overlap_ratio): + save_pic(splitted, index, params, existing_caption=existing_caption) process_default_resize = False if process_focal_crop and img.height != img.width: @@ -165,11 +189,11 @@ def preprocess_work(process_src, process_dst, process_width, process_height, pre dnn_model_path = dnn_model_path, ) for focal in autocrop.crop_image(img, autocrop_settings): - save_pic(focal, index, existing_caption=existing_caption) + save_pic(focal, index, params, existing_caption=existing_caption) process_default_resize = False if process_default_resize: img = images.resize_image(1, img, width, height) - save_pic(img, index, existing_caption=existing_caption) + save_pic(img, index, params, existing_caption=existing_caption) - shared.state.nextjob() \ No newline at end of file + shared.state.nextjob() From 1610b3258458025025e9c4faae57d290e4519745 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Tue, 8 Nov 2022 08:38:10 +0300 Subject: [PATCH 12/57] add callback for creating a tab in train UI --- modules/script_callbacks.py | 27 +++++++++++++++++++++++++-- modules/ui.py | 4 ++++ 2 files changed, 29 insertions(+), 2 deletions(-) diff --git a/modules/script_callbacks.py b/modules/script_callbacks.py index 74dfb880..f19e164c 100644 --- a/modules/script_callbacks.py +++ b/modules/script_callbacks.py @@ -7,6 +7,7 @@ from typing import Optional from fastapi import FastAPI from gradio import Blocks + def report_exception(c, job): print(f"Error executing callback {job} for {c.script}", file=sys.stderr) print(traceback.format_exc(), file=sys.stderr) @@ -45,15 +46,21 @@ class CFGDenoiserParams: """Total number of sampling steps planned""" +class UiTrainTabParams: + def __init__(self, txt2img_preview_params): + self.txt2img_preview_params = txt2img_preview_params + + ScriptCallback = namedtuple("ScriptCallback", ["script", "callback"]) callback_map = dict( callbacks_app_started=[], callbacks_model_loaded=[], callbacks_ui_tabs=[], + callbacks_ui_train_tabs=[], callbacks_ui_settings=[], callbacks_before_image_saved=[], callbacks_image_saved=[], - callbacks_cfg_denoiser=[] + callbacks_cfg_denoiser=[], ) @@ -61,6 +68,7 @@ def clear_callbacks(): for callback_list in callback_map.values(): callback_list.clear() + def app_started_callback(demo: Optional[Blocks], app: FastAPI): for c in callback_map['callbacks_app_started']: try: @@ -79,7 +87,7 @@ def model_loaded_callback(sd_model): def ui_tabs_callback(): res = [] - + for c in callback_map['callbacks_ui_tabs']: try: res += c.callback() or [] @@ -89,6 +97,14 @@ def ui_tabs_callback(): return res +def ui_train_tabs_callback(params: UiTrainTabParams): + for c in callback_map['callbacks_ui_train_tabs']: + try: + c.callback(params) + except Exception: + report_exception(c, 'callbacks_ui_train_tabs') + + def ui_settings_callback(): for c in callback_map['callbacks_ui_settings']: try: @@ -169,6 +185,13 @@ def on_ui_tabs(callback): add_callback(callback_map['callbacks_ui_tabs'], callback) +def on_ui_train_tabs(callback): + """register a function to be called when the UI is creating new tabs for the train tab. + Create your new tabs with gr.Tab. + """ + add_callback(callback_map['callbacks_ui_train_tabs'], callback) + + def on_ui_settings(callback): """register