Merge branch 'dev' into fix-11805

This commit is contained in:
Leon Feng 2023-07-18 04:24:14 -04:00 committed by GitHub
commit a3730bd9be
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
94 changed files with 3536 additions and 1352 deletions

View File

@ -1,4 +1,4 @@
name: Run Linting/Formatting on Pull Requests name: Linter
on: on:
- push - push
@ -6,7 +6,9 @@ on:
jobs: jobs:
lint-python: lint-python:
name: ruff
runs-on: ubuntu-latest runs-on: ubuntu-latest
if: github.event_name != 'pull_request' || github.event.pull_request.head.repo.full_name != github.event.pull_request.base.repo.full_name
steps: steps:
- name: Checkout Code - name: Checkout Code
uses: actions/checkout@v3 uses: actions/checkout@v3
@ -18,11 +20,13 @@ jobs:
# not to have GHA download an (at the time of writing) 4 GB cache # not to have GHA download an (at the time of writing) 4 GB cache
# of PyTorch and other dependencies. # of PyTorch and other dependencies.
- name: Install Ruff - name: Install Ruff
run: pip install ruff==0.0.265 run: pip install ruff==0.0.272
- name: Run Ruff - name: Run Ruff
run: ruff . run: ruff .
lint-js: lint-js:
name: eslint
runs-on: ubuntu-latest runs-on: ubuntu-latest
if: github.event_name != 'pull_request' || github.event.pull_request.head.repo.full_name != github.event.pull_request.base.repo.full_name
steps: steps:
- name: Checkout Code - name: Checkout Code
uses: actions/checkout@v3 uses: actions/checkout@v3

View File

@ -1,4 +1,4 @@
name: Run basic features tests on CPU with empty SD model name: Tests
on: on:
- push - push
@ -6,7 +6,9 @@ on:
jobs: jobs:
test: test:
name: tests on CPU with empty model
runs-on: ubuntu-latest runs-on: ubuntu-latest
if: github.event_name != 'pull_request' || github.event.pull_request.head.repo.full_name != github.event.pull_request.base.repo.full_name
steps: steps:
- name: Checkout Code - name: Checkout Code
uses: actions/checkout@v3 uses: actions/checkout@v3
@ -42,7 +44,7 @@ jobs:
--no-half --no-half
--disable-opt-split-attention --disable-opt-split-attention
--use-cpu all --use-cpu all
--add-stop-route --api-server-stop
2>&1 | tee output.txt & 2>&1 | tee output.txt &
- name: Run tests - name: Run tests
run: | run: |
@ -50,7 +52,7 @@ jobs:
python -m pytest -vv --junitxml=test/results.xml --cov . --cov-report=xml --verify-base-url test python -m pytest -vv --junitxml=test/results.xml --cov . --cov-report=xml --verify-base-url test
- name: Kill test server - name: Kill test server
if: always() if: always()
run: curl -vv -XPOST http://127.0.0.1:7860/_stop && sleep 10 run: curl -vv -XPOST http://127.0.0.1:7860/sdapi/v1/server-stop && sleep 10
- name: Show coverage - name: Show coverage
run: | run: |
python -m coverage combine .coverage* python -m coverage combine .coverage*

View File

@ -0,0 +1,19 @@
name: Pull requests can't target master branch
"on":
pull_request:
types:
- opened
- synchronize
- reopened
branches:
- master
jobs:
check:
runs-on: ubuntu-latest
steps:
- name: Warning marge into master
run: |
echo -e "::warning::This pull request directly merge into \"master\" branch, normally development happens on \"dev\" branch."
exit 1

View File

@ -1,3 +1,63 @@
## 1.5.0
### Features:
* SD XL support
* user metadata system for custom networks
* extended Lora metadata editor: set activation text, default weight, view tags, training info
* show github stars for extenstions
* img2img batch mode can read extra stuff from png info
* img2img batch works with subdirectories
* hotkeys to move prompt elements: alt+left/right
* restyle time taken/VRAM display
* add textual inversion hashes to infotext
* optimization: cache git extension repo information
### Minor:
* checkbox to check/uncheck all extensions in the Installed tab
* add gradio user to infotext and to filename patterns
* allow gif for extra network previews
* add options to change colors in grid
* use natural sort for items in extra networks
* Mac: use empty_cache() from torch 2 to clear VRAM
* added automatic support for installing the right libraries for Navi3 (AMD)
* add option SWIN_torch_compile to accelerate SwinIR upscale
* suppress printing TI embedding info at start to console by default
* speedup extra networks listing
* added `[none]` filename token.
* removed thumbs extra networks view mode (use settings tab to change width/height/scale to get thumbs)
### Extensions and API:
* api endpoints: /sdapi/v1/server-kill, /sdapi/v1/server-restart, /sdapi/v1/server-stop
* allow Script to have custom metaclass
* add model exists status check /sdapi/v1/options
* rename --add-stop-route to --api-server-stop
* add `before_hr` script callback
* add callback `after_extra_networks_activate`
* disable rich exception output in console for API by default, use WEBUI_RICH_EXCEPTIONS env var to enable
* return http 404 when thumb file not found
* allow replacing extensions index with environment variable
### Bug Fixes:
* fix for catch errors when retrieving extension index #11290
* fix very slow loading speed of .safetensors files when reading from network drives
* API cache cleanup
* fix UnicodeEncodeError when writing to file CLIP Interrogator batch mode
* fix warning of 'has_mps' deprecated from PyTorch
* fix problem with extra network saving images as previews losing generation info
* fix throwing exception when trying to resize image with I;16 mode
* fix for #11534: canvas zoom and pan extension hijacking shortcut keys
* fixed launch script to be runnable from any directory
* don't add "Seed Resize: -1x-1" to API image metadata
* correctly remove end parenthesis with ctrl+up/down
* fixing --subpath on newer gradio version
* fix: check fill size none zero when resize (fixes #11425)
* use submit and blur for quick settings textbox
* save img2img batch with images.save_image()
*
## 1.4.1 ## 1.4.1
### Bug Fixes: ### Bug Fixes:

View File

@ -135,8 +135,11 @@ Find the instructions [here](https://github.com/AUTOMATIC1111/stable-diffusion-w
Here's how to add code to this repo: [Contributing](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Contributing) Here's how to add code to this repo: [Contributing](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Contributing)
## Documentation ## Documentation
The documentation was moved from this README over to the project's [wiki](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki). The documentation was moved from this README over to the project's [wiki](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki).
For the purposes of getting Google and other search engines to crawl the wiki, here's a link to the (not for humans) [crawlable wiki](https://github-wiki-see.page/m/AUTOMATIC1111/stable-diffusion-webui/wiki).
## Credits ## Credits
Licenses for borrowed code can be found in `Settings -> Licenses` screen, and also in `html/licenses.html` file. Licenses for borrowed code can be found in `Settings -> Licenses` screen, and also in `html/licenses.html` file.
@ -165,5 +168,6 @@ Licenses for borrowed code can be found in `Settings -> Licenses` screen, and al
- Security advice - RyotaK - Security advice - RyotaK
- UniPC sampler - Wenliang Zhao - https://github.com/wl-zhao/UniPC - UniPC sampler - Wenliang Zhao - https://github.com/wl-zhao/UniPC
- TAESD - Ollin Boer Bohan - https://github.com/madebyollin/taesd - TAESD - Ollin Boer Bohan - https://github.com/madebyollin/taesd
- LyCORIS - KohakuBlueleaf
- Initial Gradio script - posted on 4chan by an Anonymous user. Thank you Anonymous user. - Initial Gradio script - posted on 4chan by an Anonymous user. Thank you Anonymous user.
- (You) - (You)

View File

@ -12,7 +12,7 @@ import safetensors.torch
from ldm.models.diffusion.ddim import DDIMSampler from ldm.models.diffusion.ddim import DDIMSampler
from ldm.util import instantiate_from_config, ismap from ldm.util import instantiate_from_config, ismap
from modules import shared, sd_hijack from modules import shared, sd_hijack, devices
cached_ldsr_model: torch.nn.Module = None cached_ldsr_model: torch.nn.Module = None
@ -112,8 +112,7 @@ class LDSR:
gc.collect() gc.collect()
if torch.cuda.is_available: devices.torch_gc()
torch.cuda.empty_cache()
im_og = image im_og = image
width_og, height_og = im_og.size width_og, height_og = im_og.size
@ -150,8 +149,7 @@ class LDSR:
del model del model
gc.collect() gc.collect()
if torch.cuda.is_available: devices.torch_gc()
torch.cuda.empty_cache()
return a return a

View File

@ -1,7 +1,6 @@
import os import os
from basicsr.utils.download_util import load_file_from_url from modules.modelloader import load_file_from_url
from modules.upscaler import Upscaler, UpscalerData from modules.upscaler import Upscaler, UpscalerData
from ldsr_model_arch import LDSR from ldsr_model_arch import LDSR
from modules import shared, script_callbacks, errors from modules import shared, script_callbacks, errors
@ -43,20 +42,17 @@ class UpscalerLDSR(Upscaler):
if local_safetensors_path is not None and os.path.exists(local_safetensors_path): if local_safetensors_path is not None and os.path.exists(local_safetensors_path):
model = local_safetensors_path model = local_safetensors_path
else: else:
model = local_ckpt_path if local_ckpt_path is not None else load_file_from_url(url=self.model_url, model_dir=self.model_download_path, file_name="model.ckpt", progress=True) model = local_ckpt_path or load_file_from_url(self.model_url, model_dir=self.model_download_path, file_name="model.ckpt")
yaml = local_yaml_path if local_yaml_path is not None else load_file_from_url(url=self.yaml_url, model_dir=self.model_download_path, file_name="project.yaml", progress=True) yaml = local_yaml_path or load_file_from_url(self.yaml_url, model_dir=self.model_download_path, file_name="project.yaml")
try:
return LDSR(model, yaml) return LDSR(model, yaml)
except Exception:
errors.report("Error importing LDSR", exc_info=True)
return None
def do_upscale(self, img, path): def do_upscale(self, img, path):
try:
ldsr = self.load_model(path) ldsr = self.load_model(path)
if ldsr is None: except Exception:
print("NO LDSR!") errors.report(f"Failed loading LDSR model {path}", exc_info=True)
return img return img
ddim_steps = shared.opts.ldsr_steps ddim_steps = shared.opts.ldsr_steps
return ldsr.super_resolution(img, ddim_steps, self.scale) return ldsr.super_resolution(img, ddim_steps, self.scale)

View File

@ -1,5 +1,5 @@
from modules import extra_networks, shared from modules import extra_networks, shared
import lora import networks
class ExtraNetworkLora(extra_networks.ExtraNetwork): class ExtraNetworkLora(extra_networks.ExtraNetwork):
@ -9,24 +9,38 @@ class ExtraNetworkLora(extra_networks.ExtraNetwork):
def activate(self, p, params_list): def activate(self, p, params_list):
additional = shared.opts.sd_lora additional = shared.opts.sd_lora
if additional != "None" and additional in lora.available_loras and not any(x for x in params_list if x.items[0] == additional): if additional != "None" and additional in networks.available_networks and not any(x for x in params_list if x.items[0] == additional):
p.all_prompts = [x + f"<lora:{additional}:{shared.opts.extra_networks_default_multiplier}>" for x in p.all_prompts] p.all_prompts = [x + f"<lora:{additional}:{shared.opts.extra_networks_default_multiplier}>" for x in p.all_prompts]
params_list.append(extra_networks.ExtraNetworkParams(items=[additional, shared.opts.extra_networks_default_multiplier])) params_list.append(extra_networks.ExtraNetworkParams(items=[additional, shared.opts.extra_networks_default_multiplier]))
names = [] names = []
multipliers = [] te_multipliers = []
unet_multipliers = []
dyn_dims = []
for params in params_list: for params in params_list:
assert params.items assert params.items
names.append(params.items[0]) names.append(params.positional[0])
multipliers.append(float(params.items[1]) if len(params.items) > 1 else 1.0)
lora.load_loras(names, multipliers) te_multiplier = float(params.positional[1]) if len(params.positional) > 1 else 1.0
te_multiplier = float(params.named.get("te", te_multiplier))
unet_multiplier = float(params.positional[2]) if len(params.positional) > 2 else 1.0
unet_multiplier = float(params.named.get("unet", unet_multiplier))
dyn_dim = int(params.positional[3]) if len(params.positional) > 3 else None
dyn_dim = int(params.named["dyn"]) if "dyn" in params.named else dyn_dim
te_multipliers.append(te_multiplier)
unet_multipliers.append(unet_multiplier)
dyn_dims.append(dyn_dim)
networks.load_networks(names, te_multipliers, unet_multipliers, dyn_dims)
if shared.opts.lora_add_hashes_to_infotext: if shared.opts.lora_add_hashes_to_infotext:
lora_hashes = [] network_hashes = []
for item in lora.loaded_loras: for item in networks.loaded_networks:
shorthash = item.lora_on_disk.shorthash shorthash = item.network_on_disk.shorthash
if not shorthash: if not shorthash:
continue continue
@ -36,10 +50,10 @@ class ExtraNetworkLora(extra_networks.ExtraNetwork):
alias = alias.replace(":", "").replace(",", "") alias = alias.replace(":", "").replace(",", "")
lora_hashes.append(f"{alias}: {shorthash}") network_hashes.append(f"{alias}: {shorthash}")
if lora_hashes: if network_hashes:
p.extra_generation_params["Lora hashes"] = ", ".join(lora_hashes) p.extra_generation_params["Lora hashes"] = ", ".join(network_hashes)
def deactivate(self, p): def deactivate(self, p):
pass pass

View File

@ -1,506 +1,9 @@
import os import networks
import re
import torch
from typing import Union
from modules import shared, devices, sd_models, errors, scripts, sd_hijack, hashes list_available_loras = networks.list_available_networks
metadata_tags_order = {"ss_sd_model_name": 1, "ss_resolution": 2, "ss_clip_skip": 3, "ss_num_train_images": 10, "ss_tag_frequency": 20} available_loras = networks.available_networks
available_lora_aliases = networks.available_network_aliases
re_digits = re.compile(r"\d+") available_lora_hash_lookup = networks.available_network_hash_lookup
re_x_proj = re.compile(r"(.*)_([qkv]_proj)$") forbidden_lora_aliases = networks.forbidden_network_aliases
re_compiled = {} loaded_loras = networks.loaded_networks
suffix_conversion = {
"attentions": {},
"resnets": {
"conv1": "in_layers_2",
"conv2": "out_layers_3",
"time_emb_proj": "emb_layers_1",
"conv_shortcut": "skip_connection",
}
}
def convert_diffusers_name_to_compvis(key, is_sd2):
def match(match_list, regex_text):
regex = re_compiled.get(regex_text)
if regex is None:
regex = re.compile(regex_text)
re_compiled[regex_text] = regex
r = re.match(regex, key)
if not r:
return False
match_list.clear()
match_list.extend([int(x) if re.match(re_digits, x) else x for x in r.groups()])
return True
m = []
if match(m, r"lora_unet_down_blocks_(\d+)_(attentions|resnets)_(\d+)_(.+)"):
suffix = suffix_conversion.get(m[1], {}).get(m[3], m[3])
return f"diffusion_model_input_blocks_{1 + m[0] * 3 + m[2]}_{1 if m[1] == 'attentions' else 0}_{suffix}"
if match(m, r"lora_unet_mid_block_(attentions|resnets)_(\d+)_(.+)"):
suffix = suffix_conversion.get(m[0], {}).get(m[2], m[2])
return f"diffusion_model_middle_block_{1 if m[0] == 'attentions' else m[1] * 2}_{suffix}"
if match(m, r"lora_unet_up_blocks_(\d+)_(attentions|resnets)_(\d+)_(.+)"):
suffix = suffix_conversion.get(m[1], {}).get(m[3], m[3])
return f"diffusion_model_output_blocks_{m[0] * 3 + m[2]}_{1 if m[1] == 'attentions' else 0}_{suffix}"
if match(m, r"lora_unet_down_blocks_(\d+)_downsamplers_0_conv"):
return f"diffusion_model_input_blocks_{3 + m[0] * 3}_0_op"
if match(m, r"lora_unet_up_blocks_(\d+)_upsamplers_0_conv"):
return f"diffusion_model_output_blocks_{2 + m[0] * 3}_{2 if m[0]>0 else 1}_conv"
if match(m, r"lora_te_text_model_encoder_layers_(\d+)_(.+)"):
if is_sd2:
if 'mlp_fc1' in m[1]:
return f"model_transformer_resblocks_{m[0]}_{m[1].replace('mlp_fc1', 'mlp_c_fc')}"
elif 'mlp_fc2' in m[1]:
return f"model_transformer_resblocks_{m[0]}_{m[1].replace('mlp_fc2', 'mlp_c_proj')}"
else:
return f"model_transformer_resblocks_{m[0]}_{m[1].replace('self_attn', 'attn')}"
return f"transformer_text_model_encoder_layers_{m[0]}_{m[1]}"
return key
class LoraOnDisk:
def __init__(self, name, filename):
self.name = name
self.filename = filename
self.metadata = {}
self.is_safetensors = os.path.splitext(filename)[1].lower() == ".safetensors"
if self.is_safetensors:
try:
self.metadata = sd_models.read_metadata_from_safetensors(filename)
except Exception as e:
errors.display(e, f"reading lora {filename}")
if self.metadata:
m = {}
for k, v in sorted(self.metadata.items(), key=lambda x: metadata_tags_order.get(x[0], 999)):
m[k] = v
self.metadata = m
self.ssmd_cover_images = self.metadata.pop('ssmd_cover_images', None) # those are cover images and they are too big to display in UI as text
self.alias = self.metadata.get('ss_output_name', self.name)
self.hash = None
self.shorthash = None
self.set_hash(
self.metadata.get('sshs_model_hash') or
hashes.sha256_from_cache(self.filename, "lora/" + self.name, use_addnet_hash=self.is_safetensors) or
''
)
def set_hash(self, v):
self.hash = v
self.shorthash = self.hash[0:12]
if self.shorthash:
available_lora_hash_lookup[self.shorthash] = self
def read_hash(self):
if not self.hash:
self.set_hash(hashes.sha256(self.filename, "lora/" + self.name, use_addnet_hash=self.is_safetensors) or '')
def get_alias(self):
if shared.opts.lora_preferred_name == "Filename" or self.alias.lower() in forbidden_lora_aliases:
return self.name
else:
return self.alias
class LoraModule:
def __init__(self, name, lora_on_disk: LoraOnDisk):
self.name = name
self.lora_on_disk = lora_on_disk
self.multiplier = 1.0
self.modules = {}
self.mtime = None
self.mentioned_name = None
"""the text that was used to add lora to prompt - can be either name or an alias"""
class LoraUpDownModule:
def __init__(self):
self.up = None
self.down = None
self.alpha = None
def assign_lora_names_to_compvis_modules(sd_model):
lora_layer_mapping = {}
for name, module in shared.sd_model.cond_stage_model.wrapped.named_modules():
lora_name = name.replace(".", "_")
lora_layer_mapping[lora_name] = module
module.lora_layer_name = lora_name
for name, module in shared.sd_model.model.named_modules():
lora_name = name.replace(".", "_")
lora_layer_mapping[lora_name] = module
module.lora_layer_name = lora_name
sd_model.lora_layer_mapping = lora_layer_mapping
def load_lora(name, lora_on_disk):
lora = LoraModule(name, lora_on_disk)
lora.mtime = os.path.getmtime(lora_on_disk.filename)
sd = sd_models.read_state_dict(lora_on_disk.filename)
# this should not be needed but is here as an emergency fix for an unknown error people are experiencing in 1.2.0
if not hasattr(shared.sd_model, 'lora_layer_mapping'):
assign_lora_names_to_compvis_modules(shared.sd_model)
keys_failed_to_match = {}
is_sd2 = 'model_transformer_resblocks' in shared.sd_model.lora_layer_mapping
for key_diffusers, weight in sd.items():
key_diffusers_without_lora_parts, lora_key = key_diffusers.split(".", 1)
key = convert_diffusers_name_to_compvis(key_diffusers_without_lora_parts, is_sd2)
sd_module = shared.sd_model.lora_layer_mapping.get(key, None)
if sd_module is None:
m = re_x_proj.match(key)
if m:
sd_module = shared.sd_model.lora_layer_mapping.get(m.group(1), None)
if sd_module is None:
keys_failed_to_match[key_diffusers] = key
continue
lora_module = lora.modules.get(key, None)
if lora_module is None:
lora_module = LoraUpDownModule()
lora.modules[key] = lora_module
if lora_key == "alpha":
lora_module.alpha = weight.item()
continue
if type(sd_module) == torch.nn.Linear:
module = torch.nn.Linear(weight.shape[1], weight.shape[0], bias=False)
elif type(sd_module) == torch.nn.modules.linear.NonDynamicallyQuantizableLinear:
module = torch.nn.Linear(weight.shape[1], weight.shape[0], bias=False)
elif type(sd_module) == torch.nn.MultiheadAttention:
module = torch.nn.Linear(weight.shape[1], weight.shape[0], bias=False)
elif type(sd_module) == torch.nn.Conv2d and weight.shape[2:] == (1, 1):
module = torch.nn.Conv2d(weight.shape[1], weight.shape[0], (1, 1), bias=False)
elif type(sd_module) == torch.nn.Conv2d and weight.shape[2:] == (3, 3):
module = torch.nn.Conv2d(weight.shape[1], weight.shape[0], (3, 3), bias=False)
else:
print(f'Lora layer {key_diffusers} matched a layer with unsupported type: {type(sd_module).__name__}')
continue
raise AssertionError(f"Lora layer {key_diffusers} matched a layer with unsupported type: {type(sd_module).__name__}")
with torch.no_grad():
module.weight.copy_(weight)
module.to(device=devices.cpu, dtype=devices.dtype)
if lora_key == "lora_up.weight":
lora_module.up = module
elif lora_key == "lora_down.weight":
lora_module.down = module
else:
raise AssertionError(f"Bad Lora layer name: {key_diffusers} - must end in lora_up.weight, lora_down.weight or alpha")
if keys_failed_to_match:
print(f"Failed to match keys when loading Lora {lora_on_disk.filename}: {keys_failed_to_match}")
return lora
def load_loras(names, multipliers=None):
already_loaded = {}
for lora in loaded_loras:
if lora.name in names:
already_loaded[lora.name] = lora
loaded_loras.clear()
loras_on_disk = [available_lora_aliases.get(name, None) for name in names]
if any(x is None for x in loras_on_disk):
list_available_loras()
loras_on_disk = [available_lora_aliases.get(name, None) for name in names]
failed_to_load_loras = []
for i, name in enumerate(names):
lora = already_loaded.get(name, None)
lora_on_disk = loras_on_disk[i]
if lora_on_disk is not None:
if lora is None or os.path.getmtime(lora_on_disk.filename) > lora.mtime:
try:
lora = load_lora(name, lora_on_disk)
except Exception as e:
errors.display(e, f"loading Lora {lora_on_disk.filename}")
continue
lora.mentioned_name = name
lora_on_disk.read_hash()
if lora is None:
failed_to_load_loras.append(name)
print(f"Couldn't find Lora with name {name}")
continue
lora.multiplier = multipliers[i] if multipliers else 1.0
loaded_loras.append(lora)
if failed_to_load_loras:
sd_hijack.model_hijack.comments.append("Failed to find Loras: " + ", ".join(failed_to_load_loras))
def lora_calc_updown(lora, module, target):
with torch.no_grad():
up = module.up.weight.to(target.device, dtype=target.dtype)
down = module.down.weight.to(target.device, dtype=target.dtype)
if up.shape[2:] == (1, 1) and down.shape[2:] == (1, 1):
updown = (up.squeeze(2).squeeze(2) @ down.squeeze(2).squeeze(2)).unsqueeze(2).unsqueeze(3)
elif up.shape[2:] == (3, 3) or down.shape[2:] == (3, 3):
updown = torch.nn.functional.conv2d(down.permute(1, 0, 2, 3), up).permute(1, 0, 2, 3)
else:
updown = up @ down
updown = updown * lora.multiplier * (module.alpha / module.up.weight.shape[1] if module.alpha else 1.0)
return updown
def lora_restore_weights_from_backup(self: Union[torch.nn.Conv2d, torch.nn.Linear, torch.nn.MultiheadAttention]):
weights_backup = getattr(self, "lora_weights_backup", None)
if weights_backup is None:
return
if isinstance(self, torch.nn.MultiheadAttention):
self.in_proj_weight.copy_(weights_backup[0])
self.out_proj.weight.copy_(weights_backup[1])
else:
self.weight.copy_(weights_backup)
def lora_apply_weights(self: Union[torch.nn.Conv2d, torch.nn.Linear, torch.nn.MultiheadAttention]):
"""
Applies the currently selected set of Loras to the weights of torch layer self.
If weights already have this particular set of loras applied, does nothing.
If not, restores orginal weights from backup and alters weights according to loras.
"""
lora_layer_name = getattr(self, 'lora_layer_name', None)
if lora_layer_name is None:
return
current_names = getattr(self, "lora_current_names", ())
wanted_names = tuple((x.name, x.multiplier) for x in loaded_loras)
weights_backup = getattr(self, "lora_weights_backup", None)
if weights_backup is None:
if isinstance(self, torch.nn.MultiheadAttention):
weights_backup = (self.in_proj_weight.to(devices.cpu, copy=True), self.out_proj.weight.to(devices.cpu, copy=True))
else:
weights_backup = self.weight.to(devices.cpu, copy=True)
self.lora_weights_backup = weights_backup
if current_names != wanted_names:
lora_restore_weights_from_backup(self)
for lora in loaded_loras:
module = lora.modules.get(lora_layer_name, None)
if module is not None and hasattr(self, 'weight'):
self.weight += lora_calc_updown(lora, module, self.weight)
continue
module_q = lora.modules.get(lora_layer_name + "_q_proj", None)
module_k = lora.modules.get(lora_layer_name + "_k_proj", None)
module_v = lora.modules.get(lora_layer_name + "_v_proj", None)
module_out = lora.modules.get(lora_layer_name + "_out_proj", None)
if isinstance(self, torch.nn.MultiheadAttention) and module_q and module_k and module_v and module_out:
updown_q = lora_calc_updown(lora, module_q, self.in_proj_weight)
updown_k = lora_calc_updown(lora, module_k, self.in_proj_weight)
updown_v = lora_calc_updown(lora, module_v, self.in_proj_weight)
updown_qkv = torch.vstack([updown_q, updown_k, updown_v])
self.in_proj_weight += updown_qkv
self.out_proj.weight += lora_calc_updown(lora, module_out, self.out_proj.weight)
continue
if module is None:
continue
print(f'failed to calculate lora weights for layer {lora_layer_name}')
self.lora_current_names = wanted_names
def lora_forward(module, input, original_forward):
"""
Old way of applying Lora by executing operations during layer's forward.
Stacking many loras this way results in big performance degradation.
"""
if len(loaded_loras) == 0:
return original_forward(module, input)
input = devices.cond_cast_unet(input)
lora_restore_weights_from_backup(module)
lora_reset_cached_weight(module)
res = original_forward(module, input)
lora_layer_name = getattr(module, 'lora_layer_name', None)
for lora in loaded_loras:
module = lora.modules.get(lora_layer_name, None)
if module is None:
continue
module.up.to(device=devices.device)
module.down.to(device=devices.device)
res = res + module.up(module.down(input)) * lora.multiplier * (module.alpha / module.up.weight.shape[1] if module.alpha else 1.0)
return res
def lora_reset_cached_weight(self: Union[torch.nn.Conv2d, torch.nn.Linear]):
self.lora_current_names = ()
self.lora_weights_backup = None
def lora_Linear_forward(self, input):
if shared.opts.lora_functional:
return lora_forward(self, input, torch.nn.Linear_forward_before_lora)
lora_apply_weights(self)
return torch.nn.Linear_forward_before_lora(self, input)
def lora_Linear_load_state_dict(self, *args, **kwargs):
lora_reset_cached_weight(self)
return torch.nn.Linear_load_state_dict_before_lora(self, *args, **kwargs)
def lora_Conv2d_forward(self, input):
if shared.opts.lora_functional:
return lora_forward(self, input, torch.nn.Conv2d_forward_before_lora)
lora_apply_weights(self)
return torch.nn.Conv2d_forward_before_lora(self, input)
def lora_Conv2d_load_state_dict(self, *args, **kwargs):
lora_reset_cached_weight(self)
return torch.nn.Conv2d_load_state_dict_before_lora(self, *args, **kwargs)
def lora_MultiheadAttention_forward(self, *args, **kwargs):
lora_apply_weights(self)
return torch.nn.MultiheadAttention_forward_before_lora(self, *args, **kwargs)
def lora_MultiheadAttention_load_state_dict(self, *args, **kwargs):
lora_reset_cached_weight(self)
return torch.nn.MultiheadAttention_load_state_dict_before_lora(self, *args, **kwargs)
def list_available_loras():
available_loras.clear()
available_lora_aliases.clear()
forbidden_lora_aliases.clear()
available_lora_hash_lookup.clear()
forbidden_lora_aliases.update({"none": 1, "Addams": 1})
os.makedirs(shared.cmd_opts.lora_dir, exist_ok=True)
candidates = list(shared.walk_files(shared.cmd_opts.lora_dir, allowed_extensions=[".pt", ".ckpt", ".safetensors"]))
for filename in sorted(candidates, key=str.lower):
if os.path.isdir(filename):
continue
name = os.path.splitext(os.path.basename(filename))[0]
try:
entry = LoraOnDisk(name, filename)
except OSError: # should catch FileNotFoundError and PermissionError etc.
errors.report(f"Failed to load LoRA {name} from {filename}", exc_info=True)
continue
available_loras[name] = entry
if entry.alias in available_lora_aliases:
forbidden_lora_aliases[entry.alias.lower()] = 1
available_lora_aliases[name] = entry
available_lora_aliases[entry.alias] = entry
re_lora_name = re.compile(r"(.*)\s*\([0-9a-fA-F]+\)")
def infotext_pasted(infotext, params):
if "AddNet Module 1" in [x[1] for x in scripts.scripts_txt2img.infotext_fields]:
return # if the other extension is active, it will handle those fields, no need to do anything
added = []
for k in params:
if not k.startswith("AddNet Model "):
continue
num = k[13:]
if params.get("AddNet Module " + num) != "LoRA":
continue
name = params.get("AddNet Model " + num)
if name is None:
continue
m = re_lora_name.match(name)
if m:
name = m.group(1)
multiplier = params.get("AddNet Weight A " + num, "1.0")
added.append(f"<lora:{name}:{multiplier}>")
if added:
params["Prompt"] += "\n" + "".join(added)
available_loras = {}
available_lora_aliases = {}
available_lora_hash_lookup = {}
forbidden_lora_aliases = {}
loaded_loras = []
list_available_loras()

View File

@ -0,0 +1,21 @@
import torch
def make_weight_cp(t, wa, wb):
temp = torch.einsum('i j k l, j r -> i r k l', t, wb)
return torch.einsum('i j k l, i r -> r j k l', temp, wa)
def rebuild_conventional(up, down, shape, dyn_dim=None):
up = up.reshape(up.size(0), -1)
down = down.reshape(down.size(0), -1)
if dyn_dim is not None:
up = up[:, :dyn_dim]
down = down[:dyn_dim, :]
return (up @ down).reshape(shape)
def rebuild_cp_decomposition(up, down, mid):
up = up.reshape(up.size(0), -1)
down = down.reshape(down.size(0), -1)
return torch.einsum('n m k l, i n, m j -> i j k l', mid, up, down)

View File

@ -0,0 +1,154 @@
import os
from collections import namedtuple
import enum
from modules import sd_models, cache, errors, hashes, shared
NetworkWeights = namedtuple('NetworkWeights', ['network_key', 'sd_key', 'w', 'sd_module'])
metadata_tags_order = {"ss_sd_model_name": 1, "ss_resolution": 2, "ss_clip_skip": 3, "ss_num_train_images": 10, "ss_tag_frequency": 20}
class SdVersion(enum.Enum):
Unknown = 1
SD1 = 2
SD2 = 3
SDXL = 4
class NetworkOnDisk:
def __init__(self, name, filename):
self.name = name
self.filename = filename
self.metadata = {}
self.is_safetensors = os.path.splitext(filename)[1].lower() == ".safetensors"
def read_metadata():
metadata = sd_models.read_metadata_from_safetensors(filename)
metadata.pop('ssmd_cover_images', None) # those are cover images, and they are too big to display in UI as text
return metadata
if self.is_safetensors:
try:
self.metadata = cache.cached_data_for_file('safetensors-metadata', "lora/" + self.name, filename, read_metadata)
except Exception as e:
errors.display(e, f"reading lora {filename}")
if self.metadata:
m = {}
for k, v in sorted(self.metadata.items(), key=lambda x: metadata_tags_order.get(x[0], 999)):
m[k] = v
self.metadata = m
self.alias = self.metadata.get('ss_output_name', self.name)
self.hash = None
self.shorthash = None
self.set_hash(
self.metadata.get('sshs_model_hash') or
hashes.sha256_from_cache(self.filename, "lora/" + self.name, use_addnet_hash=self.is_safetensors) or
''
)
self.sd_version = self.detect_version()
def detect_version(self):
if str(self.metadata.get('ss_base_model_version', "")).startswith("sdxl_"):
return SdVersion.SDXL
elif str(self.metadata.get('ss_v2', "")) == "True":
return SdVersion.SD2
elif len(self.metadata):
return SdVersion.SD1
return SdVersion.Unknown
def set_hash(self, v):
self.hash = v
self.shorthash = self.hash[0:12]
if self.shorthash:
import networks
networks.available_network_hash_lookup[self.shorthash] = self
def read_hash(self):
if not self.hash:
self.set_hash(hashes.sha256(self.filename, "lora/" + self.name, use_addnet_hash=self.is_safetensors) or '')
def get_alias(self):
import networks
if shared.opts.lora_preferred_name == "Filename" or self.alias.lower() in networks.forbidden_network_aliases:
return self.name
else:
return self.alias
class Network: # LoraModule
def __init__(self, name, network_on_disk: NetworkOnDisk):
self.name = name
self.network_on_disk = network_on_disk
self.te_multiplier = 1.0
self.unet_multiplier = 1.0
self.dyn_dim = None
self.modules = {}
self.mtime = None
self.mentioned_name = None
"""the text that was used to add the network to prompt - can be either name or an alias"""
class ModuleType:
def create_module(self, net: Network, weights: NetworkWeights) -> Network | None:
return None
class NetworkModule:
def __init__(self, net: Network, weights: NetworkWeights):
self.network = net
self.network_key = weights.network_key
self.sd_key = weights.sd_key
self.sd_module = weights.sd_module
if hasattr(self.sd_module, 'weight'):
self.shape = self.sd_module.weight.shape
self.dim = None
self.bias = weights.w.get("bias")
self.alpha = weights.w["alpha"].item() if "alpha" in weights.w else None
self.scale = weights.w["scale"].item() if "scale" in weights.w else None
def multiplier(self):
if 'transformer' in self.sd_key[:20]:
return self.network.te_multiplier
else:
return self.network.unet_multiplier
def calc_scale(self):
if self.scale is not None:
return self.scale
if self.dim is not None and self.alpha is not None:
return self.alpha / self.dim
return 1.0
def finalize_updown(self, updown, orig_weight, output_shape):
if self.bias is not None:
updown = updown.reshape(self.bias.shape)
updown += self.bias.to(orig_weight.device, dtype=orig_weight.dtype)
updown = updown.reshape(output_shape)
if len(output_shape) == 4:
updown = updown.reshape(output_shape)
if orig_weight.size().numel() == updown.size().numel():
updown = updown.reshape(orig_weight.shape)
return updown * self.calc_scale() * self.multiplier()
def calc_updown(self, target):
raise NotImplementedError()
def forward(self, x, y):
raise NotImplementedError()

View File

@ -0,0 +1,22 @@
import network
class ModuleTypeFull(network.ModuleType):
def create_module(self, net: network.Network, weights: network.NetworkWeights):
if all(x in weights.w for x in ["diff"]):
return NetworkModuleFull(net, weights)
return None
class NetworkModuleFull(network.NetworkModule):
def __init__(self, net: network.Network, weights: network.NetworkWeights):
super().__init__(net, weights)
self.weight = weights.w.get("diff")
def calc_updown(self, orig_weight):
output_shape = self.weight.shape
updown = self.weight.to(orig_weight.device, dtype=orig_weight.dtype)
return self.finalize_updown(updown, orig_weight, output_shape)

View File

@ -0,0 +1,55 @@
import lyco_helpers
import network
class ModuleTypeHada(network.ModuleType):
def create_module(self, net: network.Network, weights: network.NetworkWeights):
if all(x in weights.w for x in ["hada_w1_a", "hada_w1_b", "hada_w2_a", "hada_w2_b"]):
return NetworkModuleHada(net, weights)
return None
class NetworkModuleHada(network.NetworkModule):
def __init__(self, net: network.Network, weights: network.NetworkWeights):
super().__init__(net, weights)
if hasattr(self.sd_module, 'weight'):
self.shape = self.sd_module.weight.shape
self.w1a = weights.w["hada_w1_a"]
self.w1b = weights.w["hada_w1_b"]
self.dim = self.w1b.shape[0]
self.w2a = weights.w["hada_w2_a"]
self.w2b = weights.w["hada_w2_b"]
self.t1 = weights.w.get("hada_t1")
self.t2 = weights.w.get("hada_t2")
def calc_updown(self, orig_weight):
w1a = self.w1a.to(orig_weight.device, dtype=orig_weight.dtype)
w1b = self.w1b.to(orig_weight.device, dtype=orig_weight.dtype)
w2a = self.w2a.to(orig_weight.device, dtype=orig_weight.dtype)
w2b = self.w2b.to(orig_weight.device, dtype=orig_weight.dtype)
output_shape = [w1a.size(0), w1b.size(1)]
if self.t1 is not None:
output_shape = [w1a.size(1), w1b.size(1)]
t1 = self.t1.to(orig_weight.device, dtype=orig_weight.dtype)
updown1 = lyco_helpers.make_weight_cp(t1, w1a, w1b)
output_shape += t1.shape[2:]
else:
if len(w1b.shape) == 4:
output_shape += w1b.shape[2:]
updown1 = lyco_helpers.rebuild_conventional(w1a, w1b, output_shape)
if self.t2 is not None:
t2 = self.t2.to(orig_weight.device, dtype=orig_weight.dtype)
updown2 = lyco_helpers.make_weight_cp(t2, w2a, w2b)
else:
updown2 = lyco_helpers.rebuild_conventional(w2a, w2b, output_shape)
updown = updown1 * updown2
return self.finalize_updown(updown, orig_weight, output_shape)

