Merge branch 'master' of github.com:AUTOMATIC1111/stable-diffusion-webui
This commit is contained in:
commit
876da12599
@ -82,8 +82,8 @@ Check the [custom scripts](https://github.com/AUTOMATIC1111/stable-diffusion-web
|
||||
- Use VAEs
|
||||
- Estimated completion time in progress bar
|
||||
- API
|
||||
- Support for dedicated [inpainting model](https://github.com/runwayml/stable-diffusion#inpainting-with-stable-diffusion) by RunwayML.
|
||||
- via extension: [Aesthetic Gradients](https://github.com/AUTOMATIC1111/stable-diffusion-webui-aesthetic-gradients), a way to generate images with a specific aesthetic by using clip images embds (implementation of [https://github.com/vicgalle/stable-diffusion-aesthetic-gradients](https://github.com/vicgalle/stable-diffusion-aesthetic-gradients))
|
||||
- Support for dedicated [inpainting model](https://github.com/runwayml/stable-diffusion#inpainting-with-stable-diffusion) by RunwayML.
|
||||
- via extension: [Aesthetic Gradients](https://github.com/AUTOMATIC1111/stable-diffusion-webui-aesthetic-gradients), a way to generate images with a specific aesthetic by using clip images embeds (implementation of [https://github.com/vicgalle/stable-diffusion-aesthetic-gradients](https://github.com/vicgalle/stable-diffusion-aesthetic-gradients))
|
||||
- [Stable Diffusion 2.0](https://github.com/Stability-AI/stablediffusion) support - see [wiki](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Features#stable-diffusion-20) for instructions
|
||||
|
||||
## Installation and Running
|
||||
|
@ -1,3 +1,4 @@
|
||||
import os
|
||||
import gc
|
||||
import time
|
||||
import warnings
|
||||
@ -8,6 +9,7 @@ import torchvision
|
||||
from PIL import Image
|
||||
from einops import rearrange, repeat
|
||||
from omegaconf import OmegaConf
|
||||
import safetensors.torch
|
||||
|
||||
from ldm.models.diffusion.ddim import DDIMSampler
|
||||
from ldm.util import instantiate_from_config, ismap
|
||||
@ -24,12 +26,16 @@ class LDSR:
|
||||
global cached_ldsr_model
|
||||
|
||||
if shared.opts.ldsr_cached and cached_ldsr_model is not None:
|
||||
print(f"Loading model from cache")
|
||||
print("Loading model from cache")
|
||||
model: torch.nn.Module = cached_ldsr_model
|
||||
else:
|
||||
print(f"Loading model from {self.modelPath}")
|
||||
pl_sd = torch.load(self.modelPath, map_location="cpu")
|
||||
sd = pl_sd["state_dict"]
|
||||
_, extension = os.path.splitext(self.modelPath)
|
||||
if extension.lower() == ".safetensors":
|
||||
pl_sd = safetensors.torch.load_file(self.modelPath, device="cpu")
|
||||
else:
|
||||
pl_sd = torch.load(self.modelPath, map_location="cpu")
|
||||
sd = pl_sd["state_dict"] if "state_dict" in pl_sd else pl_sd
|
||||
config = OmegaConf.load(self.yamlPath)
|
||||
config.model.target = "ldm.models.diffusion.ddpm.LatentDiffusionV1"
|
||||
model: torch.nn.Module = instantiate_from_config(config.model)
|
||||
|
@ -25,6 +25,7 @@ class UpscalerLDSR(Upscaler):
|
||||
yaml_path = os.path.join(self.model_path, "project.yaml")
|
||||
old_model_path = os.path.join(self.model_path, "model.pth")
|
||||
new_model_path = os.path.join(self.model_path, "model.ckpt")
|
||||
safetensors_model_path = os.path.join(self.model_path, "model.safetensors")
|
||||
if os.path.exists(yaml_path):
|
||||
statinfo = os.stat(yaml_path)
|
||||
if statinfo.st_size >= 10485760:
|
||||
@ -33,8 +34,11 @@ class UpscalerLDSR(Upscaler):
|
||||
if os.path.exists(old_model_path):
|
||||
print("Renaming model from model.pth to model.ckpt")
|
||||
os.rename(old_model_path, new_model_path)
|
||||
model = load_file_from_url(url=self.model_url, model_dir=self.model_path,
|
||||
file_name="model.ckpt", progress=True)
|
||||
if os.path.exists(safetensors_model_path):
|
||||
model = safetensors_model_path
|
||||
else:
|
||||
model = load_file_from_url(url=self.model_url, model_dir=self.model_path,
|
||||
file_name="model.ckpt", progress=True)
|
||||
yaml = load_file_from_url(url=self.yaml_url, model_dir=self.model_path,
|
||||
file_name="project.yaml", progress=True)
|
||||
|
||||
|
@ -9,7 +9,7 @@ contextMenuInit = function(){
|
||||
|
||||
function showContextMenu(event,element,menuEntries){
|
||||
let posx = event.clientX + document.body.scrollLeft + document.documentElement.scrollLeft;
|
||||
let posy = event.clientY + document.body.scrollTop + document.documentElement.scrollTop;
|
||||
let posy = event.clientY + document.body.scrollTop + document.documentElement.scrollTop;
|
||||
|
||||
let oldMenu = gradioApp().querySelector('#context-menu')
|
||||
if(oldMenu){
|
||||
@ -61,15 +61,15 @@ contextMenuInit = function(){
|
||||
|
||||
}
|
||||
|
||||
function appendContextMenuOption(targetEmementSelector,entryName,entryFunction){
|
||||
|
||||
currentItems = menuSpecs.get(targetEmementSelector)
|
||||
|
||||
function appendContextMenuOption(targetElementSelector,entryName,entryFunction){
|
||||
|
||||
currentItems = menuSpecs.get(targetElementSelector)
|
||||
|
||||
if(!currentItems){
|
||||
currentItems = []
|
||||
menuSpecs.set(targetEmementSelector,currentItems);
|
||||
menuSpecs.set(targetElementSelector,currentItems);
|
||||
}
|
||||
let newItem = {'id':targetEmementSelector+'_'+uid(),
|
||||
let newItem = {'id':targetElementSelector+'_'+uid(),
|
||||
'name':entryName,
|
||||
'func':entryFunction,
|
||||
'isNew':true}
|
||||
@ -97,7 +97,7 @@ contextMenuInit = function(){
|
||||
if(source.id && source.id.indexOf('check_progress')>-1){
|
||||
return
|
||||
}
|
||||
|
||||
|
||||
let oldMenu = gradioApp().querySelector('#context-menu')
|
||||
if(oldMenu){
|
||||
oldMenu.remove()
|
||||
@ -117,7 +117,7 @@ contextMenuInit = function(){
|
||||
})
|
||||
});
|
||||
eventListenerApplied=true
|
||||
|
||||
|
||||
}
|
||||
|
||||
return [appendContextMenuOption, removeContextMenuOption, addContextMenuEventListener]
|
||||
@ -152,8 +152,8 @@ addContextMenuEventListener = initResponse[2];
|
||||
generateOnRepeat('#img2img_generate','#img2img_interrupt');
|
||||
})
|
||||
|
||||
let cancelGenerateForever = function(){
|
||||
clearInterval(window.generateOnRepeatInterval)
|
||||
let cancelGenerateForever = function(){
|
||||
clearInterval(window.generateOnRepeatInterval)
|
||||
}
|
||||
|
||||
appendContextMenuOption('#txt2img_interrupt','Cancel generate forever',cancelGenerateForever)
|
||||
@ -162,7 +162,7 @@ addContextMenuEventListener = initResponse[2];
|
||||
appendContextMenuOption('#img2img_generate', 'Cancel generate forever',cancelGenerateForever)
|
||||
|
||||
appendContextMenuOption('#roll','Roll three',
|
||||
function(){
|
||||
function(){
|
||||
let rollbutton = get_uiCurrentTabContent().querySelector('#roll');
|
||||
setTimeout(function(){rollbutton.click()},100)
|
||||
setTimeout(function(){rollbutton.click()},200)
|
||||
|
@ -6,6 +6,7 @@ titles = {
|
||||
"GFPGAN": "Restore low quality faces using GFPGAN neural network",
|
||||
"Euler a": "Euler Ancestral - very creative, each can get a completely different picture depending on step count, setting steps to higher than 30-40 does not help",
|
||||
"DDIM": "Denoising Diffusion Implicit Models - best at inpainting",
|
||||
"DPM adaptive": "Ignores step count - uses a number of steps determined by the CFG and resolution",
|
||||
|
||||
"Batch count": "How many batches of images to create",
|
||||
"Batch size": "How many image to create in a single batch",
|
||||
@ -17,7 +18,7 @@ titles = {
|
||||
"\u2199\ufe0f": "Read generation parameters from prompt or last generation if prompt is empty into user interface.",
|
||||
"\u{1f4c2}": "Open images output directory",
|
||||
"\u{1f4be}": "Save style",
|
||||
"\U0001F5D1": "Clear prompt"
|
||||
"\U0001F5D1": "Clear prompt",
|
||||
"\u{1f4cb}": "Apply selected styles to current prompt",
|
||||
|
||||
"Inpaint a part of image": "Draw a mask over an image, and the script will regenerate the masked area with content according to prompt",
|
||||
@ -96,7 +97,10 @@ titles = {
|
||||
|
||||
"Learning rate": "how fast should the training go. Low values will take longer to train, high values may fail to converge (not generate accurate results) and/or may break the embedding (This has happened if you see Loss: nan in the training info textbox. If this happens, you need to manually restore your embedding from an older not-broken backup).\n\nYou can set a single numeric value, or multiple learning rates using the syntax:\n\n rate_1:max_steps_1, rate_2:max_steps_2, ...\n\nEG: 0.005:100, 1e-3:1000, 1e-5\n\nWill train with rate of 0.005 for first 100 steps, then 1e-3 until 1000 steps, then 1e-5 for all remaining steps.",
|
||||
|
||||
"Clip skip": "Early stopping parameter for CLIP model; 1 is stop at last layer as usual, 2 is stop at penultimate layer, etc."
|
||||
"Clip skip": "Early stopping parameter for CLIP model; 1 is stop at last layer as usual, 2 is stop at penultimate layer, etc.",
|
||||
|
||||
"Approx NN": "Cheap neural network approximation. Very fast compared to VAE, but produces pictures with 4 times smaller horizontal/vertical resoluton and lower quality.",
|
||||
"Approx cheap": "Very cheap approximation. Very fast compared to VAE, but produces pictures with 8 times smaller horizontal/vertical resoluton and extremely low quality."
|
||||
}
|
||||
|
||||
|
||||
|
@ -15,7 +15,7 @@ onUiUpdate(function(){
|
||||
}
|
||||
}
|
||||
|
||||
const galleryPreviews = gradioApp().querySelectorAll('img.h-full.w-full.overflow-hidden');
|
||||
const galleryPreviews = gradioApp().querySelectorAll('div[id^="tab_"][style*="display: block"] img.h-full.w-full.overflow-hidden');
|
||||
|
||||
if (galleryPreviews == null) return;
|
||||
|
||||
|
@ -3,7 +3,7 @@ global_progressbars = {}
|
||||
galleries = {}
|
||||
galleryObservers = {}
|
||||
|
||||
// this tracks laumnches of window.setTimeout for progressbar to prevent starting a new timeout when the previous is still running
|
||||
// this tracks launches of window.setTimeout for progressbar to prevent starting a new timeout when the previous is still running
|
||||
timeoutIds = {}
|
||||
|
||||
function check_progressbar(id_part, id_progressbar, id_progressbar_span, id_skip, id_interrupt, id_preview, id_gallery){
|
||||
@ -20,21 +20,21 @@ function check_progressbar(id_part, id_progressbar, id_progressbar_span, id_skip
|
||||
|
||||
var skip = id_skip ? gradioApp().getElementById(id_skip) : null
|
||||
var interrupt = gradioApp().getElementById(id_interrupt)
|
||||
|
||||
|
||||
if(opts.show_progress_in_title && progressbar && progressbar.offsetParent){
|
||||
if(progressbar.innerText){
|
||||
let newtitle = '[' + progressbar.innerText.trim() + '] Stable Diffusion';
|
||||
if(document.title != newtitle){
|
||||
document.title = newtitle;
|
||||
document.title = newtitle;
|
||||
}
|
||||
}else{
|
||||
let newtitle = 'Stable Diffusion'
|
||||
if(document.title != newtitle){
|
||||
document.title = newtitle;
|
||||
document.title = newtitle;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
if(progressbar!= null && progressbar != global_progressbars[id_progressbar]){
|
||||
global_progressbars[id_progressbar] = progressbar
|
||||
|
||||
@ -63,7 +63,7 @@ function check_progressbar(id_part, id_progressbar, id_progressbar_span, id_skip
|
||||
skip.style.display = "none"
|
||||
}
|
||||
interrupt.style.display = "none"
|
||||
|
||||
|
||||
//disconnect observer once generation finished, so user can close selected image if they want
|
||||
if (galleryObservers[id_gallery]) {
|
||||
galleryObservers[id_gallery].disconnect();
|
||||
|
@ -100,7 +100,7 @@ function create_submit_args(args){
|
||||
|
||||
// As it is currently, txt2img and img2img send back the previous output args (txt2img_gallery, generation_info, html_info) whenever you generate a new image.
|
||||
// This can lead to uploading a huge gallery of previously generated images, which leads to an unnecessary delay between submitting and beginning to generate.
|
||||
// I don't know why gradio is seding outputs along with inputs, but we can prevent sending the image gallery here, which seems to be an issue for some.
|
||||
// I don't know why gradio is sending outputs along with inputs, but we can prevent sending the image gallery here, which seems to be an issue for some.
|
||||
// If gradio at some point stops sending outputs, this may break something
|
||||
if(Array.isArray(res[res.length - 3])){
|
||||
res[res.length - 3] = null
|
||||
|
BIN
models/VAE-approx/model.pt
Normal file
BIN
models/VAE-approx/model.pt
Normal file
Binary file not shown.
