Merge pull request #6590 from aria1th/varaible-dropout-rate-rework

Variable dropout rate
This commit is contained in:
AUTOMATIC1111 2023-01-10 11:29:26 +03:00 committed by GitHub
commit 7ec275fae7
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 81 additions and 28 deletions

View File

@ -39,7 +39,7 @@ class HypernetworkModule(torch.nn.Module):
activation_dict.update({cls_name.lower(): cls_obj for cls_name, cls_obj in inspect.getmembers(torch.nn.modules.activation) if inspect.isclass(cls_obj) and cls_obj.__module__ == 'torch.nn.modules.activation'}) activation_dict.update({cls_name.lower(): cls_obj for cls_name, cls_obj in inspect.getmembers(torch.nn.modules.activation) if inspect.isclass(cls_obj) and cls_obj.__module__ == 'torch.nn.modules.activation'})
def __init__(self, dim, state_dict=None, layer_structure=None, activation_func=None, weight_init='Normal', def __init__(self, dim, state_dict=None, layer_structure=None, activation_func=None, weight_init='Normal',
add_layer_norm=False, use_dropout=False, activate_output=False, last_layer_dropout=False): add_layer_norm=False, activate_output=False, dropout_structure=None):
super().__init__() super().__init__()
assert layer_structure is not None, "layer_structure must not be None" assert layer_structure is not None, "layer_structure must not be None"
@ -64,9 +64,12 @@ class HypernetworkModule(torch.nn.Module):
if add_layer_norm: if add_layer_norm:
linears.append(torch.nn.LayerNorm(int(dim * layer_structure[i+1]))) linears.append(torch.nn.LayerNorm(int(dim * layer_structure[i+1])))
# Add dropout except last layer # Everything should be now parsed into dropout structure, and applied here.
if use_dropout and (i < len(layer_structure) - 3 or last_layer_dropout and i < len(layer_structure) - 2): # Since we only have dropouts after layers, dropout structure should start with 0 and end with 0.
linears.append(torch.nn.Dropout(p=0.3)) if dropout_structure is not None and dropout_structure[i+1] > 0:
assert 0 < dropout_structure[i+1] < 1, "Dropout probability should be 0 or float between 0 and 1!"
linears.append(torch.nn.Dropout(p=dropout_structure[i+1]))
# Code explanation : [1, 2, 1] -> dropout is missing when last_layer_dropout is false. [1, 2, 2, 1] -> [0, 0.3, 0, 0], when its True, [0, 0.3, 0.3, 0].
self.linear = torch.nn.Sequential(*linears) self.linear = torch.nn.Sequential(*linears)
@ -113,7 +116,7 @@ class HypernetworkModule(torch.nn.Module):
state_dict[to] = x state_dict[to] = x
def forward(self, x): def forward(self, x):
return x + self.linear(x) * self.multiplier return x + self.linear(x) * (HypernetworkModule.multiplier if not self.training else 1)
def trainables(self): def trainables(self):
layer_structure = [] layer_structure = []
@ -126,6 +129,21 @@ class HypernetworkModule(torch.nn.Module):
def apply_strength(value=None): def apply_strength(value=None):
HypernetworkModule.multiplier = value if value is not None else shared.opts.sd_hypernetwork_strength HypernetworkModule.multiplier = value if value is not None else shared.opts.sd_hypernetwork_strength
#param layer_structure : sequence used for length, use_dropout : controlling boolean, last_layer_dropout : for compatibility check.