View File

@ -0,0 +1,30 @@
import network
class ModuleTypeIa3(network.ModuleType):
def create_module(self, net: network.Network, weights: network.NetworkWeights):
if all(x in weights.w for x in ["weight"]):
return NetworkModuleIa3(net, weights)
return None
class NetworkModuleIa3(network.NetworkModule):
def __init__(self, net: network.Network, weights: network.NetworkWeights):
super().__init__(net, weights)
self.w = weights.w["weight"]
self.on_input = weights.w["on_input"].item()
def calc_updown(self, orig_weight):
w = self.w.to(orig_weight.device, dtype=orig_weight.dtype)
output_shape = [w.size(0), orig_weight.size(1)]
if self.on_input:
output_shape.reverse()
else:
w = w.reshape(-1, 1)
updown = orig_weight * w
return self.finalize_updown(updown, orig_weight, output_shape)

View File

@ -0,0 +1,64 @@
import torch
import lyco_helpers
import network
class ModuleTypeLokr(network.ModuleType):
def create_module(self, net: network.Network, weights: network.NetworkWeights):
has_1 = "lokr_w1" in weights.w or ("lokr_w1_a" in weights.w and "lokr_w1_b" in weights.w)
has_2 = "lokr_w2" in weights.w or ("lokr_w2_a" in weights.w and "lokr_w2_b" in weights.w)
if has_1 and has_2:
return NetworkModuleLokr(net, weights)
return None
def make_kron(orig_shape, w1, w2):
if len(w2.shape) == 4:
w1 = w1.unsqueeze(2).unsqueeze(2)
w2 = w2.contiguous()
return torch.kron(w1, w2).reshape(orig_shape)
class NetworkModuleLokr(network.NetworkModule):
def __init__(self, net: network.Network, weights: network.NetworkWeights):
super().__init__(net, weights)
self.w1 = weights.w.get("lokr_w1")
self.w1a = weights.w.get("lokr_w1_a")
self.w1b = weights.w.get("lokr_w1_b")
self.dim = self.w1b.shape[0] if self.w1b is not None else self.dim
self.w2 = weights.w.get("lokr_w2")
self.w2a = weights.w.get("lokr_w2_a")
self.w2b = weights.w.get("lokr_w2_b")
self.dim = self.w2b.shape[0] if self.w2b is not None else self.dim
self.t2 = weights.w.get("lokr_t2")
def calc_updown(self, orig_weight):
if self.w1 is not None:
w1 = self.w1.to(orig_weight.device, dtype=orig_weight.dtype)
else:
w1a = self.w1a.to(orig_weight.device, dtype=orig_weight.dtype)
w1b = self.w1b.to(orig_weight.device, dtype=orig_weight.dtype)
w1 = w1a @ w1b
if self.w2 is not None:
w2 = self.w2.to(orig_weight.device, dtype=orig_weight.dtype)
elif self.t2 is None:
w2a = self.w2a.to(orig_weight.device, dtype=orig_weight.dtype)
w2b = self.w2b.to(orig_weight.device, dtype=orig_weight.dtype)
w2 = w2a @ w2b
else:
t2 = self.t2.to(orig_weight.device, dtype=orig_weight.dtype)
w2a = self.w2a.to(orig_weight.device, dtype=orig_weight.dtype)
w2b = self.w2b.to(orig_weight.device, dtype=orig_weight.dtype)
w2 = lyco_helpers.make_weight_cp(t2, w2a, w2b)
output_shape = [w1.size(0) * w2.size(0), w1.size(1) * w2.size(1)]
if len(orig_weight.shape) == 4:
output_shape = orig_weight.shape
updown = make_kron(output_shape, w1, w2)
return self.finalize_updown(updown, orig_weight, output_shape)

View File

@ -0,0 +1,86 @@
import torch
import lyco_helpers
import network
from modules import devices
class ModuleTypeLora(network.ModuleType):
def create_module(self, net: network.Network, weights: network.NetworkWeights):
if all(x in weights.w for x in ["lora_up.weight", "lora_down.weight"]):
return NetworkModuleLora(net, weights)
return None
class NetworkModuleLora(network.NetworkModule):
def __init__(self, net: network.Network, weights: network.NetworkWeights):
super().__init__(net, weights)
self.up_model = self.create_module(weights.w, "lora_up.weight")
self.down_model = self.create_module(weights.w, "lora_down.weight")
self.mid_model = self.create_module(weights.w, "lora_mid.weight", none_ok=True)
self.dim = weights.w["lora_down.weight"].shape[0]
def create_module(self, weights, key, none_ok=False):
weight = weights.get(key)
if weight is None and none_ok:
return None
is_linear = type(self.sd_module) in [torch.nn.Linear, torch.nn.modules.linear.NonDynamicallyQuantizableLinear, torch.nn.MultiheadAttention]
is_conv = type(self.sd_module) in [torch.nn.Conv2d]
if is_linear:
weight = weight.reshape(weight.shape[0], -1)
module = torch.nn.Linear(weight.shape[1], weight.shape[0], bias=False)
elif is_conv and key == "lora_down.weight" or key == "dyn_up":
if len(weight.shape) == 2:
weight = weight.reshape(weight.shape[0], -1, 1, 1)
if weight.shape[2] != 1 or weight.shape[3] != 1:
module = torch.nn.Conv2d(weight.shape[1], weight.shape[0], self.sd_module.kernel_size, self.sd_module.stride, self.sd_module.padding, bias=False)
else:
module = torch.nn.Conv2d(weight.shape[1], weight.shape[0], (1, 1), bias=False)
elif is_conv and key == "lora_mid.weight":
module = torch.nn.Conv2d(weight.shape[1], weight.shape[0], self.sd_module.kernel_size, self.sd_module.stride, self.sd_module.padding, bias=False)
elif is_conv and key == "lora_up.weight" or key == "dyn_down":
module = torch.nn.Conv2d(weight.shape[1], weight.shape[0], (1, 1), bias=False)
else:
raise AssertionError(f'Lora layer {self.network_key} matched a layer with unsupported type: {type(self.sd_module).__name__}')
with torch.no_grad():
if weight.shape != module.weight.shape:
weight = weight.reshape(module.weight.shape)
module.weight.copy_(weight)
module.to(device=devices.cpu, dtype=devices.dtype)
module.weight.requires_grad_(False)
return module
def calc_updown(self, orig_weight):
up = self.up_model.weight.to(orig_weight.device, dtype=orig_weight.dtype)
down = self.down_model.weight.to(orig_weight.device, dtype=orig_weight.dtype)
output_shape = [up.size(0), down.size(1)]
if self.mid_model is not None:
# cp-decomposition
mid = self.mid_model.weight.to(orig_weight.device, dtype=orig_weight.dtype)
updown = lyco_helpers.rebuild_cp_decomposition(up, down, mid)
output_shape += mid.shape[2:]
else:
if len(down.shape) == 4:
output_shape += down.shape[2:]
updown = lyco_helpers.rebuild_conventional(up, down, output_shape, self.network.dyn_dim)
return self.finalize_updown(updown, orig_weight, output_shape)
def forward(self, x, y):
self.up_model.to(device=devices.device)
self.down_model.to(device=devices.device)
return y + self.up_model(self.down_model(x)) * self.multiplier() * self.calc_scale()

View File

@ -0,0 +1,463 @@
import os
import re
import network
import network_lora
import network_hada
import network_ia3
import network_lokr
import network_full
import torch
from typing import Union
from modules import shared, devices, sd_models, errors, scripts, sd_hijack, paths
module_types = [
network_lora.ModuleTypeLora(),
network_hada.ModuleTypeHada(),
network_ia3.ModuleTypeIa3(),
network_lokr.ModuleTypeLokr(),
network_full.ModuleTypeFull(),
]
re_digits = re.compile(r"\d+")
re_x_proj = re.compile(r"(.*)_([qkv]_proj)$")
re_compiled = {}
suffix_conversion = {
"attentions": {},
"resnets": {
"conv1": "in_layers_2",
"conv2": "out_layers_3",
"time_emb_proj": "emb_layers_1",
"conv_shortcut": "skip_connection",
}
}
def convert_diffusers_name_to_compvis(key, is_sd2):
def match(match_list, regex_text):
regex = re_compiled.get(regex_text)
if regex is None:
regex = re.compile(regex_text)
re_compiled[regex_text] = regex
r = re.match(regex, key)
if not r:
return False
match_list.clear()
match_list.extend([int(x) if re.match(re_digits, x) else x for x in r.groups()])
return True
m = []
if match(m, r"lora_unet_conv_in(.*)"):
return f'diffusion_model_input_blocks_0_0{m[0]}'
if match(m, r"lora_unet_conv_out(.*)"):
return f'diffusion_model_out_2{m[0]}'
if match(m, r"lora_unet_time_embedding_linear_(\d+)(.*)"):
return f"diffusion_model_time_embed_{m[0] * 2 - 2}{m[1]}"
if match(m, r"lora_unet_down_blocks_(\d+)_(attentions|resnets)_(\d+)_(.+)"):
suffix = suffix_conversion.get(m[1], {}).get(m[3], m[3])
return f"diffusion_model_input_blocks_{1 + m[0] * 3 + m[2]}_{1 if m[1] == 'attentions' else 0}_{suffix}"
if match(m, r"lora_unet_mid_block_(attentions|resnets)_(\d+)_(.+)"):
suffix = suffix_conversion.get(m[0], {}).get(m[2], m[2])
return f"diffusion_model_middle_block_{1 if m[0] == 'attentions' else m[1] * 2}_{suffix}"
if match(m, r"lora_unet_up_blocks_(\d+)_(attentions|resnets)_(\d+)_(.+)"):
suffix = suffix_conversion.get(m[1], {}).get(m[3], m[3])
return f"diffusion_model_output_blocks_{m[0] * 3 + m[2]}_{1 if m[1] == 'attentions' else 0}_{suffix}"
if match(m, r"lora_unet_down_blocks_(\d+)_downsamplers_0_conv"):
return f"diffusion_model_input_blocks_{3 + m[0] * 3}_0_op"
if match(m, r"lora_unet_up_blocks_(\d+)_upsamplers_0_conv"):
return f"diffusion_model_output_blocks_{2 + m[0] * 3}_{2 if m[0]>0 else 1}_conv"
if match(m, r"lora_te_text_model_encoder_layers_(\d+)_(.+)"):
if is_sd2:
if 'mlp_fc1' in m[1]:
return f"model_transformer_resblocks_{m[0]}_{m[1].replace('mlp_fc1', 'mlp_c_fc')}"
elif 'mlp_fc2' in m[1]:
return f"model_transformer_resblocks_{m[0]}_{m[1].replace('mlp_fc2', 'mlp_c_proj')}"
else:
return f"model_transformer_resblocks_{m[0]}_{m[1].replace('self_attn', 'attn')}"
return f"transformer_text_model_encoder_layers_{m[0]}_{m[1]}"
if match(m, r"lora_te2_text_model_encoder_layers_(\d+)_(.+)"):
if 'mlp_fc1' in m[1]:
return f"1_model_transformer_resblocks_{m[0]}_{m[1].replace('mlp_fc1', 'mlp_c_fc')}"
elif 'mlp_fc2' in m[1]:
return f"1_model_transformer_resblocks_{m[0]}_{m[1].replace('mlp_fc2', 'mlp_c_proj')}"
else:
return f"1_model_transformer_resblocks_{m[0]}_{m[1].replace('self_attn', 'attn')}"
return key
def assign_network_names_to_compvis_modules(sd_model):
network_layer_mapping = {}
if shared.sd_model.is_sdxl:
for i, embedder in enumerate(shared.sd_model.conditioner.embedders):
if not hasattr(embedder, 'wrapped'):
continue
for name, module in embedder.wrapped.named_modules():
network_name = f'{i}_{name.replace(".", "_")}'
network_layer_mapping[network_name] = module
module.network_layer_name = network_name
else:
for name, module in shared.sd_model.cond_stage_model.wrapped.named_modules():
network_name = name.replace(".", "_")
network_layer_mapping[network_name] = module
module.network_layer_name = network_name
for name, module in shared.sd_model.model.named_modules():
network_name = name.replace(".", "_")
network_layer_mapping[network_name] = module
module.network_layer_name = network_name
sd_model.network_layer_mapping = network_layer_mapping
def load_network(name, network_on_disk):
net = network.Network(name, network_on_disk)
net.mtime = os.path.getmtime(network_on_disk.filename)
sd = sd_models.read_state_dict(network_on_disk.filename)
# this should not be needed but is here as an emergency fix for an unknown error people are experiencing in 1.2.0
if not hasattr(shared.sd_model, 'network_layer_mapping'):
assign_network_names_to_compvis_modules(shared.sd_model)
keys_failed_to_match = {}
is_sd2 = 'model_transformer_resblocks' in shared.sd_model.network_layer_mapping
matched_networks = {}
for key_network, weight in sd.items():
key_network_without_network_parts, network_part = key_network.split(".", 1)
key = convert_diffusers_name_to_compvis(key_network_without_network_parts, is_sd2)
sd_module = shared.sd_model.network_layer_mapping.get(key, None)
if sd_module is None:
m = re_x_proj.match(key)
if m:
sd_module = shared.sd_model.network_layer_mapping.get(m.group(1), None)
# SDXL loras seem to already have correct compvis keys, so only need to replace "lora_unet" with "diffusion_model"
if sd_module is None and "lora_unet" in key_network_without_network_parts:
key = key_network_without_network_parts.replace("lora_unet", "diffusion_model")
sd_module = shared.sd_model.network_layer_mapping.get(key, None)
elif sd_module is None and "lora_te1_text_model" in key_network_without_network_parts:
key = key_network_without_network_parts.replace("lora_te1_text_model", "0_transformer_text_model")
sd_module = shared.sd_model.network_layer_mapping.get(key, None)
if sd_module is None:
keys_failed_to_match[key_network] = key
continue
if key not in matched_networks:
matched_networks[key] = network.NetworkWeights(network_key=key_network, sd_key=key, w={}, sd_module=sd_module)
matched_networks[key].w[network_part] = weight
for key, weights in matched_networks.items():
net_module = None
for nettype in module_types:
net_module = nettype.create_module(net, weights)
if net_module is not None:
break
if net_module is None:
raise AssertionError(f"Could not find a module type (out of {', '.join([x.__class__.__name__ for x in module_types])}) that would accept those keys: {', '.join(weights.w)}")
net.modules[key] = net_module
if keys_failed_to_match:
print(f"Failed to match keys when loading network {network_on_disk.filename}: {keys_failed_to_match}")
return net
def load_networks(names, te_multipliers=None, unet_multipliers=None, dyn_dims=None):
already_loaded = {}
for net in loaded_networks:
if net.name in names:
already_loaded[net.name] = net
loaded_networks.clear()
networks_on_disk = [available_network_aliases.get(name, None) for name in names]
if any(x is None for x in networks_on_disk):
list_available_networks()
networks_on_disk = [available_network_aliases.get(name, None) for name in names]
failed_to_load_networks = []
for i, name in enumerate(names):
net = already_loaded.get(name, None)
network_on_disk = networks_on_disk[i]
if network_on_disk is not None:
if net is None or os.path.getmtime(network_on_disk.filename) > net.mtime:
try:
net = load_network(name, network_on_disk)
except Exception as e:
errors.display(e, f"loading network {network_on_disk.filename}")
continue
net.mentioned_name = name
network_on_disk.read_hash()
if net is None:
failed_to_load_networks.append(name)
print(f"Couldn't find network with name {name}")
continue
net.te_multiplier = te_multipliers[i] if te_multipliers else 1.0
net.unet_multiplier = unet_multipliers[i] if unet_multipliers else 1.0
net.dyn_dim = dyn_dims[i] if dyn_dims else 1.0
loaded_networks.append(net)
if failed_to_load_networks:
sd_hijack.model_hijack.comments.append("Failed to find networks: " + ", ".join(failed_to_load_networks))
def network_restore_weights_from_backup(self: Union[torch.nn.Conv2d, torch.nn.Linear, torch.nn.MultiheadAttention]):
weights_backup = getattr(self, "network_weights_backup", None)
if weights_backup is None:
return
if isinstance(self, torch.nn.MultiheadAttention):
self.in_proj_weight.copy_(weights_backup[0])
self.out_proj.weight.copy_(weights_backup[1])
else:
self.weight.copy_(weights_backup)
def network_apply_weights(self: Union[torch.nn.Conv2d, torch.nn.Linear, torch.nn.MultiheadAttention]):
"""
Applies the currently selected set of networks to the weights of torch layer self.
If weights already have this particular set of networks applied, does nothing.
If not, restores orginal weights from backup and alters weights according to networks.
"""
network_layer_name = getattr(self, 'network_layer_name', None)
if network_layer_name is None:
return
current_names = getattr(self, "network_current_names", ())
wanted_names = tuple((x.name, x.te_multiplier, x.unet_multiplier, x.dyn_dim) for x in loaded_networks)
weights_backup = getattr(self, "network_weights_backup", None)
if weights_backup is None:
if isinstance(self, torch.nn.MultiheadAttention):
weights_backup = (self.in_proj_weight.to(devices.cpu, copy=True), self.out_proj.weight.to(devices.cpu, copy=True))
else:
weights_backup = self.weight.to(devices.cpu, copy=True)
self.network_weights_backup = weights_backup
if current_names != wanted_names:
network_restore_weights_from_backup(self)
for net in loaded_networks:
module = net.modules.get(network_layer_name, None)
if module is not None and hasattr(self, 'weight'):
with torch.no_grad():
updown = module.calc_updown(self.weight)
if len(self.weight.shape) == 4 and self.weight.shape[1] == 9:
# inpainting model. zero pad updown to make channel[1] 4 to 9
updown = torch.nn.functional.pad(updown, (0, 0, 0, 0, 0, 5))
self.weight += updown
continue
module_q = net.modules.get(network_layer_name + "_q_proj", None)
module_k = net.modules.get(network_layer_name + "_k_proj", None)
module_v = net.modules.get(network_layer_name + "_v_proj", None)
module_out = net.modules.get(network_layer_name + "_out_proj", None)
if isinstance(self, torch.nn.MultiheadAttention) and module_q and module_k and module_v and module_out:
with torch.no_grad():
updown_q = module_q.calc_updown(self.in_proj_weight)
updown_k = module_k.calc_updown(self.in_proj_weight)
updown_v = module_v.calc_updown(self.in_proj_weight)
updown_qkv = torch.vstack([updown_q, updown_k, updown_v])
updown_out = module_out.calc_updown(self.out_proj.weight)
self.in_proj_weight += updown_qkv
self.out_proj.weight += updown_out
continue
if module is None:
continue
print(f'failed to calculate network weights for layer {network_layer_name}')
self.network_current_names = wanted_names
def network_forward(module, input, original_forward):
"""
Old way of applying Lora by executing operations during layer's forward.
Stacking many loras this way results in big performance degradation.
"""
if len(loaded_networks) == 0:
return original_forward(module, input)
input = devices.cond_cast_unet(input)
network_restore_weights_from_backup(module)
network_reset_cached_weight(module)
y = original_forward(module, input)
network_layer_name = getattr(module, 'network_layer_name', None)
for lora in loaded_networks:
module = lora.modules.get(network_layer_name, None)
if module is None:
continue
y = module.forward(y, input)
return y
def network_reset_cached_weight(self: Union[torch.nn.Conv2d, torch.nn.Linear]):
self.network_current_names = ()
self.network_weights_backup = None
def network_Linear_forward(self, input):
if shared.opts.lora_functional:
return network_forward(self, input, torch.nn.Linear_forward_before_network)
network_apply_weights(self)
return torch.nn.Linear_forward_before_network(self, input)
def network_Linear_load_state_dict(self, *args, **kwargs):
network_reset_cached_weight(self)
return torch.nn.Linear_load_state_dict_before_network(self, *args, **kwargs)
def network_Conv2d_forward(self, input):
if shared.opts.lora_functional:
return network_forward(self, input, torch.nn.Conv2d_forward_before_network)
network_apply_weights(self)
return torch.nn.Conv2d_forward_before_network(self, input)
def network_Conv2d_load_state_dict(self, *args, **kwargs):
network_reset_cached_weight(self)
return torch.nn.Conv2d_load_state_dict_before_network(self, *args, **kwargs)
def network_MultiheadAttention_forward(self, *args, **kwargs):
network_apply_weights(self)
return torch.nn.MultiheadAttention_forward_before_network(self, *args, **kwargs)
def network_MultiheadAttention_load_state_dict(self, *args, **kwargs):
network_reset_cached_weight(self)
return torch.nn.MultiheadAttention_load_state_dict_before_network(self, *args, **kwargs)
def list_available_networks():
available_networks.clear()
available_network_aliases.clear()
forbidden_network_aliases.clear()
available_network_hash_lookup.clear()
forbidden_network_aliases.update({"none": 1, "Addams": 1})
os.makedirs(shared.cmd_opts.lora_dir, exist_ok=True)
candidates = list(shared.walk_files(shared.cmd_opts.lora_dir, allowed_extensions=[".pt", ".ckpt", ".safetensors"]))
candidates += list(shared.walk_files(os.path.join(paths.models_path, "LyCORIS"), allowed_extensions=[".pt", ".ckpt", ".safetensors"]))
for filename in candidates:
if os.path.isdir(filename):
continue
name = os.path.splitext(os.path.basename(filename))[0]
try:
entry = network.NetworkOnDisk(name, filename)
except OSError: # should catch FileNotFoundError and PermissionError etc.
errors.report(f"Failed to load network {name} from {filename}", exc_info=True)
continue
available_networks[name] = entry
if entry.alias in available_network_aliases:
forbidden_network_aliases[entry.alias.lower()] = 1
available_network_aliases[name] = entry
available_network_aliases[entry.alias] = entry
re_network_name = re.compile(r"(.*)\s*\([0-9a-fA-F]+\)")
def infotext_pasted(infotext, params):
if "AddNet Module 1" in [x[1] for x in scripts.scripts_txt2img.infotext_fields]:
return # if the other extension is active, it will handle those fields, no need to do anything
added = []
for k in params:
if not k.startswith("AddNet Model "):
continue
num = k[13:]
if params.get("AddNet Module " + num) != "LoRA":
continue
name = params.get("AddNet Model " + num)
if name is None:
continue
m = re_network_name.match(name)
if m:
name = m.group(1)
multiplier = params.get("AddNet Weight A " + num, "1.0")
added.append(f"<lora:{name}:{multiplier}>")
if added:
params["Prompt"] += "\n" + "".join(added)
available_networks = {}
available_network_aliases = {}
loaded_networks = []
available_network_hash_lookup = {}
forbidden_network_aliases = {}
list_available_networks()

View File

@ -4,69 +4,76 @@ import torch
import gradio as gr import gradio as gr
from fastapi import FastAPI from fastapi import FastAPI
import lora import network
import networks
import lora # noqa:F401
import extra_networks_lora import extra_networks_lora
import ui_extra_networks_lora import ui_extra_networks_lora
from modules import script_callbacks, ui_extra_networks, extra_networks, shared from modules import script_callbacks, ui_extra_networks, extra_networks, shared
def unload(): def unload():
torch.nn.Linear.forward = torch.nn.Linear_forward_before_lora torch.nn.Linear.forward = torch.nn.Linear_forward_before_network
torch.nn.Linear._load_from_state_dict = torch.nn.Linear_load_state_dict_before_lora torch.nn.Linear._load_from_state_dict = torch.nn.Linear_load_state_dict_before_network
torch.nn.Conv2d.forward = torch.nn.Conv2d_forward_before_lora torch.nn.Conv2d.forward = torch.nn.Conv2d_forward_before_network
torch.nn.Conv2d._load_from_state_dict = torch.nn.Conv2d_load_state_dict_before_lora torch.nn.Conv2d._load_from_state_dict = torch.nn.Conv2d_load_state_dict_before_network
torch.nn.MultiheadAttention.forward = torch.nn.MultiheadAttention_forward_before_lora torch.nn.MultiheadAttention.forward = torch.nn.MultiheadAttention_forward_before_network
torch.nn.MultiheadAttention._load_from_state_dict = torch.nn.MultiheadAttention_load_state_dict_before_lora torch.nn.MultiheadAttention._load_from_state_dict = torch.nn.MultiheadAttention_load_state_dict_before_network
def before_ui(): def before_ui():
ui_extra_networks.register_page(ui_extra_networks_lora.ExtraNetworksPageLora()) ui_extra_networks.register_page(ui_extra_networks_lora.ExtraNetworksPageLora())
extra_networks.register_extra_network(extra_networks_lora.ExtraNetworkLora())
extra_network = extra_networks_lora.ExtraNetworkLora()
extra_networks.register_extra_network(extra_network)
extra_networks.register_extra_network_alias(extra_network, "lyco")
if not hasattr(torch.nn, 'Linear_forward_before_lora'): if not hasattr(torch.nn, 'Linear_forward_before_network'):
torch.nn.Linear_forward_before_lora = torch.nn.Linear.forward torch.nn.Linear_forward_before_network = torch.nn.Linear.forward
if not hasattr(torch.nn, 'Linear_load_state_dict_before_lora'): if not hasattr(torch.nn, 'Linear_load_state_dict_before_network'):
torch.nn.Linear_load_state_dict_before_lora = torch.nn.Linear._load_from_state_dict torch.nn.Linear_load_state_dict_before_network = torch.nn.Linear._load_from_state_dict
if not hasattr(torch.nn, 'Conv2d_forward_before_lora'): if not hasattr(torch.nn, 'Conv2d_forward_before_network'):
torch.nn.Conv2d_forward_before_lora = torch.nn.Conv2d.forward torch.nn.Conv2d_forward_before_network = torch.nn.Conv2d.forward
if not hasattr(torch.nn, 'Conv2d_load_state_dict_before_lora'): if not hasattr(torch.nn, 'Conv2d_load_state_dict_before_network'):
torch.nn.Conv2d_load_state_dict_before_lora = torch.nn.Conv2d._load_from_state_dict torch.nn.Conv2d_load_state_dict_before_network = torch.nn.Conv2d._load_from_state_dict
if not hasattr(torch.nn, 'MultiheadAttention_forward_before_lora'): if not hasattr(torch.nn, 'MultiheadAttention_forward_before_network'):
torch.nn.MultiheadAttention_forward_before_lora = torch.nn.MultiheadAttention.forward torch.nn.MultiheadAttention_forward_before_network = torch.nn.MultiheadAttention.forward
if not hasattr(torch.nn, 'MultiheadAttention_load_state_dict_before_lora'): if not hasattr(torch.nn, 'MultiheadAttention_load_state_dict_before_network'):
torch.nn.MultiheadAttention_load_state_dict_before_lora = torch.nn.MultiheadAttention._load_from_state_dict torch.nn.MultiheadAttention_load_state_dict_before_network = torch.nn.MultiheadAttention._load_from_state_dict
torch.nn.Linear.forward = lora.lora_Linear_forward torch.nn.Linear.forward = networks.network_Linear_forward
torch.nn.Linear._load_from_state_dict = lora.lora_Linear_load_state_dict torch.nn.Linear._load_from_state_dict = networks.network_Linear_load_state_dict
torch.nn.Conv2d.forward = lora.lora_Conv2d_forward torch.nn.Conv2d.forward = networks.network_Conv2d_forward
torch.nn.Conv2d._load_from_state_dict = lora.lora_Conv2d_load_state_dict torch.nn.Conv2d._load_from_state_dict = networks.network_Conv2d_load_state_dict
torch.nn.MultiheadAttention.forward = lora.lora_MultiheadAttention_forward torch.nn.MultiheadAttention.forward = networks.network_MultiheadAttention_forward
torch.nn.MultiheadAttention._load_from_state_dict = lora.lora_MultiheadAttention_load_state_dict torch.nn.MultiheadAttention._load_from_state_dict = networks.network_MultiheadAttention_load_state_dict
script_callbacks.on_model_loaded(lora.assign_lora_names_to_compvis_modules) script_callbacks.on_model_loaded(networks.assign_network_names_to_compvis_modules)
script_callbacks.on_script_unloaded(unload) script_callbacks.on_script_unloaded(unload)
script_callbacks.on_before_ui(before_ui) script_callbacks.on_before_ui(before_ui)
script_callbacks.on_infotext_pasted(lora.infotext_pasted) script_callbacks.on_infotext_pasted(networks.infotext_pasted)
shared.options_templates.update(shared.options_section(('extra_networks', "Extra Networks"), { shared.options_templates.update(shared.options_section(('extra_networks', "Extra Networks"), {
"sd_lora": shared.OptionInfo("None", "Add Lora to prompt", gr.Dropdown, lambda: {"choices": ["None", *lora.available_loras]}, refresh=lora.list_available_loras), "sd_lora": shared.OptionInfo("None", "Add network to prompt", gr.Dropdown, lambda: {"choices": ["None", *networks.available_networks]}, refresh=networks.list_available_networks),
"lora_preferred_name": shared.OptionInfo("Alias from file", "When adding to prompt, refer to Lora by", gr.Radio, {"choices": ["Alias from file", "Filename"]}), "lora_preferred_name": shared.OptionInfo("Alias from file", "When adding to prompt, refer to Lora by", gr.Radio, {"choices": ["Alias from file", "Filename"]}),
"lora_add_hashes_to_infotext": shared.OptionInfo(True, "Add Lora hashes to infotext"), "lora_add_hashes_to_infotext": shared.OptionInfo(True, "Add Lora hashes to infotext"),
"lora_show_all": shared.OptionInfo(False, "Always show all networks on the Lora page").info("otherwise, those detected as for incompatible version of Stable Diffusion will be hidden"),
"lora_hide_unknown_for_versions": shared.OptionInfo([], "Hide networks of unknown versions for model versions", gr.CheckboxGroup, {"choices": ["SD1", "SD2", "SDXL"]}),
})) }))
shared.options_templates.update(shared.options_section(('compatibility', "Compatibility"), { shared.options_templates.update(shared.options_section(('compatibility', "Compatibility"), {
"lora_functional": shared.OptionInfo(False, "Lora: use old method that takes longer when you have multiple Loras active and produces same results as kohya-ss/sd-webui-additional-networks extension"), "lora_functional": shared.OptionInfo(False, "Lora/Networks: use old method that takes longer when you have multiple Loras active and produces same results as kohya-ss/sd-webui-additional-networks extension"),
})) }))
def create_lora_json(obj: lora.LoraOnDisk): def create_lora_json(obj: network.NetworkOnDisk):
return { return {
"name": obj.name, "name": obj.name,
"alias": obj.alias, "alias": obj.alias,
@ -75,17 +82,17 @@ def create_lora_json(obj: lora.LoraOnDisk):
} }
def api_loras(_: gr.Blocks, app: FastAPI): def api_networks(_: gr.Blocks, app: FastAPI):
@app.get("/sdapi/v1/loras") @app.get("/sdapi/v1/loras")
async def get_loras(): async def get_loras():
return [create_lora_json(obj) for obj in lora.available_loras.values()] return [create_lora_json(obj) for obj in networks.available_networks.values()]
@app.post("/sdapi/v1/refresh-loras") @app.post("/sdapi/v1/refresh-loras")
async def refresh_loras(): async def refresh_loras():
return lora.list_available_loras() return networks.list_available_networks()
script_callbacks.on_app_started(api_loras) script_callbacks.on_app_started(api_networks)
re_lora = re.compile("<lora:([^:]+):") re_lora = re.compile("<lora:([^:]+):")
@ -98,19 +105,19 @@ def infotext_pasted(infotext, d):
hashes = [x.strip().split(':', 1) for x in hashes.split(",")] hashes = [x.strip().split(':', 1) for x in hashes.split(",")]
hashes = {x[0].strip().replace(",", ""): x[1].strip() for x in hashes} hashes = {x[0].strip().replace(",", ""): x[1].strip() for x in hashes}
def lora_replacement(m): def network_replacement(m):
alias = m.group(1) alias = m.group(1)
shorthash = hashes.get(alias) shorthash = hashes.get(alias)
if shorthash is None: if shorthash is None:
return m.group(0) return m.group(0)
lora_on_disk = lora.available_lora_hash_lookup.get(shorthash) network_on_disk = networks.available_network_hash_lookup.get(shorthash)
if lora_on_disk is None: if network_on_disk is None:
return m.group(0) return m.group(0)
return f'<lora:{lora_on_disk.get_alias()}:' return f'<lora:{network_on_disk.get_alias()}:'
d["Prompt"] = re.sub(re_lora, lora_replacement, d["Prompt"]) d["Prompt"] = re.sub(re_lora, network_replacement, d["Prompt"])
script_callbacks.on_infotext_pasted(infotext_pasted) script_callbacks.on_infotext_pasted(infotext_pasted)

View File

@ -0,0 +1,210 @@
import html
import random
import gradio as gr
import re
from modules import ui_extra_networks_user_metadata
def is_non_comma_tagset(tags):
average_tag_length = sum(len(x) for x in tags.keys()) / len(tags)
return average_tag_length >= 16
re_word = re.compile(r"[-_\w']+")
re_comma = re.compile(r" *, *")
def build_tags(metadata):
tags = {}
for _, tags_dict in metadata.get("ss_tag_frequency", {}).items():
for tag, tag_count in tags_dict.items():
tag = tag.strip()
tags[tag] = tags.get(tag, 0) + int(tag_count)
if tags and is_non_comma_tagset(tags):
new_tags = {}
for text, text_count in tags.items():
for word in re.findall(re_word, text):
if len(word) < 3:
continue
new_tags[word] = new_tags.get(word, 0) + text_count
tags = new_tags
ordered_tags = sorted(tags.keys(), key=tags.get, reverse=True)
return [(tag, tags[tag]) for tag in ordered_tags]
class LoraUserMetadataEditor(ui_extra_networks_user_metadata.UserMetadataEditor):
def __init__(self, ui, tabname, page):
super().__init__(ui, tabname, page)
self.select_sd_version = None
self.taginfo = None
self.edit_activation_text = None
self.slider_preferred_weight = None
self.edit_notes = None
def save_lora_user_metadata(self, name, desc, sd_version, activation_text, preferred_weight, notes):
user_metadata = self.get_user_metadata(name)
user_metadata["description"] = desc
user_metadata["sd version"] = sd_version
user_metadata["activation text"] = activation_text
user_metadata["preferred weight"] = preferred_weight
user_metadata["notes"] = notes
self.write_user_metadata(name, user_metadata)
def get_metadata_table(self, name):
table = super().get_metadata_table(name)
item = self.page.items.get(name, {})
metadata = item.get("metadata") or {}
keys = {
'ss_sd_model_name': "Model:",
'ss_clip_skip': "Clip skip:",
}
for key, label in keys.items():
value = metadata.get(key, None)
if value is not None and str(value) != "None":
table.append((label, html.escape(value)))
ss_bucket_info = metadata.get("ss_bucket_info")
if ss_bucket_info and "buckets" in ss_bucket_info:
resolutions = {}
for _, bucket in ss_bucket_info["buckets"].items():
resolution = bucket["resolution"]
resolution = f'{resolution[1]}x{resolution[0]}'
resolutions[resolution] = resolutions.get(resolution, 0) + int(bucket["count"])
resolutions_list = sorted(resolutions.keys(), key=resolutions.get, reverse=True)
resolutions_text = html.escape(", ".join(resolutions_list[0:4]))
if len(resolutions) > 4:
resolutions_text += ", ..."
resolutions_text = f"<span title='{html.escape(', '.join(resolutions_list))}'>{resolutions_text}</span>"
table.append(('Resolutions:' if len(resolutions_list) > 1 else 'Resolution:', resolutions_text))
image_count = 0
for _, params in metadata.get("ss_dataset_dirs", {}).items():
image_count += int(params.get("img_count", 0))
if image_count:
table.append(("Dataset size:", image_count))
return table
def put_values_into_components(self, name):
user_metadata = self.get_user_metadata(name)
values = super().put_values_into_components(name)
item = self.page.items.get(name, {})
metadata = item.get("metadata") or {}
tags = build_tags(metadata)
gradio_tags = [(tag, str(count)) for tag, count in tags[0:24]]
return [
*values[0:5],
item.get("sd_version", "Unknown"),
gr.HighlightedText.update(value=gradio_tags, visible=True if tags else False),
user_metadata.get('activation text', ''),
float(user_metadata.get('preferred weight', 0.0)),
gr.update(visible=True if tags else False),
gr.update(value=self.generate_random_prompt_from_tags(tags), visible=True if tags else False),
]
def generate_random_prompt(self, name):
item = self.page.items.get(name, {})
metadata = item.get("metadata") or {}
tags = build_tags(metadata)
return self.generate_random_prompt_from_tags(tags)
def generate_random_prompt_from_tags(self, tags):
max_count = None
res = []
for tag, count in tags:
if not max_count:
max_count = count
v = random.random() * max_count
if count > v:
res.append(tag)
return ", ".join(sorted(res))
def create_extra_default_items_in_left_column(self):
# this would be a lot better as gr.Radio but I can't make it work
self.select_sd_version = gr.Dropdown(['SD1', 'SD2', 'SDXL', 'Unknown'], value='Unknown', label='Stable Diffusion version', interactive=True)
def create_editor(self):
self.create_default_editor_elems()
self.taginfo = gr.HighlightedText(label="Training dataset tags")
self.edit_activation_text = gr.Text(label='Activation text', info="Will be added to prompt along with Lora")
self.slider_preferred_weight = gr.Slider(label='Preferred weight', info="Set to 0 to disable", minimum=0.0, maximum=2.0, step=0.01)
with gr.Row() as row_random_prompt:
with gr.Column(scale=8):
random_prompt = gr.Textbox(label='Random prompt', lines=4, max_lines=4, interactive=False)
with gr.Column(scale=1, min_width=120):
generate_random_prompt = gr.Button('Generate').style(full_width=True, size="lg")
self.edit_notes = gr.TextArea(label='Notes', lines=4)
generate_random_prompt.click(fn=self.generate_random_prompt, inputs=[self.edit_name_input], outputs=[random_prompt], show_progress=False)
def select_tag(activation_text, evt: gr.SelectData):
tag = evt.value[0]
words = re.split(re_comma, activation_text)
if tag in words:
words = [x for x in words if x != tag and x.strip()]
return ", ".join(words)
return activation_text + ", " + tag if activation_text else tag
self.taginfo.select(fn=select_tag, inputs=[self.edit_activation_text], outputs=[self.edit_activation_text], show_progress=False)
self.create_default_buttons()
viewed_components = [
self.edit_name,
self.edit_description,
self.html_filedata,
self.html_preview,
self.edit_notes,
self.select_sd_version,
self.taginfo,
self.edit_activation_text,
self.slider_preferred_weight,
row_random_prompt,
random_prompt,
]
self.button_edit\
.click(fn=self.put_values_into_components, inputs=[self.edit_name_input], outputs=viewed_components)\
.then(fn=lambda: gr.update(visible=True), inputs=[], outputs=[self.box])
edited_components = [
self.edit_description,
self.select_sd_version,
self.edit_activation_text,
self.slider_preferred_weight,
self.edit_notes,
]
self.setup_save_handler(self.button_save, self.save_lora_user_metadata, edited_components)