@ -10,13 +10,17 @@ from fastapi.security import HTTPBasic, HTTPBasicCredentials
|
||||
from secrets import compare_digest
|
||||
|
||||
import modules.shared as shared
|
||||
from modules import sd_samplers, deepbooru
|
||||
from modules import sd_samplers, deepbooru, sd_hijack
|
||||
from modules.api.models import *
|
||||
from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img, process_images
|
||||
from modules.extras import run_extras, run_pnginfo
|
||||
from modules.textual_inversion.textual_inversion import create_embedding, train_embedding
|
||||
from modules.textual_inversion.preprocess import preprocess
|
||||
from modules.hypernetworks.hypernetwork import create_hypernetwork, train_hypernetwork
|
||||
from PIL import PngImagePlugin,Image
|
||||
from modules.sd_models import checkpoints_list
|
||||
from modules.realesrgan_model import get_realesrgan_models
|
||||
from modules import devices
|
||||
from typing import List
|
||||
|
||||
def upscaler_to_index(name: str):
|
||||
@ -67,10 +71,10 @@ def encode_pil_to_base64(image):
|
||||
class Api:
|
||||
def __init__(self, app: FastAPI, queue_lock: Lock):
|
||||
if shared.cmd_opts.api_auth:
|
||||
self.credenticals = dict()
|
||||
self.credentials = dict()
|
||||
for auth in shared.cmd_opts.api_auth.split(","):
|
||||
user, password = auth.split(":")
|
||||
self.credenticals[user] = password
|
||||
self.credentials[user] = password
|
||||
|
||||
self.router = APIRouter()
|
||||
self.app = app
|
||||
@ -93,18 +97,24 @@ class Api:
|
||||
self.add_api_route("/sdapi/v1/hypernetworks", self.get_hypernetworks, methods=["GET"], response_model=List[HypernetworkItem])
|
||||
self.add_api_route("/sdapi/v1/face-restorers", self.get_face_restorers, methods=["GET"], response_model=List[FaceRestorerItem])
|
||||
self.add_api_route("/sdapi/v1/realesrgan-models", self.get_realesrgan_models, methods=["GET"], response_model=List[RealesrganItem])
|
||||
self.add_api_route("/sdapi/v1/prompt-styles", self.get_promp_styles, methods=["GET"], response_model=List[PromptStyleItem])
|
||||
self.add_api_route("/sdapi/v1/prompt-styles", self.get_prompt_styles, methods=["GET"], response_model=List[PromptStyleItem])
|
||||
self.add_api_route("/sdapi/v1/artist-categories", self.get_artists_categories, methods=["GET"], response_model=List[str])
|
||||
self.add_api_route("/sdapi/v1/artists", self.get_artists, methods=["GET"], response_model=List[ArtistItem])
|
||||
self.add_api_route("/sdapi/v1/refresh-checkpoints", self.refresh_checkpoints, methods=["POST"])
|
||||
self.add_api_route("/sdapi/v1/create/embedding", self.create_embedding, methods=["POST"], response_model=CreateResponse)
|
||||
self.add_api_route("/sdapi/v1/create/hypernetwork", self.create_hypernetwork, methods=["POST"], response_model=CreateResponse)
|
||||
self.add_api_route("/sdapi/v1/preprocess", self.preprocess, methods=["POST"], response_model=PreprocessResponse)
|
||||
self.add_api_route("/sdapi/v1/train/embedding", self.train_embedding, methods=["POST"], response_model=TrainResponse)
|
||||
self.add_api_route("/sdapi/v1/train/hypernetwork", self.train_hypernetwork, methods=["POST"], response_model=TrainResponse)
|
||||
|
||||
def add_api_route(self, path: str, endpoint, **kwargs):
|
||||
if shared.cmd_opts.api_auth:
|
||||
return self.app.add_api_route(path, endpoint, dependencies=[Depends(self.auth)], **kwargs)
|
||||
return self.app.add_api_route(path, endpoint, **kwargs)
|
||||
|
||||
def auth(self, credenticals: HTTPBasicCredentials = Depends(HTTPBasic())):
|
||||
if credenticals.username in self.credenticals:
|
||||
if compare_digest(credenticals.password, self.credenticals[credenticals.username]):
|
||||
def auth(self, credentials: HTTPBasicCredentials = Depends(HTTPBasic())):
|
||||
if credentials.username in self.credentials:
|
||||
if compare_digest(credentials.password, self.credentials[credentials.username]):
|
||||
return True
|
||||
|
||||
raise HTTPException(status_code=401, detail="Incorrect username or password", headers={"WWW-Authenticate": "Basic"})
|
||||
@ -180,7 +190,7 @@ class Api:
|
||||
reqDict['image'] = decode_base64_to_image(reqDict['image'])
|
||||
|
||||
with self.queue_lock:
|
||||
result = run_extras(extras_mode=0, image_folder="", input_dir="", output_dir="", **reqDict)
|
||||
result = run_extras(extras_mode=0, image_folder="", input_dir="", output_dir="", save_output=False, **reqDict)
|
||||
|
||||
return ExtrasSingleImageResponse(image=encode_pil_to_base64(result[0][0]), html_info=result[1])
|
||||
|
||||
@ -196,7 +206,7 @@ class Api:
|
||||
reqDict.pop('imageList')
|
||||
|
||||
with self.queue_lock:
|
||||
result = run_extras(extras_mode=1, image="", input_dir="", output_dir="", **reqDict)
|
||||
result = run_extras(extras_mode=1, image="", input_dir="", output_dir="", save_output=False, **reqDict)
|
||||
|
||||
return ExtrasBatchImagesResponse(images=list(map(encode_pil_to_base64, result[0])), html_info=result[1])
|
||||
|
||||
@ -239,7 +249,7 @@ class Api:
|
||||
def interrogateapi(self, interrogatereq: InterrogateRequest):
|
||||
image_b64 = interrogatereq.image
|
||||
if image_b64 is None:
|
||||
raise HTTPException(status_code=404, detail="Image not found")
|
||||
raise HTTPException(status_code=404, detail="Image not found")
|
||||
|
||||
img = decode_base64_to_image(image_b64)
|
||||
img = img.convert('RGB')
|
||||
@ -252,7 +262,7 @@ class Api:
|
||||
processed = deepbooru.model.tag(img)
|
||||
else:
|
||||
raise HTTPException(status_code=404, detail="Model not found")
|
||||
|
||||
|
||||
return InterrogateResponse(caption=processed)
|
||||
|
||||
def interruptapi(self):
|
||||
@ -308,7 +318,7 @@ class Api:
|
||||
def get_realesrgan_models(self):
|
||||
return [{"name":x.name,"path":x.data_path, "scale":x.scale} for x in get_realesrgan_models(None)]
|
||||
|
||||
def get_promp_styles(self):
|
||||
def get_prompt_styles(self):
|
||||
styleList = []
|
||||
for k in shared.prompt_styles.styles:
|
||||
style = shared.prompt_styles.styles[k]
|
||||
@ -322,6 +332,92 @@ class Api:
|
||||
def get_artists(self):
|
||||
return [{"name":x[0], "score":x[1], "category":x[2]} for x in shared.artist_db.artists]
|
||||
|
||||
def refresh_checkpoints(self):
|
||||
shared.refresh_checkpoints()
|
||||
|
||||
def create_embedding(self, args: dict):
|
||||
try:
|
||||
shared.state.begin()
|
||||
filename = create_embedding(**args) # create empty embedding
|
||||
sd_hijack.model_hijack.embedding_db.load_textual_inversion_embeddings() # reload embeddings so new one can be immediately used
|
||||
shared.state.end()
|
||||
return CreateResponse(info = "create embedding filename: {filename}".format(filename = filename))
|
||||
except AssertionError as e:
|
||||
shared.state.end()
|
||||
return TrainResponse(info = "create embedding error: {error}".format(error = e))
|
||||
|
||||
def create_hypernetwork(self, args: dict):
|
||||
try:
|
||||
shared.state.begin()
|
||||
filename = create_hypernetwork(**args) # create empty embedding
|
||||
shared.state.end()
|
||||
return CreateResponse(info = "create hypernetwork filename: {filename}".format(filename = filename))
|
||||
except AssertionError as e:
|
||||
shared.state.end()
|
||||
return TrainResponse(info = "create hypernetwork error: {error}".format(error = e))
|
||||
|
||||
def preprocess(self, args: dict):
|
||||
try:
|
||||
shared.state.begin()
|
||||
preprocess(**args) # quick operation unless blip/booru interrogation is enabled
|
||||
shared.state.end()
|
||||
return PreprocessResponse(info = 'preprocess complete')
|
||||
except KeyError as e:
|
||||
shared.state.end()
|
||||
return PreprocessResponse(info = "preprocess error: invalid token: {error}".format(error = e))
|
||||
except AssertionError as e:
|
||||
shared.state.end()
|
||||
return PreprocessResponse(info = "preprocess error: {error}".format(error = e))
|
||||
except FileNotFoundError as e:
|
||||
shared.state.end()
|
||||
return PreprocessResponse(info = 'preprocess error: {error}'.format(error = e))
|
||||
|
||||
def train_embedding(self, args: dict):
|
||||
try:
|
||||
shared.state.begin()
|
||||
apply_optimizations = shared.opts.training_xattention_optimizations
|
||||
error = None
|
||||
filename = ''
|
||||
if not apply_optimizations:
|
||||
sd_hijack.undo_optimizations()
|
||||
try:
|
||||
embedding, filename = train_embedding(**args) # can take a long time to complete
|
||||
except Exception as e:
|
||||
error = e
|
||||
finally:
|
||||
if not apply_optimizations:
|
||||
sd_hijack.apply_optimizations()
|
||||
shared.state.end()
|
||||
return TrainResponse(info = "train embedding complete: filename: {filename} error: {error}".format(filename = filename, error = error))
|
||||
except AssertionError as msg:
|
||||
shared.state.end()
|
||||
return TrainResponse(info = "train embedding error: {msg}".format(msg = msg))
|
||||
|
||||
def train_hypernetwork(self, args: dict):
|
||||
try:
|
||||
shared.state.begin()
|
||||
initial_hypernetwork = shared.loaded_hypernetwork
|
||||
apply_optimizations = shared.opts.training_xattention_optimizations
|
||||
error = None
|
||||
filename = ''
|
||||
if not apply_optimizations:
|
||||
sd_hijack.undo_optimizations()
|
||||
try:
|
||||
hypernetwork, filename = train_hypernetwork(*args)
|
||||
except Exception as e:
|
||||
error = e
|
||||
finally:
|
||||
shared.loaded_hypernetwork = initial_hypernetwork
|
||||
shared.sd_model.cond_stage_model.to(devices.device)
|
||||
shared.sd_model.first_stage_model.to(devices.device)
|
||||
if not apply_optimizations:
|
||||
sd_hijack.apply_optimizations()
|
||||
shared.state.end()
|
||||
return TrainResponse(info = "train embedding complete: filename: {filename} error: {error}".format(filename = filename, error = error))
|
||||
except AssertionError as msg:
|
||||
shared.state.end()
|
||||
return TrainResponse(info = "train embedding error: {error}".format(error = error))
|
||||
|
||||
def launch(self, server_name, port):
|
||||
self.app.include_router(self.router)
|
||||
uvicorn.run(self.app, host=server_name, port=port)
|
||||
|
@ -128,7 +128,7 @@ class ExtrasBaseRequest(BaseModel):
|
||||
upscaling_resize: float = Field(default=2, title="Upscaling Factor", ge=1, le=4, description="By how much to upscale the image, only used when resize_mode=0.")
|
||||
upscaling_resize_w: int = Field(default=512, title="Target Width", ge=1, description="Target width for the upscaler to hit. Only used when resize_mode=1.")
|
||||
upscaling_resize_h: int = Field(default=512, title="Target Height", ge=1, description="Target height for the upscaler to hit. Only used when resize_mode=1.")
|
||||
upscaling_crop: bool = Field(default=True, title="Crop to fit", description="Should the upscaler crop the image to fit in the choosen size?")
|
||||
upscaling_crop: bool = Field(default=True, title="Crop to fit", description="Should the upscaler crop the image to fit in the chosen size?")
|
||||
upscaler_1: str = Field(default="None", title="Main upscaler", description=f"The name of the main upscaler to use, it has to be one of this list: {' , '.join([x.name for x in sd_upscalers])}")
|
||||
upscaler_2: str = Field(default="None", title="Secondary upscaler", description=f"The name of the secondary upscaler to use, it has to be one of this list: {' , '.join([x.name for x in sd_upscalers])}")
|
||||
extras_upscaler_2_visibility: float = Field(default=0, title="Secondary upscaler visibility", ge=0, le=1, allow_inf_nan=False, description="Sets the visibility of secondary upscaler, values should be between 0 and 1.")
|
||||
@ -175,6 +175,15 @@ class InterrogateRequest(BaseModel):
|
||||
class InterrogateResponse(BaseModel):
|
||||
caption: str = Field(default=None, title="Caption", description="The generated caption for the image.")
|
||||
|
||||
class TrainResponse(BaseModel):
|
||||
info: str = Field(title="Train info", description="Response string from train embedding or hypernetwork task.")
|
||||
|
||||
class CreateResponse(BaseModel):
|
||||
info: str = Field(title="Create info", description="Response string from create embedding or hypernetwork task.")
|
||||
|
||||
class PreprocessResponse(BaseModel):
|
||||
info: str = Field(title="Preprocess info", description="Response string from preprocessing task.")
|
||||
|
||||
fields = {}
|
||||
for key, metadata in opts.data_labels.items():
|
||||
value = opts.data.get(key)
|
||||
|
@ -382,7 +382,7 @@ class VQAutoEncoder(nn.Module):
|
||||
self.load_state_dict(torch.load(model_path, map_location='cpu')['params'])
|
||||
logger.info(f'vqgan is loaded from: {model_path} [params]')
|
||||
else:
|
||||
raise ValueError(f'Wrong params!')
|
||||
raise ValueError('Wrong params!')
|
||||
|
||||
|
||||
def forward(self, x):
|
||||
@ -431,7 +431,7 @@ class VQGANDiscriminator(nn.Module):
|
||||
elif 'params' in chkpt:
|
||||
self.load_state_dict(torch.load(model_path, map_location='cpu')['params'])
|
||||
else:
|
||||
raise ValueError(f'Wrong params!')