a function to be called before UI settings are populated; add your settings by using shared.opts.add_option(shared.OptionInfo(...)) """ diff --git a/modules/ui.py b/modules/ui.py index 67cf1d6a..7ea1177f 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -1270,6 +1270,10 @@ def create_ui(wrap_gradio_gpu_call): train_hypernetwork = gr.Button(value="Train Hypernetwork", variant='primary') train_embedding = gr.Button(value="Train Embedding", variant='primary') + params = script_callbacks.UiTrainTabParams(txt2img_preview_params) + + script_callbacks.ui_train_tabs_callback(params) + with gr.Column(): progressbar = gr.HTML(elem_id="ti_progressbar") ti_output = gr.Text(elem_id="ti_output", value="", show_label=False) From ac085628540d0ec6a988fad93f5b8f2154209571 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Tue, 8 Nov 2022 10:01:06 +0300 Subject: [PATCH 13/57] Remove old localizations from the main repo. Where are they now? Here: https://github.com/AUTOMATIC1111/stable-diffusion-webui-old-localizations --- localizations/ar_AR.json | 518 ------------- localizations/de_DE.json | 458 ----------- localizations/es_ES.json | 692 ----------------- localizations/fr_FR.json | 415 ---------- localizations/it_IT.json | 1565 -------------------------------------- localizations/ja_JP.json | 482 ------------ localizations/ko_KR.json | 592 -------------- localizations/pt_BR.json | 485 ------------ localizations/ru_RU.json | 475 ------------ localizations/tr_TR.json | 423 ----------- localizations/zh_CN.json | 624 --------------- localizations/zh_TW.json | 610 --------------- 12 files changed, 7339 deletions(-) delete mode 100644 localizations/ar_AR.json delete mode 100644 localizations/de_DE.json delete mode 100644 localizations/es_ES.json delete mode 100644 localizations/fr_FR.json delete mode 100644 localizations/it_IT.json delete mode 100644 localizations/ja_JP.json delete mode 100644 localizations/ko_KR.json delete mode 100644 localizations/pt_BR.json delete mode 100644 localizations/ru_RU.json delete mode 100644 localizations/tr_TR.json delete mode 100644 localizations/zh_CN.json delete mode 100644 localizations/zh_TW.json diff --git a/localizations/ar_AR.json b/localizations/ar_AR.json deleted file mode 100644 index abbbcff4..00000000 --- a/localizations/ar_AR.json +++ /dev/null @@ -1,518 +0,0 @@ -{ - "rtl": true, - "Loading...": "لحظة...", - "view": "اعرض ", - "api": "واجهة البرمجة", - "built with gradio": "مبني باستخدام gradio", - "Stable Diffusion checkpoint": "أوزان نموذج الإنتشار المسقر", - "txt2img": "نص إلى صورة", - "Prompt": "الطلب", - "Prompt (press Ctrl+Enter or Alt+Enter to generate)": "الطلب (لبدء الإنتاج Ctrl+Enter أو Alt+Enter اضغط)", - "Negative prompt": "عكس الطلب", - "Negative prompt (press Ctrl+Enter or Alt+Enter to generate)": "عكس الطلب (لبدء الإنتاج Ctrl+Enter أو Alt+Enter اضغط)", - "Add a random artist to the prompt.": "أضف فنان عشوائي للطلب", - "Read generation parameters from prompt or last generation if prompt is empty into user interface.": "اقرأ عوامل الإنتاج من الطلب أو من الإنتاج السابق إذا كان الطلب فارغا", - "Save style": "احتفظ بالطلب وعكسه كإضافة", - "Apply selected styles to current prompt": "ألحق الإضافات المحددة إلى الطلب