View File

@ -1,8 +1,11 @@
import json
import os import os
import lora
from modules import shared, ui_extra_networks import network
import networks
from modules import shared, ui_extra_networks, paths
from modules.ui_extra_networks import quote_js
from ui_edit_user_metadata import LoraUserMetadataEditor
class ExtraNetworksPageLora(ui_extra_networks.ExtraNetworksPage): class ExtraNetworksPageLora(ui_extra_networks.ExtraNetworksPage):
@ -10,27 +13,66 @@ class ExtraNetworksPageLora(ui_extra_networks.ExtraNetworksPage):
super().__init__('Lora') super().__init__('Lora')
def refresh(self): def refresh(self):
lora.list_available_loras() networks.list_available_networks()
def create_item(self, name, index=None, enable_filter=True):
lora_on_disk = networks.available_networks.get(name)
def list_items(self):
for index, (name, lora_on_disk) in enumerate(lora.available_loras.items()):
path, ext = os.path.splitext(lora_on_disk.filename) path, ext = os.path.splitext(lora_on_disk.filename)
alias = lora_on_disk.get_alias() alias = lora_on_disk.get_alias()
yield { item = {
"name": name, "name": name,
"filename": path, "filename": lora_on_disk.filename,
"preview": self.find_preview(path), "preview": self.find_preview(path),
"description": self.find_description(path), "description": self.find_description(path),
"search_term": self.search_terms_from_path(lora_on_disk.filename), "search_term": self.search_terms_from_path(lora_on_disk.filename),
"prompt": json.dumps(f"<lora:{alias}:") + " + opts.extra_networks_default_multiplier + " + json.dumps(">"),
"local_preview": f"{path}.{shared.opts.samples_format}", "local_preview": f"{path}.{shared.opts.samples_format}",
"metadata": json.dumps(lora_on_disk.metadata, indent=4) if lora_on_disk.metadata else None, "metadata": lora_on_disk.metadata,
"sort_keys": {'default': index, **self.get_sort_keys(lora_on_disk.filename)}, "sort_keys": {'default': index, **self.get_sort_keys(lora_on_disk.filename)},
"sd_version": lora_on_disk.sd_version.name,
} }
def allowed_directories_for_previews(self): self.read_user_metadata(item)
return [shared.cmd_opts.lora_dir] activation_text = item["user_metadata"].get("activation text")
preferred_weight = item["user_metadata"].get("preferred weight", 0.0)
item["prompt"] = quote_js(f"<lora:{alias}:") + " + " + (str(preferred_weight) if preferred_weight else "opts.extra_networks_default_multiplier") + " + " + quote_js(">")
if activation_text:
item["prompt"] += " + " + quote_js(" " + activation_text)
sd_version = item["user_metadata"].get("sd version")
if sd_version in network.SdVersion.__members__:
item["sd_version"] = sd_version
sd_version = network.SdVersion[sd_version]
else:
sd_version = lora_on_disk.sd_version
if shared.opts.lora_show_all or not enable_filter:
pass
elif sd_version == network.SdVersion.Unknown:
model_version = network.SdVersion.SDXL if shared.sd_model.is_sdxl else network.SdVersion.SD2 if shared.sd_model.is_sd2 else network.SdVersion.SD1
if model_version.name in shared.opts.lora_hide_unknown_for_versions:
return None
elif shared.sd_model.is_sdxl and sd_version != network.SdVersion.SDXL:
return None
elif shared.sd_model.is_sd2 and sd_version != network.SdVersion.SD2:
return None
elif shared.sd_model.is_sd1 and sd_version != network.SdVersion.SD1:
return None
return item
def list_items(self):
for index, name in enumerate(networks.available_networks):
item = self.create_item(name, index)
if item is not None:
yield item
def allowed_directories_for_previews(self):
return [shared.cmd_opts.lora_dir, os.path.join(paths.models_path, "LyCORIS")]
def create_user_metadata_editor(self, ui, tabname):
return LoraUserMetadataEditor(ui, tabname, self)

View File

@ -1,4 +1,3 @@
import os.path
import sys import sys
import PIL.Image import PIL.Image
@ -6,12 +5,11 @@ import numpy as np
import torch import torch
from tqdm import tqdm from tqdm import tqdm
from basicsr.utils.download_util import load_file_from_url
import modules.upscaler import modules.upscaler
from modules import devices, modelloader, script_callbacks, errors from modules import devices, modelloader, script_callbacks, errors
from scunet_model_arch import SCUNet as net from scunet_model_arch import SCUNet
from modules.modelloader import load_file_from_url
from modules.shared import opts from modules.shared import opts
@ -28,7 +26,7 @@ class UpscalerScuNET(modules.upscaler.Upscaler):
scalers = [] scalers = []
add_model2 = True add_model2 = True
for file in model_paths: for file in model_paths:
if "http" in file: if file.startswith("http"):
name = self.model_name name = self.model_name
else: else:
name = modelloader.friendly_name(file) name = modelloader.friendly_name(file)
@ -87,11 +85,12 @@ class UpscalerScuNET(modules.upscaler.Upscaler):
def do_upscale(self, img: PIL.Image.Image, selected_file): def do_upscale(self, img: PIL.Image.Image, selected_file):
torch.cuda.empty_cache() devices.torch_gc()
try:
model = self.load_model(selected_file) model = self.load_model(selected_file)
if model is None: except Exception as e:
print(f"ScuNET: Unable to load model from {selected_file}", file=sys.stderr) print(f"ScuNET: Unable to load model from {selected_file}: {e}", file=sys.stderr)
return img return img
device = devices.get_device_for('scunet') device = devices.get_device_for('scunet')
@ -111,7 +110,7 @@ class UpscalerScuNET(modules.upscaler.Upscaler):
torch_output = torch_output[:, :h * 1, :w * 1] # remove padding, if any torch_output = torch_output[:, :h * 1, :w * 1] # remove padding, if any
np_output: np.ndarray = torch_output.float().cpu().clamp_(0, 1).numpy() np_output: np.ndarray = torch_output.float().cpu().clamp_(0, 1).numpy()
del torch_img, torch_output del torch_img, torch_output
torch.cuda.empty_cache() devices.torch_gc()
output = np_output.transpose((1, 2, 0)) # CHW to HWC output = np_output.transpose((1, 2, 0)) # CHW to HWC
output = output[:, :, ::-1] # BGR to RGB output = output[:, :, ::-1] # BGR to RGB
@ -119,15 +118,12 @@ class UpscalerScuNET(modules.upscaler.Upscaler):
def load_model(self, path: str): def load_model(self, path: str):
device = devices.get_device_for('scunet') device = devices.get_device_for('scunet')
if "http" in path: if path.startswith("http"):
filename = load_file_from_url(url=self.model_url, model_dir=self.model_download_path, file_name="%s.pth" % self.name, progress=True) # TODO: this doesn't use `path` at all?
filename = load_file_from_url(self.model_url, model_dir=self.model_download_path, file_name=f"{self.name}.pth")
else: else:
filename = path filename = path
if not os.path.exists(os.path.join(self.model_path, filename)) or filename is None: model = SCUNet(in_nc=3, config=[4, 4, 4, 4, 4, 4, 4], dim=64)
print(f"ScuNET: Unable to load model from {filename}", file=sys.stderr)
return None
model = net(in_nc=3, config=[4, 4, 4, 4, 4, 4, 4], dim=64)
model.load_state_dict(torch.load(filename), strict=True) model.load_state_dict(torch.load(filename), strict=True)
model.eval() model.eval()
for _, v in model.named_parameters(): for _, v in model.named_parameters():

View File

@ -1,34 +1,35 @@
import os import sys
import platform
import numpy as np import numpy as np
import torch import torch
from PIL import Image from PIL import Image
from basicsr.utils.download_util import load_file_from_url
from tqdm import tqdm from tqdm import tqdm
from modules import modelloader, devices, script_callbacks, shared from modules import modelloader, devices, script_callbacks, shared
from modules.shared import opts, state from modules.shared import opts, state
from swinir_model_arch import SwinIR as net from swinir_model_arch import SwinIR
from swinir_model_arch_v2 import Swin2SR as net2 from swinir_model_arch_v2 import Swin2SR
from modules.upscaler import Upscaler, UpscalerData from modules.upscaler import Upscaler, UpscalerData
SWINIR_MODEL_URL = "https://github.com/JingyunLiang/SwinIR/releases/download/v0.0/003_realSR_BSRGAN_DFOWMFC_s64w8_SwinIR-L_x4_GAN.pth"
device_swinir = devices.get_device_for('swinir') device_swinir = devices.get_device_for('swinir')
class UpscalerSwinIR(Upscaler): class UpscalerSwinIR(Upscaler):
def __init__(self, dirname): def __init__(self, dirname):
self._cached_model = None # keep the model when SWIN_torch_compile is on to prevent re-compile every runs
self._cached_model_config = None # to clear '_cached_model' when changing model (v1/v2) or settings
self.name = "SwinIR" self.name = "SwinIR"
self.model_url = "https://github.com/JingyunLiang/SwinIR/releases/download/v0.0" \ self.model_url = SWINIR_MODEL_URL
"/003_realSR_BSRGAN_DFOWMFC_s64w8_SwinIR" \
"-L_x4_GAN.pth "
self.model_name = "SwinIR 4x" self.model_name = "SwinIR 4x"
self.user_path = dirname self.user_path = dirname
super().__init__() super().__init__()
scalers = [] scalers = []
model_files = self.find_models(ext_filter=[".pt", ".pth"]) model_files = self.find_models(ext_filter=[".pt", ".pth"])
for model in model_files: for model in model_files:
if "http" in model: if model.startswith("http"):
name = self.model_name name = self.model_name
else: else:
name = modelloader.friendly_name(model) name = modelloader.friendly_name(model)
@ -37,27 +38,39 @@ class UpscalerSwinIR(Upscaler):
self.scalers = scalers self.scalers = scalers
def do_upscale(self, img, model_file): def do_upscale(self, img, model_file):
use_compile = hasattr(opts, 'SWIN_torch_compile') and opts.SWIN_torch_compile \
and int(torch.__version__.split('.')[0]) >= 2 and platform.system() != "Windows"
current_config = (model_file, opts.SWIN_tile)
if use_compile and self._cached_model_config == current_config:
model = self._cached_model
else:
self._cached_model = None
try:
model = self.load_model(model_file) model = self.load_model(model_file)
if model is None: except Exception as e:
print(f"Failed loading SwinIR model {model_file}: {e}", file=sys.stderr)
return img return img
model = model.to(device_swinir, dtype=devices.dtype) model = model.to(device_swinir, dtype=devices.dtype)
if use_compile:
model = torch.compile(model)
self._cached_model = model
self._cached_model_config = current_config
img = upscale(img, model) img = upscale(img, model)
try: devices.torch_gc()
torch.cuda.empty_cache()
except Exception:
pass
return img return img
def load_model(self, path, scale=4): def load_model(self, path, scale=4):
if "http" in path: if path.startswith("http"):
dl_name = "%s%s" % (self.model_name.replace(" ", "_"), ".pth") filename = modelloader.load_file_from_url(
filename = load_file_from_url(url=path, model_dir=self.model_download_path, file_name=dl_name, progress=True) url=path,
model_dir=self.model_download_path,
file_name=f"{self.model_name.replace(' ', '_')}.pth",
)
else: else:
filename = path filename = path
if filename is None or not os.path.exists(filename):
return None
if filename.endswith(".v2.pth"): if filename.endswith(".v2.pth"):
model = net2( model = Swin2SR(
upscale=scale, upscale=scale,
in_chans=3, in_chans=3,
img_size=64, img_size=64,
@ -72,7 +85,7 @@ class UpscalerSwinIR(Upscaler):
) )
params = None params = None
else: else:
model = net( model = SwinIR(
upscale=scale, upscale=scale,
in_chans=3, in_chans=3,
img_size=64, img_size=64,
@ -172,6 +185,8 @@ def on_ui_settings():
shared.opts.add_option("SWIN_tile", shared.OptionInfo(192, "Tile size for all SwinIR.", gr.Slider, {"minimum": 16, "maximum": 512, "step": 16}, section=('upscaling', "Upscaling"))) shared.opts.add_option("SWIN_tile", shared.OptionInfo(192, "Tile size for all SwinIR.", gr.Slider, {"minimum": 16, "maximum": 512, "step": 16}, section=('upscaling', "Upscaling")))
shared.opts.add_option("SWIN_tile_overlap", shared.OptionInfo(8, "Tile overlap, in pixels for SwinIR. Low values = visible seam.", gr.Slider, {"minimum": 0, "maximum": 48, "step": 1}, section=('upscaling', "Upscaling"))) shared.opts.add_option("SWIN_tile_overlap", shared.OptionInfo(8, "Tile overlap, in pixels for SwinIR. Low values = visible seam.", gr.Slider, {"minimum": 0, "maximum": 48, "step": 1}, section=('upscaling', "Upscaling")))
if int(torch.__version__.split('.')[0]) >= 2 and platform.system() != "Windows": # torch.compile() require pytorch 2.0 or above, and not on Windows
shared.opts.add_option("SWIN_torch_compile", shared.OptionInfo(False, "Use torch.compile to accelerate SwinIR.", gr.Checkbox, {"interactive": True}, section=('upscaling', "Upscaling")).info("Takes longer on first run"))
script_callbacks.on_ui_settings(on_ui_settings) script_callbacks.on_ui_settings(on_ui_settings)

View File

@ -200,7 +200,8 @@ onUiLoaded(async() => {
canvas_hotkey_move: "KeyF", canvas_hotkey_move: "KeyF",
canvas_hotkey_overlap: "KeyO", canvas_hotkey_overlap: "KeyO",
canvas_disabled_functions: [], canvas_disabled_functions: [],
canvas_show_tooltip: true canvas_show_tooltip: true,
canvas_blur_prompt: false
}; };
const functionMap = { const functionMap = {
@ -608,6 +609,19 @@ onUiLoaded(async() => {
// Handle keydown events // Handle keydown events
function handleKeyDown(event) { function handleKeyDown(event) {
// Disable key locks to make pasting from the buffer work correctly
if ((event.ctrlKey && event.code === 'KeyV') || (event.ctrlKey && event.code === 'KeyC') || event.code === "F5") {
return;
}
// before activating shortcut, ensure user is not actively typing in an input field
if (!hotkeysConfig.canvas_blur_prompt) {
if (event.target.nodeName === 'TEXTAREA' || event.target.nodeName === 'INPUT') {
return;
}
}
const hotkeyActions = { const hotkeyActions = {
[hotkeysConfig.canvas_hotkey_reset]: resetZoom, [hotkeysConfig.canvas_hotkey_reset]: resetZoom,
[hotkeysConfig.canvas_hotkey_overlap]: toggleOverlap, [hotkeysConfig.canvas_hotkey_overlap]: toggleOverlap,
@ -686,6 +700,20 @@ onUiLoaded(async() => {
// Handle the move event for pan functionality. Updates the panX and panY variables and applies the new transform to the target element. // Handle the move event for pan functionality. Updates the panX and panY variables and applies the new transform to the target element.
function handleMoveKeyDown(e) { function handleMoveKeyDown(e) {
// Disable key locks to make pasting from the buffer work correctly
if ((e.ctrlKey && e.code === 'KeyV') || (e.ctrlKey && event.code === 'KeyC') || e.code === "F5") {
return;
}
// before activating shortcut, ensure user is not actively typing in an input field
if (!hotkeysConfig.canvas_blur_prompt) {
if (e.target.nodeName === 'TEXTAREA' || e.target.nodeName === 'INPUT') {
return;
}
}
if (e.code === hotkeysConfig.canvas_hotkey_move) { if (e.code === hotkeysConfig.canvas_hotkey_move) {
if (!e.ctrlKey && !e.metaKey && isKeyDownHandlerAttached) { if (!e.ctrlKey && !e.metaKey && isKeyDownHandlerAttached) {
e.preventDefault(); e.preventDefault();

View File

@ -9,5 +9,6 @@ shared.options_templates.update(shared.options_section(('canvas_hotkey', "Canvas
"canvas_hotkey_reset": shared.OptionInfo("R", "Reset zoom and canvas positon"), "canvas_hotkey_reset": shared.OptionInfo("R", "Reset zoom and canvas positon"),
"canvas_hotkey_overlap": shared.OptionInfo("O", "Toggle overlap").info("Technical button, neededs for testing"), "canvas_hotkey_overlap": shared.OptionInfo("O", "Toggle overlap").info("Technical button, neededs for testing"),
"canvas_show_tooltip": shared.OptionInfo(True, "Enable tooltip on the canvas"), "canvas_show_tooltip": shared.OptionInfo(True, "Enable tooltip on the canvas"),
"canvas_blur_prompt": shared.OptionInfo(False, "Take the focus off the prompt when working with a canvas"),
"canvas_disabled_functions": shared.OptionInfo(["Overlap"], "Disable function that you don't use", gr.CheckboxGroup, {"choices": ["Zoom","Adjust brush size", "Moving canvas","Fullscreen","Reset Zoom","Overlap"]}), "canvas_disabled_functions": shared.OptionInfo(["Overlap"], "Disable function that you don't use", gr.CheckboxGroup, {"choices": ["Zoom","Adjust brush size", "Moving canvas","Fullscreen","Reset Zoom","Overlap"]}),
})) }))

View File

@ -0,0 +1,26 @@
var isSetupForMobile = false;
function isMobile() {
for (var tab of ["txt2img", "img2img"]) {
var imageTab = gradioApp().getElementById(tab + '_results');
if (imageTab && imageTab.offsetParent && imageTab.offsetLeft == 0) {
return true;
}
}
return false;
}
function reportWindowSize() {
var currentlyMobile = isMobile();
if (currentlyMobile == isSetupForMobile) return;
isSetupForMobile = currentlyMobile;
for (var tab of ["txt2img", "img2img"]) {
var button = gradioApp().getElementById(tab + '_generate_box');
var target = gradioApp().getElementById(currentlyMobile ? tab + '_results' : tab + '_actions_column');
target.insertBefore(button, target.firstElementChild);
}
}
window.addEventListener("resize", reportWindowSize);

View File

@ -1,11 +1,11 @@
<div class='card' style={style} onclick={card_clicked} {sort_keys}> <div class='card' style={style} onclick={card_clicked} data-name="{name}" {sort_keys}>
{background_image} {background_image}
<div class="button-row">
{metadata_button} {metadata_button}
{edit_button}
</div>
<div class='actions'> <div class='actions'>
<div class='additional'> <div class='additional'>
<ul>
<a href="#" title="replace preview image with currently selected in gallery" onclick={save_card_preview}>replace preview</a>
</ul>
<span style="display:none" class='search_term{search_only}'>{search_term}</span> <span style="display:none" class='search_term{search_only}'>{search_term}</span>
</div> </div>
<span class='name'>{name}</span> <span class='name'>{name}</span>

View File

@ -1,7 +0,0 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24">
<filter id='shadow' color-interpolation-filters="sRGB">
<feDropShadow flood-color="black" dx="0" dy="0" flood-opacity="0.9" stdDeviation="0.5"/>
<feDropShadow flood-color="black" dx="0" dy="0" flood-opacity="0.9" stdDeviation="0.5"/>
</filter>
<path style="filter:url(#shadow);" fill="#FFFFFF" d="M13.18 19C13.35 19.72 13.64 20.39 14.03 21H5C3.9 21 3 20.11 3 19V5C3 3.9 3.9 3 5 3H19C20.11 3 21 3.9 21 5V11.18C20.5 11.07 20 11 19.5 11C19.33 11 19.17 11 19 11.03V5H5V19H13.18M11.21 15.83L9.25 13.47L6.5 17H13.03C13.14 15.54 13.73 14.22 14.64 13.19L13.96 12.29L11.21 15.83M19 13.5V12L16.75 14.25L19 16.5V15C20.38 15 21.5 16.12 21.5 17.5C21.5 17.9 21.41 18.28 21.24 18.62L22.33 19.71C22.75 19.08 23 18.32 23 17.5C23 15.29 21.21 13.5 19 13.5M19 20C17.62 20 16.5 18.88 16.5 17.5C16.5 17.1 16.59 16.72 16.76 16.38L15.67 15.29C15.25 15.92 15 16.68 15 17.5C15 19.71 16.79 21.5 19 21.5V23L21.25 20.75L19 18.5V20Z" />
</svg>

Before

Width:  |  Height:  |  Size: 989 B

View File

@ -0,0 +1,108 @@
(function() {
var ignore = localStorage.getItem("bad-scale-ignore-it") == "ignore-it";
function getScale() {
var ratio = 0,
screen = window.screen,
ua = navigator.userAgent.toLowerCase();
if (window.devicePixelRatio !== undefined) {
ratio = window.devicePixelRatio;
} else if (~ua.indexOf('msie')) {
if (screen.deviceXDPI && screen.logicalXDPI) {
ratio = screen.deviceXDPI / screen.logicalXDPI;
}
} else if (window.outerWidth !== undefined && window.innerWidth !== undefined) {
ratio = window.outerWidth / window.innerWidth;
}
return ratio == 0 ? 0 : Math.round(ratio * 100);
}
var showing = false;
var div = document.createElement("div");
div.style.position = "fixed";
div.style.top = "0px";
div.style.left = "0px";
div.style.width = "100vw";
div.style.backgroundColor = "firebrick";
div.style.textAlign = "center";
div.style.zIndex = 99;
var b = document.createElement("b");
b.innerHTML = 'Bad Scale: ??% ';
div.appendChild(b);
var note1 = document.createElement("p");
note1.innerHTML = "Change your browser or your computer settings!";
note1.title = 'Just make sure "computer-scale" * "browser-scale" = 100% ,\n' +
"you can keep your computer-scale and only change this page's scale,\n" +
"for example: your computer-scale is 125%, just use [\"CTRL\"+\"-\"] to make your browser-scale of this page to 80%.";
div.appendChild(note1);
var note2 = document.createElement("p");
note2.innerHTML = " Otherwise, it will cause this page to not function properly!";
note2.title = "When you click \"Copy image to: [inpaint sketch]\" in some img2img's tab,\n" +
"if scale<100% the canvas will be invisible,\n" +
"else if scale>100% this page will take large amount of memory and CPU performance.";
div.appendChild(note2);
var btn = document.createElement("button");
btn.innerHTML = "Click here to ignore";
div.appendChild(btn);
function tryShowTopBar(scale) {
if (showing) return;
b.innerHTML = 'Bad Scale: ' + scale + '% ';
var updateScaleTimer = setInterval(function() {
var newScale = getScale();
b.innerHTML = 'Bad Scale: ' + newScale + '% ';
if (newScale == 100) {
var p = div.parentNode;
if (p != null) p.removeChild(div);
showing = false;
clearInterval(updateScaleTimer);
check();
}
}, 999);
btn.onclick = function() {
clearInterval(updateScaleTimer);
var p = div.parentNode;
if (p != null) p.removeChild(div);
ignore = true;
showing = false;
localStorage.setItem("bad-scale-ignore-it", "ignore-it");
};
document.body.appendChild(div);
}
function check() {
if (!ignore) {
var timer = setInterval(function() {
var scale = getScale();
if (scale != 100 && !ignore) {
tryShowTopBar(scale);
clearInterval(timer);
}
if (ignore) {
clearInterval(timer);
}
}, 999);
}
}
if (document.readyState != "complete") {
document.onreadystatechange = function() {
if (document.readyState != "complete") check();
};
} else {
check();
}
})();

View File

@ -100,11 +100,12 @@ function keyupEditAttention(event) {
if (String(weight).length == 1) weight += ".0"; if (String(weight).length == 1) weight += ".0";
if (closeCharacter == ')' && weight == 1) { if (closeCharacter == ')' && weight == 1) {
text = text.slice(0, selectionStart - 1) + text.slice(selectionStart, selectionEnd) + text.slice(selectionEnd + 5); var endParenPos = text.substring(selectionEnd).indexOf(')');
text = text.slice(0, selectionStart - 1) + text.slice(selectionStart, selectionEnd) + text.slice(selectionEnd + endParenPos + 1);
selectionStart--; selectionStart--;
selectionEnd--; selectionEnd--;
} else { } else {
text = text.slice(0, selectionEnd + 1) + weight + text.slice(selectionEnd + 1 + end - 1); text = text.slice(0, selectionEnd + 1) + weight + text.slice(selectionEnd + end);
} }
target.focus(); target.focus();

41
javascript/edit-order.js Normal file
View File

@ -0,0 +1,41 @@
/* alt+left/right moves text in prompt */
function keyupEditOrder(event) {
if (!opts.keyedit_move) return;
let target = event.originalTarget || event.composedPath()[0];
if (!target.matches("*:is([id*='_toprow'] [id*='_prompt'], .prompt) textarea")) return;
if (!event.altKey) return;
let isLeft = event.key == "ArrowLeft";
let isRight = event.key == "ArrowRight";
if (!isLeft && !isRight) return;
event.preventDefault();
let selectionStart = target.selectionStart;
let selectionEnd = target.selectionEnd;
let text = target.value;
let items = text.split(",");
let indexStart = (text.slice(0, selectionStart).match(/,/g) || []).length;
let indexEnd = (text.slice(0, selectionEnd).match(/,/g) || []).length;
let range = indexEnd - indexStart + 1;
if (isLeft && indexStart > 0) {
items.splice(indexStart - 1, 0, ...items.splice(indexStart, range));
target.value = items.join();
target.selectionStart = items.slice(0, indexStart - 1).join().length + (indexStart == 1 ? 0 : 1);
target.selectionEnd = items.slice(0, indexEnd).join().length;
} else if (isRight && indexEnd < items.length - 1) {
items.splice(indexStart + 1, 0, ...items.splice(indexStart, range));
target.value = items.join();
target.selectionStart = items.slice(0, indexStart + 1).join().length + 1;
target.selectionEnd = items.slice(0, indexEnd + 2).join().length;
}
event.preventDefault();
updateInput(target);
}
addEventListener('keydown', (event) => {
keyupEditOrder(event);
});

View File

@ -72,3 +72,21 @@ function config_state_confirm_restore(_, config_state_name, config_restore_type)
} }
return [confirmed, config_state_name, config_restore_type]; return [confirmed, config_state_name, config_restore_type];
} }
function toggle_all_extensions(event) {
gradioApp().querySelectorAll('#extensions .extension_toggle').forEach(function(checkbox_el) {
checkbox_el.checked = event.target.checked;
});
}
function toggle_extension() {
let all_extensions_toggled = true;
for (const checkbox_el of gradioApp().querySelectorAll('#extensions .extension_toggle')) {
if (!checkbox_el.checked) {
all_extensions_toggled = false;
break;
}
}
gradioApp().querySelector('#extensions .all_extensions_toggle').checked = all_extensions_toggled;
}

View File

@ -113,7 +113,7 @@ function setupExtraNetworks() {
onUiLoaded(setupExtraNetworks); onUiLoaded(setupExtraNetworks);
var re_extranet = /<([^:]+:[^:]+):[\d.]+>/; var re_extranet = /<([^:]+:[^:]+):[\d.]+>(.*)/;
var re_extranet_g = /\s+<([^:]+:[^:]+):[\d.]+>/g; var re_extranet_g = /\s+<([^:]+:[^:]+):[\d.]+>/g;
function tryToRemoveExtraNetworkFromPrompt(textarea, text) { function tryToRemoveExtraNetworkFromPrompt(textarea, text) {
@ -121,15 +121,22 @@ function tryToRemoveExtraNetworkFromPrompt(textarea, text) {
var replaced = false; var replaced = false;
var newTextareaText; var newTextareaText;
if (m) { if (m) {
var extraTextAfterNet = m[2];
var partToSearch = m[1]; var partToSearch = m[1];
newTextareaText = textarea.value.replaceAll(re_extranet_g, function(found) { var foundAtPosition = -1;
newTextareaText = textarea.value.replaceAll(re_extranet_g, function(found, net, pos) {
m = found.match(re_extranet); m = found.match(re_extranet);
if (m[1] == partToSearch) { if (m[1] == partToSearch) {
replaced = true; replaced = true;
foundAtPosition = pos;
return ""; return "";
} }
return found; return found;
}); });
if (foundAtPosition >= 0 && newTextareaText.substr(foundAtPosition, extraTextAfterNet.length) == extraTextAfterNet) {
newTextareaText = newTextareaText.substr(0, foundAtPosition) + newTextareaText.substr(foundAtPosition + extraTextAfterNet.length);
}
} else { } else {
newTextareaText = textarea.value.replaceAll(new RegExp(text, "g"), function(found) { newTextareaText = textarea.value.replaceAll(new RegExp(text, "g"), function(found) {
if (found == text) { if (found == text) {
@ -182,19 +189,20 @@ function extraNetworksSearchButton(tabs_id, event) {
var globalPopup = null; var globalPopup = null;
var globalPopupInner = null; var globalPopupInner = null;
function closePopup() {
if (!globalPopup) return;
globalPopup.style.display = "none";
}
function popup(contents) { function popup(contents) {
if (!globalPopup) { if (!globalPopup) {
globalPopup = document.createElement('div'); globalPopup = document.createElement('div');
globalPopup.onclick = function() { globalPopup.onclick = closePopup;
globalPopup.style.display = "none";
};
globalPopup.classList.add('global-popup'); globalPopup.classList.add('global-popup');
var close = document.createElement('div'); var close = document.createElement('div');
close.classList.add('global-popup-close'); close.classList.add('global-popup-close');
close.onclick = function() { close.onclick = closePopup;
globalPopup.style.display = "none";
};
close.title = "Close"; close.title = "Close";
globalPopup.appendChild(close); globalPopup.appendChild(close);
@ -205,7 +213,7 @@ function popup(contents) {
globalPopupInner.classList.add('global-popup-inner'); globalPopupInner.classList.add('global-popup-inner');
globalPopup.appendChild(globalPopupInner); globalPopup.appendChild(globalPopupInner);
gradioApp().appendChild(globalPopup); gradioApp().querySelector('.main').appendChild(globalPopup);
} }
globalPopupInner.innerHTML = ''; globalPopupInner.innerHTML = '';
@ -263,3 +271,43 @@ function extraNetworksRequestMetadata(event, extraPage, cardName) {
event.stopPropagation(); event.stopPropagation();
} }
var extraPageUserMetadataEditors = {};
function extraNetworksEditUserMetadata(event, tabname, extraPage, cardName) {
var id = tabname + '_' + extraPage + '_edit_user_metadata';
var editor = extraPageUserMetadataEditors[id];
if (!editor) {
editor = {};
editor.page = gradioApp().getElementById(id);
editor.nameTextarea = gradioApp().querySelector("#" + id + "_name" + ' textarea');
editor.button = gradioApp().querySelector("#" + id + "_button");
extraPageUserMetadataEditors[id] = editor;
}
editor.nameTextarea.value = cardName;
updateInput(editor.nameTextarea);
editor.button.click();
popup(editor.page);
event.stopPropagation();
}
function extraNetworksRefreshSingleCard(page, tabname, name) {
requestGet("./sd_extra_networks/get-single-card", {page: page, tabname: tabname, name: name}, function(data) {
if (data && data.html) {
var card = gradioApp().querySelector('.card[data-name=' + JSON.stringify(name) + ']'); // likely using the wrong stringify function
var newDiv = document.createElement('DIV');
newDiv.innerHTML = data.html;
var newCard = newDiv.firstElementChild;
newCard.style = '';
card.parentElement.insertBefore(newCard, card);
card.parentElement.removeChild(card);
}
});
}

View File

@ -84,8 +84,6 @@ var titles = {
"Checkpoint name": "Loads weights from checkpoint before making images. You can either use hash or a part of filename (as seen in settings) for checkpoint name. Recommended to use with Y axis for less switching.", "Checkpoint name": "Loads weights from checkpoint before making images. You can either use hash or a part of filename (as seen in settings) for checkpoint name. Recommended to use with Y axis for less switching.",
"Inpainting conditioning mask strength": "Only applies to inpainting models. Determines how strongly to mask off the original image for inpainting and img2img. 1.0 means fully masked, which is the default behaviour. 0.0 means a fully unmasked conditioning. Lower values will help preserve the overall composition of the image, but will struggle with large changes.", "Inpainting conditioning mask strength": "Only applies to inpainting models. Determines how strongly to mask off the original image for inpainting and img2img. 1.0 means fully masked, which is the default behaviour. 0.0 means a fully unmasked conditioning. Lower values will help preserve the overall composition of the image, but will struggle with large changes.",
"vram": "Torch active: Peak amount of VRAM used by Torch during generation, excluding cached data.\nTorch reserved: Peak amount of VRAM allocated by Torch, including all active and cached data.\nSys VRAM: Peak amount of VRAM allocation across all applications / total GPU VRAM (peak utilization%).",
"Eta noise seed delta": "If this values is non-zero, it will be added to seed and used to initialize RNG for noises when using samplers with Eta. You can use this to produce even more variation of images, or you can use this to match images of other software if you know what you are doing.", "Eta noise seed delta": "If this values is non-zero, it will be added to seed and used to initialize RNG for noises when using samplers with Eta. You can use this to produce even more variation of images, or you can use this to match images of other software if you know what you are doing.",
"Filename word regex": "This regular expression will be used extract words from filename, and they will be joined using the option below into label text used for training. Leave empty to keep filename text as it is.", "Filename word regex": "This regular expression will be used extract words from filename, and they will be joined using the option below into label text used for training. Leave empty to keep filename text as it is.",
@ -110,7 +108,6 @@ var titles = {
"Upscale by": "Adjusts the size of the image by multiplying the original width and height by the selected value. Ignored if either Resize width to or Resize height to are non-zero.", "Upscale by": "Adjusts the size of the image by multiplying the original width and height by the selected value. Ignored if either Resize width to or Resize height to are non-zero.",
"Resize width to": "Resizes image to this width. If 0, width is inferred from either of two nearby sliders.", "Resize width to": "Resizes image to this width. If 0, width is inferred from either of two nearby sliders.",
"Resize height to": "Resizes image to this height. If 0, height is inferred from either of two nearby sliders.", "Resize height to": "Resizes image to this height. If 0, height is inferred from either of two nearby sliders.",
"Multiplier for extra networks": "When adding extra network such as Hypernetwork or Lora to prompt, use this multiplier for it.",
"Discard weights with matching name": "Regular expression; if weights's name matches it, the weights is not written to the resulting checkpoint. Use ^model_ema to discard EMA weights.", "Discard weights with matching name": "Regular expression; if weights's name matches it, the weights is not written to the resulting checkpoint. Use ^model_ema to discard EMA weights.",
"Extra networks tab order": "Comma-separated list of tab names; tabs listed here will appear in the extra networks UI first and in order listed.", "Extra networks tab order": "Comma-separated list of tab names; tabs listed here will appear in the extra networks UI first and in order listed.",
"Negative Guidance minimum sigma": "Skip negative prompt for steps where image is already mostly denoised; the higher this value, the more skips there will be; provides increased performance in exchange for minor quality reduction." "Negative Guidance minimum sigma": "Skip negative prompt for steps where image is already mostly denoised; the higher this value, the more skips there will be; provides increased performance in exchange for minor quality reduction."