|
||||
raise ValueError('Wrong params!')
|
||||
|
||||
def forward(self, x):
|
||||
return self.main(x)
|
@ -79,7 +79,9 @@ class DeepDanbooru:
|
||||
|
||||
res = []
|
||||
|
||||
for tag in tags:
|
||||
filtertags = set([x.strip().replace(' ', '_') for x in shared.opts.deepbooru_filter_tags.split(",")])
|
||||
|
||||
for tag in [x for x in tags if x not in filtertags]:
|
||||
probability = probability_dict[tag]
|
||||
tag_outformat = tag
|
||||
if use_spaces:
|
||||
|
@ -125,7 +125,16 @@ def layer_norm_fix(*args, **kwargs):
|
||||
return orig_layer_norm(*args, **kwargs)
|
||||
|
||||
|
||||
# MPS workaround for https://github.com/pytorch/pytorch/issues/90532
|
||||
orig_tensor_numpy = torch.Tensor.numpy
|
||||
def numpy_fix(self, *args, **kwargs):
|
||||
if self.requires_grad:
|
||||
self = self.detach()
|
||||
return orig_tensor_numpy(self, *args, **kwargs)
|
||||
|
||||
|
||||
# PyTorch 1.13 doesn't need these fixes but unfortunately is slower and has regressions that prevent training from working
|
||||
if has_mps() and version.parse(torch.__version__) < version.parse("1.13"):
|
||||
torch.Tensor.to = tensor_to_fix
|
||||
torch.nn.functional.layer_norm = layer_norm_fix
|
||||
torch.Tensor.numpy = numpy_fix
|
||||
|
@ -55,7 +55,7 @@ class LruCache(OrderedDict):
|
||||
cached_images: LruCache = LruCache(max_size=5)
|
||||
|
||||
|
||||
def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_dir, show_extras_results, gfpgan_visibility, codeformer_visibility, codeformer_weight, upscaling_resize, upscaling_resize_w, upscaling_resize_h, upscaling_crop, extras_upscaler_1, extras_upscaler_2, extras_upscaler_2_visibility, upscale_first: bool):
|
||||
def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_dir, show_extras_results, gfpgan_visibility, codeformer_visibility, codeformer_weight, upscaling_resize, upscaling_resize_w, upscaling_resize_h, upscaling_crop, extras_upscaler_1, extras_upscaler_2, extras_upscaler_2_visibility, upscale_first: bool, save_output: bool = True):
|
||||
devices.torch_gc()
|
||||
|
||||
imageArr = []
|
||||
@ -188,13 +188,20 @@ def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_
|
||||
for op in extras_ops:
|
||||
image, info = op(image, info)
|
||||
|
||||
if opts.use_original_name_batch and image_name != None:
|
||||
if opts.use_original_name_batch and image_name is not None:
|
||||
basename = os.path.splitext(os.path.basename(image_name))[0]
|
||||
else:
|
||||
basename = ''
|
||||
|
||||
images.save_image(image, path=outpath, basename=basename, seed=None, prompt=None, extension=opts.samples_format, info=info, short_filename=True,
|
||||
no_prompt=True, grid=False, pnginfo_section_name="extras", existing_info=existing_pnginfo, forced_filename=None)
|
||||
if save_output:
|
||||
# Add upscaler name as a suffix.
|
||||
suffix = f"-{shared.sd_upscalers[extras_upscaler_1].name}" if shared.opts.use_upscaler_name_as_suffix else ""
|
||||
# Add second upscaler if applicable.
|
||||
if suffix and extras_upscaler_2 and extras_upscaler_2_visibility:
|
||||
suffix += f"-{shared.sd_upscalers[extras_upscaler_2].name}"
|
||||
|
||||
images.save_image(image, path=outpath, basename=basename, seed=None, prompt=None, extension=opts.samples_format, info=info, short_filename=True,
|
||||
no_prompt=True, grid=False, pnginfo_section_name="extras", existing_info=existing_pnginfo, forced_filename=None, suffix=suffix)
|
||||
|
||||
if opts.enable_pnginfo:
|
||||
image.info = existing_pnginfo
|
||||
|
@ -14,6 +14,7 @@ re_param_code = r'\s*([\w ]+):\s*("(?:\\|\"|[^\"])+"|[^,]*)(?:,|$)'
|
||||
re_param = re.compile(re_param_code)
|
||||
re_params = re.compile(r"^(?:" + re_param_code + "){3,}$")
|
||||
re_imagesize = re.compile(r"^(\d+)x(\d+)$")
|
||||
re_hypernet_hash = re.compile("\(([0-9a-f]+)\)$")
|
||||
type_of_gr_update = type(gr.update())
|
||||
paste_fields = {}
|
||||
bind_list = []
|
||||
@ -139,6 +140,30 @@ def run_bind():
|
||||
)
|
||||
|
||||
|
||||
def find_hypernetwork_key(hypernet_name, hypernet_hash=None):
|
||||
"""Determines the config parameter name to use for the hypernet based on the parameters in the infotext.
|
||||
|
||||
Example: an infotext provides "Hypernet: ke-ta" and "Hypernet hash: 1234abcd". For the "Hypernet" config
|
||||
parameter this means there should be an entry that looks like "ke-ta-10000(1234abcd)" to set it to.
|
||||
|
||||
If the infotext has no hash, then a hypernet with the same name will be selected instead.
|
||||
"""
|
||||
hypernet_name = hypernet_name.lower()
|
||||
if hypernet_hash is not None:
|
||||
# Try to match the hash in the name
|
||||
for hypernet_key in shared.hypernetworks.keys():
|
||||
result = re_hypernet_hash.search(hypernet_key)
|
||||
if result is not None and result[1] == hypernet_hash:
|
||||
return hypernet_key
|
||||
else:
|
||||
# Fall back to a hypernet with the same name
|
||||
for hypernet_key in shared.hypernetworks.keys():
|
||||
if hypernet_key.lower().startswith(hypernet_name):
|
||||
return hypernet_key
|
||||
|
||||
return None
|
||||
|
||||
|
||||
def parse_generation_parameters(x: str):
|
||||
"""parses generation parameters string, the one you see in text field under the picture in UI:
|
||||
```
|
||||
@ -188,6 +213,14 @@ Steps: 20, Sampler: Euler a, CFG scale: 7, Seed: 965400086, Size: 512x512, Model
|
||||
if "Clip skip" not in res:
|
||||
res["Clip skip"] = "1"
|
||||
|
||||
if "Hypernet strength" not in res:
|
||||
res["Hypernet strength"] = "1"
|
||||
|
||||
if "Hypernet" in res:
|
||||
hypernet_name = res["Hypernet"]
|
||||
hypernet_hash = res.get("Hypernet hash", None)
|
||||
res["Hypernet"] = find_hypernetwork_key(hypernet_name, hypernet_hash)
|
||||
|
||||
return res
|
||||
|
||||
|
||||
|
@ -277,7 +277,7 @@ def load_hypernetwork(filename):
|
||||
print(traceback.format_exc(), file=sys.stderr)
|
||||
else:
|
||||
if shared.loaded_hypernetwork is not None:
|
||||
print(f"Unloading hypernetwork")
|
||||
print("Unloading hypernetwork")
|
||||
|
||||
shared.loaded_hypernetwork = None
|
||||
|
||||
@ -378,6 +378,32 @@ def report_statistics(loss_info:dict):
|
||||
print(e)
|
||||
|
||||
|
||||
def create_hypernetwork(name, enable_sizes, overwrite_old, layer_structure=None, activation_func=None, weight_init=None, add_layer_norm=False, use_dropout=False):
|
||||
# Remove illegal characters from name.
|
||||
name = "".join( x for x in name if (x.isalnum() or x in "._- "))
|
||||
|
||||
fn = os.path.join(shared.cmd_opts.hypernetwork_dir, f"{name}.pt")
|
||||
if not overwrite_old:
|
||||
assert not os.path.exists(fn), f"file {fn} already exists"
|
||||
|
||||
if type(layer_structure) == str:
|
||||
layer_structure = [float(x.strip()) for x in layer_structure.split(",")]
|
||||
|
||||
hypernet = modules.hypernetworks.hypernetwork.Hypernetwork(
|
||||
name=name,
|
||||
enable_sizes=[int(x) for x in enable_sizes],
|
||||
layer_structure=layer_structure,
|
||||
activation_func=activation_func,
|
||||
weight_init=weight_init,
|
||||
add_layer_norm=add_layer_norm,
|
||||
use_dropout=use_dropout,
|
||||
)
|
||||
hypernet.save(fn)
|
||||
|
||||
shared.reload_hypernetworks()
|
||||
|
||||
return fn
|
||||
|
||||
|
||||
def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, gradient_step, data_root, log_directory, training_width, training_height, steps, shuffle_tags, tag_drop_out, latent_sampling_method, create_image_every, save_hypernetwork_every, template_file, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height):
|
||||
# images allows training previews to have infotext. Importing it at the top causes a circular import problem.
|
||||
@ -417,7 +443,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, gradient_step,
|
||||
|
||||
initial_step = hypernetwork.step or 0
|
||||
if initial_step >= steps:
|
||||
shared.state.textinfo = f"Model has already been trained beyond specified max steps"
|
||||
shared.state.textinfo = "Model has already been trained beyond specified max steps"
|
||||
return hypernetwork, filename
|
||||
|
||||
scheduler = LearnRateScheduler(learn_rate, steps, initial_step)
|
||||
|
@ -3,39 +3,16 @@ import os
|
||||
import re
|
||||
|
||||
import gradio as gr
|
||||
import modules.textual_inversion.preprocess
|
||||
import modules.textual_inversion.textual_inversion
|
||||
import modules.hypernetworks.hypernetwork
|
||||
from modules import devices, sd_hijack, shared
|
||||
from modules.hypernetworks import hypernetwork
|
||||
|
||||
not_available = ["hardswish", "multiheadattention"]
|
||||
keys = list(x for x in hypernetwork.HypernetworkModule.activation_dict.keys() if x not in not_available)
|
||||
keys = list(x for x in modules.hypernetworks.hypernetwork.HypernetworkModule.activation_dict.keys() if x not in not_available)
|
||||
|
||||
def create_hypernetwork(name, enable_sizes, overwrite_old, layer_structure=None, activation_func=None, weight_init=None, add_layer_norm=False, use_dropout=False):
|
||||
# Remove illegal characters from name.
|
||||
name = "".join( x for x in name if (x.isalnum() or x in "._- "))
|
||||
filename = modules.hypernetworks.hypernetwork.create_hypernetwork(name, enable_sizes, overwrite_old, layer_structure, activation_func, weight_init, add_layer_norm, use_dropout)
|
||||
|
||||
fn = os.path.join(shared.cmd_opts.hypernetwork_dir, f"{name}.pt")
|
||||
if not overwrite_old:
|
||||
assert not os.path.exists(fn), f"file {fn} already exists"
|
||||
|
||||
if type(layer_structure) == str:
|
||||
layer_structure = [float(x.strip()) for x in layer_structure.split(",")]
|
||||
|
||||
hypernet = modules.hypernetworks.hypernetwork.Hypernetwork(
|
||||
name=name,
|
||||
enable_sizes=[int(x) for x in enable_sizes],
|
||||
layer_structure=layer_structure,
|
||||
activation_func=activation_func,
|
||||
weight_init=weight_init,
|
||||
add_layer_norm=add_layer_norm,
|
||||
use_dropout=use_dropout,
|
||||
)
|
||||
hypernet.save(fn)
|
||||
|
||||
shared.reload_hypernetworks()
|
||||
|
||||
return gr.Dropdown.update(choices=sorted([x for x in shared.hypernetworks.keys()])), f"Created: {fn}", ""
|
||||
return gr.Dropdown.update(choices=sorted([x for x in shared.hypernetworks.keys()])), f"Created: {filename}", ""
|
||||
|
||||
|
||||
def train_hypernetwork(*args):
|
||||
|
@ -136,8 +136,19 @@ def draw_grid_annotations(im, width, height, hor_texts, ver_texts):
|
||||
lines.append(word)
|
||||
return lines
|
||||
|
||||
def draw_texts(drawing, draw_x, draw_y, lines):
|
||||
def get_font(fontsize):
|
||||
try:
|
||||
return ImageFont.truetype(opts.font or Roboto, fontsize)
|
||||
except Exception:
|
||||
return ImageFont.truetype(Roboto, fontsize)
|
||||
|
||||
def draw_texts(drawing, draw_x, draw_y, lines, initial_fnt, initial_fontsize):
|
||||
for i, line in enumerate(lines):
|
||||
fnt = initial_fnt
|
||||
fontsize = initial_fontsize
|
||||
while drawing.multiline_textsize(line.text, font=fnt)[0] > line.allowed_width and fontsize > 0:
|
||||
fontsize -= 1
|
||||
fnt = get_font(fontsize)
|
||||
drawing.multiline_text((draw_x, draw_y + line.size[1] / 2), line.text, font=fnt, fill=color_active if line.is_active else color_inactive, anchor="mm", align="center")
|
||||
|
||||
if not line.is_active:
|
||||
@ -148,10 +159,7 @@ def draw_grid_annotations(im, width, height, hor_texts, ver_texts):
|
||||
fontsize = (width + height) // 25
|
||||
line_spacing = fontsize // 2
|
||||
|
||||
try:
|
||||
fnt = ImageFont.truetype(opts.font or Roboto, fontsize)
|
||||
except Exception:
|
||||
fnt = ImageFont.truetype(Roboto, fontsize)
|
||||
fnt = get_font(fontsize)
|
||||
|
||||
color_active = (0, 0, 0)
|
||||
color_inactive = (153, 153, 153)
|
||||
@ -178,6 +186,7 @@ def draw_grid_annotations(im, width, height, hor_texts, ver_texts):
|
||||
for line in texts:
|
||||
bbox = calc_d.multiline_textbbox((0, 0), line.text, font=fnt)
|
||||
line.size = (bbox[2] - bbox[0], bbox[3] - bbox[1])
|
||||
line.allowed_width = allowed_width
|
||||
|
||||
hor_text_heights = [sum([line.size[1] + line_spacing for line in lines]) - line_spacing for lines in hor_texts]
|
||||
ver_text_heights = [sum([line.size[1] + line_spacing for line in lines]) - line_spacing * len(lines) for lines in
|
||||
@ -194,13 +203,13 @@ def draw_grid_annotations(im, width, height, hor_texts, ver_texts):
|
||||
x = pad_left + width * col + width / 2
|
||||
y = pad_top / 2 - hor_text_heights[col] / 2
|
||||
|
||||
draw_texts(d, x, y, hor_texts[col])
|
||||
draw_texts(d, x, y, hor_texts[col], fnt, fontsize)
|
||||
|
||||
for row in range(rows):
|
||||
x = pad_left / 2
|
||||
y = pad_top + height * row + height / 2 - ver_text_heights[row] / 2
|
||||
|
||||
draw_texts(d, x, y, ver_texts[row])
|
||||
draw_texts(d, x, y, ver_texts[row], fnt, fontsize)
|
||||
|
||||
return result
|
||||
|
||||
@ -429,7 +438,7 @@ def save_image(image, path, basename, seed=None, prompt=None, extension='png', i
|
||||
The directory to save the image. Note, the option `save_to_dirs` will make the image to be saved into a sub directory.
