diff --git a/modules/sd_samplers_compvis.py b/modules/sd_samplers_compvis.py new file mode 100644 index 00000000..a7910b56 --- /dev/null +++ b/modules/sd_samplers_compvis.py @@ -0,0 +1,552 @@ +from collections import namedtuple, deque +import numpy as np +from math import floor +import torch +import tqdm +from PIL import Image +import inspect +import k_diffusion.sampling +import torchsde._brownian.brownian_interval +import ldm.models.diffusion.ddim +import ldm.models.diffusion.plms +from modules import prompt_parser, devices, processing, images, sd_vae_approx + +from modules.shared import opts, cmd_opts, state +import modules.shared as shared +from modules.script_callbacks import CFGDenoiserParams, cfg_denoiser_callback + + +SamplerData = namedtuple('SamplerData', ['name', 'constructor', 'aliases', 'options']) + +samplers_k_diffusion = [ + ('Euler a', 'sample_euler_ancestral', ['k_euler_a', 'k_euler_ancestral'], {}), + ('Euler', 'sample_euler', ['k_euler'], {}), + ('LMS', 'sample_lms', ['k_lms'], {}), + ('Heun', 'sample_heun', ['k_heun'], {}), + ('DPM2', 'sample_dpm_2', ['k_dpm_2'], {'discard_next_to_last_sigma': True}), + ('DPM2 a', 'sample_dpm_2_ancestral', ['k_dpm_2_a'], {'discard_next_to_last_sigma': True}), + ('DPM++ 2S a', 'sample_dpmpp_2s_ancestral', ['k_dpmpp_2s_a'], {}), + ('DPM++ 2M', 'sample_dpmpp_2m', ['k_dpmpp_2m'], {}), + ('DPM++ SDE', 'sample_dpmpp_sde', ['k_dpmpp_sde'], {}), + ('DPM fast', 'sample_dpm_fast', ['k_dpm_fast'], {}), + ('DPM adaptive', 'sample_dpm_adaptive', ['k_dpm_ad'], {}), + ('LMS Karras', 'sample_lms', ['k_lms_ka'], {'scheduler': 'karras'}), + ('DPM2 Karras', 'sample_dpm_2', ['k_dpm_2_ka'], {'scheduler': 'karras', 'discard_next_to_last_sigma': True}), + ('DPM2 a Karras', 'sample_dpm_2_ancestral', ['k_dpm_2_a_ka'], {'scheduler': 'karras', 'discard_next_to_last_sigma': True}), + ('DPM++ 2S a Karras', 'sample_dpmpp_2s_ancestral', ['k_dpmpp_2s_a_ka'], {'scheduler': 'karras'}), + ('DPM++ 2M Karras', 'sample_dpmpp_2m', ['k_dpmpp_2m_ka'], {'scheduler': 'karras'}), + ('DPM++ SDE Karras', 'sample_dpmpp_sde', ['k_dpmpp_sde_ka'], {'scheduler': 'karras'}), +] + +samplers_data_k_diffusion = [ + SamplerData(label, lambda model, funcname=funcname: KDiffusionSampler(funcname, model), aliases, options) + for label, funcname, aliases, options in samplers_k_diffusion + if hasattr(k_diffusion.sampling, funcname) +] + +all_samplers = [ + *samplers_data_k_diffusion, + SamplerData('DDIM', lambda model: VanillaStableDiffusionSampler(ldm.models.diffusion.ddim.DDIMSampler, model), [], {}), + SamplerData('PLMS', lambda model: VanillaStableDiffusionSampler(ldm.models.diffusion.plms.PLMSSampler, model), [], {}), +] +all_samplers_map = {x.name: x for x in all_samplers} + +samplers = [] +samplers_for_img2img = [] +samplers_map = {} + + +def create_sampler(name, model): + if name is not None: + config = all_samplers_map.get(name, None) + else: + config = all_samplers[0] + + assert config is not None, f'bad sampler name: {name}' + + sampler = config.constructor(model) + sampler.config = config + + return sampler + + +def set_samplers(): + global samplers, samplers_for_img2img + + hidden = set(opts.hide_samplers) + hidden_img2img = set(opts.hide_samplers + ['PLMS']) + + samplers = [x for x in all_samplers if x.name not in hidden] + samplers_for_img2img = [x for x in all_samplers if x.name not in hidden_img2img] + + samplers_map.clear() + for sampler in all_samplers: + samplers_map[sampler.name.lower()] = sampler.name + for alias in