View File

@ -1,5 +1,6 @@
import base64 import base64
import io import io
import os
import time import time
import datetime import datetime
import uvicorn import uvicorn
@ -14,7 +15,7 @@ from fastapi.encoders import jsonable_encoder
from secrets import compare_digest from secrets import compare_digest
import modules.shared as shared import modules.shared as shared
from modules import sd_samplers, deepbooru, sd_hijack, images, scripts, ui, postprocessing, errors from modules import sd_samplers, deepbooru, sd_hijack, images, scripts, ui, postprocessing, errors, restart
from modules.api import models from modules.api import models
from modules.shared import opts from modules.shared import opts
from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img, process_images from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img, process_images
@ -22,7 +23,7 @@ from modules.textual_inversion.textual_inversion import create_embedding, train_
from modules.textual_inversion.preprocess import preprocess from modules.textual_inversion.preprocess import preprocess
from modules.hypernetworks.hypernetwork import create_hypernetwork, train_hypernetwork from modules.hypernetworks.hypernetwork import create_hypernetwork, train_hypernetwork
from PIL import PngImagePlugin,Image from PIL import PngImagePlugin,Image
from modules.sd_models import checkpoints_list, unload_model_weights, reload_model_weights from modules.sd_models import checkpoints_list, unload_model_weights, reload_model_weights, checkpoint_aliases
from modules.sd_vae import vae_dict from modules.sd_vae import vae_dict
from modules.sd_models_config import find_checkpoint_config_near_filename from modules.sd_models_config import find_checkpoint_config_near_filename
from modules.realesrgan_model import get_realesrgan_models from modules.realesrgan_model import get_realesrgan_models
@ -30,13 +31,7 @@ from modules import devices
from typing import Dict, List, Any from typing import Dict, List, Any
import piexif import piexif
import piexif.helper import piexif.helper
from contextlib import closing
def upscaler_to_index(name: str):
try:
return [x.name.lower() for x in shared.sd_upscalers].index(name.lower())
except Exception as e:
raise HTTPException(status_code=400, detail=f"Invalid upscaler, needs to be one of these: {' , '.join([x.name for x in shared.sd_upscalers])}") from e
def script_name_to_index(name, scripts): def script_name_to_index(name, scripts):
@ -84,6 +79,8 @@ def encode_pil_to_base64(image):
image.save(output_bytes, format="PNG", pnginfo=(metadata if use_metadata else None), quality=opts.jpeg_quality) image.save(output_bytes, format="PNG", pnginfo=(metadata if use_metadata else None), quality=opts.jpeg_quality)
elif opts.samples_format.lower() in ("jpg", "jpeg", "webp"): elif opts.samples_format.lower() in ("jpg", "jpeg", "webp"):
if image.mode == "RGBA":
image = image.convert("RGB")
parameters = image.info.get('parameters', None) parameters = image.info.get('parameters', None)
exif_bytes = piexif.dump({ exif_bytes = piexif.dump({
"Exif": { piexif.ExifIFD.UserComment: piexif.helper.UserComment.dump(parameters or "", encoding="unicode") } "Exif": { piexif.ExifIFD.UserComment: piexif.helper.UserComment.dump(parameters or "", encoding="unicode") }
@ -102,14 +99,16 @@ def encode_pil_to_base64(image):
def api_middleware(app: FastAPI): def api_middleware(app: FastAPI):
rich_available = True rich_available = False
try: try:
if os.environ.get('WEBUI_RICH_EXCEPTIONS', None) is not None:
import anyio # importing just so it can be placed on silent list import anyio # importing just so it can be placed on silent list
import starlette # importing just so it can be placed on silent list import starlette # importing just so it can be placed on silent list
from rich.console import Console from rich.console import Console
console = Console() console = Console()
rich_available = True
except Exception: except Exception:
rich_available = False pass
@app.middleware("http") @app.middleware("http")
async def log_and_time(req: Request, call_next): async def log_and_time(req: Request, call_next):
@ -209,6 +208,11 @@ class Api:
self.add_api_route("/sdapi/v1/scripts", self.get_scripts_list, methods=["GET"], response_model=models.ScriptsList) self.add_api_route("/sdapi/v1/scripts", self.get_scripts_list, methods=["GET"], response_model=models.ScriptsList)
self.add_api_route("/sdapi/v1/script-info", self.get_script_info, methods=["GET"], response_model=List[models.ScriptInfo]) self.add_api_route("/sdapi/v1/script-info", self.get_script_info, methods=["GET"], response_model=List[models.ScriptInfo])
if shared.cmd_opts.api_server_stop:
self.add_api_route("/sdapi/v1/server-kill", self.kill_webui, methods=["POST"])
self.add_api_route("/sdapi/v1/server-restart", self.restart_webui, methods=["POST"])
self.add_api_route("/sdapi/v1/server-stop", self.stop_webui, methods=["POST"])
self.default_script_arg_txt2img = [] self.default_script_arg_txt2img = []
self.default_script_arg_img2img = [] self.default_script_arg_img2img = []
@ -324,12 +328,12 @@ class Api:
args.pop('save_images', None) args.pop('save_images', None)
with self.queue_lock: with self.queue_lock:
p = StableDiffusionProcessingTxt2Img(sd_model=shared.sd_model, **args) with closing(StableDiffusionProcessingTxt2Img(sd_model=shared.sd_model, **args)) as p:
p.scripts = script_runner p.scripts = script_runner
p.outpath_grids = opts.outdir_txt2img_grids p.outpath_grids = opts.outdir_txt2img_grids
p.outpath_samples = opts.outdir_txt2img_samples p.outpath_samples = opts.outdir_txt2img_samples
shared.state.begin() shared.state.begin(job="scripts_txt2img")
if selectable_scripts is not None: if selectable_scripts is not None:
p.script_args = script_args p.script_args = script_args
processed = scripts.scripts_txt2img.run(p, *p.script_args) # Need to pass args as list here processed = scripts.scripts_txt2img.run(p, *p.script_args) # Need to pass args as list here
@ -380,13 +384,13 @@ class Api:
args.pop('save_images', None) args.pop('save_images', None)
with self.queue_lock: with self.queue_lock:
p = StableDiffusionProcessingImg2Img(sd_model=shared.sd_model, **args) with closing(StableDiffusionProcessingImg2Img(sd_model=shared.sd_model, **args)) as p:
p.init_images = [decode_base64_to_image(x) for x in init_images] p.init_images = [decode_base64_to_image(x) for x in init_images]
p.scripts = script_runner p.scripts = script_runner
p.outpath_grids = opts.outdir_img2img_grids p.outpath_grids = opts.outdir_img2img_grids
p.outpath_samples = opts.outdir_img2img_samples p.outpath_samples = opts.outdir_img2img_samples
shared.state.begin() shared.state.begin(job="scripts_img2img")
if selectable_scripts is not None: if selectable_scripts is not None:
p.script_args = script_args p.script_args = script_args
processed = scripts.scripts_img2img.run(p, *p.script_args) # Need to pass args as list here processed = scripts.scripts_img2img.run(p, *p.script_args) # Need to pass args as list here
@ -517,6 +521,10 @@ class Api:
return options return options
def set_config(self, req: Dict[str, Any]): def set_config(self, req: Dict[str, Any]):
checkpoint_name = req.get("sd_model_checkpoint", None)
if checkpoint_name is not None and checkpoint_name not in checkpoint_aliases:
raise RuntimeError(f"model {checkpoint_name!r} not found")
for k, v in req.items(): for k, v in req.items():
shared.opts.set(k, v) shared.opts.set(k, v)
@ -598,44 +606,42 @@ class Api:
def create_embedding(self, args: dict): def create_embedding(self, args: dict):
try: try:
shared.state.begin() shared.state.begin(job="create_embedding")
filename = create_embedding(**args) # create empty embedding filename = create_embedding(**args) # create empty embedding
sd_hijack.model_hijack.embedding_db.load_textual_inversion_embeddings() # reload embeddings so new one can be immediately used sd_hijack.model_hijack.embedding_db.load_textual_inversion_embeddings() # reload embeddings so new one can be immediately used
shared.state.end()
return models.CreateResponse(info=f"create embedding filename: {filename}") return models.CreateResponse(info=f"create embedding filename: {filename}")
except AssertionError as e: except AssertionError as e:
shared.state.end()
return models.TrainResponse(info=f"create embedding error: {e}") return models.TrainResponse(info=f"create embedding error: {e}")
finally:
shared.state.end()
def create_hypernetwork(self, args: dict): def create_hypernetwork(self, args: dict):
try: try:
shared.state.begin() shared.state.begin(job="create_hypernetwork")
filename = create_hypernetwork(**args) # create empty embedding filename = create_hypernetwork(**args) # create empty embedding
shared.state.end()
return models.CreateResponse(info=f"create hypernetwork filename: {filename}") return models.CreateResponse(info=f"create hypernetwork filename: {filename}")
except AssertionError as e: except AssertionError as e:
shared.state.end()
return models.TrainResponse(info=f"create hypernetwork error: {e}") return models.TrainResponse(info=f"create hypernetwork error: {e}")
finally:
shared.state.end()
def preprocess(self, args: dict): def preprocess(self, args: dict):
try: try:
shared.state.begin() shared.state.begin(job="preprocess")
preprocess(**args) # quick operation unless blip/booru interrogation is enabled preprocess(**args) # quick operation unless blip/booru interrogation is enabled
shared.state.end() shared.state.end()
return models.PreprocessResponse(info='preprocess complete') return models.PreprocessResponse(info='preprocess complete')
except KeyError as e: except KeyError as e:
shared.state.end()
return models.PreprocessResponse(info=f"preprocess error: invalid token: {e}") return models.PreprocessResponse(info=f"preprocess error: invalid token: {e}")
except AssertionError as e: except Exception as e:
shared.state.end()
return models.PreprocessResponse(info=f"preprocess error: {e}") return models.PreprocessResponse(info=f"preprocess error: {e}")
except FileNotFoundError as e: finally:
shared.state.end() shared.state.end()
return models.PreprocessResponse(info=f'preprocess error: {e}')
def train_embedding(self, args: dict): def train_embedding(self, args: dict):
try: try:
shared.state.begin() shared.state.begin(job="train_embedding")
apply_optimizations = shared.opts.training_xattention_optimizations apply_optimizations = shared.opts.training_xattention_optimizations
error = None error = None
filename = '' filename = ''
@ -648,15 +654,15 @@ class Api:
finally: finally:
if not apply_optimizations: if not apply_optimizations:
sd_hijack.apply_optimizations() sd_hijack.apply_optimizations()
shared.state.end()
return models.TrainResponse(info=f"train embedding complete: filename: {filename} error: {error}") return models.TrainResponse(info=f"train embedding complete: filename: {filename} error: {error}")
except AssertionError as msg: except Exception as msg:
shared.state.end()
return models.TrainResponse(info=f"train embedding error: {msg}") return models.TrainResponse(info=f"train embedding error: {msg}")
finally:
shared.state.end()
def train_hypernetwork(self, args: dict): def train_hypernetwork(self, args: dict):
try: try:
shared.state.begin() shared.state.begin(job="train_hypernetwork")
shared.loaded_hypernetworks = [] shared.loaded_hypernetworks = []
apply_optimizations = shared.opts.training_xattention_optimizations apply_optimizations = shared.opts.training_xattention_optimizations
error = None error = None
@ -674,9 +680,10 @@ class Api:
sd_hijack.apply_optimizations() sd_hijack.apply_optimizations()
shared.state.end() shared.state.end()
return models.TrainResponse(info=f"train embedding complete: filename: {filename} error: {error}") return models.TrainResponse(info=f"train embedding complete: filename: {filename} error: {error}")
except AssertionError: except Exception as exc:
return models.TrainResponse(info=f"train embedding error: {exc}")
finally:
shared.state.end() shared.state.end()
return models.TrainResponse(info=f"train embedding error: {error}")
def get_memory(self): def get_memory(self):
try: try:
@ -715,4 +722,17 @@ class Api:
def launch(self, server_name, port): def launch(self, server_name, port):
self.app.include_router(self.router) self.app.include_router(self.router)
uvicorn.run(self.app, host=server_name, port=port, timeout_keep_alive=0) uvicorn.run(self.app, host=server_name, port=port, timeout_keep_alive=shared.cmd_opts.timeout_keep_alive)
def kill_webui(self):
restart.stop_program()
def restart_webui(self):
if restart.is_restartable():
restart.restart_program()
return Response(status_code=501)
def stop_webui(request):
shared.state.server_command = "stop"
return Response("Stopping.")

View File

@ -274,10 +274,6 @@ class PromptStyleItem(BaseModel):
prompt: Optional[str] = Field(title="Prompt") prompt: Optional[str] = Field(title="Prompt")
negative_prompt: Optional[str] = Field(title="Negative Prompt") negative_prompt: Optional[str] = Field(title="Negative Prompt")
class ArtistItem(BaseModel):
name: str = Field(title="Name")
score: float = Field(title="Score")
category: str = Field(title="Category")
class EmbeddingItem(BaseModel): class EmbeddingItem(BaseModel):
step: Optional[int] = Field(title="Step", description="The number of steps that were used to train this embedding, if available") step: Optional[int] = Field(title="Step", description="The number of steps that were used to train this embedding, if available")

120
modules/cache.py Normal file
View File

@ -0,0 +1,120 @@
import json
import os.path
import threading
import time
from modules.paths import data_path, script_path
cache_filename = os.path.join(data_path, "cache.json")
cache_data = None
cache_lock = threading.Lock()
dump_cache_after = None
dump_cache_thread = None
def dump_cache():
"""
Marks cache for writing to disk. 5 seconds after no one else flags the cache for writing, it is written.
"""
global dump_cache_after
global dump_cache_thread
def thread_func():
global dump_cache_after
global dump_cache_thread
while dump_cache_after is not None and time.time() < dump_cache_after:
time.sleep(1)
with cache_lock:
with open(cache_filename, "w", encoding="utf8") as file:
json.dump(cache_data, file, indent=4)
dump_cache_after = None
dump_cache_thread = None
with cache_lock:
dump_cache_after = time.time() + 5
if dump_cache_thread is None:
dump_cache_thread = threading.Thread(name='cache-writer', target=thread_func)
dump_cache_thread.start()
def cache(subsection):
"""
Retrieves or initializes a cache for a specific subsection.
Parameters:
subsection (str): The subsection identifier for the cache.
Returns:
dict: The cache data for the specified subsection.
"""
global cache_data
if cache_data is None:
with cache_lock:
if cache_data is None:
if not os.path.isfile(cache_filename):
cache_data = {}
else:
try:
with open(cache_filename, "r", encoding="utf8") as file:
cache_data = json.load(file)
except Exception:
os.replace(cache_filename, os.path.join(script_path, "tmp", "cache.json"))
print('[ERROR] issue occurred while trying to read cache.json, move current cache to tmp/cache.json and create new cache')
cache_data = {}
s = cache_data.get(subsection, {})
cache_data[subsection] = s
return s
def cached_data_for_file(subsection, title, filename, func):
"""
Retrieves or generates data for a specific file, using a caching mechanism.
Parameters:
subsection (str): The subsection of the cache to use.
title (str): The title of the data entry in the subsection of the cache.
filename (str): The path to the file to be checked for modifications.
func (callable): A function that generates the data if it is not available in the cache.
Returns:
dict or None: The cached or generated data, or None if data generation fails.
The `cached_data_for_file` function implements a caching mechanism for data stored in files.
It checks if the data associated with the given `title` is present in the cache and compares the
modification time of the file with the cached modification time. If the file has been modified,
the cache is considered invalid and the data is regenerated using the provided `func`.
Otherwise, the cached data is returned.
If the data generation fails, None is returned to indicate the failure. Otherwise, the generated
or cached data is returned as a dictionary.
"""
existing_cache = cache(subsection)
ondisk_mtime = os.path.getmtime(filename)
entry = existing_cache.get(title)
if entry:
cached_mtime = entry.get("mtime", 0)
if ondisk_mtime > cached_mtime:
entry = None
if not entry or 'value' not in entry:
value = func()
if value is None:
return None
entry = {'mtime': ondisk_mtime, 'value': value}
existing_cache[title] = entry
dump_cache()
return entry['value']

View File

@ -1,3 +1,4 @@
from functools import wraps
import html import html
import threading import threading
import time import time
@ -18,6 +19,7 @@ def wrap_queued_call(func):
def wrap_gradio_gpu_call(func, extra_outputs=None): def wrap_gradio_gpu_call(func, extra_outputs=None):
@wraps(func)
def f(*args, **kwargs): def f(*args, **kwargs):
# if the first argument is a string that says "task(...)", it is treated as a job id # if the first argument is a string that says "task(...)", it is treated as a job id
@ -28,7 +30,7 @@ def wrap_gradio_gpu_call(func, extra_outputs=None):
id_task = None id_task = None
with queue_lock: with queue_lock:
shared.state.begin() shared.state.begin(job=id_task)
progress.start_task(id_task) progress.start_task(id_task)
try: try:
@ -45,6 +47,7 @@ def wrap_gradio_gpu_call(func, extra_outputs=None):
def wrap_gradio_call(func, extra_outputs=None, add_stats=False): def wrap_gradio_call(func, extra_outputs=None, add_stats=False):
@wraps(func)
def f(*args, extra_outputs_array=extra_outputs, **kwargs): def f(*args, extra_outputs_array=extra_outputs, **kwargs):
run_memmon = shared.opts.memmon_poll_rate > 0 and not shared.mem_mon.disabled and add_stats run_memmon = shared.opts.memmon_poll_rate > 0 and not shared.mem_mon.disabled and add_stats
if run_memmon: if run_memmon:
@ -82,9 +85,9 @@ def wrap_gradio_call(func, extra_outputs=None, add_stats=False):
elapsed = time.perf_counter() - t elapsed = time.perf_counter() - t
elapsed_m = int(elapsed // 60) elapsed_m = int(elapsed // 60)
elapsed_s = elapsed % 60 elapsed_s = elapsed % 60
elapsed_text = f"{elapsed_s:.2f}s" elapsed_text = f"{elapsed_s:.1f} sec."
if elapsed_m > 0: if elapsed_m > 0:
elapsed_text = f"{elapsed_m}m "+elapsed_text elapsed_text = f"{elapsed_m} min. "+elapsed_text
if run_memmon: if run_memmon:
mem_stats = {k: -(v//-(1024*1024)) for k, v in shared.mem_mon.stop().items()} mem_stats = {k: -(v//-(1024*1024)) for k, v in shared.mem_mon.stop().items()}
@ -92,14 +95,22 @@ def wrap_gradio_call(func, extra_outputs=None, add_stats=False):
reserved_peak = mem_stats['reserved_peak'] reserved_peak = mem_stats['reserved_peak']
sys_peak = mem_stats['system_peak'] sys_peak = mem_stats['system_peak']
sys_total = mem_stats['total'] sys_total = mem_stats['total']
sys_pct = round(sys_peak/max(sys_total, 1) * 100, 2) sys_pct = sys_peak/max(sys_total, 1) * 100
vram_html = f"<p class='vram'>Torch active/reserved: {active_peak}/{reserved_peak} MiB, <wbr>Sys VRAM: {sys_peak}/{sys_total} MiB ({sys_pct}%)</p>" toltip_a = "Active: peak amount of video memory used during generation (excluding cached data)"
toltip_r = "Reserved: total amout of video memory allocated by the Torch library "
toltip_sys = "System: peak amout of video memory allocated by all running programs, out of total capacity"
text_a = f"<abbr title='{toltip_a}'>A</abbr>: <span class='measurement'>{active_peak/1024:.2f} GB</span>"
text_r = f"<abbr title='{toltip_r}'>R</abbr>: <span class='measurement'>{reserved_peak/1024:.2f} GB</span>"
text_sys = f"<abbr title='{toltip_sys}'>Sys</abbr>: <span class='measurement'>{sys_peak/1024:.1f}/{sys_total/1024:g} GB</span> ({sys_pct:.1f}%)"
vram_html = f"<p class='vram'>{text_a}, <wbr>{text_r}, <wbr>{text_sys}</p>"
else: else:
vram_html = '' vram_html = ''
# last item is always HTML # last item is always HTML
res[-1] += f"<div class='performance'><p class='time'>Time taken: <wbr>{elapsed_text}</p>{vram_html}</div>" res[-1] += f"<div class='performance'><p class='time'>Time taken: <wbr><span class='measurement'>{elapsed_text}</span></p>{vram_html}</div>"
return tuple(res) return tuple(res)

View File

@ -107,3 +107,5 @@ parser.add_argument("--no-hashing", action='store_true', help="disable sha256 ha
parser.add_argument("--no-download-sd-model", action='store_true', help="don't download SD1.5 model even if no model is found in --ckpt-dir", default=False) parser.add_argument("--no-download-sd-model", action='store_true', help="don't download SD1.5 model even if no model is found in --ckpt-dir", default=False)
parser.add_argument('--subpath', type=str, help='customize the subpath for gradio, use with reverse proxy') parser.add_argument('--subpath', type=str, help='customize the subpath for gradio, use with reverse proxy')
parser.add_argument('--add-stop-route', action='store_true', help='add /_stop route to stop server') parser.add_argument('--add-stop-route', action='store_true', help='add /_stop route to stop server')
parser.add_argument('--api-server-stop', action='store_true', help='enable server stop/restart/kill via api')
parser.add_argument('--timeout-keep-alive', type=int, default=30, help='set timeout_keep_alive for uvicorn')

View File

@ -15,7 +15,6 @@ model_dir = "Codeformer"
model_path = os.path.join(models_path, model_dir) model_path = os.path.join(models_path, model_dir)
model_url = 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/codeformer.pth' model_url = 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/codeformer.pth'
have_codeformer = False
codeformer = None codeformer = None
@ -100,7 +99,7 @@ def setup_model(dirname):
output = self.net(cropped_face_t, w=w if w is not None else shared.opts.code_former_weight, adain=True)[0] output = self.net(cropped_face_t, w=w if w is not None else shared.opts.code_former_weight, adain=True)[0]
restored_face = tensor2img(output, rgb2bgr=True, min_max=(-1, 1)) restored_face = tensor2img(output, rgb2bgr=True, min_max=(-1, 1))
del output del output
torch.cuda.empty_cache() devices.torch_gc()
except Exception: except Exception:
errors.report('Failed inference for CodeFormer', exc_info=True) errors.report('Failed inference for CodeFormer', exc_info=True)
restored_face = tensor2img(cropped_face_t, rgb2bgr=True, min_max=(-1, 1)) restored_face = tensor2img(cropped_face_t, rgb2bgr=True, min_max=(-1, 1))
@ -123,9 +122,6 @@ def setup_model(dirname):
return restored_img return restored_img
global have_codeformer
have_codeformer = True
global codeformer global codeformer
codeformer = FaceRestorerCodeFormer(dirname) codeformer = FaceRestorerCodeFormer(dirname)
shared.face_restorers.append(codeformer) shared.face_restorers.append(codeformer)

View File

@ -15,13 +15,6 @@ def has_mps() -> bool:
else: else:
return mac_specific.has_mps return mac_specific.has_mps
def extract_device_id(args, name):
for x in range(len(args)):
if name in args[x]:
return args[x + 1]
return None
def get_cuda_device_string(): def get_cuda_device_string():
from modules import shared from modules import shared
@ -56,11 +49,15 @@ def get_device_for(task):
def torch_gc(): def torch_gc():
if torch.cuda.is_available(): if torch.cuda.is_available():
with torch.cuda.device(get_cuda_device_string()): with torch.cuda.device(get_cuda_device_string()):
torch.cuda.empty_cache() torch.cuda.empty_cache()
torch.cuda.ipc_collect() torch.cuda.ipc_collect()
if has_mps():
mac_specific.torch_mps_gc()
def enable_tf32(): def enable_tf32():
if torch.cuda.is_available(): if torch.cuda.is_available():

View File

@ -1,15 +1,13 @@
import os import sys
import numpy as np import numpy as np
import torch import torch
from PIL import Image from PIL import Image
from basicsr.utils.download_util import load_file_from_url
import modules.esrgan_model_arch as arch import modules.esrgan_model_arch as arch
from modules import modelloader, images, devices from modules import modelloader, images, devices
from modules.upscaler import Upscaler, UpscalerData
from modules.shared import opts from modules.shared import opts
from modules.upscaler import Upscaler, UpscalerData
def mod2normal(state_dict): def mod2normal(state_dict):
@ -134,7 +132,7 @@ class UpscalerESRGAN(Upscaler):
scaler_data = UpscalerData(self.model_name, self.model_url, self, 4) scaler_data = UpscalerData(self.model_name, self.model_url, self, 4)
scalers.append(scaler_data) scalers.append(scaler_data)
for file in model_paths: for file in model_paths:
if "http" in file: if file.startswith("http"):
name = self.model_name name = self.model_name
else: else:
name = modelloader.friendly_name(file) name = modelloader.friendly_name(file)
@ -143,26 +141,25 @@ class UpscalerESRGAN(Upscaler):
self.scalers.append(scaler_data) self.scalers.append(scaler_data)
def do_upscale(self, img, selected_model): def do_upscale(self, img, selected_model):
try:
model = self.load_model(selected_model) model = self.load_model(selected_model)
if model is None: except Exception as e:
print(f"Unable to load ESRGAN model {selected_model}: {e}", file=sys.stderr)
return img return img
model.to(devices.device_esrgan) model.to(devices.device_esrgan)
img = esrgan_upscale(model, img) img = esrgan_upscale(model, img)
return img return img
def load_model(self, path: str): def load_model(self, path: str):
if "http" in path: if path.startswith("http"):
filename = load_file_from_url( # TODO: this doesn't use `path` at all?
filename = modelloader.load_file_from_url(
url=self.model_url, url=self.model_url,
model_dir=self.model_download_path, model_dir=self.model_download_path,
file_name=f"{self.model_name}.pth", file_name=f"{self.model_name}.pth",
progress=True,
) )
else: else:
filename = path filename = path
if not os.path.exists(filename) or filename is None:
print(f"Unable to load {self.model_path} from {filename}")
return None
state_dict = torch.load(filename, map_location='cpu' if devices.device_esrgan.type == 'mps' else None) state_dict = torch.load(filename, map_location='cpu' if devices.device_esrgan.type == 'mps' else None)

View File

@ -1,7 +1,7 @@
import os import os
import threading import threading
from modules import shared, errors from modules import shared, errors, cache
from modules.gitpython_hack import Repo from modules.gitpython_hack import Repo
from modules.paths_internal import extensions_dir, extensions_builtin_dir, script_path # noqa: F401 from modules.paths_internal import extensions_dir, extensions_builtin_dir, script_path # noqa: F401
@ -21,6 +21,7 @@ def active():
class Extension: class Extension:
lock = threading.Lock() lock = threading.Lock()
cached_fields = ['remote', 'commit_date', 'branch', 'commit_hash', 'version']
def __init__(self, name, path, enabled=True, is_builtin=False): def __init__(self, name, path, enabled=True, is_builtin=False):
self.name = name self.name = name
@ -36,16 +37,30 @@ class Extension:
self.remote = None self.remote = None
self.have_info_from_repo = False self.have_info_from_repo = False
def to_dict(self):
return {x: getattr(self, x) for x in self.cached_fields}
def from_dict(self, d):
for field in self.cached_fields:
setattr(self, field, d[field])
def read_info_from_repo(self): def read_info_from_repo(self):
if self.is_builtin or self.have_info_from_repo: if self.is_builtin or self.have_info_from_repo:
return return
def read_from_repo():
with self.lock: with self.lock:
if self.have_info_from_repo: if self.have_info_from_repo:
return return
self.do_read_info_from_repo() self.do_read_info_from_repo()
return self.to_dict()
d = cache.cached_data_for_file('extensions-git', self.name, os.path.join(self.path, ".git"), read_from_repo)
self.from_dict(d)
self.status = 'unknown'
def do_read_info_from_repo(self): def do_read_info_from_repo(self):
repo = None repo = None
try: try:
@ -58,7 +73,6 @@ class Extension:
self.remote = None self.remote = None
else: else:
try: try:
self.status = 'unknown'
self.remote = next(repo.remote().urls, None) self.remote = next(repo.remote().urls, None)
commit = repo.head.commit commit = repo.head.commit
self.commit_date = commit.committed_date self.commit_date = commit.committed_date

View File

@ -4,16 +4,22 @@ from collections import defaultdict
from modules import errors from modules import errors
extra_network_registry = {} extra_network_registry = {}
extra_network_aliases = {}
def initialize(): def initialize():
extra_network_registry.clear() extra_network_registry.clear()
extra_network_aliases.clear()
def register_extra_network(extra_network): def register_extra_network(extra_network):
extra_network_registry[extra_network.name] = extra_network extra_network_registry[extra_network.name] = extra_network
def register_extra_network_alias(extra_network, alias):
extra_network_aliases[alias] = extra_network
def register_default_extra_networks(): def register_default_extra_networks():
from modules.extra_networks_hypernet import ExtraNetworkHypernet from modules.extra_networks_hypernet import ExtraNetworkHypernet
register_extra_network(ExtraNetworkHypernet()) register_extra_network(ExtraNetworkHypernet())
@ -82,20 +88,26 @@ def activate(p, extra_network_data):
"""call activate for extra networks in extra_network_data in specified order, then call """call activate for extra networks in extra_network_data in specified order, then call
activate for all remaining registered networks with an empty argument list""" activate for all remaining registered networks with an empty argument list"""
activated = []
for extra_network_name, extra_network_args in extra_network_data.items(): for extra_network_name, extra_network_args in extra_network_data.items():
extra_network = extra_network_registry.get(extra_network_name, None) extra_network = extra_network_registry.get(extra_network_name, None)
if extra_network is None:
extra_network = extra_network_aliases.get(extra_network_name, None)
if extra_network is None: if extra_network is None:
print(f"Skipping unknown extra network: {extra_network_name}") print(f"Skipping unknown extra network: {extra_network_name}")
continue continue
try: try:
extra_network.activate(p, extra_network_args) extra_network.activate(p, extra_network_args)
activated.append(extra_network)
except Exception as e: except Exception as e:
errors.display(e, f"activating extra network {extra_network_name} with arguments {extra_network_args}") errors.display(e, f"activating extra network {extra_network_name} with arguments {extra_network_args}")
for extra_network_name, extra_network in extra_network_registry.items(): for extra_network_name, extra_network in extra_network_registry.items():
args = extra_network_data.get(extra_network_name, None) if extra_network in activated:
if args is not None:
continue continue
try: try:
@ -103,6 +115,9 @@ def activate(p, extra_network_data):
except Exception as e: except Exception as e:
errors.display(e, f"activating extra network {extra_network_name}") errors.display(e, f"activating extra network {extra_network_name}")
if p.scripts is not None:
p.scripts.after_extra_networks_activate(p, batch_number=p.iteration, prompts=p.prompts, seeds=p.seeds, subseeds=p.subseeds, extra_network_data=extra_network_data)
def deactivate(p, extra_network_data): def deactivate(p, extra_network_data):
"""call deactivate for extra networks in extra_network_data in specified order, then call """call deactivate for extra networks in extra_network_data in specified order, then call

View File

@ -73,8 +73,7 @@ def to_half(tensor, enable):
def run_modelmerger(id_task, primary_model_name, secondary_model_name, tertiary_model_name, interp_method, multiplier, save_as_half, custom_name, checkpoint_format, config_source, bake_in_vae, discard_weights, save_metadata): def run_modelmerger(id_task, primary_model_name, secondary_model_name, tertiary_model_name, interp_method, multiplier, save_as_half, custom_name, checkpoint_format, config_source, bake_in_vae, discard_weights, save_metadata):
shared.state.begin() shared.state.begin(job="model-merge")
shared.state.job = 'model-merge'
def fail(message): def fail(message):
shared.state.textinfo = message shared.state.textinfo = message

View File

@ -174,31 +174,6 @@ def send_image_and_dimensions(x):
return img, w, h return img, w, h
def find_hypernetwork_key(hypernet_name, hypernet_hash=None):
"""Determines the config parameter name to use for the hypernet based on the parameters in the infotext.
Example: an infotext provides "Hypernet: ke-ta" and "Hypernet hash: 1234abcd". For the "Hypernet" config
parameter this means there should be an entry that looks like "ke-ta-10000(1234abcd)" to set it to.
If the infotext has no hash, then a hypernet with the same name will be selected instead.
"""
hypernet_name = hypernet_name.lower()
if hypernet_hash is not None:
# Try to match the hash in the name
for hypernet_key in shared.hypernetworks.keys():
result = re_hypernet_hash.search(hypernet_key)
if result is not None and result[1] == hypernet_hash:
return hypernet_key
else:
# Fall back to a hypernet with the same name
for hypernet_key in shared.hypernetworks.keys():
if hypernet_key.lower().startswith(hypernet_name):
return hypernet_key
return None
def restore_old_hires_fix_params(res): def restore_old_hires_fix_params(res):
"""for infotexts that specify old First pass size parameter, convert it into """for infotexts that specify old First pass size parameter, convert it into
width, height, and hr scale""" width, height, and hr scale"""
@ -332,10 +307,6 @@ Steps: 20, Sampler: Euler a, CFG scale: 7, Seed: 965400086, Size: 512x512, Model
return res return res
settings_map = {}
infotext_to_setting_name_mapping = [ infotext_to_setting_name_mapping = [
('Clip skip', 'CLIP_stop_at_last_layers', ), ('Clip skip', 'CLIP_stop_at_last_layers', ),
('Conditional mask weight', 'inpainting_mask_weight'), ('Conditional mask weight', 'inpainting_mask_weight'),

View File

@ -25,7 +25,7 @@ def gfpgann():
return None return None
models = modelloader.load_models(model_path, model_url, user_path, ext_filter="GFPGAN") models = modelloader.load_models(model_path, model_url, user_path, ext_filter="GFPGAN")
if len(models) == 1 and "http" in models[0]: if len(models) == 1 and models[0].startswith("http"):
model_file = models[0] model_file = models[0]
elif len(models) != 0: elif len(models) != 0:
latest_file = max(models, key=os.path.getctime) latest_file = max(models, key=os.path.getctime)

View File

@ -1,38 +1,11 @@
import hashlib import hashlib
import json
import os.path import os.path
import filelock
from modules import shared from modules import shared
from modules.paths import data_path import modules.cache
dump_cache = modules.cache.dump_cache
cache_filename = os.path.join(data_path, "cache.json") cache = modules.cache.cache
cache_data = None
def dump_cache():
with filelock.FileLock(f"{cache_filename}.lock"):
with open(cache_filename, "w", encoding="utf8") as file:
json.dump(cache_data, file, indent=4)
def cache(subsection):
global cache_data
if cache_data is None:
with filelock.FileLock(f"{cache_filename}.lock"):
if not os.path.isfile(cache_filename):
cache_data = {}
else:
with open(cache_filename, "r", encoding="utf8") as file:
cache_data = json.load(file)
s = cache_data.get(subsection, {})
cache_data[subsection] = s
return s
def calculate_sha256(filename): def calculate_sha256(filename):

View File

@ -3,6 +3,7 @@ import glob
import html import html
import os import os
import inspect import inspect
from contextlib import closing
import modules.textual_inversion.dataset import modules.textual_inversion.dataset
import torch import torch
@ -353,17 +354,6 @@ def load_hypernetworks(names, multipliers=None):
shared.loaded_hypernetworks.append(hypernetwork) shared.loaded_hypernetworks.append(hypernetwork)
def find_closest_hypernetwork_name(search: str):
if not search:
return None
search = search.lower()
applicable = [name for name in shared.hypernetworks if search in name.lower()]
if not applicable:
return None
applicable = sorted(applicable, key=lambda name: len(name))
return applicable[0]
def apply_single_hypernetwork(hypernetwork, context_k, context_v, layer=None): def apply_single_hypernetwork(hypernetwork, context_k, context_v, layer=None):
hypernetwork_layers = (hypernetwork.layers if hypernetwork is not None else {}).get(context_k.shape[2], None) hypernetwork_layers = (hypernetwork.layers if hypernetwork is not None else {}).get(context_k.shape[2], None)
@ -388,7 +378,7 @@ def apply_hypernetworks(hypernetworks, context, layer=None):
return context_k, context_v return context_k, context_v
def attention_CrossAttention_forward(self, x, context=None, mask=None): def attention_CrossAttention_forward(self, x, context=None, mask=None, **kwargs):
h = self.heads h = self.heads
q = self.to_q(x) q = self.to_q(x)
@ -446,18 +436,6 @@ def statistics(data):
return total_information, recent_information return total_information, recent_information
def report_statistics(loss_info:dict):
keys = sorted(loss_info.keys(), key=lambda x: sum(loss_info[x]) / len(loss_info[x]))
for key in keys:
try:
print("Loss statistics for file " + key)
info, recent = statistics(list(loss_info[key]))
print(info)
print(recent)
except Exception as e:
print(e)
def create_hypernetwork(name, enable_sizes, overwrite_old, layer_structure=None, activation_func=None, weight_init=None, add_layer_norm=False, use_dropout=False, dropout_structure=None): def create_hypernetwork(name, enable_sizes, overwrite_old, layer_structure=None, activation_func=None, weight_init=None, add_layer_norm=False, use_dropout=False, dropout_structure=None):
# Remove illegal characters from name. # Remove illegal characters from name.
name = "".join( x for x in name if (x.isalnum() or x in "._- ")) name = "".join( x for x in name if (x.isalnum() or x in "._- "))
@ -734,6 +712,7 @@ def train_hypernetwork(id_task, hypernetwork_name, learn_rate, batch_size, gradi
preview_text = p.prompt preview_text = p.prompt
with closing(p):
processed = processing.process_images(p) processed = processing.process_images(p)
image = processed.images[0] if len(processed.images) > 0 else None image = processed.images[0] if len(processed.images) > 0 else None
@ -770,7 +749,6 @@ Last saved image: {html.escape(last_saved_image)}<br/>
pbar.leave = False pbar.leave = False
pbar.close() pbar.close()
hypernetwork.eval() hypernetwork.eval()
#report_statistics(loss_dict)
sd_hijack_checkpoint.remove() sd_hijack_checkpoint.remove()