|
||||
basename (`str`):
|
||||
The base filename which will be applied to `filename pattern`.
|
||||
seed, prompt, short_filename,
|
||||
seed, prompt, short_filename,
|
||||
extension (`str`):
|
||||
Image file extension, default is `png`.
|
||||
pngsectionname (`str`):
|
||||
@ -590,7 +599,7 @@ def read_info_from_image(image):
|
||||
Negative prompt: {json_info["uc"]}
|
||||
Steps: {json_info["steps"]}, Sampler: {sampler}, CFG scale: {json_info["scale"]}, Seed: {json_info["seed"]}, Size: {image.width}x{image.height}, Clip skip: 2, ENSD: 31337"""
|
||||
except Exception:
|
||||
print(f"Error parsing NovelAI iamge generation parameters:", file=sys.stderr)
|
||||
print("Error parsing NovelAI image generation parameters:", file=sys.stderr)
|
||||
print(traceback.format_exc(), file=sys.stderr)
|
||||
|
||||
return geninfo, items
|
||||
@ -613,3 +622,14 @@ def image_data(data):
|
||||
pass
|
||||
|
||||
return '', None
|
||||
|
||||
|
||||
def flatten(img, bgcolor):
|
||||
"""replaces transparency with bgcolor (example: "#ffffff"), returning an RGB mode image with no transparency"""
|
||||
|
||||
if img.mode == "RGBA":
|
||||
background = Image.new('RGBA', img.size, bgcolor)
|
||||
background.paste(img, mask=img)
|
||||
img = background
|
||||
|
||||
return img.convert('RGB')
|
||||
|
5
modules/import_hook.py
Normal file
5
modules/import_hook.py
Normal file
@ -0,0 +1,5 @@
|
||||
import sys
|
||||
|
||||
# this will break any attempt to import xformers which will prevent stability diffusion repo from trying to use it
|
||||
if "--xformers" not in "".join(sys.argv):
|
||||
sys.modules["xformers"] = None
|
@ -172,7 +172,7 @@ class InterrogateModels:
|
||||
res += ", " + match
|
||||
|
||||
except Exception:
|
||||
print(f"Error interrogating", file=sys.stderr)
|
||||
print("Error interrogating", file=sys.stderr)
|
||||
print(traceback.format_exc(), file=sys.stderr)
|
||||
res += "<error>"
|
||||
|
||||
|
@ -55,18 +55,20 @@ def setup_for_low_vram(sd_model, use_medvram):
|
||||
if hasattr(sd_model.cond_stage_model, 'model'):
|
||||
sd_model.cond_stage_model.transformer = sd_model.cond_stage_model.model
|
||||
|
||||
# remove three big modules, cond, first_stage, and unet from the model and then
|
||||
# remove four big modules, cond, first_stage, depth (if applicable), and unet from the model and then
|
||||
# send the model to GPU. Then put modules back. the modules will be in CPU.
|
||||
stored = sd_model.cond_stage_model.transformer, sd_model.first_stage_model, sd_model.model
|
||||
sd_model.cond_stage_model.transformer, sd_model.first_stage_model, sd_model.model = None, None, None
|
||||
stored = sd_model.cond_stage_model.transformer, sd_model.first_stage_model, getattr(sd_model, 'depth_model', None), sd_model.model
|
||||
sd_model.cond_stage_model.transformer, sd_model.first_stage_model, sd_model.depth_model, sd_model.model = None, None, None, None
|
||||
sd_model.to(devices.device)
|
||||
sd_model.cond_stage_model.transformer, sd_model.first_stage_model, sd_model.model = stored
|
||||
sd_model.cond_stage_model.transformer, sd_model.first_stage_model, sd_model.depth_model, sd_model.model = stored
|
||||
|
||||
# register hooks for those the first two models
|
||||
# register hooks for those the first three models
|
||||
sd_model.cond_stage_model.transformer.register_forward_pre_hook(send_me_to_gpu)
|
||||
sd_model.first_stage_model.register_forward_pre_hook(send_me_to_gpu)
|
||||
sd_model.first_stage_model.encode = first_stage_model_encode_wrap
|
||||
sd_model.first_stage_model.decode = first_stage_model_decode_wrap
|
||||
if sd_model.depth_model:
|
||||
sd_model.depth_model.register_forward_pre_hook(send_me_to_gpu)
|
||||
parents[sd_model.cond_stage_model.transformer] = sd_model.cond_stage_model
|
||||
|
||||
if hasattr(sd_model.cond_stage_model, 'model'):
|
||||
|
@ -2,7 +2,7 @@ from pyngrok import ngrok, conf, exception
|
||||
|
||||
def connect(token, port, region):
|
||||
account = None
|
||||
if token == None:
|
||||
if token is None:
|
||||
token = 'None'
|
||||
else:
|
||||
if ':' in token:
|
||||
@ -14,7 +14,7 @@ def connect(token, port, region):
|
||||
auth_token=token, region=region
|
||||
)
|
||||
try:
|
||||
if account == None:
|
||||
if account is None:
|
||||
public_url = ngrok.connect(port, pyngrok_config=config, bind_tls=True).public_url
|
||||
else:
|
||||
public_url = ngrok.connect(port, pyngrok_config=config, bind_tls=True, auth=account).public_url
|
||||
|
@ -27,6 +27,7 @@ from ldm.data.util import AddMiDaS
|
||||
from ldm.models.diffusion.ddpm import LatentDepth2ImageDiffusion
|
||||
|
||||
from einops import repeat, rearrange
|
||||
from blendmodes.blend import blendLayers, BlendType
|
||||
|
||||
# some of those options should not be changed at all because they would break the model, so I removed them from options.
|
||||
opt_C = 4
|
||||
@ -39,17 +40,19 @@ def setup_color_correction(image):
|
||||
return correction_target
|
||||
|
||||
|
||||
def apply_color_correction(correction, image):
|
||||
def apply_color_correction(correction, original_image):
|
||||
logging.info("Applying color correction.")
|
||||
image = Image.fromarray(cv2.cvtColor(exposure.match_histograms(
|
||||
cv2.cvtColor(
|
||||
np.asarray(image),
|
||||
np.asarray(original_image),
|
||||
cv2.COLOR_RGB2LAB
|
||||
),
|
||||
correction,
|
||||
channel_axis=2
|
||||
), cv2.COLOR_LAB2RGB).astype("uint8"))
|
||||
|
||||
|
||||
image = blendLayers(image, original_image, BlendType.LUMINOSITY)
|
||||
|
||||
return image
|
||||
|
||||
|
||||
@ -77,7 +80,7 @@ class StableDiffusionProcessing():
|
||||
"""
|
||||
The first set of paramaters: sd_models -> do_not_reload_embeddings represent the minimum required to create a StableDiffusionProcessing
|
||||
"""
|
||||
def __init__(self, sd_model=None, outpath_samples=None, outpath_grids=None, prompt: str = "", styles: List[str] = None, seed: int = -1, subseed: int = -1, subseed_strength: float = 0, seed_resize_from_h: int = -1, seed_resize_from_w: int = -1, seed_enable_extras: bool = True, sampler_name: str = None, batch_size: int = 1, n_iter: int = 1, steps: int = 50, cfg_scale: float = 7.0, width: int = 512, height: int = 512, restore_faces: bool = False, tiling: bool = False, do_not_save_samples: bool = False, do_not_save_grid: bool = False, extra_generation_params: Dict[Any, Any] = None, overlay_images: Any = None, negative_prompt: str = None, eta: float = None, do_not_reload_embeddings: bool = False, denoising_strength: float = 0, ddim_discretize: str = None, s_churn: float = 0.0, s_tmax: float = None, s_tmin: float = 0.0, s_noise: float = 1.0, override_settings: Dict[str, Any] = None, sampler_index: int = None):
|
||||
def __init__(self, sd_model=None, outpath_samples=None, outpath_grids=None, prompt: str = "", styles: List[str] = None, seed: int = -1, subseed: int = -1, subseed_strength: float = 0, seed_resize_from_h: int = -1, seed_resize_from_w: int = -1, seed_enable_extras: bool = True, sampler_name: str = None, batch_size: int = 1, n_iter: int = 1, steps: int = 50, cfg_scale: float = 7.0, width: int = 512, height: int = 512, restore_faces: bool = False, tiling: bool = False, do_not_save_samples: bool = False, do_not_save_grid: bool = False, extra_generation_params: Dict[Any, Any] = None, overlay_images: Any = None, negative_prompt: str = None, eta: float = None, do_not_reload_embeddings: bool = False, denoising_strength: float = 0, ddim_discretize: str = None, s_churn: float = 0.0, s_tmax: float = None, s_tmin: float = 0.0, s_noise: float = 1.0, override_settings: Dict[str, Any] = None, override_settings_restore_afterwards: bool = True, sampler_index: int = None):
|
||||
if sampler_index is not None:
|
||||
print("sampler_index argument for StableDiffusionProcessing does not do anything; use sampler_name", file=sys.stderr)
|
||||
|
||||
@ -118,6 +121,7 @@ class StableDiffusionProcessing():
|
||||
self.s_tmax = s_tmax or float('inf') # not representable as a standard ui option
|
||||
self.s_noise = s_noise or opts.s_noise
|
||||
self.override_settings = {k: v for k, v in (override_settings or {}).items() if k not in shared.restricted_opts}
|
||||
self.override_settings_restore_afterwards = override_settings_restore_afterwards
|
||||
self.is_using_inpainting_conditioning = False
|
||||
|
||||
if not seed_enable_extras:
|
||||
@ -147,11 +151,11 @@ class StableDiffusionProcessing():
|
||||
|
||||
# The "masked-image" in this case will just be all zeros since the entire image is masked.
|
||||
image_conditioning = torch.zeros(x.shape[0], 3, height, width, device=x.device)
|
||||
image_conditioning = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(image_conditioning))
|
||||
image_conditioning = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(image_conditioning))
|
||||
|
||||
# Add the fake full 1s mask to the first dimension.
|
||||
image_conditioning = torch.nn.functional.pad(image_conditioning, (0, 0, 0, 0, 1, 0), value=1.0)
|
||||
image_conditioning = image_conditioning.to(x.dtype)
|
||||
image_conditioning = image_conditioning.to(x.dtype)
|
||||
|
||||
return image_conditioning
|
||||
|
||||
@ -199,7 +203,7 @@ class StableDiffusionProcessing():
|
||||
source_image * (1.0 - conditioning_mask),
|
||||
getattr(self, "inpainting_mask_weight", shared.opts.inpainting_mask_weight)
|
||||
)