وعكسه", - "Generate": "أنتج", - "Skip": "تخطى", - "Stop processing current image and continue processing.": "لا تكمل خطوات هذة الحزمة وانتقل إلى الحزمة التالية", - "Interrupt": "توقف", - "Stop processing images and return any results accumulated so far.": "توقف عن الإنتاج واعرض ما تم إلى الآن", - "Style 1": "الإضافة 1", - "Style to apply; styles have components for both positive and negative prompts and apply to both": "الإضافات (styles) عبارة عن كلمات تتكرر كثيرا يتم إلحاقها بالطلب وعكسه عند الرغبة", - "Style 2": "الإضافة 2", - "Do not do anything special": "لا يغير شيئا", - "Sampling Steps": "عدد الخطوات", - "Sampling method": "أسلوب الخطو", - "Which algorithm to use to produce the image": "Sampler: اسم نظام تحديد طريقة تغيير المسافات بين الخطوات", - "Euler a": "Euler a", - "Euler Ancestral - very creative, each can get a completely different picture depending on step count, setting steps to higher than 30-40 does not help": "Euler Ancestral: طريقة مبدعة يمكن أن تنتج صور مختلفة على حسب عدد الخطوات، لا تتغير بعد 30-40 خطوة", - "Euler": "Euler", - "LMS": "LMS", - "Heun": "Heun", - "DPM2": "DPM2", - "DPM2 a": "DPM2 a", - "DPM fast": "DPM fast", - "DPM adaptive": "DPM adaptive", - "LMS Karras": "LMS Karras", - "DPM2 Karras": "DPM2 Karras", - "DPM2 a Karras": "DPM2 a Karras", - "DDIM": "DDIM", - "Denoising Diffusion Implicit Models - best at inpainting": "Denoising Diffusion Implicit Models: الأفضل في الإنتاج الجزئي", - "PLMS": "PLMS", - "Width": "العرض", - "Height": "الإرتفاع", - "Restore faces": "تحسين الوجوه", - "Tiling": "ترصيف", - "Produce an image that can be tiled.": "أنتج صور يمكن ترصيفها بجانب بعضها كالبلاط", - "Highres. fix": "إصلاح الدقة العالية", - "Use a two step process to partially create an image at smaller resolution, upscale, and then improve details in it without changing composition": "أنتج صورة بدقة منخفضة ثم قم برفع الدقة فيما بعد لمنع التشوهات التي تحصل عندما تكون الدقة المطلوبة كبيرة", - "Firstpass width": "العرض الأولي", - "Firstpass height": "الإرتفاع الأولي", - "Denoising strength": "المدى", - "Determines how little respect the algorithm should have for image's content. At 0, nothing will change, and at 1 you'll get an unrelated image. With values below 1.0, processing will take less steps than the Sampling Steps slider specifies.": "Denoising strength: حدد مدى الإبتعاد عن الصورة (عدد الخطوات الفعلي = عدد الخطوات * المدى)", - "Batch count": "عدد الحزم", - "How many batches of images to create": "يتم إنتاج الصور على دفعات، كل دفعة فيها حزمة من الصور", - "Batch size": "حجم الحزمة", - "How many image to create in a single batch": "Batch size: إنتاج حزمة صور أسرع من إنتاجهم فرادى، حدد عدد الصور في كل حزمة", - "CFG Scale": "التركيز", - "Classifier Free Guidance Scale - how strongly the image should conform to prompt - lower values produce more creative results": "CFG scale: يحدد مقدار التركيز على تلبية الطلب وتجنب عكسه، كلما زاد قل الإبداع", - "Seed": "البذرة", - "A value that determines the output of random number generator - if you create an image with same parameters and seed as another image, you'll get the same result": "Seed: رقم طبيعي عشوائي يسمح بإعادة إنتاج نفس الصورة إذا توافقت قيم العوامل الأخرى", - "Set seed to -1, which will cause a new random number to