View File

@ -1,3 +1,5 @@
from __future__ import annotations
import datetime import datetime
import pytz import pytz
@ -10,7 +12,7 @@ import re
import numpy as np import numpy as np
import piexif import piexif
import piexif.helper import piexif.helper
from PIL import Image, ImageFont, ImageDraw, PngImagePlugin from PIL import Image, ImageFont, ImageDraw, ImageColor, PngImagePlugin
import string import string
import json import json
import hashlib import hashlib
@ -139,6 +141,11 @@ class GridAnnotation:
def draw_grid_annotations(im, width, height, hor_texts, ver_texts, margin=0): def draw_grid_annotations(im, width, height, hor_texts, ver_texts, margin=0):
color_active = ImageColor.getcolor(opts.grid_text_active_color, 'RGB')
color_inactive = ImageColor.getcolor(opts.grid_text_inactive_color, 'RGB')
color_background = ImageColor.getcolor(opts.grid_background_color, 'RGB')
def wrap(drawing, text, font, line_length): def wrap(drawing, text, font, line_length):
lines = [''] lines = ['']
for word in text.split(): for word in text.split():
@ -168,9 +175,6 @@ def draw_grid_annotations(im, width, height, hor_texts, ver_texts, margin=0):
fnt = get_font(fontsize) fnt = get_font(fontsize)
color_active = (0, 0, 0)
color_inactive = (153, 153, 153)
pad_left = 0 if sum([sum([len(line.text) for line in lines]) for lines in ver_texts]) == 0 else width * 3 // 4 pad_left = 0 if sum([sum([len(line.text) for line in lines]) for lines in ver_texts]) == 0 else width * 3 // 4
cols = im.width // width cols = im.width // width
@ -179,7 +183,7 @@ def draw_grid_annotations(im, width, height, hor_texts, ver_texts, margin=0):
assert cols == len(hor_texts), f'bad number of horizontal texts: {len(hor_texts)}; must be {cols}' assert cols == len(hor_texts), f'bad number of horizontal texts: {len(hor_texts)}; must be {cols}'
assert rows == len(ver_texts), f'bad number of vertical texts: {len(ver_texts)}; must be {rows}' assert rows == len(ver_texts), f'bad number of vertical texts: {len(ver_texts)}; must be {rows}'
calc_img = Image.new("RGB", (1, 1), "white") calc_img = Image.new("RGB", (1, 1), color_background)
calc_d = ImageDraw.Draw(calc_img) calc_d = ImageDraw.Draw(calc_img)
for texts, allowed_width in zip(hor_texts + ver_texts, [width] * len(hor_texts) + [pad_left] * len(ver_texts)): for texts, allowed_width in zip(hor_texts + ver_texts, [width] * len(hor_texts) + [pad_left] * len(ver_texts)):
@ -200,7 +204,7 @@ def draw_grid_annotations(im, width, height, hor_texts, ver_texts, margin=0):
pad_top = 0 if sum(hor_text_heights) == 0 else max(hor_text_heights) + line_spacing * 2 pad_top = 0 if sum(hor_text_heights) == 0 else max(hor_text_heights) + line_spacing * 2
result = Image.new("RGB", (im.width + pad_left + margin * (cols-1), im.height + pad_top + margin * (rows-1)), "white") result = Image.new("RGB", (im.width + pad_left + margin * (cols-1), im.height + pad_top + margin * (rows-1)), color_background)
for row in range(rows): for row in range(rows):
for col in range(cols): for col in range(cols):
@ -302,10 +306,12 @@ def resize_image(resize_mode, im, width, height, upscaler_name=None):
if ratio < src_ratio: if ratio < src_ratio:
fill_height = height // 2 - src_h // 2 fill_height = height // 2 - src_h // 2
if fill_height > 0:
res.paste(resized.resize((width, fill_height), box=(0, 0, width, 0)), box=(0, 0)) res.paste(resized.resize((width, fill_height), box=(0, 0, width, 0)), box=(0, 0))
res.paste(resized.resize((width, fill_height), box=(0, resized.height, width, resized.height)), box=(0, fill_height + src_h)) res.paste(resized.resize((width, fill_height), box=(0, resized.height, width, resized.height)), box=(0, fill_height + src_h))
elif ratio > src_ratio: elif ratio > src_ratio:
fill_width = width // 2 - src_w // 2 fill_width = width // 2 - src_w // 2
if fill_width > 0:
res.paste(resized.resize((fill_width, height), box=(0, 0, 0, height)), box=(0, 0)) res.paste(resized.resize((fill_width, height), box=(0, 0, 0, height)), box=(0, 0))
res.paste(resized.resize((fill_width, height), box=(resized.width, 0, resized.width, height)), box=(fill_width + src_w, 0)) res.paste(resized.resize((fill_width, height), box=(resized.width, 0, resized.width, height)), box=(fill_width + src_w, 0))
@ -372,8 +378,9 @@ class FilenameGenerator:
'hasprompt': lambda self, *args: self.hasprompt(*args), # accepts formats:[hasprompt<prompt1|default><prompt2>..] 'hasprompt': lambda self, *args: self.hasprompt(*args), # accepts formats:[hasprompt<prompt1|default><prompt2>..]
'clip_skip': lambda self: opts.data["CLIP_stop_at_last_layers"], 'clip_skip': lambda self: opts.data["CLIP_stop_at_last_layers"],
'denoising': lambda self: self.p.denoising_strength if self.p and self.p.denoising_strength else NOTHING_AND_SKIP_PREVIOUS_TEXT, 'denoising': lambda self: self.p.denoising_strength if self.p and self.p.denoising_strength else NOTHING_AND_SKIP_PREVIOUS_TEXT,
'user': lambda self: self.p.user,
'vae_filename': lambda self: self.get_vae_filename(), 'vae_filename': lambda self: self.get_vae_filename(),
'none': lambda self: '', # Overrides the default so you can get just the sequence number
} }
default_time_format = '%Y%m%d%H%M%S' default_time_format = '%Y%m%d%H%M%S'
@ -497,13 +504,23 @@ def get_next_sequence_number(path, basename):
return result + 1 return result + 1
def save_image_with_geninfo(image, geninfo, filename, extension=None, existing_pnginfo=None): def save_image_with_geninfo(image, geninfo, filename, extension=None, existing_pnginfo=None, pnginfo_section_name='parameters'):
"""
Saves image to filename, including geninfo as text information for generation info.
For PNG images, geninfo is added to existing pnginfo dictionary using the pnginfo_section_name argument as key.
For JPG images, there's no dictionary and geninfo just replaces the EXIF description.
"""
if extension is None: if extension is None:
extension = os.path.splitext(filename)[1] extension = os.path.splitext(filename)[1]
image_format = Image.registered_extensions()[extension] image_format = Image.registered_extensions()[extension]
if extension.lower() == '.png': if extension.lower() == '.png':
existing_pnginfo = existing_pnginfo or {}
if opts.enable_pnginfo:
existing_pnginfo[pnginfo_section_name] = geninfo
if opts.enable_pnginfo: if opts.enable_pnginfo:
pnginfo_data = PngImagePlugin.PngInfo() pnginfo_data = PngImagePlugin.PngInfo()
for k, v in (existing_pnginfo or {}).items(): for k, v in (existing_pnginfo or {}).items():
@ -585,13 +602,13 @@ def save_image(image, path, basename, seed=None, prompt=None, extension='png', i
else: else:
file_decoration = opts.samples_filename_pattern or "[seed]-[prompt_spaces]" file_decoration = opts.samples_filename_pattern or "[seed]-[prompt_spaces]"
file_decoration = namegen.apply(file_decoration) + suffix
add_number = opts.save_images_add_number or file_decoration == '' add_number = opts.save_images_add_number or file_decoration == ''
if file_decoration != "" and add_number: if file_decoration != "" and add_number:
file_decoration = f"-{file_decoration}" file_decoration = f"-{file_decoration}"
file_decoration = namegen.apply(file_decoration) + suffix
if add_number: if add_number:
basecount = get_next_sequence_number(path, basename) basecount = get_next_sequence_number(path, basename)
fullfn = None fullfn = None
@ -622,7 +639,7 @@ def save_image(image, path, basename, seed=None, prompt=None, extension='png', i
""" """
temp_file_path = f"{filename_without_extension}.tmp" temp_file_path = f"{filename_without_extension}.tmp"
save_image_with_geninfo(image_to_save, info, temp_file_path, extension, params.pnginfo) save_image_with_geninfo(image_to_save, info, temp_file_path, extension, existing_pnginfo=params.pnginfo, pnginfo_section_name=pnginfo_section_name)
os.replace(temp_file_path, filename_without_extension + extension) os.replace(temp_file_path, filename_without_extension + extension)
@ -639,12 +656,18 @@ def save_image(image, path, basename, seed=None, prompt=None, extension='png', i
oversize = image.width > opts.target_side_length or image.height > opts.target_side_length oversize = image.width > opts.target_side_length or image.height > opts.target_side_length
if opts.export_for_4chan and (oversize or os.stat(fullfn).st_size > opts.img_downscale_threshold * 1024 * 1024): if opts.export_for_4chan and (oversize or os.stat(fullfn).st_size > opts.img_downscale_threshold * 1024 * 1024):
ratio = image.width / image.height ratio = image.width / image.height
resize_to = None
if oversize and ratio > 1: if oversize and ratio > 1:
image = image.resize((round(opts.target_side_length), round(image.height * opts.target_side_length / image.width)), LANCZOS) resize_to = round(opts.target_side_length), round(image.height * opts.target_side_length / image.width)
elif oversize: elif oversize:
image = image.resize((round(image.width * opts.target_side_length / image.height), round(opts.target_side_length)), LANCZOS) resize_to = round(image.width * opts.target_side_length / image.height), round(opts.target_side_length)
if resize_to is not None:
try:
# Resizing image with LANCZOS could throw an exception if e.g. image mode is I;16
image = image.resize(resize_to, LANCZOS)
except Exception:
image = image.resize(resize_to)
try: try:
_atomically_save_image(image, fullfn_without_extension, ".jpg") _atomically_save_image(image, fullfn_without_extension, ".jpg")
except Exception as e: except Exception as e:
@ -662,8 +685,15 @@ def save_image(image, path, basename, seed=None, prompt=None, extension='png', i
return fullfn, txt_fullfn return fullfn, txt_fullfn
def read_info_from_image(image): IGNORED_INFO_KEYS = {
items = image.info or {} 'jfif', 'jfif_version', 'jfif_unit', 'jfif_density', 'dpi', 'exif',
'loop', 'background', 'timestamp', 'duration', 'progressive', 'progression',
'icc_profile', 'chromaticity', 'photoshop',
}
def read_info_from_image(image: Image.Image) -> tuple[str | None, dict]:
items = (image.info or {}).copy()
geninfo = items.pop('parameters', None) geninfo = items.pop('parameters', None)
@ -679,9 +709,7 @@ def read_info_from_image(image):
items['exif comment'] = exif_comment items['exif comment'] = exif_comment
geninfo = exif_comment geninfo = exif_comment
for field in ['jfif', 'jfif_version', 'jfif_unit', 'jfif_density', 'dpi', 'exif', for field in IGNORED_INFO_KEYS:
'loop', 'background', 'timestamp', 'duration', 'progressive', 'progression',
'icc_profile', 'chromaticity']:
items.pop(field, None) items.pop(field, None)
if items.get("Software", None) == "NovelAI": if items.get("Software", None) == "NovelAI":

View File

@ -1,23 +1,26 @@
import os import os
from contextlib import closing
from pathlib import Path from pathlib import Path
import numpy as np import numpy as np
from PIL import Image, ImageOps, ImageFilter, ImageEnhance, ImageChops, UnidentifiedImageError from PIL import Image, ImageOps, ImageFilter, ImageEnhance, ImageChops, UnidentifiedImageError
import gradio as gr
from modules import sd_samplers from modules import sd_samplers, images as imgutil
from modules.generation_parameters_copypaste import create_override_settings_dict from modules.generation_parameters_copypaste import create_override_settings_dict, parse_generation_parameters
from modules.processing import Processed, StableDiffusionProcessingImg2Img, process_images from modules.processing import Processed, StableDiffusionProcessingImg2Img, process_images
from modules.shared import opts, state from modules.shared import opts, state
from modules.images import save_image
import modules.shared as shared import modules.shared as shared
import modules.processing as processing import modules.processing as processing
from modules.ui import plaintext_to_html from modules.ui import plaintext_to_html
import modules.scripts import modules.scripts
def process_batch(p, input_dir, output_dir, inpaint_mask_dir, args, to_scale=False, scale_by=1.0): def process_batch(p, input_dir, output_dir, inpaint_mask_dir, args, to_scale=False, scale_by=1.0, use_png_info=False, png_info_props=None, png_info_dir=None):
processing.fix_seed(p) processing.fix_seed(p)
images = shared.listfiles(input_dir) images = list(shared.walk_files(input_dir, allowed_extensions=(".png", ".jpg", ".jpeg", ".webp")))
is_inpaint_batch = False is_inpaint_batch = False
if inpaint_mask_dir: if inpaint_mask_dir:
@ -36,6 +39,14 @@ def process_batch(p, input_dir, output_dir, inpaint_mask_dir, args, to_scale=Fal
state.job_count = len(images) * p.n_iter state.job_count = len(images) * p.n_iter
# extract "default" params to use in case getting png info fails
prompt = p.prompt
negative_prompt = p.negative_prompt
seed = p.seed
cfg_scale = p.cfg_scale
sampler_name = p.sampler_name
steps = p.steps
for i, image in enumerate(images): for i, image in enumerate(images):
state.job = f"{i+1} out of {len(images)}" state.job = f"{i+1} out of {len(images)}"
if state.skipped: if state.skipped:
@ -79,25 +90,45 @@ def process_batch(p, input_dir, output_dir, inpaint_mask_dir, args, to_scale=Fal
mask_image = Image.open(mask_image_path) mask_image = Image.open(mask_image_path)
p.image_mask = mask_image p.image_mask = mask_image
if use_png_info:
try:
info_img = img
if png_info_dir:
info_img_path = os.path.join(png_info_dir, os.path.basename(image))
info_img = Image.open(info_img_path)
geninfo, _ = imgutil.read_info_from_image(info_img)
parsed_parameters = parse_generation_parameters(geninfo)
parsed_parameters = {k: v for k, v in parsed_parameters.items() if k in (png_info_props or {})}
except Exception:
parsed_parameters = {}
p.prompt = prompt + (" " + parsed_parameters["Prompt"] if "Prompt" in parsed_parameters else "")
p.negative_prompt = negative_prompt + (" " + parsed_parameters["Negative prompt"] if "Negative prompt" in parsed_parameters else "")
p.seed = int(parsed_parameters.get("Seed", seed))
p.cfg_scale = float(parsed_parameters.get("CFG scale", cfg_scale))
p.sampler_name = parsed_parameters.get("Sampler", sampler_name)
p.steps = int(parsed_parameters.get("Steps", steps))
proc = modules.scripts.scripts_img2img.run(p, *args) proc = modules.scripts.scripts_img2img.run(p, *args)
if proc is None: if proc is None:
proc = process_images(p) proc = process_images(p)
for n, processed_image in enumerate(proc.images): for n, processed_image in enumerate(proc.images):
filename = image_path.name filename = image_path.stem
infotext = proc.infotext(p, n)
relpath = os.path.dirname(os.path.relpath(image, input_dir))
if n > 0: if n > 0:
left, right = os.path.splitext(filename) filename += f"-{n}"
filename = f"{left}-{n}{right}"
if not save_normally: if not save_normally:
os.makedirs(output_dir, exist_ok=True) os.makedirs(os.path.join(output_dir, relpath), exist_ok=True)
if processed_image.mode == 'RGBA': if processed_image.mode == 'RGBA':
processed_image = processed_image.convert("RGB") processed_image = processed_image.convert("RGB")
processed_image.save(os.path.join(output_dir, filename)) save_image(processed_image, os.path.join(output_dir, relpath), None, extension=opts.samples_format, info=infotext, forced_filename=filename, save_to_dirs=False)
def img2img(id_task: str, mode: int, prompt: str, negative_prompt: str, prompt_styles, init_img, sketch, init_img_with_mask, inpaint_color_sketch, inpaint_color_sketch_orig, init_img_inpaint, init_mask_inpaint, steps: int, sampler_index: int, mask_blur: int, mask_alpha: float, inpainting_fill: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, image_cfg_scale: float, denoising_strength: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, selected_scale_tab: int, height: int, width: int, scale_by: float, resize_mode: int, inpaint_full_res: bool, inpaint_full_res_padding: int, inpainting_mask_invert: int, img2img_batch_input_dir: str, img2img_batch_output_dir: str, img2img_batch_inpaint_mask_dir: str, override_settings_texts, *args): def img2img(id_task: str, mode: int, prompt: str, negative_prompt: str, prompt_styles, init_img, sketch, init_img_with_mask, inpaint_color_sketch, inpaint_color_sketch_orig, init_img_inpaint, init_mask_inpaint, steps: int, sampler_index: int, mask_blur: int, mask_alpha: float, inpainting_fill: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, image_cfg_scale: float, denoising_strength: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, selected_scale_tab: int, height: int, width: int, scale_by: float, resize_mode: int, inpaint_full_res: bool, inpaint_full_res_padding: int, inpainting_mask_invert: int, img2img_batch_input_dir: str, img2img_batch_output_dir: str, img2img_batch_inpaint_mask_dir: str, override_settings_texts, img2img_batch_use_png_info: bool, img2img_batch_png_info_props: list, img2img_batch_png_info_dir: str, request: gr.Request, *args):
override_settings = create_override_settings_dict(override_settings_texts) override_settings = create_override_settings_dict(override_settings_texts)
is_batch = mode == 5 is_batch = mode == 5
@ -180,16 +211,19 @@ def img2img(id_task: str, mode: int, prompt: str, negative_prompt: str, prompt_s
p.scripts = modules.scripts.scripts_img2img p.scripts = modules.scripts.scripts_img2img
p.script_args = args p.script_args = args
p.user = request.username
if shared.cmd_opts.enable_console_prompts: if shared.cmd_opts.enable_console_prompts:
print(f"\nimg2img: {prompt}", file=shared.progress_print_out) print(f"\nimg2img: {prompt}", file=shared.progress_print_out)
if mask: if mask:
p.extra_generation_params["Mask blur"] = mask_blur p.extra_generation_params["Mask blur"] = mask_blur
with closing(p):
if is_batch: if is_batch:
assert not shared.cmd_opts.hide_ui_dir_config, "Launched with --hide-ui-dir-config, batch img2img disabled" assert not shared.cmd_opts.hide_ui_dir_config, "Launched with --hide-ui-dir-config, batch img2img disabled"
process_batch(p, img2img_batch_input_dir, img2img_batch_output_dir, img2img_batch_inpaint_mask_dir, args, to_scale=selected_scale_tab == 1, scale_by=scale_by) process_batch(p, img2img_batch_input_dir, img2img_batch_output_dir, img2img_batch_inpaint_mask_dir, args, to_scale=selected_scale_tab == 1, scale_by=scale_by, use_png_info=img2img_batch_use_png_info, png_info_props=img2img_batch_png_info_props, png_info_dir=img2img_batch_png_info_dir)
processed = Processed(p, [], p.seed, "") processed = Processed(p, [], p.seed, "")
else: else:
@ -197,8 +231,6 @@ def img2img(id_task: str, mode: int, prompt: str, negative_prompt: str, prompt_s
if processed is None: if processed is None:
processed = process_images(p) processed = process_images(p)
p.close()
shared.total_tqdm.clear() shared.total_tqdm.clear()
generation_info_js = processed.js() generation_info_js = processed.js()
@ -208,4 +240,4 @@ def img2img(id_task: str, mode: int, prompt: str, negative_prompt: str, prompt_s
if opts.do_not_show_images: if opts.do_not_show_images:
processed.images = [] processed.images = []
return processed.images, generation_info_js, plaintext_to_html(processed.info), plaintext_to_html(processed.comments) return processed.images, generation_info_js, plaintext_to_html(processed.info), plaintext_to_html(processed.comments, classname="comments")

View File

@ -184,8 +184,7 @@ class InterrogateModels:
def interrogate(self, pil_image): def interrogate(self, pil_image):
res = "" res = ""
shared.state.begin() shared.state.begin(job="interrogate")
shared.state.job = 'interrogate'
try: try:
if shared.cmd_opts.lowvram or shared.cmd_opts.medvram: if shared.cmd_opts.lowvram or shared.cmd_opts.medvram:
lowvram.send_everything_to_cpu() lowvram.send_everything_to_cpu()

View File

@ -1,4 +1,5 @@
# this scripts installs necessary requirements and launches main program in webui.py # this scripts installs necessary requirements and launches main program in webui.py
import re
import subprocess import subprocess
import os import os
import sys import sys
@ -9,6 +10,9 @@ from functools import lru_cache
from modules import cmd_args, errors from modules import cmd_args, errors
from modules.paths_internal import script_path, extensions_dir from modules.paths_internal import script_path, extensions_dir
from modules import timer
timer.startup_timer.record("start")
args, _ = cmd_args.parser.parse_known_args() args, _ = cmd_args.parser.parse_known_args()
@ -69,10 +73,12 @@ def git_tag():
return subprocess.check_output([git, "describe", "--tags"], shell=False, encoding='utf8').strip() return subprocess.check_output([git, "describe", "--tags"], shell=False, encoding='utf8').strip()
except Exception: except Exception:
try: try:
from pathlib import Path
changelog_md = Path(__file__).parent.parent / "CHANGELOG.md" changelog_md = os.path.join(os.path.dirname(os.path.dirname(__file__)), "CHANGELOG.md")
with changelog_md.open(encoding="utf-8") as file: with open(changelog_md, "r", encoding="utf-8") as file:
return next((line.strip() for line in file if line.strip()), "<none>") line = next((line.strip() for line in file if line.strip()), "<none>")
line = line.replace("## ", "")
return line
except Exception: except Exception:
return "<none>" return "<none>"
@ -142,15 +148,15 @@ def git_clone(url, dir, name, commithash=None):
if commithash is None: if commithash is None:
return return
current_hash = run(f'"{git}" -C "{dir}" rev-parse HEAD', None, f"Couldn't determine {name}'s hash: {commithash}").strip() current_hash = run(f'"{git}" -C "{dir}" rev-parse HEAD', None, f"Couldn't determine {name}'s hash: {commithash}", live=False).strip()
if current_hash == commithash: if current_hash == commithash:
return return
run(f'"{git}" -C "{dir}" fetch', f"Fetching updates for {name}...", f"Couldn't fetch {name}") run(f'"{git}" -C "{dir}" fetch', f"Fetching updates for {name}...", f"Couldn't fetch {name}")
run(f'"{git}" -C "{dir}" checkout {commithash}', f"Checking out commit for {name} with hash: {commithash}...", f"Couldn't checkout commit {commithash} for {name}") run(f'"{git}" -C "{dir}" checkout {commithash}', f"Checking out commit for {name} with hash: {commithash}...", f"Couldn't checkout commit {commithash} for {name}", live=True)
return return
run(f'"{git}" clone "{url}" "{dir}"', f"Cloning {name} into {dir}...", f"Couldn't clone {name}") run(f'"{git}" clone "{url}" "{dir}"', f"Cloning {name} into {dir}...", f"Couldn't clone {name}", live=True)
if commithash is not None: if commithash is not None:
run(f'"{git}" -C "{dir}" checkout {commithash}', None, "Couldn't checkout {name}'s hash: {commithash}") run(f'"{git}" -C "{dir}" checkout {commithash}', None, "Couldn't checkout {name}'s hash: {commithash}")
@ -224,6 +230,44 @@ def run_extensions_installers(settings_file):
run_extension_installer(os.path.join(extensions_dir, dirname_extension)) run_extension_installer(os.path.join(extensions_dir, dirname_extension))
re_requirement = re.compile(r"\s*([-_a-zA-Z0-9]+)\s*(?:==\s*([-+_.a-zA-Z0-9]+))?\s*")
def requrements_met(requirements_file):
"""
Does a simple parse of a requirements.txt file to determine if all rerqirements in it
are already installed. Returns True if so, False if not installed or parsing fails.
"""
import importlib.metadata
import packaging.version
with open(requirements_file, "r", encoding="utf8") as file:
for line in file:
if line.strip() == "":
continue
m = re.match(re_requirement, line)
if m is None:
return False
package = m.group(1).strip()
version_required = (m.group(2) or "").strip()
if version_required == "":
continue
try:
version_installed = importlib.metadata.version(package)
except Exception:
return False
if packaging.version.parse(version_required) != packaging.version.parse(version_installed):
return False
return True
def prepare_environment(): def prepare_environment():
torch_index_url = os.environ.get('TORCH_INDEX_URL', "https://download.pytorch.org/whl/cu118") torch_index_url = os.environ.get('TORCH_INDEX_URL', "https://download.pytorch.org/whl/cu118")
torch_command = os.environ.get('TORCH_COMMAND', f"pip install torch==2.0.1 torchvision==0.15.2 --extra-index-url {torch_index_url}") torch_command = os.environ.get('TORCH_COMMAND', f"pip install torch==2.0.1 torchvision==0.15.2 --extra-index-url {torch_index_url}")
@ -235,11 +279,13 @@ def prepare_environment():
openclip_package = os.environ.get('OPENCLIP_PACKAGE', "https://github.com/mlfoundations/open_clip/archive/bb6e834e9c70d9c27d0dc3ecedeebeaeb1ffad6b.zip") openclip_package = os.environ.get('OPENCLIP_PACKAGE', "https://github.com/mlfoundations/open_clip/archive/bb6e834e9c70d9c27d0dc3ecedeebeaeb1ffad6b.zip")
stable_diffusion_repo = os.environ.get('STABLE_DIFFUSION_REPO', "https://github.com/Stability-AI/stablediffusion.git") stable_diffusion_repo = os.environ.get('STABLE_DIFFUSION_REPO', "https://github.com/Stability-AI/stablediffusion.git")
stable_diffusion_xl_repo = os.environ.get('STABLE_DIFFUSION_XL_REPO', "https://github.com/Stability-AI/generative-models.git")
k_diffusion_repo = os.environ.get('K_DIFFUSION_REPO', 'https://github.com/crowsonkb/k-diffusion.git') k_diffusion_repo = os.environ.get('K_DIFFUSION_REPO', 'https://github.com/crowsonkb/k-diffusion.git')
codeformer_repo = os.environ.get('CODEFORMER_REPO', 'https://github.com/sczhou/CodeFormer.git') codeformer_repo = os.environ.get('CODEFORMER_REPO', 'https://github.com/sczhou/CodeFormer.git')
blip_repo = os.environ.get('BLIP_REPO', 'https://github.com/salesforce/BLIP.git') blip_repo = os.environ.get('BLIP_REPO', 'https://github.com/salesforce/BLIP.git')
stable_diffusion_commit_hash = os.environ.get('STABLE_DIFFUSION_COMMIT_HASH', "cf1d67a6fd5ea1aa600c4df58e5b47da45f6bdbf") stable_diffusion_commit_hash = os.environ.get('STABLE_DIFFUSION_COMMIT_HASH', "cf1d67a6fd5ea1aa600c4df58e5b47da45f6bdbf")
stable_diffusion_xl_commit_hash = os.environ.get('STABLE_DIFFUSION_XL_COMMIT_HASH', "5c10deee76adad0032b412294130090932317a87")
k_diffusion_commit_hash = os.environ.get('K_DIFFUSION_COMMIT_HASH', "c9fe758757e022f05ca5a53fa8fac28889e4f1cf") k_diffusion_commit_hash = os.environ.get('K_DIFFUSION_COMMIT_HASH', "c9fe758757e022f05ca5a53fa8fac28889e4f1cf")
codeformer_commit_hash = os.environ.get('CODEFORMER_COMMIT_HASH', "c5b4593074ba6214284d6acd5f1719b6c5d739af") codeformer_commit_hash = os.environ.get('CODEFORMER_COMMIT_HASH', "c5b4593074ba6214284d6acd5f1719b6c5d739af")
blip_commit_hash = os.environ.get('BLIP_COMMIT_HASH', "48211a1594f1321b00f14c9f7a5b4813144b2fb9") blip_commit_hash = os.environ.get('BLIP_COMMIT_HASH', "48211a1594f1321b00f14c9f7a5b4813144b2fb9")
@ -297,6 +343,7 @@ def prepare_environment():
os.makedirs(os.path.join(script_path, dir_repos), exist_ok=True) os.makedirs(os.path.join(script_path, dir_repos), exist_ok=True)
git_clone(stable_diffusion_repo, repo_dir('stable-diffusion-stability-ai'), "Stable Diffusion", stable_diffusion_commit_hash) git_clone(stable_diffusion_repo, repo_dir('stable-diffusion-stability-ai'), "Stable Diffusion", stable_diffusion_commit_hash)
git_clone(stable_diffusion_xl_repo, repo_dir('generative-models'), "Stable Diffusion XL", stable_diffusion_xl_commit_hash)
git_clone(k_diffusion_repo, repo_dir('k-diffusion'), "K-diffusion", k_diffusion_commit_hash) git_clone(k_diffusion_repo, repo_dir('k-diffusion'), "K-diffusion", k_diffusion_commit_hash)
git_clone(codeformer_repo, repo_dir('CodeFormer'), "CodeFormer", codeformer_commit_hash) git_clone(codeformer_repo, repo_dir('CodeFormer'), "CodeFormer", codeformer_commit_hash)
git_clone(blip_repo, repo_dir('BLIP'), "BLIP", blip_commit_hash) git_clone(blip_repo, repo_dir('BLIP'), "BLIP", blip_commit_hash)
@ -306,6 +353,8 @@ def prepare_environment():
if not os.path.isfile(requirements_file): if not os.path.isfile(requirements_file):
requirements_file = os.path.join(script_path, requirements_file) requirements_file = os.path.join(script_path, requirements_file)
if not requrements_met(requirements_file):
run_pip(f"install -r \"{requirements_file}\"", "requirements") run_pip(f"install -r \"{requirements_file}\"", "requirements")
run_extensions_installers(settings_file=args.ui_settings_file) run_extensions_installers(settings_file=args.ui_settings_file)
@ -321,6 +370,7 @@ def prepare_environment():
exit(0) exit(0)
def configure_for_tests(): def configure_for_tests():
if "--api" not in sys.argv: if "--api" not in sys.argv:
sys.argv.append("--api") sys.argv.append("--api")

View File

@ -53,19 +53,46 @@ def setup_for_low_vram(sd_model, use_medvram):
send_me_to_gpu(first_stage_model, None) send_me_to_gpu(first_stage_model, None)
return first_stage_model_decode(z) return first_stage_model_decode(z)
# for SD1, cond_stage_model is CLIP and its NN is in the tranformer frield, but for SD2, it's open clip, and it's in model field to_remain_in_cpu = [
if hasattr(sd_model.cond_stage_model, 'model'): (sd_model, 'first_stage_model'),
sd_model.cond_stage_model.transformer = sd_model.cond_stage_model.model (sd_model, 'depth_model'),
(sd_model, 'embedder'),
(sd_model, 'model'),
(sd_model, 'embedder'),
]
# remove several big modules: cond, first_stage, depth/embedder (if applicable), and unet from the model and then is_sdxl = hasattr(sd_model, 'conditioner')
# send the model to GPU. Then put modules back. the modules will be in CPU. is_sd2 = not is_sdxl and hasattr(sd_model.cond_stage_model, 'model')
stored = sd_model.cond_stage_model.transformer, sd_model.first_stage_model, getattr(sd_model, 'depth_model', None), getattr(sd_model, 'embedder', None), sd_model.model
sd_model.cond_stage_model.transformer, sd_model.first_stage_model, sd_model.depth_model, sd_model.embedder, sd_model.model = None, None, None, None, None if is_sdxl:
to_remain_in_cpu.append((sd_model, 'conditioner'))
elif is_sd2:
to_remain_in_cpu.append((sd_model.cond_stage_model, 'model'))
else:
to_remain_in_cpu.append((sd_model.cond_stage_model, 'transformer'))
# remove several big modules: cond, first_stage, depth/embedder (if applicable), and unet from the model
stored = []
for obj, field in to_remain_in_cpu:
module = getattr(obj, field, None)
stored.append(module)
setattr(obj, field, None)
# send the model to GPU.
sd_model.to(devices.device) sd_model.to(devices.device)
sd_model.cond_stage_model.transformer, sd_model.first_stage_model, sd_model.depth_model, sd_model.embedder, sd_model.model = stored
# put modules back. the modules will be in CPU.
for (obj, field), module in zip(to_remain_in_cpu, stored):
setattr(obj, field, module)
# register hooks for those the first three models # register hooks for those the first three models
if is_sdxl:
sd_model.conditioner.register_forward_pre_hook(send_me_to_gpu)
elif is_sd2:
sd_model.cond_stage_model.model.register_forward_pre_hook(send_me_to_gpu)
else:
sd_model.cond_stage_model.transformer.register_forward_pre_hook(send_me_to_gpu) sd_model.cond_stage_model.transformer.register_forward_pre_hook(send_me_to_gpu)
sd_model.first_stage_model.register_forward_pre_hook(send_me_to_gpu) sd_model.first_stage_model.register_forward_pre_hook(send_me_to_gpu)
sd_model.first_stage_model.encode = first_stage_model_encode_wrap sd_model.first_stage_model.encode = first_stage_model_encode_wrap
sd_model.first_stage_model.decode = first_stage_model_decode_wrap sd_model.first_stage_model.decode = first_stage_model_decode_wrap
@ -73,11 +100,9 @@ def setup_for_low_vram(sd_model, use_medvram):
sd_model.depth_model.register_forward_pre_hook(send_me_to_gpu) sd_model.depth_model.register_forward_pre_hook(send_me_to_gpu)
if sd_model.embedder: if sd_model.embedder:
sd_model.embedder.register_forward_pre_hook(send_me_to_gpu) sd_model.embedder.register_forward_pre_hook(send_me_to_gpu)
parents[sd_model.cond_stage_model.transformer] = sd_model.cond_stage_model
if hasattr(sd_model.cond_stage_model, 'model'): if hasattr(sd_model, 'cond_stage_model'):
sd_model.cond_stage_model.model = sd_model.cond_stage_model.transformer parents[sd_model.cond_stage_model.transformer] = sd_model.cond_stage_model
del sd_model.cond_stage_model.transformer
if use_medvram: if use_medvram:
sd_model.model.register_forward_pre_hook(send_me_to_gpu) sd_model.model.register_forward_pre_hook(send_me_to_gpu)

View File

@ -1,12 +1,19 @@
import logging
import torch import torch
import platform import platform
from modules.sd_hijack_utils import CondFunc from modules.sd_hijack_utils import CondFunc
from packaging import version from packaging import version
log = logging.getLogger(__name__)
# has_mps is only available in nightly pytorch (for now) and macOS 12.3+.
# check `getattr` and try it for compatibility # before torch version 1.13, has_mps is only available in nightly pytorch and macOS 12.3+,
# use check `getattr` and try it for compatibility.
# in torch version 1.13, backends.mps.is_available() and backends.mps.is_built() are introduced in to check mps availabilty,
# since torch 2.0.1+ nightly build, getattr(torch, 'has_mps', False) was deprecated, see https://github.com/pytorch/pytorch/pull/103279
def check_for_mps() -> bool: def check_for_mps() -> bool:
if version.parse(torch.__version__) <= version.parse("2.0.1"):
if not getattr(torch, 'has_mps', False): if not getattr(torch, 'has_mps', False):
return False return False
try: try:
@ -14,9 +21,25 @@ def check_for_mps() -> bool:
return True return True
except Exception: except Exception:
return False return False
else:
return torch.backends.mps.is_available() and torch.backends.mps.is_built()
has_mps = check_for_mps() has_mps = check_for_mps()
def torch_mps_gc() -> None:
try:
from modules.shared import state
if state.current_latent is not None:
log.debug("`current_latent` is set, skipping MPS garbage collection")
return
from torch.mps import empty_cache
empty_cache()
except Exception:
log.warning("MPS garbage collection failed", exc_info=True)
# MPS workaround for https://github.com/pytorch/pytorch/issues/89784 # MPS workaround for https://github.com/pytorch/pytorch/issues/89784
def cumsum_fix(input, cumsum_func, *args, **kwargs): def cumsum_fix(input, cumsum_func, *args, **kwargs):
if input.device.type == 'mps': if input.device.type == 'mps':

View File

@ -1,3 +1,5 @@
from __future__ import annotations
import os import os
import shutil import shutil
import importlib import importlib
@ -8,6 +10,29 @@ from modules.upscaler import Upscaler, UpscalerLanczos, UpscalerNearest, Upscale
from modules.paths import script_path, models_path from modules.paths import script_path, models_path
def load_file_from_url(
url: str,
*,
model_dir: str,
progress: bool = True,
file_name: str | None = None,
) -> str:
"""Download a file from `url` into `model_dir`, using the file present if possible.
Returns the path to the downloaded file.
"""
os.makedirs(model_dir, exist_ok=True)
if not file_name:
parts = urlparse(url)
file_name = os.path.basename(parts.path)
cached_file = os.path.abspath(os.path.join(model_dir, file_name))
if not os.path.exists(cached_file):
print(f'Downloading: "{url}" to {cached_file}\n')
from torch.hub import download_url_to_file
download_url_to_file(url, cached_file, progress=progress)
return cached_file
def load_models(model_path: str, model_url: str = None, command_path: str = None, ext_filter=None, download_name=None, ext_blacklist=None) -> list: def load_models(model_path: str, model_url: str = None, command_path: str = None, ext_filter=None, download_name=None, ext_blacklist=None) -> list:
""" """
A one-and done loader to try finding the desired models in specified directories. A one-and done loader to try finding the desired models in specified directories.
@ -46,9 +71,7 @@ def load_models(model_path: str, model_url: str = None, command_path: str = None
if model_url is not None and len(output) == 0: if model_url is not None and len(output) == 0:
if download_name is not None: if download_name is not None:
from basicsr.utils.download_util import load_file_from_url output.append(load_file_from_url(model_url, model_dir=places[0], file_name=download_name))
dl = load_file_from_url(model_url, places[0], True, download_name)
output.append(dl)
else: else:
output.append(model_url) output.append(model_url)
@ -59,7 +82,7 @@ def load_models(model_path: str, model_url: str = None, command_path: str = None
def friendly_name(file: str): def friendly_name(file: str):
if "http" in file: if file.startswith("http"):
file = urlparse(file).path file = urlparse(file).path
file = os.path.basename(file) file = os.path.basename(file)

