Add UniPC sampler settings

This commit is contained in:
space-nuko 2023-02-10 05:27:05 -08:00
parent c88dcc20d4
commit 79ffb9453f
4 changed files with 16 additions and 3 deletions

View File

@ -3,6 +3,7 @@
import torch import torch
from .uni_pc import NoiseScheduleVP, model_wrapper, UniPC from .uni_pc import NoiseScheduleVP, model_wrapper, UniPC
from modules import shared
class UniPCSampler(object): class UniPCSampler(object):
def __init__(self, model, **kwargs): def __init__(self, model, **kwargs):
@ -89,7 +90,7 @@ class UniPCSampler(object):
guidance_scale=unconditional_guidance_scale, guidance_scale=unconditional_guidance_scale,
) )
uni_pc = UniPC(model_fn, ns, predict_x0=True, thresholding=False, condition=conditioning, unconditional_condition=unconditional_conditioning, before_sample=self.before_sample, after_sample=self.after_sample, after_update=self.after_update) uni_pc = UniPC(model_fn, ns, predict_x0=True, thresholding=shared.opts.uni_pc_thresholding, variant=shared.opts.uni_pc_variant, condition=conditioning, unconditional_condition=unconditional_conditioning, before_sample=self.before_sample, after_sample=self.after_sample, after_update=self.after_update)
x = uni_pc.sample(img, steps=S, skip_type="time_uniform", method="multistep", order=3, lower_order_final=True) x = uni_pc.sample(img, steps=S, skip_type=shared.opts.uni_pc_skip_type, method="multistep", order=shared.opts.uni_pc_order, lower_order_final=shared.opts.uni_pc_lower_order_final)
return x.to(device), None return x.to(device), None

View File

@ -750,7 +750,7 @@ class UniPC:
if method == 'multistep': if method == 'multistep':
assert steps >= order, "UniPC order must be < sampling steps" assert steps >= order, "UniPC order must be < sampling steps"
timesteps = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=steps, device=device) timesteps = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=steps, device=device)
print(f"Running UniPC Sampling with {timesteps.shape[0]} timesteps") print(f"Running UniPC Sampling with {timesteps.shape[0]} timesteps, order {order}")
assert timesteps.shape[0] - 1 == steps assert timesteps.shape[0] - 1 == steps
with torch.no_grad(): with torch.no_grad():
vec_t = timesteps[0].expand((x.shape[0])) vec_t = timesteps[0].expand((x.shape[0]))

View File

@ -480,6 +480,11 @@ options_templates.update(options_section(('sampler-params', "Sampler parameters"
's_noise': OptionInfo(1.0, "sigma noise", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}), 's_noise': OptionInfo(1.0, "sigma noise", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
'eta_noise_seed_delta': OptionInfo(0, "Eta noise seed delta", gr.Number, {"precision": 0}), 'eta_noise_seed_delta': OptionInfo(0, "Eta noise seed delta", gr.Number, {"precision": 0}),
'always_discard_next_to_last_sigma': OptionInfo(False, "Always discard next-to-last sigma"), 'always_discard_next_to_last_sigma': OptionInfo(False, "Always discard next-to-last sigma"),
'uni_pc_variant': OptionInfo("bh1", "UniPC variant", gr.Radio, {"choices": ["bh1", "vary_coeff"]}),
'uni_pc_skip_type': OptionInfo("time_uniform", "UniPC skip type", gr.Radio, {"choices": ["time_uniform", "time_quadratic", "logSNR"]}),
'uni_pc_order': OptionInfo(3, "UniPC order (must be < sampling steps)", gr.Slider, {"minimum": 1, "maximum": 150 - 1, "step": 1}),
'uni_pc_thresholding': OptionInfo(False, "UniPC thresholding"),
'uni_pc_lower_order_final': OptionInfo(True, "UniPC lower order final"),
})) }))
options_templates.update(options_section(('postprocessing', "Postprocessing"), { options_templates.update(options_section(('postprocessing', "Postprocessing"), {

View File

@ -126,6 +126,10 @@ def apply_styles(p: StableDiffusionProcessingTxt2Img, x: str, _):
p.styles.extend(x.split(',')) p.styles.extend(x.split(','))
def apply_uni_pc_order(p, x, xs):
opts.data["uni_pc_order"] = min(x, p.steps - 1)
def format_value_add_label(p, opt, x): def format_value_add_label(p, opt, x):
if type(x) == float: if type(x) == float:
x = round(x, 8) x = round(x, 8)
@ -202,6 +206,7 @@ axis_options = [
AxisOptionImg2Img("Cond. Image Mask Weight", float, apply_field("inpainting_mask_weight")), AxisOptionImg2Img("Cond. Image Mask Weight", float, apply_field("inpainting_mask_weight")),
AxisOption("VAE", str, apply_vae, cost=0.7, choices=lambda: list(sd_vae.vae_dict)), AxisOption("VAE", str, apply_vae, cost=0.7, choices=lambda: list(sd_vae.vae_dict)),
AxisOption("Styles", str, apply_styles, choices=lambda: list(shared.prompt_styles.styles)), AxisOption("Styles", str, apply_styles, choices=lambda: list(shared.prompt_styles.styles)),
AxisOption("UniPC Order", int, apply_uni_pc_order, cost=0.5),
] ]
@ -310,9 +315,11 @@ class SharedSettingsStackHelper(object):
def __enter__(self): def __enter__(self):
self.CLIP_stop_at_last_layers = opts.CLIP_stop_at_last_layers self.CLIP_stop_at_last_layers = opts.CLIP_stop_at_last_layers
self.vae = opts.sd_vae self.vae = opts.sd_vae
self.uni_pc_order = opts.uni_pc_order
def __exit__(self, exc_type, exc_value, tb): def __exit__(self, exc_type, exc_value, tb):
opts.data["sd_vae"] = self.vae opts.data["sd_vae"] = self.vae
opts.data["uni_pc_order"] = self.uni_pc_order
modules.sd_models.reload_model_weights() modules.sd_models.reload_model_weights()
modules.sd_vae.reload_vae_weights() modules.sd_vae.reload_vae_weights()