be used every time": "استخدم بذرة جديدة في كل مرة (نرمز لهذا الخيار بجعل قيمة البذرة 1-)", - "Reuse seed from last generation, mostly useful if it was randomed": "أعد استخدام البذرة من الإنتاج السابق", - "Extra": "مزج", - "Variation seed": "بذرة الممزوج", - "Seed of a different picture to be mixed into the generation.": "Variation seed: بذرة صورة أخرى ليتم مزجها مع الصورة الحالية", - "Variation strength": "أثر الممزوج", - "How strong of a variation to produce. At 0, there will be no effect. At 1, you will get the complete picture with variation seed (except for ancestral samplers, where you will just get something).": "Variation seed strength: مقدار أثر الصورة المدمجة على النتيجة النهائية (0: لا أثر، 1: أثر كامل ما عدا عند استخدام أسلوب خطو سلفي Ancestral)", - "Resize seed from width": "عرض الممزوج", - "Resize seed from height": "إرتفاع الممزوج", - "Make an attempt to produce a picture similar to what would have been produced with same seed at specified resolution": "Seed resize from: حدد دقة صورة الممزوج (0: نفس دقة الإنتاج)", - "Open for Clip Aesthetic!": "تضمين تجميلي", - "▼": "▼", - "Aesthetic weight": "أثر التضمين", - "Aesthetic steps": "عدد الخطوات", - "Aesthetic learning rate": "معدل التعلم", - "Slerp interpolation": "امزج بطريقة كروية", - "Aesthetic imgs embedding": "التضمين", - "None": "بدون", - "Aesthetic text for imgs": "الطلب (اختياري)", - "This text is used to rotate the feature space of the imgs embs": "لإعادة توجيه التضمين التجميلي", - "Slerp angle": "أثر الطلب", - "Is negative text": "الطلب عكسي", - "Script": "أدوات خاصة", - "Prompt matrix": "مصفوفة طلبات", - "Put variable parts at start of prompt": "الجزء المتغير في بداية الطلب", - "Prompts from file or textbox": " قائمة طلبات", - "Iterate seed every line": "غير البذرة مع كل طلب", - "List of prompt inputs": "قائمة الطلبات", - "Upload prompt inputs": "اجلب الطلبات من ملف", - "Drop File Here": "اسقط ملف هنا", - "-": "-", - "or": "أو", - "Click to Upload": "انقر للرفع", - "X/Y plot": "مصفوفة عوامل", - "X type": "العامل الأول", - "Nothing": "لا شيء", - "Var. seed": "بذرة الممزوج", - "Var. strength": "أثر الممزوج", - "Steps": "عدد الخطوات", - "Prompt S/R": "كلمات بديلة", - "Prompt order": "ترتيب الكلمات", - "Sampler": "أسلوب الخطو", - "Checkpoint name": "ملف الأوزان", - "Hypernetwork": "الشبكة الفائقة", - "Hypernet str.": "قوة الشبكة الفائقة", - "Inpainting conditioning mask strength": "قوة قناع الإنتاج الجزئي", - "Only applies to inpainting models. Determines how strongly to mask off the original image for inpainting and img2img. 1.0 means fully masked, which is the default behaviour. 0.0 means a fully unmasked conditioning. Lower values will help preserve the overall composition of the image, but will struggle with large changes.": "حدد مدى صرامة قناع الإنتاج، يصبح القناع شفاف إذا قوته 0 (لا يعمل إلا مع ملفات أوزان الإنتاج الجزئي: inpainting)", - "Sigma Churn": "العشوائية (Schurn)", - "Sigma min": "أدنى تشويش (Stmin)", - "Sigma max": "أقصى تشويش (Stmax)", - "Sigma noise": "التشويش (Snoise)", - "Eta": "العامل Eta η", - "Clip skip": "تخطي آخر طبقات CLIP", - "Denoising": "المدى", - "Cond. Image Mask Weight": "قوة قناع الإنتاج الجزئي", - "X values": "قيم العامل الأول", - "Separate values for X axis using