View File

@ -5,6 +5,21 @@ from modules.paths_internal import models_path, script_path, data_path, extensio
import modules.safe # noqa: F401 import modules.safe # noqa: F401
def mute_sdxl_imports():
"""create fake modules that SDXL wants to import but doesn't actually use for our purposes"""
class Dummy:
pass
module = Dummy()
module.LPIPS = None
sys.modules['taming.modules.losses.lpips'] = module
module = Dummy()
module.StableDataModuleFromConfig = None
sys.modules['sgm.data'] = module
# data_path = cmd_opts_pre.data # data_path = cmd_opts_pre.data
sys.path.insert(0, script_path) sys.path.insert(0, script_path)
@ -18,8 +33,11 @@ for possible_sd_path in possible_sd_paths:
assert sd_path is not None, f"Couldn't find Stable Diffusion in any of: {possible_sd_paths}" assert sd_path is not None, f"Couldn't find Stable Diffusion in any of: {possible_sd_paths}"
mute_sdxl_imports()
path_dirs = [ path_dirs = [
(sd_path, 'ldm', 'Stable Diffusion', []), (sd_path, 'ldm', 'Stable Diffusion', []),
(os.path.join(sd_path, '../generative-models'), 'sgm', 'Stable Diffusion XL', ["sgm"]),
(os.path.join(sd_path, '../CodeFormer'), 'inference_codeformer.py', 'CodeFormer', []), (os.path.join(sd_path, '../CodeFormer'), 'inference_codeformer.py', 'CodeFormer', []),
(os.path.join(sd_path, '../BLIP'), 'models/blip.py', 'BLIP', []), (os.path.join(sd_path, '../BLIP'), 'models/blip.py', 'BLIP', []),
(os.path.join(sd_path, '../k-diffusion'), 'k_diffusion/sampling.py', 'k_diffusion', ["atstart"]), (os.path.join(sd_path, '../k-diffusion'), 'k_diffusion/sampling.py', 'k_diffusion', ["atstart"]),
@ -35,20 +53,13 @@ for d, must_exist, what, options in path_dirs:
d = os.path.abspath(d) d = os.path.abspath(d)
if "atstart" in options: if "atstart" in options:
sys.path.insert(0, d) sys.path.insert(0, d)
elif "sgm" in options:
# Stable Diffusion XL repo has scripts dir with __init__.py in it which ruins every extension's scripts dir, so we
# import sgm and remove it from sys.path so that when a script imports scripts.something, it doesbn't use sgm's scripts dir.
sys.path.insert(0, d)
import sgm # noqa: F401
sys.path.pop(0)
else: else:
sys.path.append(d) sys.path.append(d)
paths[what] = d paths[what] = d
class Prioritize:
def __init__(self, name):
self.name = name
self.path = None
def __enter__(self):
self.path = sys.path.copy()
sys.path = [paths[self.name]] + sys.path
def __exit__(self, exc_type, exc_val, exc_tb):
sys.path = self.path
self.path = None

View File

@ -9,8 +9,7 @@ from modules.shared import opts
def run_postprocessing(extras_mode, image, image_folder, input_dir, output_dir, show_extras_results, *args, save_output: bool = True): def run_postprocessing(extras_mode, image, image_folder, input_dir, output_dir, show_extras_results, *args, save_output: bool = True):
devices.torch_gc() devices.torch_gc()
shared.state.begin() shared.state.begin(job="extras")
shared.state.job = 'extras'
image_data = [] image_data = []
image_names = [] image_names = []
@ -54,7 +53,9 @@ def run_postprocessing(extras_mode, image, image_folder, input_dir, output_dir,
for image, name in zip(image_data, image_names): for image, name in zip(image_data, image_names):
shared.state.textinfo = name shared.state.textinfo = name
existing_pnginfo = image.info or {} parameters, existing_pnginfo = images.read_info_from_image(image)
if parameters:
existing_pnginfo["parameters"] = parameters
pp = scripts_postprocessing.PostprocessedImage(image.convert("RGB")) pp = scripts_postprocessing.PostprocessedImage(image.convert("RGB"))

View File

@ -184,6 +184,8 @@ class StableDiffusionProcessing:
self.uc = None self.uc = None
self.c = None self.c = None
self.user = None
@property @property
def sd_model(self): def sd_model(self):
return shared.sd_model return shared.sd_model
@ -328,8 +330,21 @@ class StableDiffusionProcessing:
caches is a list with items described above. caches is a list with items described above.
""" """
cached_params = (
required_prompts,
steps,
opts.CLIP_stop_at_last_layers,
shared.sd_model.sd_checkpoint_info,
extra_network_data,
opts.sdxl_crop_left,
opts.sdxl_crop_top,
self.width,
self.height,
)
for cache in caches: for cache in caches:
if cache[0] is not None and (required_prompts, steps, opts.CLIP_stop_at_last_layers, shared.sd_model.sd_checkpoint_info, extra_network_data) == cache[0]: if cache[0] is not None and cached_params == cache[0]:
return cache[1] return cache[1]
cache = caches[0] cache = caches[0]
@ -337,14 +352,17 @@ class StableDiffusionProcessing:
with devices.autocast(): with devices.autocast():
cache[1] = function(shared.sd_model, required_prompts, steps) cache[1] = function(shared.sd_model, required_prompts, steps)
cache[0] = (required_prompts, steps, opts.CLIP_stop_at_last_layers, shared.sd_model.sd_checkpoint_info, extra_network_data) cache[0] = cached_params
return cache[1] return cache[1]
def setup_conds(self): def setup_conds(self):
prompts = prompt_parser.SdConditioning(self.prompts, width=self.width, height=self.height)
negative_prompts = prompt_parser.SdConditioning(self.negative_prompts, width=self.width, height=self.height, is_negative_prompt=True)
sampler_config = sd_samplers.find_sampler_config(self.sampler_name) sampler_config = sd_samplers.find_sampler_config(self.sampler_name)
self.step_multiplier = 2 if sampler_config and sampler_config.options.get("second_order", False) else 1 self.step_multiplier = 2 if sampler_config and sampler_config.options.get("second_order", False) else 1
self.uc = self.get_conds_with_caching(prompt_parser.get_learned_conditioning, self.negative_prompts, self.steps * self.step_multiplier, [self.cached_uc], self.extra_network_data) self.uc = self.get_conds_with_caching(prompt_parser.get_learned_conditioning, negative_prompts, self.steps * self.step_multiplier, [self.cached_uc], self.extra_network_data)
self.c = self.get_conds_with_caching(prompt_parser.get_multicond_learned_conditioning, self.prompts, self.steps * self.step_multiplier, [self.cached_c], self.extra_network_data) self.c = self.get_conds_with_caching(prompt_parser.get_multicond_learned_conditioning, prompts, self.steps * self.step_multiplier, [self.cached_c], self.extra_network_data)
def parse_extra_network_prompts(self): def parse_extra_network_prompts(self):
self.prompts, self.extra_network_data = extra_networks.parse_prompts(self.prompts) self.prompts, self.extra_network_data = extra_networks.parse_prompts(self.prompts)
@ -521,8 +539,7 @@ def create_random_tensors(shape, seeds, subseeds=None, subseed_strength=0.0, see
def decode_first_stage(model, x): def decode_first_stage(model, x):
with devices.autocast(disable=x.dtype == devices.dtype_vae): x = model.decode_first_stage(x.to(devices.dtype_vae))
x = model.decode_first_stage(x)
return x return x
@ -549,7 +566,7 @@ def program_version():
return res return res
def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments=None, iteration=0, position_in_batch=0): def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments=None, iteration=0, position_in_batch=0, use_main_prompt=False):
index = position_in_batch + iteration * p.batch_size index = position_in_batch + iteration * p.batch_size
clip_skip = getattr(p, 'clip_skip', opts.CLIP_stop_at_last_layers) clip_skip = getattr(p, 'clip_skip', opts.CLIP_stop_at_last_layers)
@ -573,7 +590,7 @@ def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments=None, iter
"Model": (None if not opts.add_model_name_to_info or not shared.sd_model.sd_checkpoint_info.model_name else shared.sd_model.sd_checkpoint_info.model_name.replace(',', '').replace(':', '')), "Model": (None if not opts.add_model_name_to_info or not shared.sd_model.sd_checkpoint_info.model_name else shared.sd_model.sd_checkpoint_info.model_name.replace(',', '').replace(':', '')),
"Variation seed": (None if p.subseed_strength == 0 else all_subseeds[index]), "Variation seed": (None if p.subseed_strength == 0 else all_subseeds[index]),
"Variation seed strength": (None if p.subseed_strength == 0 else p.subseed_strength), "Variation seed strength": (None if p.subseed_strength == 0 else p.subseed_strength),
"Seed resize from": (None if p.seed_resize_from_w == 0 or p.seed_resize_from_h == 0 else f"{p.seed_resize_from_w}x{p.seed_resize_from_h}"), "Seed resize from": (None if p.seed_resize_from_w <= 0 or p.seed_resize_from_h <= 0 else f"{p.seed_resize_from_w}x{p.seed_resize_from_h}"),
"Denoising strength": getattr(p, 'denoising_strength', None), "Denoising strength": getattr(p, 'denoising_strength', None),
"Conditional mask weight": getattr(p, "inpainting_mask_weight", shared.opts.inpainting_mask_weight) if p.is_using_inpainting_conditioning else None, "Conditional mask weight": getattr(p, "inpainting_mask_weight", shared.opts.inpainting_mask_weight) if p.is_using_inpainting_conditioning else None,
"Clip skip": None if clip_skip <= 1 else clip_skip, "Clip skip": None if clip_skip <= 1 else clip_skip,
@ -585,13 +602,15 @@ def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments=None, iter
"NGMS": None if p.s_min_uncond == 0 else p.s_min_uncond, "NGMS": None if p.s_min_uncond == 0 else p.s_min_uncond,
**p.extra_generation_params, **p.extra_generation_params,
"Version": program_version() if opts.add_version_to_infotext else None, "Version": program_version() if opts.add_version_to_infotext else None,
"User": p.user if opts.add_user_name_to_info else None,
} }
generation_params_text = ", ".join([k if k == v else f'{k}: {generation_parameters_copypaste.quote(v)}' for k, v in generation_params.items() if v is not None]) generation_params_text = ", ".join([k if k == v else f'{k}: {generation_parameters_copypaste.quote(v)}' for k, v in generation_params.items() if v is not None])
prompt_text = p.prompt if use_main_prompt else all_prompts[index]
negative_prompt_text = f"\nNegative prompt: {p.all_negative_prompts[index]}" if p.all_negative_prompts[index] else "" negative_prompt_text = f"\nNegative prompt: {p.all_negative_prompts[index]}" if p.all_negative_prompts[index] else ""
return f"{all_prompts[index]}{negative_prompt_text}\n{generation_params_text}".strip() return f"{prompt_text}{negative_prompt_text}\n{generation_params_text}".strip()
def process_images(p: StableDiffusionProcessing) -> Processed: def process_images(p: StableDiffusionProcessing) -> Processed:
@ -602,7 +621,7 @@ def process_images(p: StableDiffusionProcessing) -> Processed:
try: try:
# if no checkpoint override or the override checkpoint can't be found, remove override entry and load opts checkpoint # if no checkpoint override or the override checkpoint can't be found, remove override entry and load opts checkpoint
if sd_models.checkpoint_alisases.get(p.override_settings.get('sd_model_checkpoint')) is None: if sd_models.checkpoint_aliases.get(p.override_settings.get('sd_model_checkpoint')) is None:
p.override_settings.pop('sd_model_checkpoint', None) p.override_settings.pop('sd_model_checkpoint', None)
sd_models.reload_model_weights() sd_models.reload_model_weights()
@ -663,8 +682,8 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
else: else:
p.all_subseeds = [int(subseed) + x for x in range(len(p.all_prompts))] p.all_subseeds = [int(subseed) + x for x in range(len(p.all_prompts))]
def infotext(iteration=0, position_in_batch=0): def infotext(iteration=0, position_in_batch=0, use_main_prompt=False):
return create_infotext(p, p.all_prompts, p.all_seeds, p.all_subseeds, comments, iteration, position_in_batch) return create_infotext(p, p.all_prompts, p.all_seeds, p.all_subseeds, comments, iteration, position_in_batch, use_main_prompt)
if os.path.exists(cmd_opts.embeddings_dir) and not p.do_not_reload_embeddings: if os.path.exists(cmd_opts.embeddings_dir) and not p.do_not_reload_embeddings:
model_hijack.embedding_db.load_textual_inversion_embeddings() model_hijack.embedding_db.load_textual_inversion_embeddings()
@ -728,10 +747,11 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
p.setup_conds() p.setup_conds()
if len(model_hijack.comments) > 0:
for comment in model_hijack.comments: for comment in model_hijack.comments:
comments[comment] = 1 comments[comment] = 1
p.extra_generation_params.update(model_hijack.extra_generation_params)
if p.n_iter > 1: if p.n_iter > 1:
shared.state.job = f"Batch {n+1} out of {p.n_iter}" shared.state.job = f"Batch {n+1} out of {p.n_iter}"
@ -824,7 +844,7 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
grid = images.image_grid(output_images, p.batch_size) grid = images.image_grid(output_images, p.batch_size)
if opts.return_grid: if opts.return_grid:
text = infotext() text = infotext(use_main_prompt=True)
infotexts.insert(0, text) infotexts.insert(0, text)
if opts.enable_pnginfo: if opts.enable_pnginfo:
grid.info["parameters"] = text grid.info["parameters"] = text
@ -832,7 +852,7 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
index_of_first_image = 1 index_of_first_image = 1
if opts.grid_save: if opts.grid_save:
images.save_image(grid, p.outpath_grids, "grid", p.all_seeds[0], p.all_prompts[0], opts.grid_format, info=infotext(), short_filename=not opts.grid_extended_filename, p=p, grid=True) images.save_image(grid, p.outpath_grids, "grid", p.all_seeds[0], p.all_prompts[0], opts.grid_format, info=infotext(use_main_prompt=True), short_filename=not opts.grid_extended_filename, p=p, grid=True)
if not p.disable_extra_networks and p.extra_network_data: if not p.disable_extra_networks and p.extra_network_data:
extra_networks.deactivate(p, p.extra_network_data) extra_networks.deactivate(p, p.extra_network_data)
@ -1074,6 +1094,9 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
sd_models.apply_token_merging(self.sd_model, self.get_token_merging_ratio(for_hr=True)) sd_models.apply_token_merging(self.sd_model, self.get_token_merging_ratio(for_hr=True))
if self.scripts is not None:
self.scripts.before_hr(self)
samples = self.sampler.sample_img2img(self, samples, noise, self.hr_c, self.hr_uc, steps=self.hr_second_pass_steps or self.steps, image_conditioning=image_conditioning) samples = self.sampler.sample_img2img(self, samples, noise, self.hr_c, self.hr_uc, steps=self.hr_second_pass_steps or self.steps, image_conditioning=image_conditioning)
sd_models.apply_token_merging(self.sd_model, self.get_token_merging_ratio()) sd_models.apply_token_merging(self.sd_model, self.get_token_merging_ratio())
@ -1280,7 +1303,7 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
image = torch.from_numpy(batch_images) image = torch.from_numpy(batch_images)
image = 2. * image - 1. image = 2. * image - 1.
image = image.to(shared.device) image = image.to(shared.device, dtype=devices.dtype_vae)
self.init_latent = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(image)) self.init_latent = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(image))

View File

@ -1,3 +1,5 @@
from __future__ import annotations
import re import re
from collections import namedtuple from collections import namedtuple
from typing import List from typing import List
@ -109,7 +111,25 @@ def get_learned_conditioning_prompt_schedules(prompts, steps):
ScheduledPromptConditioning = namedtuple("ScheduledPromptConditioning", ["end_at_step", "cond"]) ScheduledPromptConditioning = namedtuple("ScheduledPromptConditioning", ["end_at_step", "cond"])
def get_learned_conditioning(model, prompts, steps): class SdConditioning(list):
"""
A list with prompts for stable diffusion's conditioner model.
Can also specify width and height of created image - SDXL needs it.
"""
def __init__(self, prompts, is_negative_prompt=False, width=None, height=None, copy_from=None):
super().__init__()
self.extend(prompts)
if copy_from is None:
copy_from = prompts
self.is_negative_prompt = is_negative_prompt or getattr(copy_from, 'is_negative_prompt', False)
self.width = width or getattr(copy_from, 'width', None)
self.height = height or getattr(copy_from, 'height', None)
def get_learned_conditioning(model, prompts: SdConditioning | list[str], steps):
"""converts a list of prompts into a list of prompt schedules - each schedule is a list of ScheduledPromptConditioning, specifying the comdition (cond), """converts a list of prompts into a list of prompt schedules - each schedule is a list of ScheduledPromptConditioning, specifying the comdition (cond),
and the sampling step at which this condition is to be replaced by the next one. and the sampling step at which this condition is to be replaced by the next one.
@ -139,12 +159,17 @@ def get_learned_conditioning(model, prompts, steps):
res.append(cached) res.append(cached)
continue continue
texts = [x[1] for x in prompt_schedule] texts = SdConditioning([x[1] for x in prompt_schedule], copy_from=prompts)
conds = model.get_learned_conditioning(texts) conds = model.get_learned_conditioning(texts)
cond_schedule = [] cond_schedule = []
for i, (end_at_step, _) in enumerate(prompt_schedule): for i, (end_at_step, _) in enumerate(prompt_schedule):
cond_schedule.append(ScheduledPromptConditioning(end_at_step, conds[i])) if isinstance(conds, dict):
cond = {k: v[i] for k, v in conds.items()}
else:
cond = conds[i]
cond_schedule.append(ScheduledPromptConditioning(end_at_step, cond))
cache[prompt] = cond_schedule cache[prompt] = cond_schedule
res.append(cond_schedule) res.append(cond_schedule)
@ -155,11 +180,13 @@ def get_learned_conditioning(model, prompts, steps):
re_AND = re.compile(r"\bAND\b") re_AND = re.compile(r"\bAND\b")
re_weight = re.compile(r"^(.*?)(?:\s*:\s*([-+]?(?:\d+\.?|\d*\.\d+)))?\s*$") re_weight = re.compile(r"^(.*?)(?:\s*:\s*([-+]?(?:\d+\.?|\d*\.\d+)))?\s*$")
def get_multicond_prompt_list(prompts):
def get_multicond_prompt_list(prompts: SdConditioning | list[str]):
res_indexes = [] res_indexes = []
prompt_flat_list = []
prompt_indexes = {} prompt_indexes = {}
prompt_flat_list = SdConditioning(prompts)
prompt_flat_list.clear()
for prompt in prompts: for prompt in prompts:
subprompts = re_AND.split(prompt) subprompts = re_AND.split(prompt)
@ -196,6 +223,7 @@ class MulticondLearnedConditioning:
self.shape: tuple = shape # the shape field is needed to send this object to DDIM/PLMS self.shape: tuple = shape # the shape field is needed to send this object to DDIM/PLMS
self.batch: List[List[ComposableScheduledPromptConditioning]] = batch self.batch: List[List[ComposableScheduledPromptConditioning]] = batch
def get_multicond_learned_conditioning(model, prompts, steps) -> MulticondLearnedConditioning: def get_multicond_learned_conditioning(model, prompts, steps) -> MulticondLearnedConditioning:
"""same as get_learned_conditioning, but returns a list of ScheduledPromptConditioning along with the weight objects for each prompt. """same as get_learned_conditioning, but returns a list of ScheduledPromptConditioning along with the weight objects for each prompt.
For each prompt, the list is obtained by splitting the prompt using the AND separator. For each prompt, the list is obtained by splitting the prompt using the AND separator.
@ -214,20 +242,57 @@ def get_multicond_learned_conditioning(model, prompts, steps) -> MulticondLearne
return MulticondLearnedConditioning(shape=(len(prompts),), batch=res) return MulticondLearnedConditioning(shape=(len(prompts),), batch=res)
class DictWithShape(dict):
def __init__(self, x, shape):
super().__init__()
self.update(x)
@property
def shape(self):
return self["crossattn"].shape
def reconstruct_cond_batch(c: List[List[ScheduledPromptConditioning]], current_step): def reconstruct_cond_batch(c: List[List[ScheduledPromptConditioning]], current_step):
param = c[0][0].cond param = c[0][0].cond
is_dict = isinstance(param, dict)
if is_dict:
dict_cond = param
res = {k: torch.zeros((len(c),) + param.shape, device=param.device, dtype=param.dtype) for k, param in dict_cond.items()}
res = DictWithShape(res, (len(c),) + dict_cond['crossattn'].shape)
else:
res = torch.zeros((len(c),) + param.shape, device=param.device, dtype=param.dtype) res = torch.zeros((len(c),) + param.shape, device=param.device, dtype=param.dtype)
for i, cond_schedule in enumerate(c): for i, cond_schedule in enumerate(c):
target_index = 0 target_index = 0
for current, entry in enumerate(cond_schedule): for current, entry in enumerate(cond_schedule):
if current_step <= entry.end_at_step: if current_step <= entry.end_at_step:
target_index = current target_index = current
break break
if is_dict:
for k, param in cond_schedule[target_index].cond.items():
res[k][i] = param
else:
res[i] = cond_schedule[target_index].cond res[i] = cond_schedule[target_index].cond
return res return res
def stack_conds(tensors):
# if prompts have wildly different lengths above the limit we'll get tensors of different shapes
# and won't be able to torch.stack them. So this fixes that.
token_count = max([x.shape[0] for x in tensors])
for i in range(len(tensors)):
if tensors[i].shape[0] != token_count:
last_vector = tensors[i][-1:]
last_vector_repeated = last_vector.repeat([token_count - tensors[i].shape[0], 1])
tensors[i] = torch.vstack([tensors[i], last_vector_repeated])
return torch.stack(tensors)
def reconstruct_multicond_batch(c: MulticondLearnedConditioning, current_step): def reconstruct_multicond_batch(c: MulticondLearnedConditioning, current_step):
param = c.batch[0][0].schedules[0].cond param = c.batch[0][0].schedules[0].cond
@ -249,16 +314,14 @@ def reconstruct_multicond_batch(c: MulticondLearnedConditioning, current_step):
conds_list.append(conds_for_batch) conds_list.append(conds_for_batch)
# if prompts have wildly different lengths above the limit we'll get tensors fo different shapes if isinstance(tensors[0], dict):
# and won't be able to torch.stack them. So this fixes that. keys = list(tensors[0].keys())
token_count = max([x.shape[0] for x in tensors]) stacked = {k: stack_conds([x[k] for x in tensors]) for k in keys}
for i in range(len(tensors)): stacked = DictWithShape(stacked, stacked['crossattn'].shape)
if tensors[i].shape[0] != token_count: else:
last_vector = tensors[i][-1:] stacked = stack_conds(tensors).to(device=param.device, dtype=param.dtype)
last_vector_repeated = last_vector.repeat([token_count - tensors[i].shape[0], 1])
tensors[i] = torch.vstack([tensors[i], last_vector_repeated])
return conds_list, torch.stack(tensors).to(device=param.device, dtype=param.dtype) return conds_list, stacked
re_attention = re.compile(r""" re_attention = re.compile(r"""

View File

@ -2,7 +2,6 @@ import os
import numpy as np import numpy as np
from PIL import Image from PIL import Image
from basicsr.utils.download_util import load_file_from_url
from realesrgan import RealESRGANer from realesrgan import RealESRGANer
from modules.upscaler import Upscaler, UpscalerData from modules.upscaler import Upscaler, UpscalerData
@ -43,9 +42,10 @@ class UpscalerRealESRGAN(Upscaler):
if not self.enable: if not self.enable:
return img return img
try:
info = self.load_model(path) info = self.load_model(path)
if not os.path.exists(info.local_data_path): except Exception:
print(f"Unable to load RealESRGAN model: {info.name}") errors.report(f"Unable to load RealESRGAN model {path}", exc_info=True)
return img return img
upsampler = RealESRGANer( upsampler = RealESRGANer(
@ -63,20 +63,17 @@ class UpscalerRealESRGAN(Upscaler):
return image return image
def load_model(self, path): def load_model(self, path):
try: for scaler in self.scalers:
info = next(iter([scaler for scaler in self.scalers if scaler.data_path == path]), None) if scaler.data_path == path:
if scaler.local_data_path.startswith("http"):
if info is None: scaler.local_data_path = modelloader.load_file_from_url(
print(f"Unable to find model info: {path}") scaler.data_path,
return None model_dir=self.model_download_path,
)
if info.local_data_path.startswith("http"): if not os.path.exists(scaler.local_data_path):
info.local_data_path = load_file_from_url(url=info.data_path, model_dir=self.model_download_path, progress=True) raise FileNotFoundError(f"RealESRGAN data missing: {scaler.local_data_path}")
return scaler
return info raise ValueError(f"Unable to find model info: {path}")
except Exception:
errors.report("Error making Real-ESRGAN models list", exc_info=True)
return None
def load_models(self, _): def load_models(self, _):
return get_realesrgan_models(self) return get_realesrgan_models(self)

View File

@ -1,6 +1,7 @@
import os import os
import re import re
import sys import sys
import inspect
from collections import namedtuple from collections import namedtuple
import gradio as gr import gradio as gr
@ -116,6 +117,21 @@ class Script:
pass pass
def after_extra_networks_activate(self, p, *args, **kwargs):
"""
Calledafter extra networks activation, before conds calculation
allow modification of the network after extra networks activation been applied
won't be call if p.disable_extra_networks
**kwargs will have those items:
- batch_number - index of current batch, from 0 to number of batches-1
- prompts - list of prompts for current batch; you can change contents of this list but changing the number of entries will likely break things
- seeds - list of seeds for current batch
- subseeds - list of subseeds for current batch
- extra_network_data - list of ExtraNetworkParams for current stage
"""
pass
def process_batch(self, p, *args, **kwargs): def process_batch(self, p, *args, **kwargs):
""" """
Same as process(), but called for every batch. Same as process(), but called for every batch.
@ -186,6 +202,11 @@ class Script:
return f'script_{tabname}{title}_{item_id}' return f'script_{tabname}{title}_{item_id}'
def before_hr(self, p, *args):
"""
This function is called before hires fix start.
"""
pass
current_basedir = paths.script_path current_basedir = paths.script_path
@ -249,7 +270,7 @@ def load_scripts():
def register_scripts_from_module(module): def register_scripts_from_module(module):
for script_class in module.__dict__.values(): for script_class in module.__dict__.values():
if type(script_class) != type: if not inspect.isclass(script_class):
continue continue
if issubclass(script_class, Script): if issubclass(script_class, Script):
@ -483,6 +504,14 @@ class ScriptRunner:
except Exception: except Exception:
errors.report(f"Error running before_process_batch: {script.filename}", exc_info=True) errors.report(f"Error running before_process_batch: {script.filename}", exc_info=True)
def after_extra_networks_activate(self, p, **kwargs):
for script in self.alwayson_scripts:
try:
script_args = p.script_args[script.args_from:script.args_to]
script.after_extra_networks_activate(p, *script_args, **kwargs)
except Exception:
errors.report(f"Error running after_extra_networks_activate: {script.filename}", exc_info=True)
def process_batch(self, p, **kwargs): def process_batch(self, p, **kwargs):
for script in self.alwayson_scripts: for script in self.alwayson_scripts:
try: try:
@ -548,6 +577,15 @@ class ScriptRunner:
self.scripts[si].args_to = args_to self.scripts[si].args_to = args_to
def before_hr(self, p):
for script in self.alwayson_scripts:
try:
script_args = p.script_args[script.args_from:script.args_to]
script.before_hr(p, *script_args)
except Exception:
errors.report(f"Error running before_hr: {script.filename}", exc_info=True)
scripts_txt2img: ScriptRunner = None scripts_txt2img: ScriptRunner = None
scripts_img2img: ScriptRunner = None scripts_img2img: ScriptRunner = None
scripts_postproc: scripts_postprocessing.ScriptPostprocessingRunner = None scripts_postproc: scripts_postprocessing.ScriptPostprocessingRunner = None

View File

@ -15,6 +15,11 @@ import ldm.models.diffusion.ddim
import ldm.models.diffusion.plms import ldm.models.diffusion.plms
import ldm.modules.encoders.modules import ldm.modules.encoders.modules
import sgm.modules.attention
import sgm.modules.diffusionmodules.model
import sgm.modules.diffusionmodules.openaimodel
import sgm.modules.encoders.modules
attention_CrossAttention_forward = ldm.modules.attention.CrossAttention.forward attention_CrossAttention_forward = ldm.modules.attention.CrossAttention.forward
diffusionmodules_model_nonlinearity = ldm.modules.diffusionmodules.model.nonlinearity diffusionmodules_model_nonlinearity = ldm.modules.diffusionmodules.model.nonlinearity
diffusionmodules_model_AttnBlock_forward = ldm.modules.diffusionmodules.model.AttnBlock.forward diffusionmodules_model_AttnBlock_forward = ldm.modules.diffusionmodules.model.AttnBlock.forward
@ -56,6 +61,9 @@ def apply_optimizations(option=None):
ldm.modules.diffusionmodules.model.nonlinearity = silu ldm.modules.diffusionmodules.model.nonlinearity = silu
ldm.modules.diffusionmodules.openaimodel.th = sd_hijack_unet.th ldm.modules.diffusionmodules.openaimodel.th = sd_hijack_unet.th
sgm.modules.diffusionmodules.model.nonlinearity = silu
sgm.modules.diffusionmodules.openaimodel.th = sd_hijack_unet.th
if current_optimizer is not None: if current_optimizer is not None:
current_optimizer.undo() current_optimizer.undo()
current_optimizer = None current_optimizer = None
@ -89,6 +97,10 @@ def undo_optimizations():
ldm.modules.attention.CrossAttention.forward = hypernetwork.attention_CrossAttention_forward ldm.modules.attention.CrossAttention.forward = hypernetwork.attention_CrossAttention_forward
ldm.modules.diffusionmodules.model.AttnBlock.forward = diffusionmodules_model_AttnBlock_forward ldm.modules.diffusionmodules.model.AttnBlock.forward = diffusionmodules_model_AttnBlock_forward
sgm.modules.diffusionmodules.model.nonlinearity = diffusionmodules_model_nonlinearity
sgm.modules.attention.CrossAttention.forward = hypernetwork.attention_CrossAttention_forward
sgm.modules.diffusionmodules.model.AttnBlock.forward = diffusionmodules_model_AttnBlock_forward
def fix_checkpoint(): def fix_checkpoint():
"""checkpoints are now added and removed in embedding/hypernet code, since torch doesn't want """checkpoints are now added and removed in embedding/hypernet code, since torch doesn't want
@ -147,7 +159,6 @@ def undo_weighted_forward(sd_model):
class StableDiffusionModelHijack: class StableDiffusionModelHijack:
fixes = None fixes = None
comments = []
layers = None layers = None
circular_enabled = False circular_enabled = False
clip = None clip = None
@ -156,6 +167,9 @@ class StableDiffusionModelHijack:
embedding_db = modules.textual_inversion.textual_inversion.EmbeddingDatabase() embedding_db = modules.textual_inversion.textual_inversion.EmbeddingDatabase()
def __init__(self): def __init__(self):
self.extra_generation_params = {}
self.comments = []
self.embedding_db.add_embedding_dir(cmd_opts.embeddings_dir) self.embedding_db.add_embedding_dir(cmd_opts.embeddings_dir)
def apply_optimizations(self, option=None): def apply_optimizations(self, option=None):
@ -166,6 +180,32 @@ class StableDiffusionModelHijack:
undo_optimizations() undo_optimizations()
def hijack(self, m): def hijack(self, m):
conditioner = getattr(m, 'conditioner', None)
if conditioner:
text_cond_models = []
for i in range(len(conditioner.embedders)):
embedder = conditioner.embedders[i]
typename = type(embedder).__name__
if typename == 'FrozenOpenCLIPEmbedder':
embedder.model.token_embedding = EmbeddingsWithFixes(embedder.model.token_embedding, self)
conditioner.embedders[i] = sd_hijack_open_clip.FrozenOpenCLIPEmbedderWithCustomWords(embedder, self)
text_cond_models.append(conditioner.embedders[i])
if typename == 'FrozenCLIPEmbedder':
model_embeddings = embedder.transformer.text_model.embeddings
model_embeddings.token_embedding = EmbeddingsWithFixes(model_embeddings.token_embedding, self)
conditioner.embedders[i] = sd_hijack_clip.FrozenCLIPEmbedderForSDXLWithCustomWords(embedder, self)
text_cond_models.append(conditioner.embedders[i])
if typename == 'FrozenOpenCLIPEmbedder2':
embedder.model.token_embedding = EmbeddingsWithFixes(embedder.model.token_embedding, self)
conditioner.embedders[i] = sd_hijack_open_clip.FrozenOpenCLIPEmbedder2WithCustomWords(embedder, self)
text_cond_models.append(conditioner.embedders[i])
if len(text_cond_models) == 1:
m.cond_stage_model = text_cond_models[0]
else:
m.cond_stage_model = conditioner
if type(m.cond_stage_model) == xlmr.BertSeriesModelWithTransformation: if type(m.cond_stage_model) == xlmr.BertSeriesModelWithTransformation:
model_embeddings = m.cond_stage_model.roberta.embeddings model_embeddings = m.cond_stage_model.roberta.embeddings
model_embeddings.token_embedding = EmbeddingsWithFixes(model_embeddings.word_embeddings, self) model_embeddings.token_embedding = EmbeddingsWithFixes(model_embeddings.word_embeddings, self)
@ -236,6 +276,7 @@ class StableDiffusionModelHijack:
def clear_comments(self): def clear_comments(self):
self.comments = [] self.comments = []
self.extra_generation_params = {}
def get_prompt_lengths(self, text): def get_prompt_lengths(self, text):
if self.clip is None: if self.clip is None:

View File

@ -42,6 +42,10 @@ class FrozenCLIPEmbedderWithCustomWordsBase(torch.nn.Module):
self.hijack: sd_hijack.StableDiffusionModelHijack = hijack self.hijack: sd_hijack.StableDiffusionModelHijack = hijack
self.chunk_length = 75 self.chunk_length = 75
self.is_trainable = getattr(wrapped, 'is_trainable', False)
self.input_key = getattr(wrapped, 'input_key', 'txt')
self.legacy_ucg_val = None
def empty_chunk(self): def empty_chunk(self):
"""creates an empty PromptChunk and returns it""" """creates an empty PromptChunk and returns it"""
@ -199,8 +203,9 @@ class FrozenCLIPEmbedderWithCustomWordsBase(torch.nn.Module):
""" """
Accepts an array of texts; Passes texts through transformers network to create a tensor with numerical representation of those texts. Accepts an array of texts; Passes texts through transformers network to create a tensor with numerical representation of those texts.
Returns a tensor with shape of (B, T, C), where B is length of the array; T is length, in tokens, of texts (including padding) - T will Returns a tensor with shape of (B, T, C), where B is length of the array; T is length, in tokens, of texts (including padding) - T will
be a multiple of 77; and C is dimensionality of each token - for SD1 it's 768, and for SD2 it's 1024. be a multiple of 77; and C is dimensionality of each token - for SD1 it's 768, for SD2 it's 1024, and for SDXL it's 1280.
An example shape returned by this function can be: (2, 77, 768). An example shape returned by this function can be: (2, 77, 768).
For SDXL, instead of returning one tensor avobe, it returns a tuple with two: the other one with shape (B, 1280) with pooled values.
Webui usually sends just one text at a time through this function - the only time when texts is an array with more than one elemenet Webui usually sends just one text at a time through this function - the only time when texts is an array with more than one elemenet
is when you do prompt editing: "a picture of a [cat:dog:0.4] eating ice cream" is when you do prompt editing: "a picture of a [cat:dog:0.4] eating ice cream"
""" """
@ -229,10 +234,22 @@ class FrozenCLIPEmbedderWithCustomWordsBase(torch.nn.Module):
z = self.process_tokens(tokens, multipliers) z = self.process_tokens(tokens, multipliers)
zs.append(z) zs.append(z)
if len(used_embeddings) > 0: if opts.textual_inversion_add_hashes_to_infotext and used_embeddings:
embeddings_list = ", ".join([f'{name} [{embedding.checksum()}]' for name, embedding in used_embeddings.items()]) hashes = []
self.hijack.comments.append(f"Used embeddings: {embeddings_list}") for name, embedding in used_embeddings.items():
shorthash = embedding.shorthash
if not shorthash:
continue
name = name.replace(":", "").replace(",", "")
hashes.append(f"{name}: {shorthash}")
if hashes:
self.hijack.extra_generation_params["TI hashes"] = ", ".join(hashes)
if getattr(self.wrapped, 'return_pooled', False):
return torch.hstack(zs), zs[0].pooled
else:
return torch.hstack(zs) return torch.hstack(zs)
def process_tokens(self, remade_batch_tokens, batch_multipliers): def process_tokens(self, remade_batch_tokens, batch_multipliers):
@ -256,9 +273,9 @@ class FrozenCLIPEmbedderWithCustomWordsBase(torch.nn.Module):
# restoring original mean is likely not correct, but it seems to work well to prevent artifacts that happen otherwise # restoring original mean is likely not correct, but it seems to work well to prevent artifacts that happen otherwise
batch_multipliers = torch.asarray(batch_multipliers).to(devices.device) batch_multipliers = torch.asarray(batch_multipliers).to(devices.device)
original_mean = z.mean() original_mean = z.mean()
z = z * batch_multipliers.reshape(batch_multipliers.shape + (1,)).expand(z.shape) z *= batch_multipliers.reshape(batch_multipliers.shape + (1,)).expand(z.shape)
new_mean = z.mean() new_mean = z.mean()
z = z * (original_mean / new_mean) z *= (original_mean / new_mean)
return z return z
@ -315,3 +332,18 @@ class FrozenCLIPEmbedderWithCustomWords(FrozenCLIPEmbedderWithCustomWordsBase):
embedded = embedding_layer.token_embedding.wrapped(ids.to(embedding_layer.token_embedding.wrapped.weight.device)).squeeze(0) embedded = embedding_layer.token_embedding.wrapped(ids.to(embedding_layer.token_embedding.wrapped.weight.device)).squeeze(0)
return embedded return embedded
class FrozenCLIPEmbedderForSDXLWithCustomWords(FrozenCLIPEmbedderWithCustomWords):
def __init__(self, wrapped, hijack):
super().__init__(wrapped, hijack)
def encode_with_transformers(self, tokens):
outputs = self.wrapped.transformer(input_ids=tokens, output_hidden_states=self.wrapped.layer == "hidden")
if self.wrapped.layer == "last":
z = outputs.last_hidden_state
else:
z = outputs.hidden_states[self.wrapped.layer_idx]
return z