def parse_dropout_structure(layer_structure, use_dropout, last_layer_dropout):
if layer_structure is None:
layer_structure = [1, 2, 1]
if not use_dropout:
return [0] * len(layer_structure)
dropout_values = [0]
dropout_values.extend([0.3] * (len(layer_structure) - 3))
if last_layer_dropout:
dropout_values.append(0.3)
else:
dropout_values.append(0)
dropout_values.append(0)
return dropout_values
class Hypernetwork: class Hypernetwork:
filename = None filename = None
@ -144,18 +162,22 @@ class Hypernetwork:
self.add_layer_norm = add_layer_norm self.add_layer_norm = add_layer_norm
self.use_dropout = use_dropout self.use_dropout = use_dropout
self.activate_output = activate_output self.activate_output = activate_output
self.last_layer_dropout = kwargs['last_layer_dropout'] if 'last_layer_dropout' in kwargs else True self.last_layer_dropout = kwargs.get('last_layer_dropout', True)
self.dropout_structure = kwargs.get('dropout_structure', None)
if self.dropout_structure is None:
self.dropout_structure = parse_dropout_structure(self.layer_structure, self.use_dropout, self.last_layer_dropout)
self.optimizer_name = None self.optimizer_name = None
self.optimizer_state_dict = None self.optimizer_state_dict = None
self.optional_info = None
for size in enable_sizes or []: for size in enable_sizes or []:
self.layers[size] = ( self.layers[size] = (
HypernetworkModule(size, None, self.layer_structure, self.activation_func, self.weight_init, HypernetworkModule(size, None, self.layer_structure, self.activation_func, self.weight_init,
self.add_layer_norm, self.use_dropout, self.activate_output, last_layer_dropout=self.last_layer_dropout), self.add_layer_norm, self.activate_output, dropout_structure=self.dropout_structure),
HypernetworkModule(size, None, self.layer_structure, self.activation_func, self.weight_init, HypernetworkModule(size, None, self.layer_structure, self.activation_func, self.weight_init,
self.add_layer_norm, self.use_dropout, self.activate_output, last_layer_dropout=self.last_layer_dropout), self.add_layer_norm, self.activate_output, dropout_structure=self.dropout_structure),
) )
self.eval_mode() self.eval()
def weights(self): def weights(self):
res = [] res = []
@ -164,14 +186,14 @@ class Hypernetwork:
res += layer.parameters() res += layer.parameters()
return res return res
def train_mode(self): def train(self, mode=True):
for k, layers in self.layers.items(): for k, layers in self.layers.items():
for layer in layers: for layer in layers:
layer.train() layer.train(mode=mode)
for param in layer.parameters(): for param in layer.parameters():
param.requires_grad = True param.requires_grad = mode
def eval_mode(self): def eval(self):
for k, layers in self.layers.items(): for k, layers in self.layers.items():
for layer in layers: for layer in layers:
layer.eval() layer.eval()
@ -191,11 +213,13 @@ class Hypernetwork:
state_dict['activation_func'] = self.activation_func state_dict['activation_func'] = self.activation_func
state_dict['is_layer_norm'] = self.add_layer_norm state_dict['is_layer_norm'] = self.add_layer_norm
state_dict['weight_initialization'] = self.weight_init state_dict['weight_initialization'] = self.weight_init
state_dict['use_dropout'] = self.use_dropout
state_dict['sd_checkpoint'] = self.sd_checkpoint state_dict['sd_checkpoint'] = self.sd_checkpoint
state_dict['sd_checkpoint_name'] = self.sd_checkpoint_name state_dict['sd_checkpoint_name'] = self.sd_checkpoint_name
state_dict['activate_output'] = self.activate_output state_dict['activate_output'] = self.activate_output
state_dict['last_layer_dropout'] = self.last_layer_dropout state_dict['use_dropout'] = self.use_dropout
state_dict['dropout_structure'] = self.dropout_structure
state_dict['last_layer_dropout'] = (self.dropout_structure[-2] != 0) if self.dropout_structure is not None else self.last_layer_dropout
state_dict['optional_info'] = self.optional_info if self.optional_info else None
if self.optimizer_name is not None: if self.optimizer_name is not None:
optimizer_saved_dict['optimizer_name'] = self.optimizer_name optimizer_saved_dict['optimizer_name'] = self.optimizer_name
@ -215,43 +239,56 @@ class Hypernetwork:
self.layer_structure = state_dict.get('layer_structure', [1, 2, 1]) self.layer_structure = state_dict.get('layer_structure', [1, 2, 1])
print(self.layer_structure) print(self.layer_structure)
optional_info = state_dict.get('optional_info', None)
if optional_info is not None:
print(f"INFO:\n {optional_info}\n")
self.optional_info = optional_info
self.activation_func = state_dict.get('activation_func', None) self.activation_func = state_dict.get('activation_func', None)
print(f"Activation function is {self.activation_func}") print(f"Activation function is {self.activation_func}")
self.weight_init = state_dict.get('weight_initialization', 'Normal') self.weight_init = state_dict.get('weight_initialization', 'Normal')
print(f"Weight initialization is {self.weight_init}") print(f"Weight initialization is {self.weight_init}")
self.add_layer_norm = state_dict.get('is_layer_norm', False) self.add_layer_norm = state_dict.get('is_layer_norm', False)
print(f"Layer norm is set to {self.add_layer_norm}") print(f"Layer norm is set to {self.add_layer_norm}")
self.use_dropout = state_dict.get('use_dropout', False) self.dropout_structure = state_dict.get('dropout_structure', None)
self.use_dropout = True if self.dropout_structure is not None and any(self.dropout_structure) else state_dict.get('use_dropout', False)
print(f"Dropout usage is set to {self.use_dropout}" ) print(f"Dropout usage is set to {self.use_dropout}" )
self.activate_output = state_dict.get('activate_output', True) self.activate_output = state_dict.get('activate_output', True)
print(f"Activate last layer is set to {self.activate_output}") print(f"Activate last layer is set to {self.activate_output}")
self.last_layer_dropout = state_dict.get('last_layer_dropout', False) self.last_layer_dropout = state_dict.get('last_layer_dropout', False)
# Dropout structure should have same length as layer structure, Every digits should be in [0,1), and last digit must be 0.
