diff --git a/extensions-builtin/Lora/lora.py b/extensions-builtin/Lora/lora.py index 03f1ef85..4b5da7b5 100644 --- a/extensions-builtin/Lora/lora.py +++ b/extensions-builtin/Lora/lora.py @@ -68,6 +68,14 @@ def convert_diffusers_name_to_compvis(key, is_sd2): return f"transformer_text_model_encoder_layers_{m[0]}_{m[1]}" + if match(m, r"lora_te2_text_model_encoder_layers_(\d+)_(.+)"): + if 'mlp_fc1' in m[1]: + return f"1_model_transformer_resblocks_{m[0]}_{m[1].replace('mlp_fc1', 'mlp_c_fc')}" + elif 'mlp_fc2' in m[1]: + return f"1_model_transformer_resblocks_{m[0]}_{m[1].replace('mlp_fc2', 'mlp_c_proj')}" + else: + return f"1_model_transformer_resblocks_{m[0]}_{m[1].replace('self_attn', 'attn')}" + return key @@ -142,10 +150,20 @@ class LoraUpDownModule: def assign_lora_names_to_compvis_modules(sd_model): lora_layer_mapping = {} - for name, module in shared.sd_model.cond_stage_model.wrapped.named_modules(): - lora_name = name.replace(".", "_") - lora_layer_mapping[lora_name] = module - module.lora_layer_name = lora_name + if shared.sd_model.is_sdxl: + for i, embedder in enumerate(shared.sd_model.conditioner.embedders): + if not hasattr(embedder, 'wrapped'): + continue + + for name, module in embedder.wrapped.named_modules(): + lora_name = f'{i}_{name.replace(".", "_")}' + lora_layer_mapping[lora_name] = module + module.lora_layer_name = lora_name + else: + for name, module in shared.sd_model.cond_stage_model.wrapped.named_modules(): + lora_name = name.replace(".", "_") + lora_layer_mapping[lora_name] = module + module.lora_layer_name = lora_name for name, module in shared.sd_model.model.named_modules(): lora_name = name.replace(".", "_") @@ -168,10 +186,10 @@ def load_lora(name, lora_on_disk): keys_failed_to_match = {} is_sd2 = 'model_transformer_resblocks' in shared.sd_model.lora_layer_mapping - for key_diffusers, weight in sd.items(): - key_diffusers_without_lora_parts, lora_key = key_diffusers.split(".", 1) - key = convert_diffusers_name_to_compvis(key_diffusers_without_lora_parts, is_sd2) + for key_lora, weight in sd.items(): + key_lora_without_lora_parts, lora_key = key_lora.split(".", 1) + key = convert_diffusers_name_to_compvis(key_lora_without_lora_parts, is_sd2) sd_module = shared.sd_model.lora_layer_mapping.get(key, None) if sd_module is None: @@ -180,12 +198,15 @@ def load_lora(name, lora_on_disk): sd_module = shared.sd_model.lora_layer_mapping.get(m.group(1), None) # SDXL loras seem to already have correct compvis keys, so only need to replace "lora_unet" with "diffusion_model" - if sd_module is None and "lora_unet" in key_diffusers_without_lora_parts: - key = key_diffusers_without_lora_parts.replace("lora_unet", "diffusion_model") + if sd_module is None and "lora_unet" in key_lora_without_lora_parts: + key = key_lora_without_lora_parts.replace("lora_unet", "diffusion_model") + sd_module = shared.sd_model.lora_layer_mapping.get(key, None) + elif sd_module is None and "lora_te1_text_model" in key_lora_without_lora_parts: + key = key_lora_without_lora_parts.replace("lora_te1_text_model", "0_transformer_text_model") sd_module = shared.sd_model.lora_layer_mapping.get(key, None) if sd_module is None: - keys_failed_to_match[key_diffusers] = key + keys_failed_to_match[key_lora] = key continue lora_module = lora.modules.get(key, None) diff --git a/modules/sd_models.py b/modules/sd_models.py index 9e8cb3cf..07702175 100644 --- a/modules/sd_models.py +++ b/modules/sd_models.py @@ -289,7 +289,8 @@ def load_model_weights(model, checkpoint_info: CheckpointInfo, state_dict, timer if state_dict is None: state_dict = get_checkpoint_state_dict(checkpoint_info, timer) - if hasattr(model, 'conditioner'): + model.is_sdxl = hasattr(model, 'conditioner') + if model.is_sdxl: sd_models_xl.extend_sdxl(model) model.load_state_dict(state_dict, strict=False) diff --git a/modules/sd_models_xl.py b/modules/sd_models_xl.py index af445a61..a7240dc0 100644 --- a/modules/sd_models_xl.py +++ b/modules/sd_models_xl.py @@ -48,7 +48,6 @@ def extend_sdxl(model): discretization = sgm.modules.diffusionmodules.discretizer.LegacyDDPMDiscretization() model.alphas_cumprod = torch.asarray(discretization.alphas_cumprod, device=devices.device, dtype=dtype) - model.is_sdxl = True sgm.models.diffusion.DiffusionEngine.get_learned_conditioning = get_learned_conditioning