View File

@ -32,6 +32,40 @@ class FrozenOpenCLIPEmbedderWithCustomWords(sd_hijack_clip.FrozenCLIPEmbedderWit
def encode_embedding_init_text(self, init_text, nvpt): def encode_embedding_init_text(self, init_text, nvpt):
ids = tokenizer.encode(init_text) ids = tokenizer.encode(init_text)
ids = torch.asarray([ids], device=devices.device, dtype=torch.int) ids = torch.asarray([ids], device=devices.device, dtype=torch.int)
embedded = self.wrapped.model.token_embedding.wrapped(ids).squeeze(0) embedded = self.wrapped.model.token_embedding.wrapped(ids.to(self.wrapped.model.token_embedding.wrapped.weight.device)).squeeze(0)
return embedded
class FrozenOpenCLIPEmbedder2WithCustomWords(sd_hijack_clip.FrozenCLIPEmbedderWithCustomWordsBase):
def __init__(self, wrapped, hijack):
super().__init__(wrapped, hijack)
self.comma_token = [v for k, v in tokenizer.encoder.items() if k == ',</w>'][0]
self.id_start = tokenizer.encoder["<start_of_text>"]
self.id_end = tokenizer.encoder["<end_of_text>"]
self.id_pad = 0
def tokenize(self, texts):
assert not opts.use_old_emphasis_implementation, 'Old emphasis implementation not supported for Open Clip'
tokenized = [tokenizer.encode(text) for text in texts]
return tokenized
def encode_with_transformers(self, tokens):
d = self.wrapped.encode_with_transformer(tokens)
z = d[self.wrapped.layer]
pooled = d.get("pooled")
if pooled is not None:
z.pooled = pooled
return z
def encode_embedding_init_text(self, init_text, nvpt):
ids = tokenizer.encode(init_text)
ids = torch.asarray([ids], device=devices.device, dtype=torch.int)
embedded = self.wrapped.model.token_embedding.wrapped(ids.to(self.wrapped.model.token_embedding.wrapped.weight.device)).squeeze(0)
return embedded return embedded

View File

@ -14,7 +14,11 @@ from modules.hypernetworks import hypernetwork
import ldm.modules.attention import ldm.modules.attention
import ldm.modules.diffusionmodules.model import ldm.modules.diffusionmodules.model
import sgm.modules.attention
import sgm.modules.diffusionmodules.model
diffusionmodules_model_AttnBlock_forward = ldm.modules.diffusionmodules.model.AttnBlock.forward diffusionmodules_model_AttnBlock_forward = ldm.modules.diffusionmodules.model.AttnBlock.forward
sgm_diffusionmodules_model_AttnBlock_forward = sgm.modules.diffusionmodules.model.AttnBlock.forward
class SdOptimization: class SdOptimization:
@ -39,6 +43,9 @@ class SdOptimization:
ldm.modules.attention.CrossAttention.forward = hypernetwork.attention_CrossAttention_forward ldm.modules.attention.CrossAttention.forward = hypernetwork.attention_CrossAttention_forward
ldm.modules.diffusionmodules.model.AttnBlock.forward = diffusionmodules_model_AttnBlock_forward ldm.modules.diffusionmodules.model.AttnBlock.forward = diffusionmodules_model_AttnBlock_forward
sgm.modules.attention.CrossAttention.forward = hypernetwork.attention_CrossAttention_forward
sgm.modules.diffusionmodules.model.AttnBlock.forward = sgm_diffusionmodules_model_AttnBlock_forward
class SdOptimizationXformers(SdOptimization): class SdOptimizationXformers(SdOptimization):
name = "xformers" name = "xformers"
@ -51,6 +58,8 @@ class SdOptimizationXformers(SdOptimization):
def apply(self): def apply(self):
ldm.modules.attention.CrossAttention.forward = xformers_attention_forward ldm.modules.attention.CrossAttention.forward = xformers_attention_forward
ldm.modules.diffusionmodules.model.AttnBlock.forward = xformers_attnblock_forward ldm.modules.diffusionmodules.model.AttnBlock.forward = xformers_attnblock_forward
sgm.modules.attention.CrossAttention.forward = xformers_attention_forward
sgm.modules.diffusionmodules.model.AttnBlock.forward = xformers_attnblock_forward
class SdOptimizationSdpNoMem(SdOptimization): class SdOptimizationSdpNoMem(SdOptimization):
@ -65,6 +74,8 @@ class SdOptimizationSdpNoMem(SdOptimization):
def apply(self): def apply(self):
ldm.modules.attention.CrossAttention.forward = scaled_dot_product_no_mem_attention_forward ldm.modules.attention.CrossAttention.forward = scaled_dot_product_no_mem_attention_forward
ldm.modules.diffusionmodules.model.AttnBlock.forward = sdp_no_mem_attnblock_forward ldm.modules.diffusionmodules.model.AttnBlock.forward = sdp_no_mem_attnblock_forward
sgm.modules.attention.CrossAttention.forward = scaled_dot_product_no_mem_attention_forward
sgm.modules.diffusionmodules.model.AttnBlock.forward = sdp_no_mem_attnblock_forward
class SdOptimizationSdp(SdOptimizationSdpNoMem): class SdOptimizationSdp(SdOptimizationSdpNoMem):
@ -76,6 +87,8 @@ class SdOptimizationSdp(SdOptimizationSdpNoMem):
def apply(self): def apply(self):
ldm.modules.attention.CrossAttention.forward = scaled_dot_product_attention_forward ldm.modules.attention.CrossAttention.forward = scaled_dot_product_attention_forward
ldm.modules.diffusionmodules.model.AttnBlock.forward = sdp_attnblock_forward ldm.modules.diffusionmodules.model.AttnBlock.forward = sdp_attnblock_forward
sgm.modules.attention.CrossAttention.forward = scaled_dot_product_attention_forward
sgm.modules.diffusionmodules.model.AttnBlock.forward = sdp_attnblock_forward
class SdOptimizationSubQuad(SdOptimization): class SdOptimizationSubQuad(SdOptimization):
@ -86,6 +99,8 @@ class SdOptimizationSubQuad(SdOptimization):
def apply(self): def apply(self):
ldm.modules.attention.CrossAttention.forward = sub_quad_attention_forward ldm.modules.attention.CrossAttention.forward = sub_quad_attention_forward
ldm.modules.diffusionmodules.model.AttnBlock.forward = sub_quad_attnblock_forward ldm.modules.diffusionmodules.model.AttnBlock.forward = sub_quad_attnblock_forward
sgm.modules.attention.CrossAttention.forward = sub_quad_attention_forward
sgm.modules.diffusionmodules.model.AttnBlock.forward = sub_quad_attnblock_forward
class SdOptimizationV1(SdOptimization): class SdOptimizationV1(SdOptimization):
@ -94,9 +109,9 @@ class SdOptimizationV1(SdOptimization):
cmd_opt = "opt_split_attention_v1" cmd_opt = "opt_split_attention_v1"
priority = 10 priority = 10
def apply(self): def apply(self):
ldm.modules.attention.CrossAttention.forward = split_cross_attention_forward_v1 ldm.modules.attention.CrossAttention.forward = split_cross_attention_forward_v1
sgm.modules.attention.CrossAttention.forward = split_cross_attention_forward_v1
class SdOptimizationInvokeAI(SdOptimization): class SdOptimizationInvokeAI(SdOptimization):
@ -109,6 +124,7 @@ class SdOptimizationInvokeAI(SdOptimization):
def apply(self): def apply(self):
ldm.modules.attention.CrossAttention.forward = split_cross_attention_forward_invokeAI ldm.modules.attention.CrossAttention.forward = split_cross_attention_forward_invokeAI
sgm.modules.attention.CrossAttention.forward = split_cross_attention_forward_invokeAI
class SdOptimizationDoggettx(SdOptimization): class SdOptimizationDoggettx(SdOptimization):
@ -119,6 +135,8 @@ class SdOptimizationDoggettx(SdOptimization):
def apply(self): def apply(self):
ldm.modules.attention.CrossAttention.forward = split_cross_attention_forward ldm.modules.attention.CrossAttention.forward = split_cross_attention_forward
ldm.modules.diffusionmodules.model.AttnBlock.forward = cross_attention_attnblock_forward ldm.modules.diffusionmodules.model.AttnBlock.forward = cross_attention_attnblock_forward
sgm.modules.attention.CrossAttention.forward = split_cross_attention_forward
sgm.modules.diffusionmodules.model.AttnBlock.forward = cross_attention_attnblock_forward
def list_optimizers(res): def list_optimizers(res):
@ -155,7 +173,7 @@ def get_available_vram():
# see https://github.com/basujindal/stable-diffusion/pull/117 for discussion # see https://github.com/basujindal/stable-diffusion/pull/117 for discussion
def split_cross_attention_forward_v1(self, x, context=None, mask=None): def split_cross_attention_forward_v1(self, x, context=None, mask=None, **kwargs):
h = self.heads h = self.heads
q_in = self.to_q(x) q_in = self.to_q(x)
@ -196,7 +214,7 @@ def split_cross_attention_forward_v1(self, x, context=None, mask=None):
# taken from https://github.com/Doggettx/stable-diffusion and modified # taken from https://github.com/Doggettx/stable-diffusion and modified
def split_cross_attention_forward(self, x, context=None, mask=None): def split_cross_attention_forward(self, x, context=None, mask=None, **kwargs):
h = self.heads h = self.heads
q_in = self.to_q(x) q_in = self.to_q(x)
@ -262,11 +280,13 @@ def split_cross_attention_forward(self, x, context=None, mask=None):
# -- Taken from https://github.com/invoke-ai/InvokeAI and modified -- # -- Taken from https://github.com/invoke-ai/InvokeAI and modified --
mem_total_gb = psutil.virtual_memory().total // (1 << 30) mem_total_gb = psutil.virtual_memory().total // (1 << 30)
def einsum_op_compvis(q, k, v): def einsum_op_compvis(q, k, v):
s = einsum('b i d, b j d -> b i j', q, k) s = einsum('b i d, b j d -> b i j', q, k)
s = s.softmax(dim=-1, dtype=s.dtype) s = s.softmax(dim=-1, dtype=s.dtype)
return einsum('b i j, b j d -> b i d', s, v) return einsum('b i j, b j d -> b i d', s, v)
def einsum_op_slice_0(q, k, v, slice_size): def einsum_op_slice_0(q, k, v, slice_size):
r = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype) r = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype)
for i in range(0, q.shape[0], slice_size): for i in range(0, q.shape[0], slice_size):
@ -274,6 +294,7 @@ def einsum_op_slice_0(q, k, v, slice_size):
r[i:end] = einsum_op_compvis(q[i:end], k[i:end], v[i:end]) r[i:end] = einsum_op_compvis(q[i:end], k[i:end], v[i:end])
return r return r
def einsum_op_slice_1(q, k, v, slice_size): def einsum_op_slice_1(q, k, v, slice_size):
r = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype) r = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype)
for i in range(0, q.shape[1], slice_size): for i in range(0, q.shape[1], slice_size):
@ -281,6 +302,7 @@ def einsum_op_slice_1(q, k, v, slice_size):
r[:, i:end] = einsum_op_compvis(q[:, i:end], k, v) r[:, i:end] = einsum_op_compvis(q[:, i:end], k, v)
return r return r
def einsum_op_mps_v1(q, k, v): def einsum_op_mps_v1(q, k, v):
if q.shape[0] * q.shape[1] <= 2**16: # (512x512) max q.shape[1]: 4096 if q.shape[0] * q.shape[1] <= 2**16: # (512x512) max q.shape[1]: 4096
return einsum_op_compvis(q, k, v) return einsum_op_compvis(q, k, v)
@ -290,12 +312,14 @@ def einsum_op_mps_v1(q, k, v):
slice_size -= 1 slice_size -= 1
return einsum_op_slice_1(q, k, v, slice_size) return einsum_op_slice_1(q, k, v, slice_size)
def einsum_op_mps_v2(q, k, v): def einsum_op_mps_v2(q, k, v):
if mem_total_gb > 8 and q.shape[0] * q.shape[1] <= 2**16: if mem_total_gb > 8 and q.shape[0] * q.shape[1] <= 2**16:
return einsum_op_compvis(q, k, v) return einsum_op_compvis(q, k, v)
else: else:
return einsum_op_slice_0(q, k, v, 1) return einsum_op_slice_0(q, k, v, 1)
def einsum_op_tensor_mem(q, k, v, max_tensor_mb): def einsum_op_tensor_mem(q, k, v, max_tensor_mb):
size_mb = q.shape[0] * q.shape[1] * k.shape[1] * q.element_size() // (1 << 20) size_mb = q.shape[0] * q.shape[1] * k.shape[1] * q.element_size() // (1 << 20)
if size_mb <= max_tensor_mb: if size_mb <= max_tensor_mb:
@ -305,6 +329,7 @@ def einsum_op_tensor_mem(q, k, v, max_tensor_mb):
return einsum_op_slice_0(q, k, v, q.shape[0] // div) return einsum_op_slice_0(q, k, v, q.shape[0] // div)
return einsum_op_slice_1(q, k, v, max(q.shape[1] // div, 1)) return einsum_op_slice_1(q, k, v, max(q.shape[1] // div, 1))
def einsum_op_cuda(q, k, v): def einsum_op_cuda(q, k, v):
stats = torch.cuda.memory_stats(q.device) stats = torch.cuda.memory_stats(q.device)
mem_active = stats['active_bytes.all.current'] mem_active = stats['active_bytes.all.current']
@ -315,6 +340,7 @@ def einsum_op_cuda(q, k, v):
# Divide factor of safety as there's copying and fragmentation # Divide factor of safety as there's copying and fragmentation
return einsum_op_tensor_mem(q, k, v, mem_free_total / 3.3 / (1 << 20)) return einsum_op_tensor_mem(q, k, v, mem_free_total / 3.3 / (1 << 20))
def einsum_op(q, k, v): def einsum_op(q, k, v):
if q.device.type == 'cuda': if q.device.type == 'cuda':
return einsum_op_cuda(q, k, v) return einsum_op_cuda(q, k, v)
@ -328,7 +354,8 @@ def einsum_op(q, k, v):
# Tested on i7 with 8MB L3 cache. # Tested on i7 with 8MB L3 cache.
return einsum_op_tensor_mem(q, k, v, 32) return einsum_op_tensor_mem(q, k, v, 32)
def split_cross_attention_forward_invokeAI(self, x, context=None, mask=None):
def split_cross_attention_forward_invokeAI(self, x, context=None, mask=None, **kwargs):
h = self.heads h = self.heads
q = self.to_q(x) q = self.to_q(x)
@ -356,7 +383,7 @@ def split_cross_attention_forward_invokeAI(self, x, context=None, mask=None):
# Based on Birch-san's modified implementation of sub-quadratic attention from https://github.com/Birch-san/diffusers/pull/1 # Based on Birch-san's modified implementation of sub-quadratic attention from https://github.com/Birch-san/diffusers/pull/1
# The sub_quad_attention_forward function is under the MIT License listed under Memory Efficient Attention in the Licenses section of the web UI interface # The sub_quad_attention_forward function is under the MIT License listed under Memory Efficient Attention in the Licenses section of the web UI interface
def sub_quad_attention_forward(self, x, context=None, mask=None): def sub_quad_attention_forward(self, x, context=None, mask=None, **kwargs):
assert mask is None, "attention-mask not currently implemented for SubQuadraticCrossAttnProcessor." assert mask is None, "attention-mask not currently implemented for SubQuadraticCrossAttnProcessor."
h = self.heads h = self.heads
@ -392,6 +419,7 @@ def sub_quad_attention_forward(self, x, context=None, mask=None):
return x return x
def sub_quad_attention(q, k, v, q_chunk_size=1024, kv_chunk_size=None, kv_chunk_size_min=None, chunk_threshold=None, use_checkpoint=True): def sub_quad_attention(q, k, v, q_chunk_size=1024, kv_chunk_size=None, kv_chunk_size_min=None, chunk_threshold=None, use_checkpoint=True):
bytes_per_token = torch.finfo(q.dtype).bits//8 bytes_per_token = torch.finfo(q.dtype).bits//8
batch_x_heads, q_tokens, _ = q.shape batch_x_heads, q_tokens, _ = q.shape
@ -442,7 +470,7 @@ def get_xformers_flash_attention_op(q, k, v):
return None return None
def xformers_attention_forward(self, x, context=None, mask=None): def xformers_attention_forward(self, x, context=None, mask=None, **kwargs):
h = self.heads h = self.heads
q_in = self.to_q(x) q_in = self.to_q(x)
context = default(context, x) context = default(context, x)
@ -465,9 +493,10 @@ def xformers_attention_forward(self, x, context=None, mask=None):
out = rearrange(out, 'b n h d -> b n (h d)', h=h) out = rearrange(out, 'b n h d -> b n (h d)', h=h)
return self.to_out(out) return self.to_out(out)
# Based on Diffusers usage of scaled dot product attention from https://github.com/huggingface/diffusers/blob/c7da8fd23359a22d0df2741688b5b4f33c26df21/src/diffusers/models/cross_attention.py # Based on Diffusers usage of scaled dot product attention from https://github.com/huggingface/diffusers/blob/c7da8fd23359a22d0df2741688b5b4f33c26df21/src/diffusers/models/cross_attention.py
# The scaled_dot_product_attention_forward function contains parts of code under Apache-2.0 license listed under Scaled Dot Product Attention in the Licenses section of the web UI interface # The scaled_dot_product_attention_forward function contains parts of code under Apache-2.0 license listed under Scaled Dot Product Attention in the Licenses section of the web UI interface
def scaled_dot_product_attention_forward(self, x, context=None, mask=None): def scaled_dot_product_attention_forward(self, x, context=None, mask=None, **kwargs):
batch_size, sequence_length, inner_dim = x.shape batch_size, sequence_length, inner_dim = x.shape
if mask is not None: if mask is not None:
@ -507,10 +536,12 @@ def scaled_dot_product_attention_forward(self, x, context=None, mask=None):
hidden_states = self.to_out[1](hidden_states) hidden_states = self.to_out[1](hidden_states)
return hidden_states return hidden_states
def scaled_dot_product_no_mem_attention_forward(self, x, context=None, mask=None):
def scaled_dot_product_no_mem_attention_forward(self, x, context=None, mask=None, **kwargs):
with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=True, enable_mem_efficient=False): with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=True, enable_mem_efficient=False):
return scaled_dot_product_attention_forward(self, x, context, mask) return scaled_dot_product_attention_forward(self, x, context, mask)
def cross_attention_attnblock_forward(self, x): def cross_attention_attnblock_forward(self, x):
h_ = x h_ = x
h_ = self.norm(h_) h_ = self.norm(h_)
@ -569,6 +600,7 @@ def cross_attention_attnblock_forward(self, x):
return h3 return h3
def xformers_attnblock_forward(self, x): def xformers_attnblock_forward(self, x):
try: try:
h_ = x h_ = x
@ -592,6 +624,7 @@ def xformers_attnblock_forward(self, x):
except NotImplementedError: except NotImplementedError:
return cross_attention_attnblock_forward(self, x) return cross_attention_attnblock_forward(self, x)
def sdp_attnblock_forward(self, x): def sdp_attnblock_forward(self, x):
h_ = x h_ = x
h_ = self.norm(h_) h_ = self.norm(h_)
@ -612,10 +645,12 @@ def sdp_attnblock_forward(self, x):
out = self.proj_out(out) out = self.proj_out(out)
return x + out return x + out
def sdp_no_mem_attnblock_forward(self, x): def sdp_no_mem_attnblock_forward(self, x):
with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=True, enable_mem_efficient=False): with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=True, enable_mem_efficient=False):
return sdp_attnblock_forward(self, x) return sdp_attnblock_forward(self, x)
def sub_quad_attnblock_forward(self, x): def sub_quad_attnblock_forward(self, x):
h_ = x h_ = x
h_ = self.norm(h_) h_ = self.norm(h_)

View File

@ -39,7 +39,10 @@ def apply_model(orig_func, self, x_noisy, t, cond, **kwargs):
if isinstance(cond, dict): if isinstance(cond, dict):
for y in cond.keys(): for y in cond.keys():
if isinstance(cond[y], list):
cond[y] = [x.to(devices.dtype_unet) if isinstance(x, torch.Tensor) else x for x in cond[y]] cond[y] = [x.to(devices.dtype_unet) if isinstance(x, torch.Tensor) else x for x in cond[y]]
else:
cond[y] = cond[y].to(devices.dtype_unet) if isinstance(cond[y], torch.Tensor) else cond[y]
with devices.autocast(): with devices.autocast():
return orig_func(self, x_noisy.to(devices.dtype_unet), t.to(devices.dtype_unet), cond, **kwargs).float() return orig_func(self, x_noisy.to(devices.dtype_unet), t.to(devices.dtype_unet), cond, **kwargs).float()
@ -77,3 +80,6 @@ first_stage_sub = lambda orig_func, self, x, **kwargs: orig_func(self, x.to(devi
CondFunc('ldm.models.diffusion.ddpm.LatentDiffusion.decode_first_stage', first_stage_sub, first_stage_cond) CondFunc('ldm.models.diffusion.ddpm.LatentDiffusion.decode_first_stage', first_stage_sub, first_stage_cond)
CondFunc('ldm.models.diffusion.ddpm.LatentDiffusion.encode_first_stage', first_stage_sub, first_stage_cond) CondFunc('ldm.models.diffusion.ddpm.LatentDiffusion.encode_first_stage', first_stage_sub, first_stage_cond)
CondFunc('ldm.models.diffusion.ddpm.LatentDiffusion.get_first_stage_encoding', lambda orig_func, *args, **kwargs: orig_func(*args, **kwargs).float(), first_stage_cond) CondFunc('ldm.models.diffusion.ddpm.LatentDiffusion.get_first_stage_encoding', lambda orig_func, *args, **kwargs: orig_func(*args, **kwargs).float(), first_stage_cond)
CondFunc('sgm.modules.diffusionmodules.wrappers.OpenAIWrapper.forward', apply_model, unet_needs_upcast)
CondFunc('sgm.modules.diffusionmodules.openaimodel.timestep_embedding', lambda orig_func, timesteps, *args, **kwargs: orig_func(timesteps, *args, **kwargs).to(torch.float32 if timesteps.dtype == torch.int64 else devices.dtype_unet), unet_needs_upcast)

View File

@ -14,7 +14,7 @@ import ldm.modules.midas as midas
from ldm.util import instantiate_from_config from ldm.util import instantiate_from_config
from modules import paths, shared, modelloader, devices, script_callbacks, sd_vae, sd_disable_initialization, errors, hashes, sd_models_config, sd_unet from modules import paths, shared, modelloader, devices, script_callbacks, sd_vae, sd_disable_initialization, errors, hashes, sd_models_config, sd_unet, sd_models_xl
from modules.sd_hijack_inpainting import do_inpainting_hijack from modules.sd_hijack_inpainting import do_inpainting_hijack
from modules.timer import Timer from modules.timer import Timer
import tomesd import tomesd
@ -23,7 +23,8 @@ model_dir = "Stable-diffusion"
model_path = os.path.abspath(os.path.join(paths.models_path, model_dir)) model_path = os.path.abspath(os.path.join(paths.models_path, model_dir))
checkpoints_list = {} checkpoints_list = {}
checkpoint_alisases = {} checkpoint_aliases = {}
checkpoint_alisases = checkpoint_aliases # for compatibility with old name
checkpoints_loaded = collections.OrderedDict() checkpoints_loaded = collections.OrderedDict()
@ -66,7 +67,7 @@ class CheckpointInfo:
def register(self): def register(self):
checkpoints_list[self.title] = self checkpoints_list[self.title] = self
for id in self.ids: for id in self.ids:
checkpoint_alisases[id] = self checkpoint_aliases[id] = self
def calculate_shorthash(self): def calculate_shorthash(self):
self.sha256 = hashes.sha256(self.filename, f"checkpoint/{self.name}") self.sha256 = hashes.sha256(self.filename, f"checkpoint/{self.name}")
@ -112,7 +113,7 @@ def checkpoint_tiles():
def list_models(): def list_models():
checkpoints_list.clear() checkpoints_list.clear()
checkpoint_alisases.clear() checkpoint_aliases.clear()
cmd_ckpt = shared.cmd_opts.ckpt cmd_ckpt = shared.cmd_opts.ckpt
if shared.cmd_opts.no_download_sd_model or cmd_ckpt != shared.sd_model_file or os.path.exists(cmd_ckpt): if shared.cmd_opts.no_download_sd_model or cmd_ckpt != shared.sd_model_file or os.path.exists(cmd_ckpt):
@ -136,7 +137,7 @@ def list_models():
def get_closet_checkpoint_match(search_string): def get_closet_checkpoint_match(search_string):
checkpoint_info = checkpoint_alisases.get(search_string, None) checkpoint_info = checkpoint_aliases.get(search_string, None)
if checkpoint_info is not None: if checkpoint_info is not None:
return checkpoint_info return checkpoint_info
@ -166,7 +167,7 @@ def select_checkpoint():
"""Raises `FileNotFoundError` if no checkpoints are found.""" """Raises `FileNotFoundError` if no checkpoints are found."""
model_checkpoint = shared.opts.sd_model_checkpoint model_checkpoint = shared.opts.sd_model_checkpoint
checkpoint_info = checkpoint_alisases.get(model_checkpoint, None) checkpoint_info = checkpoint_aliases.get(model_checkpoint, None)
if checkpoint_info is not None: if checkpoint_info is not None:
return checkpoint_info return checkpoint_info
@ -247,7 +248,12 @@ def read_state_dict(checkpoint_file, print_global_state=False, map_location=None
_, extension = os.path.splitext(checkpoint_file) _, extension = os.path.splitext(checkpoint_file)
if extension.lower() == ".safetensors": if extension.lower() == ".safetensors":
device = map_location or shared.weight_load_location or devices.get_optimal_device_name() device = map_location or shared.weight_load_location or devices.get_optimal_device_name()
if not shared.opts.disable_mmap_load_safetensors:
pl_sd = safetensors.torch.load_file(checkpoint_file, device=device) pl_sd = safetensors.torch.load_file(checkpoint_file, device=device)
else:
pl_sd = safetensors.torch.load(open(checkpoint_file, 'rb').read())
pl_sd = {k: v.to(device) for k, v in pl_sd.items()}
else: else:
pl_sd = torch.load(checkpoint_file, map_location=map_location or shared.weight_load_location) pl_sd = torch.load(checkpoint_file, map_location=map_location or shared.weight_load_location)
@ -283,6 +289,13 @@ def load_model_weights(model, checkpoint_info: CheckpointInfo, state_dict, timer
if state_dict is None: if state_dict is None:
state_dict = get_checkpoint_state_dict(checkpoint_info, timer) state_dict = get_checkpoint_state_dict(checkpoint_info, timer)
model.is_sdxl = hasattr(model, 'conditioner')
model.is_sd2 = not model.is_sdxl and hasattr(model.cond_stage_model, 'model')
model.is_sd1 = not model.is_sdxl and not model.is_sd2
if model.is_sdxl:
sd_models_xl.extend_sdxl(model)
model.load_state_dict(state_dict, strict=False) model.load_state_dict(state_dict, strict=False)
del state_dict del state_dict
timer.record("apply weights to model") timer.record("apply weights to model")
@ -313,7 +326,7 @@ def load_model_weights(model, checkpoint_info: CheckpointInfo, state_dict, timer
timer.record("apply half()") timer.record("apply half()")
devices.dtype_unet = model.model.diffusion_model.dtype devices.dtype_unet = torch.float16 if model.is_sdxl and not shared.cmd_opts.no_half else model.model.diffusion_model.dtype
devices.unet_needs_upcast = shared.cmd_opts.upcast_sampling and devices.dtype == torch.float16 and devices.dtype_unet == torch.float16 devices.unet_needs_upcast = shared.cmd_opts.upcast_sampling and devices.dtype == torch.float16 and devices.dtype_unet == torch.float16
model.first_stage_model.to(devices.dtype_vae) model.first_stage_model.to(devices.dtype_vae)
@ -328,6 +341,7 @@ def load_model_weights(model, checkpoint_info: CheckpointInfo, state_dict, timer
model.sd_checkpoint_info = checkpoint_info model.sd_checkpoint_info = checkpoint_info
shared.opts.data["sd_checkpoint_hash"] = checkpoint_info.sha256 shared.opts.data["sd_checkpoint_hash"] = checkpoint_info.sha256
if hasattr(model, 'logvar'):
model.logvar = model.logvar.to(devices.device) # fix for training model.logvar = model.logvar.to(devices.device) # fix for training
sd_vae.delete_base_vae() sd_vae.delete_base_vae()
@ -385,6 +399,7 @@ def repair_config(sd_config):
if not hasattr(sd_config.model.params, "use_ema"): if not hasattr(sd_config.model.params, "use_ema"):
sd_config.model.params.use_ema = False sd_config.model.params.use_ema = False
if hasattr(sd_config.model.params, 'unet_config'):
if shared.cmd_opts.no_half: if shared.cmd_opts.no_half:
sd_config.model.params.unet_config.params.use_fp16 = False sd_config.model.params.unet_config.params.use_fp16 = False
elif shared.cmd_opts.upcast_sampling: elif shared.cmd_opts.upcast_sampling:
@ -401,6 +416,8 @@ def repair_config(sd_config):
sd1_clip_weight = 'cond_stage_model.transformer.text_model.embeddings.token_embedding.weight' sd1_clip_weight = 'cond_stage_model.transformer.text_model.embeddings.token_embedding.weight'
sd2_clip_weight = 'cond_stage_model.model.transformer.resblocks.0.attn.in_proj_weight' sd2_clip_weight = 'cond_stage_model.model.transformer.resblocks.0.attn.in_proj_weight'
sdxl_clip_weight = 'conditioner.embedders.1.model.ln_final.weight'
sdxl_refiner_clip_weight = 'conditioner.embedders.0.model.ln_final.weight'
class SdModelData: class SdModelData:
@ -435,6 +452,15 @@ class SdModelData:
model_data = SdModelData() model_data = SdModelData()
def get_empty_cond(sd_model):
if hasattr(sd_model, 'conditioner'):
d = sd_model.get_learned_conditioning([""])
return d['crossattn']
else:
return sd_model.cond_stage_model([""])
def load_model(checkpoint_info=None, already_loaded_state_dict=None): def load_model(checkpoint_info=None, already_loaded_state_dict=None):
from modules import lowvram, sd_hijack from modules import lowvram, sd_hijack
checkpoint_info = checkpoint_info or select_checkpoint() checkpoint_info = checkpoint_info or select_checkpoint()
@ -455,7 +481,7 @@ def load_model(checkpoint_info=None, already_loaded_state_dict=None):
state_dict = get_checkpoint_state_dict(checkpoint_info, timer) state_dict = get_checkpoint_state_dict(checkpoint_info, timer)
checkpoint_config = sd_models_config.find_checkpoint_config(state_dict, checkpoint_info) checkpoint_config = sd_models_config.find_checkpoint_config(state_dict, checkpoint_info)
clip_is_included_into_sd = sd1_clip_weight in state_dict or sd2_clip_weight in state_dict clip_is_included_into_sd = any(x for x in [sd1_clip_weight, sd2_clip_weight, sdxl_clip_weight, sdxl_refiner_clip_weight] if x in state_dict)
timer.record("find config") timer.record("find config")
@ -507,7 +533,7 @@ def load_model(checkpoint_info=None, already_loaded_state_dict=None):
timer.record("scripts callbacks") timer.record("scripts callbacks")
with devices.autocast(), torch.no_grad(): with devices.autocast(), torch.no_grad():
sd_model.cond_stage_model_empty_prompt = sd_model.cond_stage_model([""]) sd_model.cond_stage_model_empty_prompt = get_empty_cond(sd_model)
timer.record("calculate empty prompt") timer.record("calculate empty prompt")
@ -585,7 +611,6 @@ def unload_model_weights(sd_model=None, info=None):
sd_model = None sd_model = None
gc.collect() gc.collect()
devices.torch_gc() devices.torch_gc()
torch.cuda.empty_cache()
print(f"Unloaded weights {timer.summary()}.") print(f"Unloaded weights {timer.summary()}.")