commas.": "افصل القيم بفواصل (,) من اليسار إلى اليمين", - "Y type": "العامل الثاني", - "Y values": "قيم العامل الثاني", - "Separate values for Y axis using commas.": "افصل القيم بفواصل (,) من الأعلى إلى الأسفل", - "Draw legend": "أضف مفتاح التوضيح", - "Include Separate Images": "أضف الصور منفصلة", - "Keep -1 for seeds": "استخدم بذور عشوائية", - "Save": "احفظ", - "Write image to a directory (default - log/images) and generation parameters into csv file.": "احفظ الصور مع ملف العوامل بصيغة CSV", - "Send to img2img": "أرسل لصورة إلى صورة", - "Send to inpaint": "أرسل للإنتاج الجزئي", - "Send to extras": "أرسل للمعالجة", - "Open images output directory": "افتح مجلد الصور المخرجة", - "Make Zip when Save?": "ضع النتائج في ملف مضغوط عند الحفظ", - "img2img": "صورة إلى صورة", - "Interrogate\nCLIP": "استجواب\nCLIP", - "Drop Image Here": "اسقط صورة هنا", - "Just resize": "تغيير الحجم فقط", - "Resize image to target resolution. Unless height and width match, you will get incorrect aspect ratio.": "غير حجم الصورة بدون مراعات اتزان الأبعاد", - "Crop and resize": "تغيير الحجم وقص الأطراف", - "Resize the image so that entirety of target resolution is filled with the image. Crop parts that stick out.": "غير حجم الصورة واقتص الأطراف الزائدة", - "Resize and fill": "تغيير الحجم وتبطين الأطراف", - "Resize the image so that entirety of image is inside target resolution. Fill empty space with image's colors.": "غير حجم الصورة واملأ الأطراف الزائدة بألوان من الصورة", - "img2img alternative test": "استجواب الصورة (تجريبي)", - "should be 2 or lower.": "يفترض أن يكون 2 أو أقل", - "Override `Sampling method` to Euler?(this method is built for it)": "استخدم أسلوب خطو Euler (مستحسن)", - "Override `prompt` to the same value as `original prompt`?(and `negative prompt`)": "استبدل الطلب وعكسه في الأعلى بالطلب الأصلي وعكسه التاليين", - "Original prompt": "الطلب الأصلي", - "Original negative prompt": "عكس الطلب الأصلي", - "Override `Sampling Steps` to the same value as `Decode steps`?": "استبدل عدد الخطوات بعدد الخطوات الأصلية", - "Decode steps": "عدد الخطوات الأصلية", - "Override `Denoising strength` to 1?": "اجعل المدى 1", - "Decode CFG scale": "التركيز", - "Randomness": "العشوائية", - "Sigma adjustment for finding noise for image": "لا تسمح بتثبيت قيمة التباين", - "Loopback": "اجترار وتكرار", - "Loops": "عدد المرات", - "How many times to repeat processing an image and using it as input for the next iteration": "كم مرة يتم أخذ مخرجات الإنتاج كمدخلات وإعادة الإنتاج مرة أخرى", - "Denoising strength change factor": "معدل تغيير المدى", - "In loopback mode, on each loop the denoising strength is multiplied by this value. <1 means decreasing variety so your sequence will converge on a fixed picture. >1 means increasing variety so your sequence will become more and more chaotic.": "يتم ضرب المدى بهذا الرقم في كل مرة، إذا استخدمت رقم أصغر من 1 يمكن الرسو على نتيجة، وإذا استخدمت رقم أكبر من 1 تصبح النتيجة عشوائية", - "Outpainting mk2": "توسيع الصورة (mk2)", - "Recommended settings: Sampling Steps: 80-100, Sampler: Euler a, Denoising strength: 0.8": "يفضل استخدام: 80-100 خطوة، أسلوب Euler a، المدى 0.8", - "Pixels to expand": "عدد البيكسلات", - "Mask blur": "تنعيم القناع", - "How much to blur the mask before processing, in