sampler.aliases: + samplers_map[alias.lower()] = sampler.name + + +set_samplers() + +sampler_extra_params = { + 'sample_euler': ['s_churn', 's_tmin', 's_tmax', 's_noise'], + 'sample_heun': ['s_churn', 's_tmin', 's_tmax', 's_noise'], + 'sample_dpm_2': ['s_churn', 's_tmin', 's_tmax', 's_noise'], +} + + +def setup_img2img_steps(p, steps=None): + if opts.img2img_fix_steps or steps is not None: + requested_steps = (steps or p.steps) + steps = int(requested_steps / min(p.denoising_strength, 0.999)) if p.denoising_strength > 0 else 0 + t_enc = requested_steps - 1 + else: + steps = p.steps + t_enc = int(min(p.denoising_strength, 0.999) * steps) + + return steps, t_enc + + +approximation_indexes = {"Full": 0, "Approx NN": 1, "Approx cheap": 2} + + +def single_sample_to_image(sample, approximation=None): + if approximation is None: + approximation = approximation_indexes.get(opts.show_progress_type, 0) + + if approximation == 2: + x_sample = sd_vae_approx.cheap_approximation(sample) + elif approximation == 1: + x_sample = sd_vae_approx.model()(sample.to(devices.device, devices.dtype).unsqueeze(0))[0].detach() + else: + x_sample = processing.decode_first_stage(shared.sd_model, sample.unsqueeze(0))[0] + + x_sample = torch.clamp((x_sample + 1.0) / 2.0, min=0.0, max=1.0) + x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2) + x_sample = x_sample.astype(np.uint8) + return Image.fromarray(x_sample) + + +def sample_to_image(samples, index=0, approximation=None): + return single_sample_to_image(samples[index], approximation) + + +def samples_to_image_grid(samples, approximation=None): + return images.image_grid([single_sample_to_image(sample, approximation) for sample in samples]) + + +def store_latent(decoded): + state.current_latent = decoded + + if opts.live_previews_enable and opts.show_progress_every_n_steps > 0 and shared.state.sampling_step % opts.show_progress_every_n_steps == 0: + if not shared.parallel_processing_allowed: + shared.state.assign_current_image(sample_to_image(decoded)) + + +class InterruptedException(BaseException): + pass + + +class VanillaStableDiffusionSampler: + def __init__(self, constructor, sd_model): + self.sampler = constructor(sd_model) + self.is_plms = hasattr(self.sampler, 'p_sample_plms') + self.orig_p_sample_ddim = self.sampler.p_sample_plms if self.is_plms else self.sampler.p_sample_ddim + self.mask = None + self.nmask = None + self.init_latent = None + self.sampler_noises = None + self.step = 0 + self.stop_at = None + self.eta = None + self.default_eta = 0.0 + self.config = None + self.last_latent = None + + self.conditioning_key = sd_model.model.conditioning_key + + def number_of_needed_noises(self, p): + return 0 + + def launch_sampling(self, steps, func): + state.sampling_steps = steps + state.sampling_step = 0 + + try: + return func() + except InterruptedException: + return self.last_latent + + def p_sample_ddim_hook(self, x_dec, cond, ts, unconditional_conditioning, *args, **kwargs): + if state.interrupted or state.skipped: + raise InterruptedException + + if self.stop_at is not None and self.step > self.stop_at: + raise InterruptedException + + # Have to unwrap the inpainting conditioning here to perform pre-processing + image_conditioning = None + if isinstance(cond, dict): + image_conditioning = cond["c_concat"][0] + cond = cond["c_crossattn"][0] + unconditional_conditioning = unconditional_conditioning["c_crossattn"][0] + + conds_list, tensor = prompt_parser.reconstruct_multicond_batch(cond, self.step) + unconditional_conditioning = prompt_parser.reconstruct_cond_batch(unconditional_conditioning, self.step) + + assert all([len(conds) == 1 for conds in conds_list]), 'composition via AND is not supported for DDIM/PLMS samplers' + cond = tensor + + # for DDIM, shapes must match, we can't just process cond and uncond independently; + # filling unconditional_conditioning with repeats of the last vector to match length is + # not 100% correct but should work well enough + if unconditional_conditioning.shape[1] < cond.shape[1]: + last_vector = unconditional_conditioning[:, -1:] + last_vector_repeated = last_vector.repeat([1, cond.shape[1] - unconditional_conditioning.shape[1], 1]) + unconditional_conditioning = torch.hstack([unconditional_conditioning, last_vector_repeated]) + elif unconditional_conditioning.shape[1] > cond.shape[1]: + unconditional_conditioning = unconditional_conditioning[:, :cond.shape[1]] + + if self.mask is not None: + img_orig = self.sampler.model.q_sample(self.init_latent, ts) + x_dec = img_orig * self.mask + self.nmask * x_dec + + # Wrap the image conditioning back up since the DDIM code can accept the dict directly. + # Note that they need to be lists because it just concatenates them later. + if image_conditioning is not None: + cond = {"c_concat": [image_conditioning], "c_crossattn": [cond]} + unconditional_conditioning = {"c_concat": [image_conditioning], "c_crossattn": [unconditional_conditioning]} + + res = self.orig_p_sample_ddim(x_dec, cond, ts, unconditional_conditioning=unconditional_conditioning, *args, **kwargs) + + if self.mask is not None: + self.last_latent = self.init_latent * self.mask + self.nmask * res[1] + else: + self.last_latent = res[1] + + store_latent(self.last_latent) + + self.step += 1 + state.sampling_step = self.step + shared.total_tqdm.update() + + return res + + def initialize(self, p): + self.eta = p.eta if p.eta is not None else opts.eta_ddim + + for fieldname in ['p_sample_ddim', 'p_sample_plms']: + if hasattr(self.sampler, fieldname): + setattr(self.sampler, fieldname, self.p_sample_ddim_hook) + + self.mask = p.mask if hasattr(p, 'mask') else None + self.nmask = p.nmask if hasattr(p, 'nmask') else None + + def adjust_steps_if_invalid(self, p, num_steps): + if (self.config.name == 'DDIM' and p.ddim_discretize == 'uniform') or (self.config.name == 'PLMS'): + valid_step = 999 / (1000 // num_steps) + if valid_step == floor(valid_step): + return int(valid_step) + 1 + + return num_steps + + def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning, steps=None, image_conditioning=None): + steps, t_enc = setup_img2img_steps(p, steps) + steps = self.adjust_steps_if_invalid(p, steps) + self.initialize(p) + + self.sampler.make_schedule(ddim_num_steps=steps, ddim_eta=self.eta, ddim_discretize=p.ddim_discretize, verbose=False) + x1 = self.sampler.stochastic_encode(x, torch.tensor([t_enc] * int(x.shape[0])).to(shared.device), noise=noise) + + self.init_latent = x + self.last_latent = x + self.step = 0 + + # Wrap the conditioning models with additional image conditioning for inpainting model + if image_conditioning is not None: + conditioning = {"c_concat": [image_conditioning], "c_crossattn": [conditioning]} + unconditional_conditioning = {"c_concat": [image_conditioning], "c_crossattn": [unconditional_conditioning]} + + samples = self.launch_sampling(t_enc + 1, lambda: self.sampler.decode(x1, conditioning, t_enc, unconditional_guidance_scale=p.cfg_scale, unconditional_conditioning=unconditional_conditioning)) + + return