if self.dropout_structure is None:
print("Using previous dropout structure")
self.dropout_structure = parse_dropout_structure(self.layer_structure, self.use_dropout, self.last_layer_dropout)
print(f"Dropout structure is set to {self.dropout_structure}")
optimizer_saved_dict = torch.load(self.filename + '.optim', map_location = 'cpu') if os.path.exists(self.filename + '.optim') else {} optimizer_saved_dict = torch.load(self.filename + '.optim', map_location = 'cpu') if os.path.exists(self.filename + '.optim') else {}
self.optimizer_name = optimizer_saved_dict.get('optimizer_name', 'AdamW')
print(f"Optimizer name is {self.optimizer_name}")
if sd_models.model_hash(filename) == optimizer_saved_dict.get('hash', None): if sd_models.model_hash(filename) == optimizer_saved_dict.get('hash', None):
self.optimizer_state_dict = optimizer_saved_dict.get('optimizer_state_dict', None) self.optimizer_state_dict = optimizer_saved_dict.get('optimizer_state_dict', None)
else: else:
self.optimizer_state_dict = None self.optimizer_state_dict = None
if self.optimizer_state_dict: if self.optimizer_state_dict:
self.optimizer_name = optimizer_saved_dict.get('optimizer_name', 'AdamW')
print("Loaded existing optimizer from checkpoint") print("Loaded existing optimizer from checkpoint")
print(f"Optimizer name is {self.optimizer_name}")
else: else:
self.optimizer_name = "AdamW"
print("No saved optimizer exists in checkpoint") print("No saved optimizer exists in checkpoint")
for size, sd in state_dict.items(): for size, sd in state_dict.items():
if type(size) == int: if type(size) == int:
self.layers[size] = ( self.layers[size] = (
HypernetworkModule(size, sd[0], self.layer_structure, self.activation_func, self.weight_init, HypernetworkModule(size, sd[0], self.layer_structure, self.activation_func, self.weight_init,
self.add_layer_norm, self.use_dropout, self.activate_output, last_layer_dropout=self.last_layer_dropout), self.add_layer_norm, self.activate_output, self.dropout_structure),
HypernetworkModule(size, sd[1], self.layer_structure, self.activation_func, self.weight_init, HypernetworkModule(size, sd[1], self.layer_structure, self.activation_func, self.weight_init,
self.add_layer_norm, self.use_dropout, self.activate_output, last_layer_dropout=self.last_layer_dropout), self.add_layer_norm, self.activate_output, self.dropout_structure),
) )
self.name = state_dict.get('name', self.name) self.name = state_dict.get('name', self.name)
self.step = state_dict.get('step', 0) self.step = state_dict.get('step', 0)
self.sd_checkpoint = state_dict.get('sd_checkpoint', None) self.sd_checkpoint = state_dict.get('sd_checkpoint', None)
self.sd_checkpoint_name = state_dict.get('sd_checkpoint_name', None) self.sd_checkpoint_name = state_dict.get('sd_checkpoint_name', None)
self.eval()
def list_hypernetworks(path): def list_hypernetworks(path):
@ -379,9 +416,10 @@ def report_statistics(loss_info:dict):
print(e) print(e)
def create_hypernetwork(name, enable_sizes, overwrite_old, layer_structure=None, activation_func=None, weight_init=None, add_layer_norm=False, use_dropout=False): def create_hypernetwork(name, enable_sizes, overwrite_old, layer_structure=None, activation_func=None, weight_init=None, add_layer_norm=False, use_dropout=False, dropout_structure=None):
# Remove illegal characters from name. # Remove illegal characters from name.
name = "".join( x for x in name if (x.isalnum() or x in "._- ")) name = "".join( x for x in name if (x.isalnum() or x in "._- "))
assert name, "Name cannot be empty!"