pixels.": "مقدرا تنعيم القناع قبل استخدامه (يقاس بالبيكسل)", - "Outpainting direction": "اتجاه توسيع الصورة", - "left": "يسار", - "right": "يمين", - "up": "فوق", - "down": "تحت", - "Fall-off exponent (lower=higher detail)": "قوة السقوط (كلما قلت زادت التفاصيل)", - "Color variation": "تنوع الألوان", - "Poor man's outpainting": "توسيع الصورة (بدائي)", - "Masked content": "محتويات القناع", - "What to put inside the masked area before processing it with Stable Diffusion.": "ما يوضع مكان الفراغ في الصورة الذي نريد إنتاج محتوياته", - "fill": "ألوان", - "fill it with colors of the image": "املأ باستخدام ألوان مأخوذة من باقي الصورة", - "original": "بدون تغيير", - "keep whatever was there originally": "أبق محتويات ما تحت القناع كما هي", - "latent noise": "تشويش كامن", - "fill it with latent space noise": "املأه باستخدام تشويش من الفضاء الكامن", - "latent nothing": "تصفير كامن", - "fill it with latent space zeroes": "استبدل مكان القناع في الفضاء الكامن بأصفار", - "SD upscale": "مضاعفة الدقة بنموذج الإنتشار المستقر", - "Will upscale the image to twice the dimensions; use width and height sliders to set tile size": "سيتم تكبير حجم الصورة إلى الضعف، استخدم الطول والإرتفاع في الأعلى لتحديد حجم نافذة المكبر", - "Tile overlap": "تداخل النافذة", - "For SD upscale, how much overlap in pixels should there be between tiles. Tiles overlap so that when they are merged back into one picture, there is no clearly visible seam.": "المكبر ينظر إلى أجزاء الصورة من خلال نافذة لتكبير المحتوى ثم ينتقل إلى الجزء المجاور، يفضل أن يكون هناك تداخل بين كل رقعة لكي لا يكون هناك اختلاف واضح بينهم", - "Upscaler": "طريقة التكبير", - "Lanczos": "Lanczos", - "LDSR": "LDSR", - "ScuNET GAN": "ScuNET GAN", - "ScuNET PSNR": "ScuNET PSNR", - "ESRGAN_4x": "ESRGAN_4x", - "SwinIR 4x": "SwinIR 4x", - "Inpaint": "إنتاج جزئي", - "Draw mask": "ارسم القناع", - "Upload mask": "ارفع القناع", - "Inpaint masked": "أنتج ما بداخل القناع", - "Inpaint not masked": "أنتج ما حول القناع", - "Inpaint at full resolution": "إنتاج بالدقة الكاملة", - "Upscale masked region to target resolution, do inpainting, downscale back and paste into original image": "كبر ما يراد إعادة إنتاجه ثم صغر النتيجة وألصقها في مكانها", - "Inpaint at full resolution padding, pixels": "عدد بيكسلات التبطين", - "Batch img2img": "صور إلى صور", - "Process images in a directory on the same machine where the server is running.": "حدد مسار مجلد صور موجود في جهاز الخادم", - "Use an empty output directory to save pictures normally instead of writing to the output directory.": "يمكنك أيضا تحديد مجلد حفظ النتائج (غير الإفتراضي)", - "Input directory": "مجلد المدخلات", - "Output directory": "مجلد المخرجات", - "Extras": "معالجة", - "Single Image": "صورة واحدة", - "Source": "المصدر", - "Scale by": "مضاعفة الدقة", - "Resize": "تغيير الحجم", - "Upscaler 1": "المكبر الأول", - "Upscaler 2": "المكبر الثاني", - "Upscaler 2 visibility": "أثر المكبر الثاني", - "GFPGAN visibility": "أثر GFPGAN (محسن وجوه)", - "CodeFormer visibility": "أثر CodeFormer (محسن وجوه)", - "CodeFormer weight (0 = maximum effect, 1 = minimum effect)": "وزن CodeFormer (يزيد التفاصيل على حساب الجودة)", - "Upscale Before Restoring Faces": "كبر قبل تحسين الوجوه", - "Scale to": "دقة محددة", - "Crop to fit": "قص الأطراف