|
||||
|
||||
|
||||
# Encode the new masked image using first stage of network.
|
||||
conditioning_image = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(conditioning_image))
|
||||
|
||||
@ -314,7 +318,7 @@ class Processed:
|
||||
|
||||
return json.dumps(obj)
|
||||
|
||||
def infotext(self, p: StableDiffusionProcessing, index):
|
||||
def infotext(self, p: StableDiffusionProcessing, index):
|
||||
return create_infotext(p, self.all_prompts, self.all_seeds, self.all_subseeds, comments=[], position_in_batch=index % self.batch_size, iteration=index // self.batch_size)
|
||||
|
||||
|
||||
@ -429,6 +433,7 @@ def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments, iteration
|
||||
"Model hash": getattr(p, 'sd_model_hash', None if not opts.add_model_hash_to_info or not shared.sd_model.sd_model_hash else shared.sd_model.sd_model_hash),
|
||||
"Model": (None if not opts.add_model_name_to_info or not shared.sd_model.sd_checkpoint_info.model_name else shared.sd_model.sd_checkpoint_info.model_name.replace(',', '').replace(':', '')),
|
||||
"Hypernet": (None if shared.loaded_hypernetwork is None else shared.loaded_hypernetwork.name),
|
||||
"Hypernet hash": (None if shared.loaded_hypernetwork is None else sd_models.model_hash(shared.loaded_hypernetwork.filename)),
|
||||
"Hypernet strength": (None if shared.loaded_hypernetwork is None or shared.opts.sd_hypernetwork_strength >= 1 else shared.opts.sd_hypernetwork_strength),
|
||||
"Batch size": (None if p.batch_size < 2 else p.batch_size),
|
||||
"Batch pos": (None if p.batch_size < 2 else position_in_batch),
|
||||
@ -446,7 +451,7 @@ def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments, iteration
|
||||
|
||||
generation_params_text = ", ".join([k if k == v else f'{k}: {generation_parameters_copypaste.quote(v)}' for k, v in generation_params.items() if v is not None])
|
||||
|
||||
negative_prompt_text = "\nNegative prompt: " + p.all_negative_prompts[index] if p.all_negative_prompts[index] else ""
|
||||
negative_prompt_text = "\nNegative prompt: " + p.all_negative_prompts[index] if p.all_negative_prompts[index] else ""
|
||||
|
||||
return f"{all_prompts[index]}{negative_prompt_text}\n{generation_params_text}".strip()
|
||||
|
||||
@ -463,12 +468,14 @@ def process_images(p: StableDiffusionProcessing) -> Processed:
|
||||
|
||||
res = process_images_inner(p)
|
||||
|
||||
finally: # restore opts to original state
|
||||
for k, v in stored_opts.items():
|
||||
setattr(opts, k, v)
|
||||
if k == 'sd_hypernetwork': shared.reload_hypernetworks()
|
||||
if k == 'sd_model_checkpoint': sd_models.reload_model_weights()
|
||||
if k == 'sd_vae': sd_vae.reload_vae_weights()
|
||||
finally:
|
||||
# restore opts to original state
|
||||
if p.override_settings_restore_afterwards:
|
||||
for k, v in stored_opts.items():
|
||||
setattr(opts, k, v)
|
||||
if k == 'sd_hypernetwork': shared.reload_hypernetworks()
|
||||
if k == 'sd_model_checkpoint': sd_models.reload_model_weights()
|
||||
if k == 'sd_vae': sd_vae.reload_vae_weights()
|
||||
|
||||
return res
|
||||
|
||||
@ -537,7 +544,7 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
|
||||
for n in range(p.n_iter):
|
||||
if state.skipped:
|
||||
state.skipped = False
|
||||
|
||||
|
||||
if state.interrupted:
|
||||
break
|
||||
|
||||
@ -612,7 +619,7 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
|
||||
image.info["parameters"] = text
|
||||
output_images.append(image)
|
||||
|
||||
del x_samples_ddim
|
||||
del x_samples_ddim
|
||||
|
||||
devices.torch_gc()
|
||||
|
||||
@ -704,7 +711,7 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
|
||||
|
||||
samples = samples[:, :, self.truncate_y//2:samples.shape[2]-self.truncate_y//2, self.truncate_x//2:samples.shape[3]-self.truncate_x//2]
|
||||
|
||||
"""saves image before applying hires fix, if enabled in options; takes as an arguyment either an image or batch with latent space images"""
|
||||
"""saves image before applying hires fix, if enabled in options; takes as an argument either an image or batch with latent space images"""
|
||||
def save_intermediate(image, index):
|
||||
if not opts.save or self.do_not_save_samples or not opts.save_images_before_highres_fix:
|
||||
return
|
||||
@ -720,7 +727,7 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
|
||||
|
||||
samples = torch.nn.functional.interpolate(samples, size=(self.height // opt_f, self.width // opt_f), mode="bilinear")
|
||||
|
||||
# Avoid making the inpainting conditioning unless necessary as
|
||||
# Avoid making the inpainting conditioning unless necessary as
|
||||
# this does need some extra compute to decode / encode the image again.
|
||||
if getattr(self, "inpainting_mask_weight", shared.opts.inpainting_mask_weight) < 1.0:
|
||||
image_conditioning = self.img2img_image_conditioning(decode_first_stage(self.sd_model, samples), samples)
|
||||
@ -829,9 +836,9 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
|
||||
self.color_corrections = []
|
||||
imgs = []
|
||||
for img in self.init_images:
|
||||
image = img.convert("RGB")
|
||||
image = images.flatten(img, opts.img2img_background_color)
|
||||
|
||||
if crop_region is None:
|
||||
if crop_region is None and self.resize_mode != 3:
|
||||
image = images.resize_image(self.resize_mode, image, self.width, self.height)
|
||||
|
||||
if image_mask is not None:
|
||||
@ -840,6 +847,7 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
|
||||
|
||||
self.overlay_images.append(image_masked.convert('RGBA'))
|
||||
|
||||
# crop_region is not None if we are doing inpaint full res
|
||||
if crop_region is not None:
|
||||
image = image.crop(crop_region)
|
||||
image = images.resize_image(2, image, self.width, self.height)
|
||||
@ -876,6 +884,9 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
|
||||
|
||||
self.init_latent = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(image))
|
||||
|
||||
if self.resize_mode == 3:
|
||||
self.init_latent = torch.nn.functional.interpolate(self.init_latent, size=(self.height // opt_f, self.width // opt_f), mode="bilinear")
|
||||
|
||||
if image_mask is not None:
|
||||
init_mask = latent_mask
|
||||
latmask = init_mask.convert('RGB').resize((self.init_latent.shape[3], self.init_latent.shape[2]))
|
||||
|
@ -37,16 +37,16 @@ class RestrictedUnpickler(pickle.Unpickler):
|
||||
|
||||
if module == 'collections' and name == 'OrderedDict':
|
||||
return getattr(collections, name)
|
||||
if module == 'torch._utils' and name in ['_rebuild_tensor_v2', '_rebuild_parameter']:
|
||||
if module == 'torch._utils' and name in ['_rebuild_tensor_v2', '_rebuild_parameter', '_rebuild_device_tensor_from_numpy']:
|
||||
return getattr(torch._utils, name)
|
||||
if module == 'torch' and name in ['FloatStorage', 'HalfStorage', 'IntStorage', 'LongStorage', 'DoubleStorage', 'ByteStorage']:
|
||||
if module == 'torch' and name in ['FloatStorage', 'HalfStorage', 'IntStorage', 'LongStorage', 'DoubleStorage', 'ByteStorage', 'float32']:
|
||||
return getattr(torch, name)
|
||||
if module == 'torch.nn.modules.container' and name in ['ParameterDict']:
|
||||
return getattr(torch.nn.modules.container, name)
|
||||
if module == 'numpy.core.multiarray' and name == 'scalar':
|
||||
return numpy.core.multiarray.scalar
|
||||
if module == 'numpy' and name == 'dtype':
|
||||
return numpy.dtype
|
||||
if module == 'numpy.core.multiarray' and name in ['scalar', '_reconstruct']:
|
||||
return getattr(numpy.core.multiarray, name)
|
||||
if module == 'numpy' and name in ['dtype', 'ndarray']:
|
||||
return getattr(numpy, name)
|
||||
if module == '_codecs' and name == 'encode':
|
||||
return encode
|
||||
if module == "pytorch_lightning.callbacks" and name == 'model_checkpoint':
|
||||
@ -80,7 +80,7 @@ def check_pt(filename, extra_handler):
|
||||
# new pytorch format is a zip file
|
||||
with zipfile.ZipFile(filename) as z:
|
||||
check_zip_filenames(filename, z.namelist())
|
||||
|
||||
|
||||
# find filename of data.pkl in zip file: '<directory name>/data.pkl'
|
||||
data_pkl_filenames = [f for f in z.namelist() if data_pkl_re.match(f)]
|
||||
if len(data_pkl_filenames) == 0:
|
||||
@ -103,12 +103,12 @@ def check_pt(filename, extra_handler):
|
||||
|
||||
|
||||
def load(filename, *args, **kwargs):
|
||||
return load_with_extra(filename, *args, **kwargs)
|
||||
return load_with_extra(filename, extra_handler=global_extra_handler, *args, **kwargs)
|
||||
|
||||
|
||||
def load_with_extra(filename, extra_handler=None, *args, **kwargs):
|
||||
"""
|
||||
this functon is intended to be used by extensions that want to load models with
|
||||
this function is intended to be used by extensions that want to load models with
|
||||
some extra classes in them that the usual unpickler would find suspicious.
|
||||
|
||||
Use the extra_handler argument to specify a function that takes module and field name as text,
|
||||
@ -137,19 +137,56 @@ def load_with_extra(filename, extra_handler=None, *args, **kwargs):
|
||||
except pickle.UnpicklingError:
|
||||
print(f"Error verifying pickled file from {filename}:", file=sys.stderr)
|
||||
print(traceback.format_exc(), file=sys.stderr)
|
||||
print(f"-----> !!!! The file is most likely corrupted !!!! <-----", file=sys.stderr)
|
||||
print(f"You can skip this check with --disable-safe-unpickle commandline argument, but that is not going to help you.\n\n", file=sys.stderr)
|
||||
print("-----> !!!! The file is most likely corrupted !!!! <-----", file=sys.stderr)
|
||||
print("You can skip this check with --disable-safe-unpickle commandline argument, but that is not going to help you.\n\n", file=sys.stderr)
|
||||
return None
|
||||
|
||||
except Exception:
|
||||
print(f"Error verifying pickled file from {filename}:", file=sys.stderr)
|
||||
print(traceback.format_exc(), file=sys.stderr)
|
||||
print(f"\nThe file may be malicious, so the program is not going to read it.", file=sys.stderr)
|
||||
print(f"You can skip this check with --disable-safe-unpickle commandline argument.\n\n", file=sys.stderr)
|
||||
print("\nThe file may be malicious, so the program is not going to read it.", file=sys.stderr)
|
||||
print("You can skip this check with --disable-safe-unpickle commandline argument.\n\n", file=sys.stderr)
|
||||
return None
|
||||
|
||||
return unsafe_torch_load(filename, *args, **kwargs)
|
||||
|
||||
|
||||
class Extra:
|
||||
"""
|
||||
A class for temporarily setting the global handler for when you can't explicitly call load_with_extra
|
||||
(because it's not your code making the torch.load call). The intended use is like this:
|
||||
|
||||
```
|
||||
import torch
|
||||
from modules import safe
|
||||
|
||||
def handler(module, name):
|
||||
if module == 'torch' and name in ['float64', 'float16']:
|
||||
return getattr(torch, name)
|
||||
|
||||
return None
|
||||
|
||||
with safe.Extra(handler):
|
||||
x = torch.load('model.pt')
|
||||
```
|
||||
"""
|
||||
|
||||
def __init__(self, handler):
|
||||
self.handler = handler
|
||||
|
||||
def __enter__(self):
|
||||
global global_extra_handler
|
||||
|
||||
assert global_extra_handler is None, 'already inside an Extra() block'
|
||||
global_extra_handler = self.handler
|
||||
|
||||
def __exit__(self, exc_type, exc_val, exc_tb):
|
||||
global global_extra_handler
|
||||
|
||||
global_extra_handler = None
|
||||
|
||||
|
||||
unsafe_torch_load = torch.load
|
||||
torch.load = load
|
||||
global_extra_handler = None
|
||||
|
||||
|
@ -36,7 +36,7 @@ class Script:
|
||||
def ui(self, is_img2img):
|
||||
"""this function should create gradio UI elements. See https://gradio.app/docs/#components
|
||||
The return value should be an array of all components that are used in processing.
|
||||
Values of those returned componenbts will be passed to run() and process() functions.
|
||||
Values of those returned components will be passed to run() and process() functions.
|
||||
"""
|
||||
|
||||
pass
|
||||
@ -47,7 +47,7 @@ class Script:
|
||||
|
||||
This function should return:
|
||||
- False if the script should not be shown in UI at all
|
||||
- True if the script should be shown in UI if it's scelected in the scripts drowpdown
|
||||
- True if the script should be shown in UI if it's selected in the scripts dropdown
|
||||
- script.AlwaysVisible if the script should be shown in UI at all times
|
||||
"""
|
||||
|
||||
|
@ -1,3 +1,4 @@
|
||||
import os
|
||||
import torch
|
||||
|
||||
from einops import repeat
|
||||
@ -209,7 +210,7 @@ def p_sample_plms(self, x, c, t, index, repeat_noise=False, use_original_steps=F
|
||||
else:
|
||||
x_in = torch.cat([x] * 2)
|
||||
t_in = torch.cat([t] * 2)
|
||||
|
||||
|
||||
if isinstance(c, dict):
|
||||
assert isinstance(unconditional_conditioning, dict)
|
||||
c_in = dict()
|
||||
@ -278,7 +279,7 @@ def p_sample_plms(self, x, c, t, index, repeat_noise=False, use_original_steps=F
|
||||
x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t_prime, index)