fn = os.path.join(shared.cmd_opts.hypernetwork_dir, f"{name}.pt") fn = os.path.join(shared.cmd_opts.hypernetwork_dir, f"{name}.pt")
if not overwrite_old: if not overwrite_old:
@ -390,6 +428,11 @@ def create_hypernetwork(name, enable_sizes, overwrite_old, layer_structure=None,
if type(layer_structure) == str: if type(layer_structure) == str:
layer_structure = [float(x.strip()) for x in layer_structure.split(",")] layer_structure = [float(x.strip()) for x in layer_structure.split(",")]
if use_dropout and dropout_structure and type(dropout_structure) == str:
dropout_structure = [float(x.strip()) for x in dropout_structure.split(",")]
else:
dropout_structure = [0] * len(layer_structure)
hypernet = modules.hypernetworks.hypernetwork.Hypernetwork( hypernet = modules.hypernetworks.hypernetwork.Hypernetwork(
name=name, name=name,
enable_sizes=[int(x) for x in enable_sizes], enable_sizes=[int(x) for x in enable_sizes],
@ -398,6 +441,7 @@ def create_hypernetwork(name, enable_sizes, overwrite_old, layer_structure=None,
weight_init=weight_init, weight_init=weight_init,
add_layer_norm=add_layer_norm, add_layer_norm=add_layer_norm,
use_dropout=use_dropout, use_dropout=use_dropout,
dropout_structure=dropout_structure
) )
hypernet.save(fn) hypernet.save(fn)
@ -480,7 +524,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, gradient_step,
shared.sd_model.first_stage_model.to(devices.cpu) shared.sd_model.first_stage_model.to(devices.cpu)
weights = hypernetwork.weights() weights = hypernetwork.weights()
hypernetwork.train_mode() hypernetwork.train()
# Here we use optimizer from saved HN, or we can specify as UI option. # Here we use optimizer from saved HN, or we can specify as UI option.
if hypernetwork.optimizer_name in optimizer_dict: if hypernetwork.optimizer_name in optimizer_dict:
@ -594,7 +638,11 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, gradient_step,
if images_dir is not None and steps_done % create_image_every == 0: if images_dir is not None and steps_done % create_image_every == 0:
forced_filename = f'{hypernetwork_name}-{steps_done}' forced_filename = f'{hypernetwork_name}-{steps_done}'
last_saved_image = os.path.join(images_dir, forced_filename) last_saved_image = os.path.join(images_dir, forced_filename)
hypernetwork.eval_mode() hypernetwork.eval()
rng_state = torch.get_rng_state()
cuda_rng_state = None
if torch.cuda.is_available():
cuda_rng_state = torch.cuda.get_rng_state_all()
shared.sd_model.cond_stage_model.to(devices.device) shared.sd_model.cond_stage_model.to(devices.device)
shared.sd_model.first_stage_model.to(devices.device) shared.sd_model.first_stage_model.to(devices.device)
@ -627,7 +675,10 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, gradient_step,
if unload: if unload:
shared.sd_model.cond_stage_model.to(devices.cpu) shared.sd_model.cond_stage_model.to(devices.cpu)
shared.sd_model.first_stage_model.to(devices.cpu) shared.sd_model.first_stage_model.to(devices.cpu)
hypernetwork.train_mode() torch.set_rng_state(rng_state)
if torch.cuda.is_available():
torch.cuda.set_rng_state_all(cuda_rng_state)
hypernetwork.train()
if image is not None: if image is not None:
shared.state.current_image = image shared.state.current_image = image
last_saved_image, last_text_info = images.save_image(image, images_dir, "", p.seed, p.prompt, shared.opts.samples_format, processed.infotexts[0], p=p, forced_filename=forced_filename, save_to_dirs=False) last_saved_image, last_text_info = images.save_image(image, images_dir, "", p.seed, p.prompt, shared.opts.samples_format, processed.infotexts[0], p=p, forced_filename=forced_filename, save_to_dirs=False)
@ -649,7 +700,7 @@ Last saved image: {html.escape(last_saved_image)}<br/>
finally: finally:
pbar.leave = False pbar.leave = False
pbar.close() pbar.close()
hypernetwork.eval_mode() hypernetwork.eval()