samples + + def sample(self, p, x, conditioning, unconditional_conditioning, steps=None, image_conditioning=None): + self.initialize(p) + + self.init_latent = None + self.last_latent = x + self.step = 0 + + steps = self.adjust_steps_if_invalid(p, steps or p.steps) + + # Wrap the conditioning models with additional image conditioning for inpainting model + # dummy_for_plms is needed because PLMS code checks the first item in the dict to have the right shape + if image_conditioning is not None: + conditioning = {"dummy_for_plms": np.zeros((conditioning.shape[0],)), "c_crossattn": [conditioning], "c_concat": [image_conditioning]} + unconditional_conditioning = {"c_crossattn": [unconditional_conditioning], "c_concat": [image_conditioning]} + + samples_ddim = self.launch_sampling(steps, lambda: self.sampler.sample(S=steps, conditioning=conditioning, batch_size=int(x.shape[0]), shape=x[0].shape, verbose=False, unconditional_guidance_scale=p.cfg_scale, unconditional_conditioning=unconditional_conditioning, x_T=x, eta=self.eta)[0]) + + return samples_ddim + + +class CFGDenoiser(torch.nn.Module): + def __init__(self, model): + super().__init__() + self.inner_model = model + self.mask = None + self.nmask = None + self.init_latent = None + self.step = 0 + + def combine_denoised(self, x_out, conds_list, uncond, cond_scale): + denoised_uncond = x_out[-uncond.shape[0]:] + denoised = torch.clone(denoised_uncond) + + for i, conds in enumerate(conds_list): + for cond_index, weight in conds: + denoised[i] += (x_out[cond_index] - denoised_uncond[i]) * (weight * cond_scale) + + return denoised + + def forward(self, x, sigma, uncond, cond, cond_scale, image_cond): + if state.interrupted or state.skipped: + raise InterruptedException + + conds_list, tensor = prompt_parser.reconstruct_multicond_batch(cond, self.step) + uncond = prompt_parser.reconstruct_cond_batch(uncond, self.step) + + batch_size = len(conds_list) + repeats = [len(conds_list[i]) for i in range(batch_size)] + + x_in = torch.cat([torch.stack([x[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [x]) + image_cond_in = torch.cat([torch.stack([image_cond[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [image_cond]) + sigma_in = torch.cat([torch.stack([sigma[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [sigma]) + + denoiser_params = CFGDenoiserParams(x_in, image_cond_in, sigma_in, state.sampling_step, state.sampling_steps) + cfg_denoiser_callback(denoiser_params) + x_in = denoiser_params.x + image_cond_in = denoiser_params.image_cond + sigma_in = denoiser_params.sigma + + if tensor.shape[1] == uncond.shape[1]: + cond_in = torch.cat([tensor, uncond]) + + if shared.batch_cond_uncond: + x_out = self.inner_model(x_in, sigma_in, cond={"c_crossattn": [cond_in], "c_concat": [image_cond_in]}) + else: + x_out = torch.zeros_like(x_in) + for batch_offset in range(0, x_out.shape[0], batch_size): + a = batch_offset + b = a + batch_size + x_out[a:b] = self.inner_model(x_in[a:b], sigma_in[a:b], cond={"c_crossattn": [cond_in[a:b]], "c_concat": [image_cond_in[a:b]]}) + else: + x_out = torch.zeros_like(x_in) + batch_size = batch_size*2 if shared.batch_cond_uncond else batch_size + for batch_offset in range(0, tensor.shape[0], batch_size): + a = batch_offset + b = min(a + batch_size, tensor.shape[0]) + x_out[a:b] = self.inner_model(x_in[a:b], sigma_in[a:b], cond={"c_crossattn": [tensor[a:b]], "c_concat": [image_cond_in[a:b]]}) + + x_out[-uncond.shape[0]:] = self.inner_model(x_in[-uncond.shape[0]:], sigma_in[-uncond.shape[0]:], cond={"c_crossattn": [uncond], "c_concat": [image_cond_in[-uncond.shape[0]:]]}) + + devices.test_for_nans(x_out, "unet") + + if