|
||||
|
||||
return x_prev, pred_x0, e_t
|
||||
|
||||
|
||||
# =================================================================================================
|
||||
# Monkey patch LatentInpaintDiffusion to load the checkpoint with a proper config.
|
||||
# Adapted from:
|
||||
@ -319,17 +320,18 @@ class LatentInpaintDiffusion(LatentDiffusion):
|
||||
|
||||
|
||||
def should_hijack_inpainting(checkpoint_info):
|
||||
return str(checkpoint_info.filename).endswith("inpainting.ckpt") and not checkpoint_info.config.endswith("inpainting.yaml")
|
||||
ckpt_basename = os.path.basename(checkpoint_info.filename).lower()
|
||||
cfg_basename = os.path.basename(checkpoint_info.config).lower()
|
||||
return "inpainting" in ckpt_basename and not "inpainting" in cfg_basename
|
||||
|
||||
|
||||
def do_inpainting_hijack():
|
||||
# most of this stuff seems to no longer be needed because it is already included into SD2.0
|
||||
# LatentInpaintDiffusion remains because SD2.0's LatentInpaintDiffusion can't be loaded without specifying a checkpoint
|
||||
# p_sample_plms is needed because PLMS can't work with dicts as conditionings
|
||||
# this file should be cleaned up later if weverything tuens out to work fine
|
||||
# this file should be cleaned up later if everything turns out to work fine
|
||||
|
||||
# ldm.models.diffusion.ddpm.get_unconditional_conditioning = get_unconditional_conditioning
|
||||
ldm.models.diffusion.ddpm.LatentInpaintDiffusion = LatentInpaintDiffusion
|
||||
# ldm.models.diffusion.ddpm.LatentInpaintDiffusion = LatentInpaintDiffusion
|
||||
|
||||
# ldm.models.diffusion.ddim.DDIMSampler.p_sample_ddim = p_sample_ddim
|
||||
# ldm.models.diffusion.ddim.DDIMSampler.sample = sample_ddim
|
||||
|
@ -127,7 +127,7 @@ def check_for_psutil():
|
||||
|
||||
invokeAI_mps_available = check_for_psutil()
|
||||
|
||||
# -- Taken from https://github.com/invoke-ai/InvokeAI --
|
||||
# -- Taken from https://github.com/invoke-ai/InvokeAI and modified --
|
||||
if invokeAI_mps_available:
|
||||
import psutil
|
||||
mem_total_gb = psutil.virtual_memory().total // (1 << 30)
|
||||
@ -152,14 +152,16 @@ def einsum_op_slice_1(q, k, v, slice_size):
|
||||
return r
|
||||
|
||||
def einsum_op_mps_v1(q, k, v):
|
||||
if q.shape[1] <= 4096: # (512x512) max q.shape[1]: 4096
|
||||
if q.shape[0] * q.shape[1] <= 2**16: # (512x512) max q.shape[1]: 4096
|
||||
return einsum_op_compvis(q, k, v)
|
||||
else:
|
||||
slice_size = math.floor(2**30 / (q.shape[0] * q.shape[1]))
|
||||
if slice_size % 4096 == 0:
|
||||
slice_size -= 1
|
||||
return einsum_op_slice_1(q, k, v, slice_size)
|
||||
|
||||
def einsum_op_mps_v2(q, k, v):
|
||||
if mem_total_gb > 8 and q.shape[1] <= 4096:
|
||||
if mem_total_gb > 8 and q.shape[0] * q.shape[1] <= 2**16:
|
||||
return einsum_op_compvis(q, k, v)
|
||||
else:
|
||||
return einsum_op_slice_0(q, k, v, 1)
|
||||
@ -188,7 +190,7 @@ def einsum_op(q, k, v):
|
||||
return einsum_op_cuda(q, k, v)
|
||||
|
||||
if q.device.type == 'mps':
|
||||
if mem_total_gb >= 32:
|
||||
if mem_total_gb >= 32 and q.shape[0] % 32 != 0 and q.shape[0] * q.shape[1] < 2**18:
|
||||
return einsum_op_mps_v1(q, k, v)
|
||||
return einsum_op_mps_v2(q, k, v)
|
||||
|
||||
|
@ -4,7 +4,7 @@ import torch
|
||||
class TorchHijackForUnet:
|
||||
"""
|
||||
This is torch, but with cat that resizes tensors to appropriate dimensions if they do not match;
|
||||
this makes it possible to create pictures with dimensions that are muliples of 8 rather than 64
|
||||
this makes it possible to create pictures with dimensions that are multiples of 8 rather than 64
|
||||
"""
|
||||
|
||||
def __getattr__(self, item):
|
||||
|
@ -111,18 +111,19 @@ def model_hash(filename):
|
||||
|
||||
def select_checkpoint():
|
||||
model_checkpoint = shared.opts.sd_model_checkpoint
|
||||
|
||||
checkpoint_info = checkpoints_list.get(model_checkpoint, None)
|
||||
if checkpoint_info is not None:
|
||||
return checkpoint_info
|
||||
|
||||
if len(checkpoints_list) == 0:
|
||||
print(f"No checkpoints found. When searching for checkpoints, looked at:", file=sys.stderr)
|
||||
print("No checkpoints found. When searching for checkpoints, looked at:", file=sys.stderr)
|
||||
if shared.cmd_opts.ckpt is not None:
|
||||
print(f" - file {os.path.abspath(shared.cmd_opts.ckpt)}", file=sys.stderr)
|
||||
print(f" - directory {model_path}", file=sys.stderr)
|
||||
if shared.cmd_opts.ckpt_dir is not None:
|
||||
print(f" - directory {os.path.abspath(shared.cmd_opts.ckpt_dir)}", file=sys.stderr)
|
||||
print(f"Can't run without a checkpoint. Find and place a .ckpt file into any of those locations. The program will exit.", file=sys.stderr)
|
||||
print("Can't run without a checkpoint. Find and place a .ckpt file into any of those locations. The program will exit.", file=sys.stderr)
|
||||
exit(1)
|
||||
|
||||
checkpoint_info = next(iter(checkpoints_list.values()))
|
||||
@ -293,13 +294,16 @@ def load_model(checkpoint_info=None):
|
||||
if should_hijack_inpainting(checkpoint_info):
|
||||
# Hardcoded config for now...
|
||||
sd_config.model.target = "ldm.models.diffusion.ddpm.LatentInpaintDiffusion"
|
||||
sd_config.model.params.use_ema = False
|
||||
sd_config.model.params.conditioning_key = "hybrid"
|
||||
sd_config.model.params.unet_config.params.in_channels = 9
|
||||
sd_config.model.params.finetune_keys = None
|
||||
|
||||
# Create a "fake" config with a different name so that we know to unload it when switching models.
|
||||
checkpoint_info = checkpoint_info._replace(config=checkpoint_info.config.replace(".yaml", "-inpainting.yaml"))
|
||||
|
||||
if not hasattr(sd_config.model.params, "use_ema"):
|
||||
sd_config.model.params.use_ema = False
|
||||
|
||||
do_inpainting_hijack()
|
||||
|
||||
if shared.cmd_opts.no_half:
|
||||
@ -320,7 +324,7 @@ def load_model(checkpoint_info=None):
|
||||
|
||||
script_callbacks.model_loaded_callback(sd_model)
|
||||
|
||||
print(f"Model loaded.")
|
||||
print("Model loaded.")
|
||||
return sd_model
|
||||
|
||||
|
||||
@ -355,5 +359,5 @@ def reload_model_weights(sd_model=None, info=None):
|
||||
if not shared.cmd_opts.lowvram and not shared.cmd_opts.medvram:
|
||||
sd_model.to(devices.device)
|
||||
|
||||
print(f"Weights loaded.")
|
||||
print("Weights loaded.")
|
||||
return sd_model
|
||||
|
@ -9,7 +9,7 @@ import k_diffusion.sampling
|
||||
import torchsde._brownian.brownian_interval
|
||||
import ldm.models.diffusion.ddim
|
||||
import ldm.models.diffusion.plms
|
||||
from modules import prompt_parser, devices, processing, images
|
||||
from modules import prompt_parser, devices, processing, images, sd_vae_approx
|
||||
|
||||
from modules.shared import opts, cmd_opts, state
|
||||
import modules.shared as shared
|
||||
@ -23,16 +23,16 @@ samplers_k_diffusion = [
|
||||
('Euler', 'sample_euler', ['k_euler'], {}),
|
||||
('LMS', 'sample_lms', ['k_lms'], {}),
|
||||
('Heun', 'sample_heun', ['k_heun'], {}),
|
||||
('DPM2', 'sample_dpm_2', ['k_dpm_2'], {}),
|
||||
('DPM2 a', 'sample_dpm_2_ancestral', ['k_dpm_2_a'], {}),
|
||||
('DPM2', 'sample_dpm_2', ['k_dpm_2'], {'discard_next_to_last_sigma': True}),
|
||||
('DPM2 a', 'sample_dpm_2_ancestral', ['k_dpm_2_a'], {'discard_next_to_last_sigma': True}),
|
||||
('DPM++ 2S a', 'sample_dpmpp_2s_ancestral', ['k_dpmpp_2s_a'], {}),
|
||||
('DPM++ 2M', 'sample_dpmpp_2m', ['k_dpmpp_2m'], {}),
|
||||
('DPM++ SDE', 'sample_dpmpp_sde', ['k_dpmpp_sde'], {}),
|
||||
('DPM fast', 'sample_dpm_fast', ['k_dpm_fast'], {}),
|
||||
('DPM adaptive', 'sample_dpm_adaptive', ['k_dpm_ad'], {}),
|
||||
('LMS Karras', 'sample_lms', ['k_lms_ka'], {'scheduler': 'karras'}),
|
||||
('DPM2 Karras', 'sample_dpm_2', ['k_dpm_2_ka'], {'scheduler': 'karras'}),
|
||||
('DPM2 a Karras', 'sample_dpm_2_ancestral', ['k_dpm_2_a_ka'], {'scheduler': 'karras'}),
|
||||
('DPM2 Karras', 'sample_dpm_2', ['k_dpm_2_ka'], {'scheduler': 'karras', 'discard_next_to_last_sigma': True}),
|
||||
('DPM2 a Karras', 'sample_dpm_2_ancestral', ['k_dpm_2_a_ka'], {'scheduler': 'karras', 'discard_next_to_last_sigma': True}),
|
||||
('DPM++ 2S a Karras', 'sample_dpmpp_2s_ancestral', ['k_dpmpp_2s_a_ka'], {'scheduler': 'karras'}),
|
||||
('DPM++ 2M Karras', 'sample_dpmpp_2m', ['k_dpmpp_2m_ka'], {'scheduler': 'karras'}),
|
||||
('DPM++ SDE Karras', 'sample_dpmpp_sde', ['k_dpmpp_sde_ka'], {'scheduler': 'karras'}),
|
||||
@ -106,20 +106,32 @@ def setup_img2img_steps(p, steps=None):
|
||||
return steps, t_enc
|
||||
|
||||
|
||||
def single_sample_to_image(sample):
|
||||
x_sample = processing.decode_first_stage(shared.sd_model, sample.unsqueeze(0))[0]
|
||||
approximation_indexes = {"Full": 0, "Approx NN": 1, "Approx cheap": 2}
|
||||
|
||||
|
||||
def single_sample_to_image(sample, approximation=None):
|
||||
if approximation is None:
|
||||
approximation = approximation_indexes.get(opts.show_progress_type, 0)
|
||||
|
||||
if approximation == 2:
|
||||
x_sample = sd_vae_approx.cheap_approximation(sample)
|
||||
elif approximation == 1:
|
||||
x_sample = sd_vae_approx.model()(sample.to(devices.device, devices.dtype).unsqueeze(0))[0].detach()
|
||||
else:
|
||||
x_sample = processing.decode_first_stage(shared.sd_model, sample.unsqueeze(0))[0]
|
||||
|
||||
x_sample = torch.clamp((x_sample + 1.0) / 2.0, min=0.0, max=1.0)
|
||||
x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2)
|
||||
x_sample = x_sample.astype(np.uint8)
|
||||
return Image.fromarray(x_sample)
|
||||
|
||||
|
||||
def sample_to_image(samples, index=0):
|
||||
return single_sample_to_image(samples[index])
|
||||
def sample_to_image(samples, index=0, approximation=None):
|
||||
return single_sample_to_image(samples[index], approximation)
|
||||
|
||||
|
||||
def samples_to_image_grid(samples):
|
||||
return images.image_grid([single_sample_to_image(sample) for sample in samples])
|
||||
def samples_to_image_grid(samples, approximation=None):
|
||||
return images.image_grid([single_sample_to_image(sample, approximation) for sample in samples])
|
||||
|
||||
|
||||
def store_latent(decoded):
|
||||
@ -288,6 +300,16 @@ class CFGDenoiser(torch.nn.Module):
|
||||
self.init_latent = None
|
||||
self.step = 0
|
||||
|
||||
def combine_denoised(self, x_out, conds_list, uncond, cond_scale):
|
||||
denoised_uncond = x_out[-uncond.shape[0]:]
|
||||
denoised = torch.clone(denoised_uncond)
|
||||
|
||||
for i, conds in enumerate(conds_list):
|
||||
for cond_index, weight in conds:
|
||||
denoised[i] += (x_out[cond_index] - denoised_uncond[i]) * (weight * cond_scale)
|
||||
|
||||
return denoised
|
||||
|
||||
def forward(self, x, sigma, uncond, cond, cond_scale, image_cond):
|
||||
if state.interrupted or state.skipped:
|
||||
raise InterruptedException
|
||||
@ -329,12 +351,7 @@ class CFGDenoiser(torch.nn.Module):
|
||||
|
||||
x_out[-uncond.shape[0]:] = self.inner_model(x_in[-uncond.shape[0]:], sigma_in[-uncond.shape[0]:], cond={"c_crossattn": [uncond], "c_concat": [image_cond_in[-uncond.shape[0]:]]})
|
||||
|
||||
denoised_uncond = x_out[-uncond.shape[0]:]
|
||||
denoised = torch.clone(denoised_uncond)
|
||||
|
||||
for i, conds in enumerate(conds_list):
|
||||
for cond_index, weight in conds:
|
||||
denoised[i] += (x_out[cond_index] - denoised_uncond[i]) * (weight * cond_scale)
|
||||
denoised = self.combine_denoised(x_out, conds_list, uncond, cond_scale)
|
||||
|
||||
if self.mask is not None:
|
||||
denoised = self.init_latent * self.mask + self.nmask * denoised
|
||||
@ -444,9 +461,7 @@ class KDiffusionSampler:
|
||||
|
||||
return extra_params_kwargs
|
||||
|
||||
def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning, steps=None, image_conditioning=None):
|
||||
steps, t_enc = setup_img2img_steps(p, steps)
|
||||
|
||||
def get_sigmas(self, p, steps):
|
||||
if p.sampler_noise_scheduler_override:
|
||||
sigmas = p.sampler_noise_scheduler_override(steps)
|
||||
elif self.config is not None and self.config.options.get('scheduler', None) == 'karras':
|
||||
@ -454,6 +469,16 @@ class KDiffusionSampler:
|
||||
else:
|
||||
sigmas = self.model_wrap.get_sigmas(steps)
|
||||
|
||||
if self.config is not None and self.config.options.get('discard_next_to_last_sigma', False):
|
||||
sigmas = torch.cat([sigmas[:-2], sigmas[-1:]])
|
||||
|
||||
return sigmas
|
||||
|
||||
def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning, steps=None, image_conditioning=None):
|
||||
steps, t_enc = setup_img2img_steps(p, steps)
|
||||
|
||||
sigmas = self.get_sigmas(p, steps)
|
||||
|
||||
sigma_sched = sigmas[steps - t_enc - 1:]
|
||||
xi = x + noise * sigma_sched[0]
|
||||
|
||||
@ -485,12 +510,7 @@ class KDiffusionSampler:
|
||||
def sample(self, p, x, conditioning, unconditional_conditioning, steps=None, image_conditioning = None):
|
||||
steps = steps or p.steps
|
||||
|
||||
if p.sampler_noise_scheduler_override:
|
||||
sigmas = p.sampler_noise_scheduler_override(steps)
|
||||
elif self.config is not None and self.config.options.get('scheduler', None) == 'karras':
|
||||
sigmas = k_diffusion.sampling.get_sigmas_karras(n=steps, sigma_min=0.1, sigma_max=10, device=shared.device)
|
||||
else:
|
||||
sigmas = self.model_wrap.get_sigmas(steps)
|
||||
sigmas = self.get_sigmas(p, steps)
|
||||
|
||||
x = x * sigmas[0]
|
||||
|
||||
|
@ -208,5 +208,5 @@ def reload_vae_weights(sd_model=None, vae_file="auto"):
|
||||
if not shared.cmd_opts.lowvram and not shared.cmd_opts.medvram:
|
||||
sd_model.to(devices.device)
|
||||
|
||||
print(f"VAE Weights loaded.")