#report_statistics(loss_dict) #report_statistics(loss_dict)
filename = os.path.join(shared.cmd_opts.hypernetwork_dir, f'{hypernetwork_name}.pt') filename = os.path.join(shared.cmd_opts.hypernetwork_dir, f'{hypernetwork_name}.pt')

View File

@ -9,8 +9,8 @@ from modules import devices, sd_hijack, shared
not_available = ["hardswish", "multiheadattention"] not_available = ["hardswish", "multiheadattention"]
keys = list(x for x in modules.hypernetworks.hypernetwork.HypernetworkModule.activation_dict.keys() if x not in not_available) keys = list(x for x in modules.hypernetworks.hypernetwork.HypernetworkModule.activation_dict.keys() if x not in not_available)
def create_hypernetwork(name, enable_sizes, overwrite_old, layer_structure=None, activation_func=None, weight_init=None, add_layer_norm=False, use_dropout=False): def create_hypernetwork(name, enable_sizes, overwrite_old, layer_structure=None, activation_func=None, weight_init=None, add_layer_norm=False, use_dropout=False, dropout_structure=None):
filename = modules.hypernetworks.hypernetwork.create_hypernetwork(name, enable_sizes, overwrite_old, layer_structure, activation_func, weight_init, add_layer_norm, use_dropout) filename = modules.hypernetworks.hypernetwork.create_hypernetwork(name, enable_sizes, overwrite_old, layer_structure, activation_func, weight_init, add_layer_norm, use_dropout, dropout_structure)
return gr.Dropdown.update(choices=sorted([x for x in shared.hypernetworks.keys()])), f"Created: {filename}", "" return gr.Dropdown.update(choices=sorted([x for x in shared.hypernetworks.keys()])), f"Created: {filename}", ""

View File

@ -1268,6 +1268,7 @@ def create_ui():
new_hypernetwork_initialization_option = gr.Dropdown(value = "Normal", label="Select Layer weights initialization. Recommended: Kaiming for relu-like, Xavier for sigmoid-like, Normal otherwise", choices=["Normal", "KaimingUniform", "KaimingNormal", "XavierUniform", "XavierNormal"], elem_id="train_new_hypernetwork_initialization_option") new_hypernetwork_initialization_option = gr.Dropdown(value = "Normal", label="Select Layer weights initialization. Recommended: Kaiming for relu-like, Xavier for sigmoid-like, Normal otherwise", choices=["Normal", "KaimingUniform", "KaimingNormal", "XavierUniform", "XavierNormal"], elem_id="train_new_hypernetwork_initialization_option")
new_hypernetwork_add_layer_norm = gr.Checkbox(label="Add layer normalization", elem_id="train_new_hypernetwork_add_layer_norm") new_hypernetwork_add_layer_norm = gr.Checkbox(label="Add layer normalization", elem_id="train_new_hypernetwork_add_layer_norm")
new_hypernetwork_use_dropout = gr.Checkbox(label="Use dropout", elem_id="train_new_hypernetwork_use_dropout") new_hypernetwork_use_dropout = gr.Checkbox(label="Use dropout", elem_id="train_new_hypernetwork_use_dropout")
new_hypernetwork_dropout_structure = gr.Textbox("0, 0, 0", label="Enter hypernetwork Dropout structure (or empty). Recommended : 0~0.35 incrementing sequence: 0, 0.05, 0.15", placeholder="1st and last digit must be 0 and values should be between 0 and 1. ex:'0, 0.01, 0'")
overwrite_old_hypernetwork = gr.Checkbox(value=False, label="Overwrite Old Hypernetwork", elem_id="train_overwrite_old_hypernetwork") overwrite_old_hypernetwork = gr.Checkbox(value=False, label="Overwrite Old Hypernetwork", elem_id="train_overwrite_old_hypernetwork")
with gr.Row(): with gr.Row():
@ -1414,7 +1415,8 @@ def create_ui():
new_hypernetwork_activation_func, new_hypernetwork_activation_func,
new_hypernetwork_initialization_option, new_hypernetwork_initialization_option,
new_hypernetwork_add_layer_norm, new_hypernetwork_add_layer_norm,
new_hypernetwork_use_dropout new_hypernetwork_use_dropout,
new_hypernetwork_dropout_structure
], ],
outputs=[ outputs=[
train_hypernetwork_name, train_hypernetwork_name,