الزائدة إذا لم تتناسب الأبعاد", - "Batch Process": "حزمة صور", - "Batch from Directory": "حزمة من مجلد", - "A directory on the same machine where the server is running.": "مسار مجلد صور موجود في جهاز الخادم", - "Leave blank to save images to the default path.": "اتركه فارغا لاستخدام المسار الإفتراضي", - "Show result images": "اعرض الصور الناتجة", - "PNG Info": "عوامل الصورة", - "Send to txt2img": "أرسل لنص إلى صورة", - "Checkpoint Merger": "مزج الأوزان", - "A merger of the two checkpoints will be generated in your": "سيتم مزج الأوزان التالية وحفظ الأوزان المدجمة مع ", - "checkpoint": "الأوزان", - "directory.": " مجلد.", - "Primary model (A)": "الأوزان الأولى (A)", - "Secondary model (B)": "الأوزان الثانية (B)", - "Tertiary model (C)": "الأوزان الثالثة (C)", - "Custom Name (Optional)": "الاسم الجديد (اختياري)", - "Multiplier (M) - set to 0 to get model A": "العامل M: مسافة الإبتعاد عن الأوزان الأولى A", - "Interpolation Method": "طريقة المزج", - "Weighted sum": "خطية", - "Result = A * (1 - M) + B * M": "النتيجة = A * (1 - M) + B * M", - "Add difference": "جمع الفرق", - "Result = A + (B - C) * M": "النتيجة = A + (B - C) * M", - "Save as float16": "احفظ بدقة float16", - "Run": "تشغيل", - "Train": "تدريب", - "See": "اقرأ", - "wiki": " الـwiki ", - "for detailed explanation.": "لمعرفة المزيد", - "Create embedding": "إنشاء تضمين", - "Name": "الاسم", - "Initialization text": "النص المبدأي", - "Number of vectors per token": "عدد المتجهات لكل وحدة لغوية", - "Overwrite Old Embedding": "استبدل التضمين القديم", - "Create hypernetwork": "إنشاء شبكة فائقة", - "Modules": "الأجزاء", - "Enter hypernetwork layer structure": "ترتيب مضاعفات عرض الطبقات", - "1st and last digit must be 1. ex:'1, 2, 1'": "المضاعفين الأول والأخير يجب أن يكونا 1، مثال: 1, 2, 1", - "Select activation function of hypernetwork": "دالة التنشيط", - "linear": "linear", - "relu": "relu", - "leakyrelu": "leakyrelu", - "elu": "elu", - "swish": "swish", - "tanh": "tanh", - "sigmoid": "sigmoid", - "celu": "celu", - "gelu": "gelu", - "glu": "glu", - "hardshrink": "hardshrink", - "hardsigmoid": "hardsigmoid", - "hardtanh": "hardtanh", - "logsigmoid": "logsigmoid", - "logsoftmax": "logsoftmax", - "mish": "mish", - "prelu": "prelu", - "rrelu": "rrelu", - "relu6": "relu6", - "selu": "selu", - "silu": "silu", - "softmax": "softmax", - "softmax2d": "softmax2d", - "softmin": "softmin", - "softplus": "softplus", - "softshrink": "softshrink", - "softsign": "softsign", - "tanhshrink": "tanhshrink", - "threshold": "threshold", - "Select Layer weights initialization. relu-like - Kaiming, sigmoid-like - Xavier is recommended": "تهيئة الأوزان (استخدم Kaiming مع relu وأمثالها وXavier مع sigmoid وأمثالها)", - "Normal": "Normal", - "KaimingUniform": "KaimingUniform", - "KaimingNormal": "KaimingNormal", - "XavierUniform": "XavierUniform", - "XavierNormal": "XavierNormal", - "Add layer normalization": "أضف تسوية الطبقات (LayerNorm)", - "Use dropout": "استخدم الإسقاط (Dropout)", - "Overwrite Old Hypernetwork": "استبدل الشبكة الفائقة القديمة", - "Preprocess images": "معالجة مسبقة للصور", - "Source directory": "مجلد المدخلات", - "Destination directory": "مجلد المخرجات", - "Existing Caption txt Action": "اذا كانت الصورة لديها توصيف (طلب)", - "ignore": "تجاهل", - "copy": "انسخ", - "prepend": "أسبق", - "append": "ألحق", - "Create flipped copies": "انشئ نسخ معكوسة للصور", - "Split oversized images": "قسّم الصور الكبيرة", - "Split image threshold": "حد تقسيم الصور الكبيرة", - "Split image overlap ratio": "نسبة تداخل اقسام الصور الكبيرة", - "Auto focal point crop": "اقتصاص تلقائي", - "Focal point face weight": "تمركز الوجوه", - "Focal point entropy weight": "تمركز التنوع", - "Focal point edges weight": "تمركز الحواف", - "Create debug image": "احفظ نتائج التحليل أيضا", - "Use BLIP for caption": "استخدم BLIP لتوصيف الصور", - "Use deepbooru for caption": "استخدم deepbooru لتوصيف الصور", - "Preprocess": "معالجة مسبقة", - "Train an embedding or Hypernetwork; you must specify a directory with a set of 1:1 ratio images": "درب التضمين أو الشبكة الفائقة: يجب تحديد مجلد يحتوي صور مربعة فقط ", - "[wiki]": "[wiki]", - "Embedding": "التضمين", - "Embedding Learning rate": "معدل تعلم التضمين", - "Hypernetwork Learning rate": "معدل تعلم الشبكة الفائقة", - "Dataset directory": "مجلد مجموعة البيانات", - "Path to directory with input images": "مسار مجلد الصور المدخلة", - "Log directory": "مجلد السجل", - "Path to directory where to write outputs": "مسار مجلد الصور المخرجة", - "Prompt template file": "ملف صيغ الطلبات", - "Max steps": "أقصى عدد لخطوات التدريب", - "Save an image to log directory every N steps, 0 to disable": "احفظ صورة في السجل بعد كل كم خطوة تدريب (إذا 0 لا تحفظ)", - "Save a copy of embedding to log directory every N steps, 0 to disable": "احفظ التضمين في السجل بعد كل كم خطوة تدريب (إذا 0 لا تحفظ)", - "Save images with embedding in PNG chunks": "احفظ التضمين بداخل ملف الصورة كعامل يمكن استخراجه من عوامل الصورة (صيغة PNG)", - "Read parameters (prompt, etc...) from txt2img tab when making previews": "استخدم قيم العوامل الموجودة في تبويب نص إلى صورة لعرض نتائجهم أثناء التدريب", - "Train Hypernetwork": "درّب الشبكة الفائقة", - "Train Embedding": "درّب التضمين", - "Create aesthetic embedding": "تضمين تجميلي", - "Create an aesthetic embedding out of any number of images": "انشئ تضمين تجميلي يعبر عن مجموعة من الصور", - "Create images embedding": "انشئ التضمين التجميلي", - "Image Browser": "معرض الصور", - "Load": "حمّل", - "Images directory": "مجلد الصور", - "First Page": "الصفحة الأولى", - "Prev Page": "الصفحة السابقة", - "Page Index": "رقم الصفحة", - "Next Page": "الصفحة التالية", - "End Page": "الصفحة الأخيرة", - "number of images to delete consecutively next": "عدد الصور المتتالية للحذف", - "Delete": "احذف", - "Generate Info": "معلومات عامة", - "File Name": "اسم الملف", - "Collect": "اجمع", - "extras": "معالجة", - "favorites": "المفضلة", - "custom fold": "مجلد آخر", - "Input images directory": "مجلد الصور المدخلة", - "Settings": "إعدادات", - "Apply settings": "طبق الإعدادت", - "Saving images/grids": "حفظ الصور وجداولها", - "Always save all generated images": "احفظ كل الصور المنتجة", - "File format for images": "صيغة ملفات الصور", - "Images filename pattern": "نمط تسمية الصور", - "Use following tags to define how filenames for images are chosen: [steps], [cfg], [prompt], [prompt_no_styles], [prompt_spaces], [width], [height], [styles], [sampler], [seed], [model_hash], [prompt_words], [date], [datetime], [datetime], [datetime