|
||||
print("VAE Weights loaded.")
|
||||
return sd_model
|
||||
|
58
modules/sd_vae_approx.py
Normal file
58
modules/sd_vae_approx.py
Normal file
@ -0,0 +1,58 @@
|
||||
import os
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
from modules import devices, paths
|
||||
|
||||
sd_vae_approx_model = None
|
||||
|
||||
|
||||
class VAEApprox(nn.Module):
|
||||
def __init__(self):
|
||||
super(VAEApprox, self).__init__()
|
||||
self.conv1 = nn.Conv2d(4, 8, (7, 7))
|
||||
self.conv2 = nn.Conv2d(8, 16, (5, 5))
|
||||
self.conv3 = nn.Conv2d(16, 32, (3, 3))
|
||||
self.conv4 = nn.Conv2d(32, 64, (3, 3))
|
||||
self.conv5 = nn.Conv2d(64, 32, (3, 3))
|
||||
self.conv6 = nn.Conv2d(32, 16, (3, 3))
|
||||
self.conv7 = nn.Conv2d(16, 8, (3, 3))
|
||||
self.conv8 = nn.Conv2d(8, 3, (3, 3))
|
||||
|
||||
def forward(self, x):
|
||||
extra = 11
|
||||
x = nn.functional.interpolate(x, (x.shape[2] * 2, x.shape[3] * 2))
|
||||
x = nn.functional.pad(x, (extra, extra, extra, extra))
|
||||
|
||||
for layer in [self.conv1, self.conv2, self.conv3, self.conv4, self.conv5, self.conv6, self.conv7, self.conv8, ]:
|
||||
x = layer(x)
|
||||
x = nn.functional.leaky_relu(x, 0.1)
|
||||
|
||||
return x
|
||||
|
||||
|
||||
def model():
|
||||
global sd_vae_approx_model
|
||||
|
||||
if sd_vae_approx_model is None:
|
||||
sd_vae_approx_model = VAEApprox()
|
||||
sd_vae_approx_model.load_state_dict(torch.load(os.path.join(paths.models_path, "VAE-approx", "model.pt")))
|
||||
sd_vae_approx_model.eval()
|
||||
sd_vae_approx_model.to(devices.device, devices.dtype)
|
||||
|
||||
return sd_vae_approx_model
|
||||
|
||||
|
||||
def cheap_approximation(sample):
|
||||
# https://discuss.huggingface.co/t/decoding-latents-to-rgb-without-upscaling/23204/2
|
||||
|
||||
coefs = torch.tensor([
|
||||
[0.298, 0.207, 0.208],
|
||||
[0.187, 0.286, 0.173],
|
||||
[-0.158, 0.189, 0.264],
|
||||
[-0.184, -0.271, -0.473],
|
||||
]).to(sample.device)
|
||||
|
||||
x_sample = torch.einsum("lxy,lr -> rxy", sample, coefs)
|
||||
|
||||
return x_sample
|
@ -5,6 +5,7 @@ import os
|
||||
import sys
|
||||
import time
|
||||
|
||||
from PIL import Image
|
||||
import gradio as gr
|
||||
import tqdm
|
||||
|
||||
@ -293,6 +294,7 @@ options_templates.update(options_section(('saving-images', "Saving images/grids"
|
||||
"export_for_4chan": OptionInfo(True, "If PNG image is larger than 4MB or any dimension is larger than 4000, downscale and save copy as JPG"),
|
||||
|
||||
"use_original_name_batch": OptionInfo(False, "Use original name for output filename during batch process in extras tab"),
|
||||
"use_upscaler_name_as_suffix": OptionInfo(False, "Use upscaler name as filename suffix in the extras tab"),
|
||||
"save_selected_only": OptionInfo(True, "When using 'Save' button, only save a single selected image"),
|
||||
"do_not_add_watermark": OptionInfo(False, "Do not add watermark to images"),
|
||||
|
||||
@ -362,6 +364,7 @@ options_templates.update(options_section(('sd', "Stable Diffusion"), {
|
||||
"initial_noise_multiplier": OptionInfo(1.0, "Noise multiplier for img2img", gr.Slider, {"minimum": 0.5, "maximum": 1.5, "step": 0.01 }),
|
||||
"img2img_color_correction": OptionInfo(False, "Apply color correction to img2img results to match original colors."),
|
||||
"img2img_fix_steps": OptionInfo(False, "With img2img, do exactly the amount of steps the slider specifies (normally you'd do less with less denoising)."),
|
||||
"img2img_background_color": OptionInfo("#ffffff", "With img2img, fill image's transparent parts with this color.", gr.ColorPicker, {}),
|
||||
"enable_quantization": OptionInfo(False, "Enable quantization in K samplers for sharper and cleaner results. This may change existing seeds. Requires restart to apply."),
|
||||
"enable_emphasis": OptionInfo(True, "Emphasis: use (text) to make model pay more attention to text and [text] to make it pay less attention"),
|
||||
"use_old_emphasis_implementation": OptionInfo(False, "Use old emphasis implementation. Can be useful to reproduce old seeds."),
|
||||
@ -383,11 +386,13 @@ options_templates.update(options_section(('interrogate', "Interrogate Options"),
|
||||
"deepbooru_sort_alpha": OptionInfo(True, "Interrogate: deepbooru sort alphabetically"),
|
||||
"deepbooru_use_spaces": OptionInfo(False, "use spaces for tags in deepbooru"),
|
||||
"deepbooru_escape": OptionInfo(True, "escape (\\) brackets in deepbooru (so they are used as literal brackets and not for emphasis)"),
|
||||
"deepbooru_filter_tags": OptionInfo("", "filter out those tags from deepbooru output (separated by comma)"),
|
||||
}))
|
||||
|
||||
options_templates.update(options_section(('ui', "User interface"), {
|
||||
"show_progressbar": OptionInfo(True, "Show progressbar"),
|
||||
"show_progress_every_n_steps": OptionInfo(0, "Show image creation progress every N sampling steps. Set to 0 to disable. Set to -1 to show after completion of batch.", gr.Slider, {"minimum": -1, "maximum": 32, "step": 1}),
|
||||
"show_progress_type": OptionInfo("Full", "Image creation progress preview mode", gr.Radio, {"choices": ["Full", "Approx NN", "Approx cheap"]}),
|
||||
"show_progress_grid": OptionInfo(True, "Show previews of all images generated in a batch as a grid"),
|
||||
"return_grid": OptionInfo(True, "Show grid in results for web"),
|
||||
"do_not_show_images": OptionInfo(False, "Do not show any images in results for web"),
|
||||
|
@ -28,9 +28,9 @@ class DatasetEntry:
|
||||
|
||||
|
||||
class PersonalizedBase(Dataset):
|
||||
def __init__(self, data_root, width, height, repeats, flip_p=0.5, placeholder_token="*", model=None, cond_model=None, device=None, template_file=None, include_cond=False, batch_size=1, gradient_step=1, shuffle_tags=False, tag_drop_out=0, latent_sampling_method='once'):
|
||||
def __init__(self, data_root, width, height, repeats, flip_p=0.5, placeholder_token="*", model=None, cond_model=None, device=None, template_file=None, include_cond=False, batch_size=1, gradient_step=1, shuffle_tags=False, tag_drop_out=0, latent_sampling_method='once'):
|
||||
re_word = re.compile(shared.opts.dataset_filename_word_regex) if len(shared.opts.dataset_filename_word_regex) > 0 else None
|
||||
|
||||
|
||||
self.placeholder_token = placeholder_token
|
||||
|
||||
self.width = width
|
||||
@ -50,14 +50,14 @@ class PersonalizedBase(Dataset):
|
||||
|
||||
self.image_paths = [os.path.join(data_root, file_path) for file_path in os.listdir(data_root)]
|
||||
|
||||
|
||||
|
||||
self.shuffle_tags = shuffle_tags
|
||||
self.tag_drop_out = tag_drop_out
|
||||
|
||||
print("Preparing dataset...")
|
||||
for path in tqdm.tqdm(self.image_paths):
|
||||
if shared.state.interrupted:
|
||||
raise Exception("inturrupted")
|
||||
raise Exception("interrupted")
|
||||
try:
|
||||
image = Image.open(path).convert('RGB').resize((self.width, self.height), PIL.Image.BICUBIC)
|
||||
except Exception:
|
||||
@ -144,7 +144,7 @@ class PersonalizedDataLoader(DataLoader):
|
||||
self.collate_fn = collate_wrapper_random
|
||||
else:
|
||||
self.collate_fn = collate_wrapper
|
||||
|
||||
|
||||
|
||||
class BatchLoader:
|
||||
def __init__(self, data):
|
||||
|
@ -133,7 +133,7 @@ class EmbeddingDatabase:
|
||||
|
||||
process_file(fullfn, fn)
|
||||
except Exception:
|
||||
print(f"Error loading emedding {fn}:", file=sys.stderr)
|
||||
print(f"Error loading embedding {fn}:", file=sys.stderr)
|
||||
print(traceback.format_exc(), file=sys.stderr)
|
||||
continue
|
||||
|
||||
@ -194,7 +194,7 @@ def write_loss(log_directory, filename, step, epoch_len, values):
|
||||
csv_writer.writeheader()
|
||||
|
||||
epoch = (step - 1) // epoch_len
|
||||
epoch_step = (step - 1) % epoch_len
|
||||
epoch_step = (step - 1) % epoch_len
|
||||
|
||||
csv_writer.writerow({
|
||||
"step": step,
|
||||
@ -263,16 +263,16 @@ def train_embedding(embedding_name, learn_rate, batch_size, gradient_step, data_
|
||||
|
||||
initial_step = embedding.step or 0
|
||||
if initial_step >= steps:
|
||||
shared.state.textinfo = f"Model has already been trained beyond specified max steps"
|
||||
shared.state.textinfo = "Model has already been trained beyond specified max steps"
|
||||
return embedding, filename
|
||||
scheduler = LearnRateScheduler(learn_rate, steps, initial_step)
|
||||
|
||||
# dataset loading may take a while, so input validations and early returns should be done before this
|
||||
shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..."
|
||||
old_parallel_processing_allowed = shared.parallel_processing_allowed
|
||||
|
||||
|
||||
pin_memory = shared.opts.pin_memory
|
||||
|
||||
|
||||
ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=embedding_name, model=shared.sd_model, cond_model=shared.sd_model.cond_stage_model, device=devices.device, template_file=template_file, batch_size=batch_size, gradient_step=gradient_step, shuffle_tags=shuffle_tags, tag_drop_out=tag_drop_out, latent_sampling_method=latent_sampling_method)
|
||||
|
||||
latent_sampling_method = ds.latent_sampling_method
|
||||
@ -295,12 +295,12 @@ def train_embedding(embedding_name, learn_rate, batch_size, gradient_step, data_
|
||||
loss_step = 0
|
||||
_loss_step = 0 #internal
|
||||
|
||||
|
||||
|
||||
last_saved_file = "<none>"
|
||||
last_saved_image = "<none>"
|
||||
forced_filename = "<none>"
|
||||
embedding_yet_to_be_embedded = False
|
||||
|
||||
|
||||
pbar = tqdm.tqdm(total=steps - initial_step)
|
||||
try:
|
||||
for i in range((steps-initial_step) * gradient_step):
|
||||
@ -327,10 +327,10 @@ def train_embedding(embedding_name, learn_rate, batch_size, gradient_step, data_
|
||||
c = shared.sd_model.cond_stage_model(batch.cond_text)
|
||||
loss = shared.sd_model(x, c)[0] / gradient_step
|
||||
del x
|
||||
|
||||
|
||||
_loss_step += loss.item()
|
||||
scaler.scale(loss).backward()
|
||||
|
||||
|
||||
# go back until we reach gradient accumulation steps
|
||||
if (j + 1) % gradient_step != 0:
|
||||
continue
|
||||
|
@ -49,10 +49,14 @@ if not cmd_opts.share and not cmd_opts.listen:
|
||||
gradio.utils.version_check = lambda: None
|
||||
gradio.utils.get_local_ip_address = lambda: '127.0.0.1'
|
||||
|
||||
if cmd_opts.ngrok != None:
|
||||
if cmd_opts.ngrok is not None:
|
||||
import modules.ngrok as ngrok
|
||||
print('ngrok authtoken detected, trying to connect...')