opts.live_preview_content == "Prompt": + store_latent(x_out[0:uncond.shape[0]]) + elif opts.live_preview_content == "Negative prompt": + store_latent(x_out[-uncond.shape[0]:]) + + denoised = self.combine_denoised(x_out, conds_list, uncond, cond_scale) + + if self.mask is not None: + denoised = self.init_latent * self.mask + self.nmask * denoised + + self.step += 1 + + return denoised + + +class TorchHijack: + def __init__(self, sampler_noises): + # Using a deque to efficiently receive the sampler_noises in the same order as the previous index-based + # implementation. + self.sampler_noises = deque(sampler_noises) + + def __getattr__(self, item): + if item == 'randn_like': + return self.randn_like + + if hasattr(torch, item): + return getattr(torch, item) + + raise AttributeError("'{}' object has no attribute '{}'".format(type(self).__name__, item)) + + def randn_like(self, x): + if self.sampler_noises: + noise = self.sampler_noises.popleft() + if noise.shape == x.shape: + return noise + + if x.device.type == 'mps': + return torch.randn_like(x, device=devices.cpu).to(x.device) + else: + return torch.randn_like(x) + + +# MPS fix for randn in torchsde +def torchsde_randn(size, dtype, device, seed): + if device.type == 'mps': + generator = torch.Generator(devices.cpu).manual_seed(int(seed)) + return torch.randn(size, dtype=dtype, device=devices.cpu, generator=generator).to(device) + else: + generator = torch.Generator(device).manual_seed(int(seed)) + return torch.randn(size, dtype=dtype, device=device, generator=generator) + + +torchsde._brownian.brownian_interval._randn = torchsde_randn + + +class KDiffusionSampler: + def __init__(self, funcname, sd_model): + denoiser = k_diffusion.external.CompVisVDenoiser if sd_model.parameterization == "v" else k_diffusion.external.CompVisDenoiser + + self.model_wrap = denoiser(sd_model, quantize=shared.opts.enable_quantization) + self.funcname = funcname + self.func = getattr(k_diffusion.sampling, self.funcname) + self.extra_params = sampler_extra_params.get(funcname, []) + self.model_wrap_cfg = CFGDenoiser(self.model_wrap) + self.sampler_noises = None + self.stop_at = None + self.eta = None + self.default_eta = 1.0 + self.config = None + self.last_latent = None + + self.conditioning_key = sd_model.model.conditioning_key + + def callback_state(self, d): + step = d['i'] + latent = d["denoised"] + if opts.live_preview_content == "Combined": + store_latent(latent) + self.last_latent = latent + + if self.stop_at is not None and step > self.stop_at: + raise InterruptedException + + state.sampling_step = step + shared.total_tqdm.update() + + def launch_sampling(self, steps, func): + state.sampling_steps = steps + state.sampling_step = 0 + + try: + return func() + except InterruptedException: + return self.last_latent + + def number_of_needed_noises(self, p): + return p.steps + + def initialize(self, p): + self.model_wrap_cfg.mask = p.mask if hasattr(p, 'mask') else None + self.model_wrap_cfg.nmask = p.nmask if hasattr(p, 'nmask') else None + self.model_wrap_cfg.step = 0 + self.eta = p.eta or opts.eta_ancestral + + k_diffusion.sampling.torch = TorchHijack(self.sampler_noises if self.sampler_noises is not None else []) + + extra_params_kwargs = {} + for param_name in self.extra_params: + if hasattr(p, param_name) and param_name in