|
||||
ngrok.connect(cmd_opts.ngrok, cmd_opts.port if cmd_opts.port != None else 7860, cmd_opts.ngrok_region)
|
||||
ngrok.connect(
|
||||
cmd_opts.ngrok,
|
||||
cmd_opts.port if cmd_opts.port is not None else 7860,
|
||||
cmd_opts.ngrok_region
|
||||
)
|
||||
|
||||
|
||||
def gr_show(visible=True):
|
||||
@ -266,7 +270,7 @@ def apply_styles(prompt, prompt_neg, style1_name, style2_name):
|
||||
|
||||
|
||||
def interrogate(image):
|
||||
prompt = shared.interrogator.interrogate(image)
|
||||
prompt = shared.interrogator.interrogate(image.convert("RGB"))
|
||||
|
||||
return gr_show(True) if prompt is None else prompt
|
||||
|
||||
@ -653,7 +657,7 @@ def create_ui():
|
||||
setup_progressbar(progressbar, txt2img_preview, 'txt2img')
|
||||
|
||||
with gr.Row().style(equal_height=False):
|
||||
with gr.Column(variant='panel'):
|
||||
with gr.Column(variant='panel', elem_id="txt2img_settings"):
|
||||
steps = gr.Slider(minimum=1, maximum=150, step=1, label="Sampling Steps", value=20)
|
||||
sampler_index = gr.Radio(label='Sampling method', elem_id="txt2img_sampling", choices=[x.name for x in samplers], value=samplers[0].name, type="index")
|
||||
|
||||
@ -808,11 +812,11 @@ def create_ui():
|
||||
setup_progressbar(progressbar, img2img_preview, 'img2img')
|
||||
|
||||
with gr.Row().style(equal_height=False):
|
||||
with gr.Column(variant='panel'):
|
||||
with gr.Column(variant='panel', elem_id="img2img_settings"):
|
||||
|
||||
with gr.Tabs(elem_id="mode_img2img") as tabs_img2img_mode:
|
||||
with gr.TabItem('img2img', id='img2img'):
|
||||
init_img = gr.Image(label="Image for img2img", elem_id="img2img_image", show_label=False, source="upload", interactive=True, type="pil", tool=cmd_opts.gradio_img2img_tool).style(height=480)
|
||||
init_img = gr.Image(label="Image for img2img", elem_id="img2img_image", show_label=False, source="upload", interactive=True, type="pil", tool=cmd_opts.gradio_img2img_tool, image_mode="RGBA").style(height=480)
|
||||
|
||||
with gr.TabItem('Inpaint', id='inpaint'):
|
||||
init_img_with_mask = gr.Image(label="Image for inpainting with mask", show_label=False, elem_id="img2maskimg", source="upload", interactive=True, type="pil", tool=cmd_opts.gradio_inpaint_tool, image_mode="RGBA").style(height=480)
|
||||
@ -853,7 +857,7 @@ def create_ui():
|
||||
img2img_batch_output_dir = gr.Textbox(label="Output directory", **shared.hide_dirs)
|
||||
|
||||
with gr.Row():
|
||||
resize_mode = gr.Radio(label="Resize mode", elem_id="resize_mode", show_label=False, choices=["Just resize", "Crop and resize", "Resize and fill"], type="index", value="Just resize")
|
||||
resize_mode = gr.Radio(label="Resize mode", elem_id="resize_mode", show_label=False, choices=["Just resize", "Crop and resize", "Resize and fill", "Just resize (latent upscale)"], type="index", value="Just resize")
|
||||
|
||||
steps = gr.Slider(minimum=1, maximum=150, step=1, label="Sampling Steps", value=20)
|
||||
sampler_index = gr.Radio(label='Sampling method', choices=[x.name for x in samplers_for_img2img], value=samplers_for_img2img[0].name, type="index")
|
||||
|
@ -9,6 +9,8 @@ import git
|
||||
|
||||
import gradio as gr
|
||||
import html
|
||||
import shutil
|
||||
import errno
|
||||
|
||||
from modules import extensions, shared, paths
|
||||
|
||||
@ -138,7 +140,18 @@ def install_extension_from_url(dirname, url):
|
||||
repo = git.Repo.clone_from(url, tmpdir)
|
||||
repo.remote().fetch()
|
||||
|
||||
os.rename(tmpdir, target_dir)
|
||||
try:
|
||||
os.rename(tmpdir, target_dir)
|
||||
except OSError as err:
|
||||
# TODO what does this do on windows? I think it'll be a different error code but I don't have a system to check it
|
||||
# Shouldn't cause any new issues at least but we probably want to handle it there too.
|
||||
if err.errno == errno.EXDEV:
|
||||
# Cross device link, typical in docker or when tmp/ and extensions/ are on different file systems
|
||||
# Since we can't use a rename, do the slower but more versitile shutil.move()
|
||||
shutil.move(tmpdir, target_dir)
|
||||
else:
|
||||
# Something else, not enough free space, permissions, etc. rethrow it so that it gets handled.
|
||||
raise(err)
|
||||
|
||||
import launch
|
||||
launch.run_extension_installer(target_dir)
|
||||
|
@ -1,3 +1,4 @@
|
||||
blendmodes
|
||||
accelerate
|
||||
basicsr
|
||||
fairscale==0.4.4
|
||||
|
@ -1,3 +1,4 @@
|
||||
blendmodes==2022
|
||||
transformers==4.19.2
|
||||
accelerate==0.12.0
|
||||
basicsr==1.4.2
|
||||
@ -26,3 +27,4 @@ inflection==0.5.1
|
||||
GitPython==3.1.27
|
||||
torchsde==0.2.5
|
||||
safetensors==0.2.5
|
||||
httpcore<=0.15
|
||||
|
@ -18,7 +18,7 @@ def draw_xy_grid(xs, ys, x_label, y_label, cell):
|
||||
ver_texts = [[images.GridAnnotation(y_label(y))] for y in ys]
|
||||
hor_texts = [[images.GridAnnotation(x_label(x))] for x in xs]
|
||||
|
||||
first_pocessed = None
|
||||
first_processed = None
|
||||
|
||||
state.job_count = len(xs) * len(ys)
|
||||
|
||||
@ -27,17 +27,17 @@ def draw_xy_grid(xs, ys, x_label, y_label, cell):
|
||||
state.job = f"{ix + iy * len(xs) + 1} out of {len(xs) * len(ys)}"
|
||||
|
||||
processed = cell(x, y)
|
||||
if first_pocessed is None:
|
||||
first_pocessed = processed
|
||||
if first_processed is None:
|
||||
first_processed = processed
|
||||
|
||||
res.append(processed.images[0])
|
||||
|
||||
grid = images.image_grid(res, rows=len(ys))
|
||||
grid = images.draw_grid_annotations(grid, res[0].width, res[0].height, hor_texts, ver_texts)
|
||||
|
||||
first_pocessed.images = [grid]
|
||||
first_processed.images = [grid]
|
||||
|
||||
return first_pocessed
|
||||
return first_processed
|
||||
|
||||
|
||||
class Script(scripts.Script):
|
||||
|
@ -9,6 +9,7 @@ import shlex
|
||||
import modules.scripts as scripts
|
||||
import gradio as gr
|
||||
|
||||
from modules import sd_samplers
|
||||
from modules.processing import Processed, process_images
|
||||
from PIL import Image
|
||||
from modules.shared import opts, cmd_opts, state
|
||||
@ -44,6 +45,7 @@ prompt_tags = {
|
||||
"seed_resize_from_h": process_int_tag,
|
||||
"seed_resize_from_w": process_int_tag,
|
||||
"sampler_index": process_int_tag,
|
||||
"sampler_name": process_string_tag,
|
||||
"batch_size": process_int_tag,
|
||||
"n_iter": process_int_tag,
|
||||
"steps": process_int_tag,
|
||||
@ -66,14 +68,28 @@ def cmdargs(line):
|
||||
arg = args[pos]
|
||||
|
||||
assert arg.startswith("--"), f'must start with "--": {arg}'
|
||||
assert pos+1 < len(args), f'missing argument for command line option {arg}'
|
||||
|
||||
tag = arg[2:]
|
||||
|
||||
if tag == "prompt" or tag == "negative_prompt":
|
||||
pos += 1
|
||||
prompt = args[pos]
|
||||
pos += 1
|
||||
while pos < len(args) and not args[pos].startswith("--"):
|
||||
prompt += " "
|
||||
prompt += args[pos]
|
||||
pos += 1
|
||||
res[tag] = prompt
|
||||
continue
|
||||
|
||||
|
||||
func = prompt_tags.get(tag, None)
|
||||
assert func, f'unknown commandline option: {arg}'
|
||||
|
||||
assert pos+1 < len(args), f'missing argument for command line option {arg}'
|
||||
|
||||
val = args[pos+1]
|
||||
if tag == "sampler_name":
|
||||
val = sd_samplers.samplers_map.get(val.lower(), None)
|
||||
|
||||
res[tag] = func(val)
|
||||
|
||||
@ -124,7 +140,7 @@ class Script(scripts.Script):
|
||||
try:
|
||||
args = cmdargs(line)
|
||||
except Exception:
|
||||
print(f"Error parsing line [line] as commandline:", file=sys.stderr)
|
||||
print(f"Error parsing line {line} as commandline:", file=sys.stderr)
|
||||
print(traceback.format_exc(), file=sys.stderr)
|
||||
args = {"prompt": line}
|
||||
else:
|
||||
|
@ -35,8 +35,9 @@ class Script(scripts.Script):
|
||||
seed = p.seed
|
||||
|
||||
init_img = p.init_images[0]
|
||||
init_img = images.flatten(init_img, opts.img2img_background_color)
|
||||
|
||||
if (upscaler.name != "None"):
|
||||
if upscaler.name != "None":
|
||||
img = upscaler.scaler.upscale(init_img, scale_factor, upscaler.data_path)
|
||||
else:
|
||||
img = init_img
|
||||
|
@ -10,13 +10,16 @@ import numpy as np
|
||||
import modules.scripts as scripts
|
||||
import gradio as gr
|
||||
|
||||
from modules import images, sd_samplers
|
||||
from modules import images, paths, sd_samplers
|
||||
from modules.hypernetworks import hypernetwork
|
||||
from modules.processing import process_images, Processed, StableDiffusionProcessingTxt2Img
|
||||
from modules.shared import opts, cmd_opts, state
|
||||
import modules.shared as shared
|
||||
import modules.sd_samplers
|
||||
import modules.sd_models
|
||||
import modules.sd_vae
|
||||
import glob
|
||||
import os
|
||||
import re
|
||||
|
||||
|
||||
@ -114,6 +117,38 @@ def apply_clip_skip(p, x, xs):
|
||||
opts.data["CLIP_stop_at_last_layers"] = x
|
||||
|
||||
|
||||
def apply_upscale_latent_space(p, x, xs):
|
||||
if x.lower().strip() != '0':
|
||||
opts.data["use_scale_latent_for_hires_fix"] = True
|
||||
else:
|
||||
opts.data["use_scale_latent_for_hires_fix"] = False
|
||||
|
||||
|
||||
def find_vae(name: str):
|
||||
if name.lower() in ['auto', 'none']:
|
||||
return name
|
||||
else:
|
||||
vae_path = os.path.abspath(os.path.join(paths.models_path, 'VAE'))
|
||||
found = glob.glob(os.path.join(vae_path, f'**/{name}.*pt'), recursive=True)
|
||||
if found:
|
||||
return found[0]
|
||||
else:
|
||||
return 'auto'
|
||||
|
||||
|
||||
def apply_vae(p, x, xs):
|
||||
if x.lower().strip() == 'none':
|
||||
modules.sd_vae.reload_vae_weights(shared.sd_model, vae_file='None')
|
||||
else:
|
||||
found = find_vae(x)
|
||||
if found:
|
||||
v = modules.sd_vae.reload_vae_weights(shared.sd_model, vae_file=found)
|
||||
|
||||
|
||||
def apply_styles(p: StableDiffusionProcessingTxt2Img, x: str, _):
|
||||
p.styles = x.split(',')
|
||||
|
||||
|
||||
def format_value_add_label(p, opt, x):
|
||||
if type(x) == float:
|
||||
x = round(x, 8)
|
||||
@ -167,7 +202,10 @@ axis_options = [
|
||||
AxisOption("Eta", float, apply_field("eta"), format_value_add_label, None),
|
||||
AxisOption("Clip skip", int, apply_clip_skip, format_value_add_label, None),
|
||||
AxisOption("Denoising", float, apply_field("denoising_strength"), format_value_add_label, None),
|
||||
AxisOption("Upscale latent space for hires.", str, apply_upscale_latent_space, format_value_add_label, None),
|
||||
AxisOption("Cond. Image Mask Weight", float, apply_field("inpainting_mask_weight"), format_value_add_label, None),
|
||||
AxisOption("VAE", str, apply_vae, format_value_add_label, None),
|
||||
AxisOption("Styles", str, apply_styles, format_value_add_label, None),
|
||||
]
|
||||
|
||||
|
||||
@ -229,14 +267,18 @@ class SharedSettingsStackHelper(object):
|
||||
self.CLIP_stop_at_last_layers = opts.CLIP_stop_at_last_layers
|
||||
self.hypernetwork = opts.sd_hypernetwork
|
||||
self.model = shared.sd_model
|
||||
self.use_scale_latent_for_hires_fix = opts.use_scale_latent_for_hires_fix
|
||||
self.vae = opts.sd_vae
|
||||
|
||||
def __exit__(self, exc_type, exc_value, tb):
|
||||
modules.sd_models.reload_model_weights(self.model)
|
||||
modules.sd_vae.reload_vae_weights(self.model, vae_file=find_vae(self.vae))
|
||||
|
||||
hypernetwork.load_hypernetwork(self.hypernetwork)
|
||||
hypernetwork.apply_strength()
|
||||
|
||||
opts.data["CLIP_stop_at_last_layers"] = self.CLIP_stop_at_last_layers
|
||||
opts.data["use_scale_latent_for_hires_fix"] = self.use_scale_latent_for_hires_fix
|
||||
|
||||
|
||||
re_range = re.compile(r"\s*([+-]?\s*\d+)\s*-\s*([+-]?\s*\d+)(?:\s*\(([+-]\d+)\s*\))?\s*")
|
||||
|
5
webui.py
5
webui.py
@ -8,6 +8,7 @@ from fastapi import FastAPI
|
||||
from fastapi.middleware.cors import CORSMiddleware
|
||||
from fastapi.middleware.gzip import GZipMiddleware
|
||||
|
||||
from modules import import_hook
|
||||
from modules.call_queue import wrap_queued_call, queue_lock, wrap_gradio_gpu_call
|
||||
from modules.paths import script_path
|
||||
|
||||
@ -153,8 +154,8 @@ def webui():
|
||||
|
||||
# gradio uses a very open CORS policy via app.user_middleware, which makes it possible for
|
||||
# an attacker to trick the user into opening a malicious HTML page, which makes a request to the
|
||||
# running web ui and do whatever the attcker wants, including installing an extension and
|
||||
# runnnig its code. We disable this here. Suggested by RyotaK.
|
||||
# running web ui and do whatever the attacker wants, including installing an extension and
|
||||
# running its code. We disable this here. Suggested by RyotaK.
|
||||
app.user_middleware = [x for x in app.user_middleware if x.cls.__name__ != 'CORSMiddleware']
|
||||
|
||||
setup_cors(app)
|
||||
|
Loading…
Reference in New Issue
Block a user