inspect.signature(self.func).parameters: + extra_params_kwargs[param_name] = getattr(p, param_name) + + if 'eta' in inspect.signature(self.func).parameters: + extra_params_kwargs['eta'] = self.eta + + return extra_params_kwargs + + def get_sigmas(self, p, steps): + discard_next_to_last_sigma = self.config is not None and self.config.options.get('discard_next_to_last_sigma', False) + if opts.always_discard_next_to_last_sigma and not discard_next_to_last_sigma: + discard_next_to_last_sigma = True + p.extra_generation_params["Discard penultimate sigma"] = True + + steps += 1 if discard_next_to_last_sigma else 0 + + if p.sampler_noise_scheduler_override: + sigmas = p.sampler_noise_scheduler_override(steps) + elif self.config is not None and self.config.options.get('scheduler', None) == 'karras': + sigma_min, sigma_max = (0.1, 10) if opts.use_old_karras_scheduler_sigmas else (self.model_wrap.sigmas[0].item(), self.model_wrap.sigmas[-1].item()) + + sigmas = k_diffusion.sampling.get_sigmas_karras(n=steps, sigma_min=sigma_min, sigma_max=sigma_max, device=shared.device) + else: + sigmas = self.model_wrap.get_sigmas(steps) + + if discard_next_to_last_sigma: + sigmas = torch.cat([sigmas[:-2], sigmas[-1:]]) + + return sigmas + + def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning, steps=None, image_conditioning=None): + steps, t_enc = setup_img2img_steps(p, steps) + + sigmas = self.get_sigmas(p, steps) + + sigma_sched = sigmas[steps - t_enc - 1:] + xi = x + noise * sigma_sched[0] + + extra_params_kwargs = self.initialize(p) + if 'sigma_min' in inspect.signature(self.func).parameters: + ## last sigma is zero which isn't allowed by DPM Fast & Adaptive so taking value before last + extra_params_kwargs['sigma_min'] = sigma_sched[-2] + if 'sigma_max' in inspect.signature(self.func).parameters: + extra_params_kwargs['sigma_max'] = sigma_sched[0] + if 'n' in inspect.signature(self.func).parameters: + extra_params_kwargs['n'] = len(sigma_sched) - 1 + if 'sigma_sched' in inspect.signature(self.func).parameters: + extra_params_kwargs['sigma_sched'] = sigma_sched + if 'sigmas' in inspect.signature(self.func).parameters: + extra_params_kwargs['sigmas'] = sigma_sched + + self.model_wrap_cfg.init_latent = x + self.last_latent = x + + samples = self.launch_sampling(t_enc + 1, lambda: self.func(self.model_wrap_cfg, xi, extra_args={ + 'cond': conditioning, + 'image_cond': image_conditioning, + 'uncond': unconditional_conditioning, + 'cond_scale': p.cfg_scale + }, disable=False, callback=self.callback_state, **extra_params_kwargs)) + + return samples + + def sample(self, p, x, conditioning, unconditional_conditioning, steps=None, image_conditioning = None): + steps = steps or p.steps + + sigmas = self.get_sigmas(p, steps) + + x = x * sigmas[0] + + extra_params_kwargs = self.initialize(p) + if 'sigma_min' in inspect.signature(self.func).parameters: + extra_params_kwargs['sigma_min'] = self.model_wrap.sigmas[0].item() + extra_params_kwargs['sigma_max'] = self.model_wrap.sigmas[-1].item() + if 'n' in inspect.signature(self.func).parameters: + extra_params_kwargs['n'] = steps + else: + extra_params_kwargs['sigmas'] = sigmas + + self.last_latent = x + samples = self.launch_sampling(steps, lambda: self.func(self.model_wrap_cfg, x, extra_args={ + 'cond': conditioning, + 'image_cond': image_conditioning, + 'uncond': unconditional_conditioning, + 'cond_scale': p.cfg_scale + }, disable=False, callback=self.callback_state, **extra_params_kwargs)) + + return samples +