View File

@ -6,12 +6,15 @@ from modules import shared, paths, sd_disable_initialization
sd_configs_path = shared.sd_configs_path sd_configs_path = shared.sd_configs_path
sd_repo_configs_path = os.path.join(paths.paths['Stable Diffusion'], "configs", "stable-diffusion") sd_repo_configs_path = os.path.join(paths.paths['Stable Diffusion'], "configs", "stable-diffusion")
sd_xl_repo_configs_path = os.path.join(paths.paths['Stable Diffusion XL'], "configs", "inference")
config_default = shared.sd_default_config config_default = shared.sd_default_config
config_sd2 = os.path.join(sd_repo_configs_path, "v2-inference.yaml") config_sd2 = os.path.join(sd_repo_configs_path, "v2-inference.yaml")
config_sd2v = os.path.join(sd_repo_configs_path, "v2-inference-v.yaml") config_sd2v = os.path.join(sd_repo_configs_path, "v2-inference-v.yaml")
config_sd2_inpainting = os.path.join(sd_repo_configs_path, "v2-inpainting-inference.yaml") config_sd2_inpainting = os.path.join(sd_repo_configs_path, "v2-inpainting-inference.yaml")
config_sdxl = os.path.join(sd_xl_repo_configs_path, "sd_xl_base.yaml")
config_sdxl_refiner = os.path.join(sd_xl_repo_configs_path, "sd_xl_refiner.yaml")
config_depth_model = os.path.join(sd_repo_configs_path, "v2-midas-inference.yaml") config_depth_model = os.path.join(sd_repo_configs_path, "v2-midas-inference.yaml")
config_unclip = os.path.join(sd_repo_configs_path, "v2-1-stable-unclip-l-inference.yaml") config_unclip = os.path.join(sd_repo_configs_path, "v2-1-stable-unclip-l-inference.yaml")
config_unopenclip = os.path.join(sd_repo_configs_path, "v2-1-stable-unclip-h-inference.yaml") config_unopenclip = os.path.join(sd_repo_configs_path, "v2-1-stable-unclip-h-inference.yaml")
@ -68,7 +71,11 @@ def guess_model_config_from_state_dict(sd, filename):
diffusion_model_input = sd.get('model.diffusion_model.input_blocks.0.0.weight', None) diffusion_model_input = sd.get('model.diffusion_model.input_blocks.0.0.weight', None)
sd2_variations_weight = sd.get('embedder.model.ln_final.weight', None) sd2_variations_weight = sd.get('embedder.model.ln_final.weight', None)
if sd.get('depth_model.model.pretrained.act_postprocess3.0.project.0.bias', None) is not None: if sd.get('conditioner.embedders.1.model.ln_final.weight', None) is not None:
return config_sdxl
if sd.get('conditioner.embedders.0.model.ln_final.weight', None) is not None:
return config_sdxl_refiner
elif sd.get('depth_model.model.pretrained.act_postprocess3.0.project.0.bias', None) is not None:
return config_depth_model return config_depth_model
elif sd2_variations_weight is not None and sd2_variations_weight.shape[0] == 768: elif sd2_variations_weight is not None and sd2_variations_weight.shape[0] == 768:
return config_unclip return config_unclip

99
modules/sd_models_xl.py Normal file
View File

@ -0,0 +1,99 @@
from __future__ import annotations
import torch
import sgm.models.diffusion
import sgm.modules.diffusionmodules.denoiser_scaling
import sgm.modules.diffusionmodules.discretizer
from modules import devices, shared, prompt_parser
def get_learned_conditioning(self: sgm.models.diffusion.DiffusionEngine, batch: prompt_parser.SdConditioning | list[str]):
for embedder in self.conditioner.embedders:
embedder.ucg_rate = 0.0
width = getattr(self, 'target_width', 1024)
height = getattr(self, 'target_height', 1024)
is_negative_prompt = getattr(batch, 'is_negative_prompt', False)
aesthetic_score = shared.opts.sdxl_refiner_low_aesthetic_score if is_negative_prompt else shared.opts.sdxl_refiner_high_aesthetic_score
devices_args = dict(device=devices.device, dtype=devices.dtype)
sdxl_conds = {
"txt": batch,
"original_size_as_tuple": torch.tensor([height, width], **devices_args).repeat(len(batch), 1),
"crop_coords_top_left": torch.tensor([shared.opts.sdxl_crop_top, shared.opts.sdxl_crop_left], **devices_args).repeat(len(batch), 1),
"target_size_as_tuple": torch.tensor([height, width], **devices_args).repeat(len(batch), 1),
"aesthetic_score": torch.tensor([aesthetic_score], **devices_args).repeat(len(batch), 1),
}
force_zero_negative_prompt = is_negative_prompt and all(x == '' for x in batch)
c = self.conditioner(sdxl_conds, force_zero_embeddings=['txt'] if force_zero_negative_prompt else [])
return c
def apply_model(self: sgm.models.diffusion.DiffusionEngine, x, t, cond):
return self.model(x, t, cond)
def get_first_stage_encoding(self, x): # SDXL's encode_first_stage does everything so get_first_stage_encoding is just there for compatibility
return x
sgm.models.diffusion.DiffusionEngine.get_learned_conditioning = get_learned_conditioning
sgm.models.diffusion.DiffusionEngine.apply_model = apply_model
sgm.models.diffusion.DiffusionEngine.get_first_stage_encoding = get_first_stage_encoding
def encode_embedding_init_text(self: sgm.modules.GeneralConditioner, init_text, nvpt):
res = []
for embedder in [embedder for embedder in self.embedders if hasattr(embedder, 'encode_embedding_init_text')]:
encoded = embedder.encode_embedding_init_text(init_text, nvpt)
res.append(encoded)
return torch.cat(res, dim=1)
def process_texts(self, texts):
for embedder in [embedder for embedder in self.embedders if hasattr(embedder, 'process_texts')]:
return embedder.process_texts(texts)
def get_target_prompt_token_count(self, token_count):
for embedder in [embedder for embedder in self.embedders if hasattr(embedder, 'get_target_prompt_token_count')]:
return embedder.get_target_prompt_token_count(token_count)
# those additions to GeneralConditioner make it possible to use it as model.cond_stage_model from SD1.5 in exist
sgm.modules.GeneralConditioner.encode_embedding_init_text = encode_embedding_init_text
sgm.modules.GeneralConditioner.process_texts = process_texts
sgm.modules.GeneralConditioner.get_target_prompt_token_count = get_target_prompt_token_count
def extend_sdxl(model):
"""this adds a bunch of parameters to make SDXL model look a bit more like SD1.5 to the rest of the codebase."""
dtype = next(model.model.diffusion_model.parameters()).dtype
model.model.diffusion_model.dtype = dtype
model.model.conditioning_key = 'crossattn'
model.cond_stage_key = 'txt'
# model.cond_stage_model will be set in sd_hijack
model.parameterization = "v" if isinstance(model.denoiser.scaling, sgm.modules.diffusionmodules.denoiser_scaling.VScaling) else "eps"
discretization = sgm.modules.diffusionmodules.discretizer.LegacyDDPMDiscretization()
model.alphas_cumprod = torch.asarray(discretization.alphas_cumprod, device=devices.device, dtype=dtype)
model.conditioner.wrapped = torch.nn.Module()
sgm.modules.attention.print = lambda *args: None
sgm.modules.diffusionmodules.model.print = lambda *args: None
sgm.modules.diffusionmodules.openaimodel.print = lambda *args: None
sgm.modules.encoders.modules.print = lambda *args: None
# this gets the code to load the vanilla attention that we override
sgm.modules.attention.SDP_IS_AVAILABLE = True
sgm.modules.attention.XFORMERS_IS_AVAILABLE = False

View File

@ -28,6 +28,9 @@ def create_sampler(name, model):
assert config is not None, f'bad sampler name: {name}' assert config is not None, f'bad sampler name: {name}'
if model.is_sdxl and config.options.get("no_sdxl", False):
raise Exception(f"Sampler {config.name} is not supported for SDXL")
sampler = config.constructor(model) sampler = config.constructor(model)
sampler.config = config sampler.config = config

View File

@ -11,9 +11,9 @@ import modules.models.diffusion.uni_pc
samplers_data_compvis = [ samplers_data_compvis = [
sd_samplers_common.SamplerData('DDIM', lambda model: VanillaStableDiffusionSampler(ldm.models.diffusion.ddim.DDIMSampler, model), [], {"default_eta_is_0": True, "uses_ensd": True}), sd_samplers_common.SamplerData('DDIM', lambda model: VanillaStableDiffusionSampler(ldm.models.diffusion.ddim.DDIMSampler, model), [], {"default_eta_is_0": True, "uses_ensd": True, "no_sdxl": True}),
sd_samplers_common.SamplerData('PLMS', lambda model: VanillaStableDiffusionSampler(ldm.models.diffusion.plms.PLMSSampler, model), [], {}), sd_samplers_common.SamplerData('PLMS', lambda model: VanillaStableDiffusionSampler(ldm.models.diffusion.plms.PLMSSampler, model), [], {"no_sdxl": True}),
sd_samplers_common.SamplerData('UniPC', lambda model: VanillaStableDiffusionSampler(modules.models.diffusion.uni_pc.UniPCSampler, model), [], {}), sd_samplers_common.SamplerData('UniPC', lambda model: VanillaStableDiffusionSampler(modules.models.diffusion.uni_pc.UniPCSampler, model), [], {"no_sdxl": True}),
] ]

View File

@ -53,6 +53,28 @@ k_diffusion_scheduler = {
} }
def catenate_conds(conds):
if not isinstance(conds[0], dict):
return torch.cat(conds)
return {key: torch.cat([x[key] for x in conds]) for key in conds[0].keys()}
def subscript_cond(cond, a, b):
if not isinstance(cond, dict):
return cond[a:b]
return {key: vec[a:b] for key, vec in cond.items()}
def pad_cond(tensor, repeats, empty):
if not isinstance(tensor, dict):
return torch.cat([tensor, empty.repeat((tensor.shape[0], repeats, 1))], axis=1)
tensor['crossattn'] = pad_cond(tensor['crossattn'], repeats, empty)
return tensor
class CFGDenoiser(torch.nn.Module): class CFGDenoiser(torch.nn.Module):
""" """
Classifier free guidance denoiser. A wrapper for stable diffusion model (specifically for unet) Classifier free guidance denoiser. A wrapper for stable diffusion model (specifically for unet)
@ -105,10 +127,13 @@ class CFGDenoiser(torch.nn.Module):
if shared.sd_model.model.conditioning_key == "crossattn-adm": if shared.sd_model.model.conditioning_key == "crossattn-adm":
image_uncond = torch.zeros_like(image_cond) image_uncond = torch.zeros_like(image_cond)
make_condition_dict = lambda c_crossattn, c_adm: {"c_crossattn": c_crossattn, "c_adm": c_adm} make_condition_dict = lambda c_crossattn, c_adm: {"c_crossattn": [c_crossattn], "c_adm": c_adm}
else: else:
image_uncond = image_cond image_uncond = image_cond
make_condition_dict = lambda c_crossattn, c_concat: {"c_crossattn": c_crossattn, "c_concat": [c_concat]} if isinstance(uncond, dict):
make_condition_dict = lambda c_crossattn, c_concat: {**c_crossattn, "c_concat": [c_concat]}
else:
make_condition_dict = lambda c_crossattn, c_concat: {"c_crossattn": [c_crossattn], "c_concat": [c_concat]}
if not is_edit_model: if not is_edit_model:
x_in = torch.cat([torch.stack([x[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [x]) x_in = torch.cat([torch.stack([x[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [x])
@ -140,28 +165,28 @@ class CFGDenoiser(torch.nn.Module):
num_repeats = (tensor.shape[1] - uncond.shape[1]) // empty.shape[1] num_repeats = (tensor.shape[1] - uncond.shape[1]) // empty.shape[1]
if num_repeats < 0: if num_repeats < 0:
tensor = torch.cat([tensor, empty.repeat((tensor.shape[0], -num_repeats, 1))], axis=1) tensor = pad_cond(tensor, -num_repeats, empty)
self.padded_cond_uncond = True self.padded_cond_uncond = True
elif num_repeats > 0: elif num_repeats > 0:
uncond = torch.cat([uncond, empty.repeat((uncond.shape[0], num_repeats, 1))], axis=1) uncond = pad_cond(uncond, num_repeats, empty)
self.padded_cond_uncond = True self.padded_cond_uncond = True
if tensor.shape[1] == uncond.shape[1] or skip_uncond: if tensor.shape[1] == uncond.shape[1] or skip_uncond:
if is_edit_model: if is_edit_model:
cond_in = torch.cat([tensor, uncond, uncond]) cond_in = catenate_conds([tensor, uncond, uncond])
elif skip_uncond: elif skip_uncond:
cond_in = tensor cond_in = tensor
else: else:
cond_in = torch.cat([tensor, uncond]) cond_in = catenate_conds([tensor, uncond])
if shared.batch_cond_uncond: if shared.batch_cond_uncond:
x_out = self.inner_model(x_in, sigma_in, cond=make_condition_dict([cond_in], image_cond_in)) x_out = self.inner_model(x_in, sigma_in, cond=make_condition_dict(cond_in, image_cond_in))
else: else:
x_out = torch.zeros_like(x_in) x_out = torch.zeros_like(x_in)
for batch_offset in range(0, x_out.shape[0], batch_size): for batch_offset in range(0, x_out.shape[0], batch_size):
a = batch_offset a = batch_offset
b = a + batch_size b = a + batch_size
x_out[a:b] = self.inner_model(x_in[a:b], sigma_in[a:b], cond=make_condition_dict([cond_in[a:b]], image_cond_in[a:b])) x_out[a:b] = self.inner_model(x_in[a:b], sigma_in[a:b], cond=make_condition_dict(subscript_cond(cond_in, a, b), image_cond_in[a:b]))
else: else:
x_out = torch.zeros_like(x_in) x_out = torch.zeros_like(x_in)
batch_size = batch_size*2 if shared.batch_cond_uncond else batch_size batch_size = batch_size*2 if shared.batch_cond_uncond else batch_size
@ -170,14 +195,14 @@ class CFGDenoiser(torch.nn.Module):
b = min(a + batch_size, tensor.shape[0]) b = min(a + batch_size, tensor.shape[0])
if not is_edit_model: if not is_edit_model:
c_crossattn = [tensor[a:b]] c_crossattn = subscript_cond(tensor, a, b)
else: else:
c_crossattn = torch.cat([tensor[a:b]], uncond) c_crossattn = torch.cat([tensor[a:b]], uncond)
x_out[a:b] = self.inner_model(x_in[a:b], sigma_in[a:b], cond=make_condition_dict(c_crossattn, image_cond_in[a:b])) x_out[a:b] = self.inner_model(x_in[a:b], sigma_in[a:b], cond=make_condition_dict(c_crossattn, image_cond_in[a:b]))
if not skip_uncond: if not skip_uncond:
x_out[-uncond.shape[0]:] = self.inner_model(x_in[-uncond.shape[0]:], sigma_in[-uncond.shape[0]:], cond=make_condition_dict([uncond], image_cond_in[-uncond.shape[0]:])) x_out[-uncond.shape[0]:] = self.inner_model(x_in[-uncond.shape[0]:], sigma_in[-uncond.shape[0]:], cond=make_condition_dict(uncond, image_cond_in[-uncond.shape[0]:]))
denoised_image_indexes = [x[0][0] for x in conds_list] denoised_image_indexes = [x[0][0] for x in conds_list]
if skip_uncond: if skip_uncond:

View File

@ -2,9 +2,9 @@ import os
import torch import torch
from torch import nn from torch import nn
from modules import devices, paths from modules import devices, paths, shared
sd_vae_approx_model = None sd_vae_approx_models = {}
class VAEApprox(nn.Module): class VAEApprox(nn.Module):
@ -31,30 +31,55 @@ class VAEApprox(nn.Module):
return x return x
def model(): def download_model(model_path, model_url):
global sd_vae_approx_model
if sd_vae_approx_model is None:
model_path = os.path.join(paths.models_path, "VAE-approx", "model.pt")
sd_vae_approx_model = VAEApprox()
if not os.path.exists(model_path): if not os.path.exists(model_path):
model_path = os.path.join(paths.script_path, "models", "VAE-approx", "model.pt") os.makedirs(os.path.dirname(model_path), exist_ok=True)
sd_vae_approx_model.load_state_dict(torch.load(model_path, map_location='cpu' if devices.device.type != 'cuda' else None))
sd_vae_approx_model.eval()
sd_vae_approx_model.to(devices.device, devices.dtype)
return sd_vae_approx_model print(f'Downloading VAEApprox model to: {model_path}')
torch.hub.download_url_to_file(model_url, model_path)
def model():
model_name = "vaeapprox-sdxl.pt" if getattr(shared.sd_model, 'is_sdxl', False) else "model.pt"
loaded_model = sd_vae_approx_models.get(model_name)
if loaded_model is None:
model_path = os.path.join(paths.models_path, "VAE-approx", model_name)
if not os.path.exists(model_path):
model_path = os.path.join(paths.script_path, "models", "VAE-approx", model_name)
if not os.path.exists(model_path):
model_path = os.path.join(paths.models_path, "VAE-approx", model_name)
download_model(model_path, 'https://github.com/AUTOMATIC1111/stable-diffusion-webui/releases/download/v1.0.0-pre/' + model_name)
loaded_model = VAEApprox()
loaded_model.load_state_dict(torch.load(model_path, map_location='cpu' if devices.device.type != 'cuda' else None))
loaded_model.eval()
loaded_model.to(devices.device, devices.dtype)
sd_vae_approx_models[model_name] = loaded_model
return loaded_model
def cheap_approximation(sample): def cheap_approximation(sample):
# https://discuss.huggingface.co/t/decoding-latents-to-rgb-without-upscaling/23204/2 # https://discuss.huggingface.co/t/decoding-latents-to-rgb-without-upscaling/23204/2
coefs = torch.tensor([ if shared.sd_model.is_sdxl:
coeffs = [
[ 0.3448, 0.4168, 0.4395],
[-0.1953, -0.0290, 0.0250],
[ 0.1074, 0.0886, -0.0163],
[-0.3730, -0.2499, -0.2088],
]
else:
coeffs = [
[ 0.298, 0.207, 0.208], [ 0.298, 0.207, 0.208],
[ 0.187, 0.286, 0.173], [ 0.187, 0.286, 0.173],
[-0.158, 0.189, 0.264], [-0.158, 0.189, 0.264],
[-0.184, -0.271, -0.473], [-0.184, -0.271, -0.473],
]).to(sample.device) ]
coefs = torch.tensor(coeffs).to(sample.device)
x_sample = torch.einsum("lxy,lr -> rxy", sample, coefs) x_sample = torch.einsum("lxy,lr -> rxy", sample, coefs)

View File

@ -8,9 +8,9 @@ import os
import torch import torch
import torch.nn as nn import torch.nn as nn
from modules import devices, paths_internal from modules import devices, paths_internal, shared
sd_vae_taesd = None sd_vae_taesd_models = {}
def conv(n_in, n_out, **kwargs): def conv(n_in, n_out, **kwargs):
@ -61,9 +61,7 @@ class TAESD(nn.Module):
return x.sub(TAESD.latent_shift).mul(2 * TAESD.latent_magnitude) return x.sub(TAESD.latent_shift).mul(2 * TAESD.latent_magnitude)
def download_model(model_path): def download_model(model_path, model_url):
model_url = 'https://github.com/madebyollin/taesd/raw/main/taesd_decoder.pth'
if not os.path.exists(model_path): if not os.path.exists(model_path):
os.makedirs(os.path.dirname(model_path), exist_ok=True) os.makedirs(os.path.dirname(model_path), exist_ok=True)
@ -72,17 +70,19 @@ def download_model(model_path):
def model(): def model():
global sd_vae_taesd model_name = "taesdxl_decoder.pth" if getattr(shared.sd_model, 'is_sdxl', False) else "taesd_decoder.pth"
loaded_model = sd_vae_taesd_models.get(model_name)
if sd_vae_taesd is None: if loaded_model is None:
model_path = os.path.join(paths_internal.models_path, "VAE-taesd", "taesd_decoder.pth") model_path = os.path.join(paths_internal.models_path, "VAE-taesd", model_name)
download_model(model_path) download_model(model_path, 'https://github.com/madebyollin/taesd/raw/main/' + model_name)
if os.path.exists(model_path): if os.path.exists(model_path):
sd_vae_taesd = TAESD(model_path) loaded_model = TAESD(model_path)
sd_vae_taesd.eval() loaded_model.eval()
sd_vae_taesd.to(devices.device, devices.dtype) loaded_model.to(devices.device, devices.dtype)
sd_vae_taesd_models[model_name] = loaded_model
else: else:
raise FileNotFoundError('TAESD model not found') raise FileNotFoundError('TAESD model not found')
return sd_vae_taesd.decoder return loaded_model.decoder

View File

@ -1,9 +1,11 @@
import datetime import datetime
import json import json
import os import os
import re
import sys import sys
import threading import threading
import time import time
import logging
import gradio as gr import gradio as gr
import torch import torch
@ -18,6 +20,8 @@ from modules.paths_internal import models_path, script_path, data_path, sd_confi
from ldm.models.diffusion.ddpm import LatentDiffusion from ldm.models.diffusion.ddpm import LatentDiffusion
from typing import Optional from typing import Optional
log = logging.getLogger(__name__)
demo = None demo = None
parser = cmd_args.parser parser = cmd_args.parser
@ -144,12 +148,15 @@ class State:
def request_restart(self) -> None: def request_restart(self) -> None:
self.interrupt() self.interrupt()
self.server_command = "restart" self.server_command = "restart"
log.info("Received restart request")
def skip(self): def skip(self):
self.skipped = True self.skipped = True
log.info("Received skip request")
def interrupt(self): def interrupt(self):
self.interrupted = True self.interrupted = True
log.info("Received interrupt request")
def nextjob(self): def nextjob(self):
if opts.live_previews_enable and opts.show_progress_every_n_steps == -1: if opts.live_previews_enable and opts.show_progress_every_n_steps == -1:
@ -173,7 +180,7 @@ class State:
return obj return obj
def begin(self): def begin(self, job: str = "(unknown)"):
self.sampling_step = 0 self.sampling_step = 0
self.job_count = -1 self.job_count = -1
self.processing_has_refined_job_count = False self.processing_has_refined_job_count = False
@ -187,10 +194,13 @@ class State:
self.interrupted = False self.interrupted = False
self.textinfo = None self.textinfo = None
self.time_start = time.time() self.time_start = time.time()
self.job = job
devices.torch_gc() devices.torch_gc()
log.info("Starting job %s", job)
def end(self): def end(self):
duration = time.time() - self.time_start
log.info("Ending job %s (%.2f seconds)", self.job, duration)
self.job = "" self.job = ""
self.job_count = 0 self.job_count = 0
@ -311,6 +321,10 @@ options_templates.update(options_section(('saving-images', "Saving images/grids"
"grid_prevent_empty_spots": OptionInfo(False, "Prevent empty spots in grid (when set to autodetect)"), "grid_prevent_empty_spots": OptionInfo(False, "Prevent empty spots in grid (when set to autodetect)"),
"grid_zip_filename_pattern": OptionInfo("", "Archive filename pattern", component_args=hide_dirs).link("wiki", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Custom-Images-Filename-Name-and-Subdirectory"), "grid_zip_filename_pattern": OptionInfo("", "Archive filename pattern", component_args=hide_dirs).link("wiki", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Custom-Images-Filename-Name-and-Subdirectory"),
"n_rows": OptionInfo(-1, "Grid row count; use -1 for autodetect and 0 for it to be same as batch size", gr.Slider, {"minimum": -1, "maximum": 16, "step": 1}), "n_rows": OptionInfo(-1, "Grid row count; use -1 for autodetect and 0 for it to be same as batch size", gr.Slider, {"minimum": -1, "maximum": 16, "step": 1}),
"font": OptionInfo("", "Font for image grids that have text"),
"grid_text_active_color": OptionInfo("#000000", "Text color for image grids", ui_components.FormColorPicker, {}),
"grid_text_inactive_color": OptionInfo("#999999", "Inactive text color for image grids", ui_components.FormColorPicker, {}),
"grid_background_color": OptionInfo("#ffffff", "Background color for image grids", ui_components.FormColorPicker, {}),
"enable_pnginfo": OptionInfo(True, "Save text information about generation parameters as chunks to png files"), "enable_pnginfo": OptionInfo(True, "Save text information about generation parameters as chunks to png files"),
"save_txt": OptionInfo(False, "Create a text file next to every image with generation parameters."), "save_txt": OptionInfo(False, "Create a text file next to every image with generation parameters."),
@ -376,6 +390,7 @@ options_templates.update(options_section(('system', "System"), {
"multiple_tqdm": OptionInfo(True, "Add a second progress bar to the console that shows progress for an entire job."), "multiple_tqdm": OptionInfo(True, "Add a second progress bar to the console that shows progress for an entire job."),
"print_hypernet_extra": OptionInfo(False, "Print extra hypernetwork information to console."), "print_hypernet_extra": OptionInfo(False, "Print extra hypernetwork information to console."),
"list_hidden_files": OptionInfo(True, "Load models/files in hidden directories").info("directory is hidden if its name starts with \".\""), "list_hidden_files": OptionInfo(True, "Load models/files in hidden directories").info("directory is hidden if its name starts with \".\""),
"disable_mmap_load_safetensors": OptionInfo(False, "Disable memmapping for loading .safetensors files.").info("fixes very slow loading speed in some cases"),
})) }))
options_templates.update(options_section(('training', "Training"), { options_templates.update(options_section(('training', "Training"), {
@ -414,9 +429,16 @@ options_templates.update(options_section(('sd', "Stable Diffusion"), {
"randn_source": OptionInfo("GPU", "Random number generator source.", gr.Radio, {"choices": ["GPU", "CPU"]}).info("changes seeds drastically; use CPU to produce the same picture across different videocard vendors"), "randn_source": OptionInfo("GPU", "Random number generator source.", gr.Radio, {"choices": ["GPU", "CPU"]}).info("changes seeds drastically; use CPU to produce the same picture across different videocard vendors"),
})) }))
options_templates.update(options_section(('sdxl', "Stable Diffusion XL"), {
"sdxl_crop_top": OptionInfo(0, "crop top coordinate"),
"sdxl_crop_left": OptionInfo(0, "crop left coordinate"),
"sdxl_refiner_low_aesthetic_score": OptionInfo(2.5, "SDXL low aesthetic score", gr.Number).info("used for refiner model negative prompt"),
"sdxl_refiner_high_aesthetic_score": OptionInfo(6.0, "SDXL high aesthetic score", gr.Number).info("used for refiner model prompt"),
}))
options_templates.update(options_section(('optimizations', "Optimizations"), { options_templates.update(options_section(('optimizations', "Optimizations"), {
"cross_attention_optimization": OptionInfo("Automatic", "Cross attention optimization", gr.Dropdown, lambda: {"choices": shared_items.cross_attention_optimizations()}), "cross_attention_optimization": OptionInfo("Automatic", "Cross attention optimization", gr.Dropdown, lambda: {"choices": shared_items.cross_attention_optimizations()}),
"s_min_uncond": OptionInfo(0.0, "Negative Guidance minimum sigma", gr.Slider, {"minimum": 0.0, "maximum": 4.0, "step": 0.01}).link("PR", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/9177").info("skip negative prompt for some steps when the image is almost ready; 0=disable, higher=faster"), "s_min_uncond": OptionInfo(0.0, "Negative Guidance minimum sigma", gr.Slider, {"minimum": 0.0, "maximum": 15.0, "step": 0.01}).link("PR", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/9177").info("skip negative prompt for some steps when the image is almost ready; 0=disable, higher=faster"),
"token_merging_ratio": OptionInfo(0.0, "Token merging ratio", gr.Slider, {"minimum": 0.0, "maximum": 0.9, "step": 0.1}).link("PR", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/9256").info("0=disable, higher=faster"), "token_merging_ratio": OptionInfo(0.0, "Token merging ratio", gr.Slider, {"minimum": 0.0, "maximum": 0.9, "step": 0.1}).link("PR", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/9256").info("0=disable, higher=faster"),
"token_merging_ratio_img2img": OptionInfo(0.0, "Token merging ratio for img2img", gr.Slider, {"minimum": 0.0, "maximum": 0.9, "step": 0.1}).info("only applies if non-zero and overrides above"), "token_merging_ratio_img2img": OptionInfo(0.0, "Token merging ratio for img2img", gr.Slider, {"minimum": 0.0, "maximum": 0.9, "step": 0.1}).info("only applies if non-zero and overrides above"),
"token_merging_ratio_hr": OptionInfo(0.0, "Token merging ratio for high-res pass", gr.Slider, {"minimum": 0.0, "maximum": 0.9, "step": 0.1}).info("only applies if non-zero and overrides above"), "token_merging_ratio_hr": OptionInfo(0.0, "Token merging ratio for high-res pass", gr.Slider, {"minimum": 0.0, "maximum": 0.9, "step": 0.1}).info("only applies if non-zero and overrides above"),
@ -451,12 +473,15 @@ options_templates.update(options_section(('interrogate', "Interrogate Options"),
options_templates.update(options_section(('extra_networks', "Extra Networks"), { options_templates.update(options_section(('extra_networks', "Extra Networks"), {
"extra_networks_show_hidden_directories": OptionInfo(True, "Show hidden directories").info("directory is hidden if its name starts with \".\"."), "extra_networks_show_hidden_directories": OptionInfo(True, "Show hidden directories").info("directory is hidden if its name starts with \".\"."),
"extra_networks_hidden_models": OptionInfo("When searched", "Show cards for models in hidden directories", gr.Radio, {"choices": ["Always", "When searched", "Never"]}).info('"When searched" option will only show the item when the search string has 4 characters or more'), "extra_networks_hidden_models": OptionInfo("When searched", "Show cards for models in hidden directories", gr.Radio, {"choices": ["Always", "When searched", "Never"]}).info('"When searched" option will only show the item when the search string has 4 characters or more'),
"extra_networks_default_view": OptionInfo("cards", "Default view for Extra Networks", gr.Dropdown, {"choices": ["cards", "thumbs"]}), "extra_networks_default_multiplier": OptionInfo(1.0, "Default multiplier for extra networks", gr.Slider, {"minimum": 0.0, "maximum": 2.0, "step": 0.01}),
"extra_networks_default_multiplier": OptionInfo(1.0, "Multiplier for extra networks", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
"extra_networks_card_width": OptionInfo(0, "Card width for Extra Networks").info("in pixels"), "extra_networks_card_width": OptionInfo(0, "Card width for Extra Networks").info("in pixels"),
"extra_networks_card_height": OptionInfo(0, "Card height for Extra Networks").info("in pixels"), "extra_networks_card_height": OptionInfo(0, "Card height for Extra Networks").info("in pixels"),
"extra_networks_card_text_scale": OptionInfo(1.0, "Card text scale", gr.Slider, {"minimum": 0.0, "maximum": 2.0, "step": 0.01}).info("1 = original size"),
"extra_networks_card_show_desc": OptionInfo(True, "Show description on card"),
"extra_networks_add_text_separator": OptionInfo(" ", "Extra networks separator").info("extra text to add before <...> when adding extra network to prompt"), "extra_networks_add_text_separator": OptionInfo(" ", "Extra networks separator").info("extra text to add before <...> when adding extra network to prompt"),
"ui_extra_networks_tab_reorder": OptionInfo("", "Extra networks tab order").needs_restart(), "ui_extra_networks_tab_reorder": OptionInfo("", "Extra networks tab order").needs_restart(),
"textual_inversion_print_at_load": OptionInfo(False, "Print a list of Textual Inversion embeddings when loading model"),
"textual_inversion_add_hashes_to_infotext": OptionInfo(True, "Add Textual Inversion hashes to infotext"),
"sd_hypernetwork": OptionInfo("None", "Add hypernetwork to prompt", gr.Dropdown, lambda: {"choices": ["None", *hypernetworks]}, refresh=reload_hypernetworks), "sd_hypernetwork": OptionInfo("None", "Add hypernetwork to prompt", gr.Dropdown, lambda: {"choices": ["None", *hypernetworks]}, refresh=reload_hypernetworks),
})) }))
@ -470,7 +495,6 @@ options_templates.update(options_section(('ui', "User interface"), {
"do_not_show_images": OptionInfo(False, "Do not show any images in results for web"), "do_not_show_images": OptionInfo(False, "Do not show any images in results for web"),
"send_seed": OptionInfo(True, "Send seed when sending prompt or image to other interface"), "send_seed": OptionInfo(True, "Send seed when sending prompt or image to other interface"),
"send_size": OptionInfo(True, "Send size when sending prompt or image to another interface"), "send_size": OptionInfo(True, "Send size when sending prompt or image to another interface"),
"font": OptionInfo("", "Font for image grids that have text"),
"js_modal_lightbox": OptionInfo(True, "Enable full page image viewer"), "js_modal_lightbox": OptionInfo(True, "Enable full page image viewer"),
"js_modal_lightbox_initially_zoomed": OptionInfo(True, "Show images zoomed in by default in full page image viewer"), "js_modal_lightbox_initially_zoomed": OptionInfo(True, "Show images zoomed in by default in full page image viewer"),
"js_modal_lightbox_gamepad": OptionInfo(False, "Navigate image viewer with gamepad"), "js_modal_lightbox_gamepad": OptionInfo(False, "Navigate image viewer with gamepad"),
@ -481,6 +505,7 @@ options_templates.update(options_section(('ui', "User interface"), {
"keyedit_precision_attention": OptionInfo(0.1, "Ctrl+up/down precision when editing (attention:1.1)", gr.Slider, {"minimum": 0.01, "maximum": 0.2, "step": 0.001}), "keyedit_precision_attention": OptionInfo(0.1, "Ctrl+up/down precision when editing (attention:1.1)", gr.Slider, {"minimum": 0.01, "maximum": 0.2, "step": 0.001}),
"keyedit_precision_extra": OptionInfo(0.05, "Ctrl+up/down precision when editing <extra networks:0.9>", gr.Slider, {"minimum": 0.01, "maximum": 0.2, "step": 0.001}), "keyedit_precision_extra": OptionInfo(0.05, "Ctrl+up/down precision when editing <extra networks:0.9>", gr.Slider, {"minimum": 0.01, "maximum": 0.2, "step": 0.001}),
"keyedit_delimiters": OptionInfo(".,\\/!?%^*;:{}=`~()", "Ctrl+up/down word delimiters"), "keyedit_delimiters": OptionInfo(".,\\/!?%^*;:{}=`~()", "Ctrl+up/down word delimiters"),
"keyedit_move": OptionInfo(True, "Alt+left/right moves prompt elements"),
"quicksettings_list": OptionInfo(["sd_model_checkpoint"], "Quicksettings list", ui_components.DropdownMulti, lambda: {"choices": list(opts.data_labels.keys())}).js("info", "settingsHintsShowQuicksettings").info("setting entries that appear at the top of page rather than in settings tab").needs_restart(), "quicksettings_list": OptionInfo(["sd_model_checkpoint"], "Quicksettings list", ui_components.DropdownMulti, lambda: {"choices": list(opts.data_labels.keys())}).js("info", "settingsHintsShowQuicksettings").info("setting entries that appear at the top of page rather than in settings tab").needs_restart(),
"ui_tab_order": OptionInfo([], "UI tab order", ui_components.DropdownMulti, lambda: {"choices": list(tab_names)}).needs_restart(), "ui_tab_order": OptionInfo([], "UI tab order", ui_components.DropdownMulti, lambda: {"choices": list(tab_names)}).needs_restart(),
"hidden_tabs": OptionInfo([], "Hidden UI tabs", ui_components.DropdownMulti, lambda: {"choices": list(tab_names)}).needs_restart(), "hidden_tabs": OptionInfo([], "Hidden UI tabs", ui_components.DropdownMulti, lambda: {"choices": list(tab_names)}).needs_restart(),
@ -493,6 +518,7 @@ options_templates.update(options_section(('ui', "User interface"), {
options_templates.update(options_section(('infotext', "Infotext"), { options_templates.update(options_section(('infotext', "Infotext"), {
"add_model_hash_to_info": OptionInfo(True, "Add model hash to generation information"), "add_model_hash_to_info": OptionInfo(True, "Add model hash to generation information"),
"add_model_name_to_info": OptionInfo(True, "Add model name to generation information"), "add_model_name_to_info": OptionInfo(True, "Add model name to generation information"),
"add_user_name_to_info": OptionInfo(False, "Add user name to generation information when authenticated"),
"add_version_to_infotext": OptionInfo(True, "Add program version to generation information"), "add_version_to_infotext": OptionInfo(True, "Add program version to generation information"),
"disable_weights_auto_swap": OptionInfo(True, "Disregard checkpoint information from pasted infotext").info("when reading generation parameters from text into UI"), "disable_weights_auto_swap": OptionInfo(True, "Disregard checkpoint information from pasted infotext").info("when reading generation parameters from text into UI"),
"infotext_styles": OptionInfo("Apply if any", "Infer styles from prompts of pasted infotext", gr.Radio, {"choices": ["Ignore", "Apply", "Discard", "Apply if any"]}).info("when reading generation parameters from text into UI)").html("""<ul style='margin-left: 1.5em'> "infotext_styles": OptionInfo("Apply if any", "Infer styles from prompts of pasted infotext", gr.Radio, {"choices": ["Ignore", "Apply", "Discard", "Apply if any"]}).info("when reading generation parameters from text into UI)").html("""<ul style='margin-left: 1.5em'>
@ -817,8 +843,12 @@ mem_mon = modules.memmon.MemUsageMonitor("MemMon", device, opts)
mem_mon.start() mem_mon.start()
def natural_sort_key(s, regex=re.compile('([0-9]+)')):
return [int(text) if text.isdigit() else text.lower() for text in regex.split(s)]
def listfiles(dirname): def listfiles(dirname):
filenames = [os.path.join(dirname, x) for x in sorted(os.listdir(dirname), key=str.lower) if not x.startswith(".")] filenames = [os.path.join(dirname, x) for x in sorted(os.listdir(dirname), key=natural_sort_key) if not x.startswith(".")]
return [file for file in filenames if os.path.isfile(file)] return [file for file in filenames if os.path.isfile(file)]
@ -843,8 +873,11 @@ def walk_files(path, allowed_extensions=None):
if allowed_extensions is not None: if allowed_extensions is not None:
allowed_extensions = set(allowed_extensions) allowed_extensions = set(allowed_extensions)
for root, _, files in os.walk(path, followlinks=True): items = list(os.walk(path, followlinks=True))
for filename in files: items = sorted(items, key=lambda x: natural_sort_key(x[0]))
for root, _, files in items:
for filename in sorted(files, key=natural_sort_key):
if allowed_extensions is not None: if allowed_extensions is not None:
_, ext = os.path.splitext(filename) _, ext = os.path.splitext(filename)
if ext not in allowed_extensions: if ext not in allowed_extensions:

View File

@ -2,11 +2,51 @@ import datetime
import json import json
import os import os
saved_params_shared = {"model_name", "model_hash", "initial_step", "num_of_dataset_images", "learn_rate", "batch_size", "clip_grad_mode", "clip_grad_value", "data_root", "log_directory", "training_width", "training_height", "steps", "create_image_every", "template_file", "gradient_step", "latent_sampling_method"} saved_params_shared = {
saved_params_ti = {"embedding_name", "num_vectors_per_token", "save_embedding_every", "save_image_with_stored_embedding"} "batch_size",
saved_params_hypernet = {"hypernetwork_name", "layer_structure", "activation_func", "weight_init", "add_layer_norm", "use_dropout", "save_hypernetwork_every"} "clip_grad_mode",
"clip_grad_value",
"create_image_every",
"data_root",
"gradient_step",
"initial_step",
"latent_sampling_method",
"learn_rate",
"log_directory",
"model_hash",
"model_name",
"num_of_dataset_images",
"steps",
"template_file",
"training_height",
"training_width",
}
saved_params_ti = {
"embedding_name",
"num_vectors_per_token",
"save_embedding_every",
"save_image_with_stored_embedding",
}
saved_params_hypernet = {
"activation_func",
"add_layer_norm",
"hypernetwork_name",
"layer_structure",
"save_hypernetwork_every",
"use_dropout",
"weight_init",
}
saved_params_all = saved_params_shared | saved_params_ti | saved_params_hypernet saved_params_all = saved_params_shared | saved_params_ti | saved_params_hypernet
saved_params_previews = {"preview_prompt", "preview_negative_prompt", "preview_steps", "preview_sampler_index", "preview_cfg_scale", "preview_seed", "preview_width", "preview_height"} saved_params_previews = {
"preview_cfg_scale",
"preview_height",
"preview_negative_prompt",
"preview_prompt",
"preview_sampler_index",
"preview_seed",
"preview_steps",
"preview_width",
}
def save_settings_to_file(log_directory, all_params): def save_settings_to_file(log_directory, all_params):

View File

@ -7,7 +7,7 @@ from modules import paths, shared, images, deepbooru
from modules.textual_inversion import autocrop from modules.textual_inversion import autocrop
def preprocess(id_task, process_src, process_dst, process_width, process_height, preprocess_txt_action, process_keep_original_size, process_flip, process_split, process_caption, process_caption_deepbooru=False, split_threshold=0.5, overlap_ratio=0.2, process_focal_crop=False, process_focal_crop_face_weight=0.9, process_focal_crop_entropy_weight=0.3, process_focal_crop_edges_weight=0.5, process_focal_crop_debug=False, process_multicrop=None, process_multicrop_mindim=None, process_multicrop_maxdim=None, process_multicrop_minarea=None, process_multicrop_maxarea=None, process_multicrop_objective=None, process_multicrop_threshold=None): def preprocess(id_task, process_src, process_dst, process_width, process_height, preprocess_txt_action, process_keep_original_size, process_flip, process_split, process_caption, process_caption_deepbooru=False, split_threshold=0.5, overlap_ratio=0.2, process_focal_crop=False, process_focal_crop_face_weight=0.9, process_focal_crop_entropy_weight=0.15, process_focal_crop_edges_weight=0.5, process_focal_crop_debug=False, process_multicrop=None, process_multicrop_mindim=None, process_multicrop_maxdim=None, process_multicrop_minarea=None, process_multicrop_maxarea=None, process_multicrop_objective=None, process_multicrop_threshold=None):
try: try:
if process_caption: if process_caption:
shared.interrogator.load() shared.interrogator.load()

View File

@ -1,5 +1,6 @@
import os import os
from collections import namedtuple from collections import namedtuple
from contextlib import closing
import torch import torch
import tqdm import tqdm
@ -12,7 +13,7 @@ import numpy as np
from PIL import Image, PngImagePlugin from PIL import Image, PngImagePlugin
from torch.utils.tensorboard import SummaryWriter from torch.utils.tensorboard import SummaryWriter
from modules import shared, devices, sd_hijack, processing, sd_models, images, sd_samplers, sd_hijack_checkpoint, errors from modules import shared, devices, sd_hijack, processing, sd_models, images, sd_samplers, sd_hijack_checkpoint, errors, hashes
import modules.textual_inversion.dataset import modules.textual_inversion.dataset
from modules.textual_inversion.learn_schedule import LearnRateScheduler from modules.textual_inversion.learn_schedule import LearnRateScheduler
@ -48,6 +49,8 @@ class Embedding:
self.sd_checkpoint_name = None self.sd_checkpoint_name = None
self.optimizer_state_dict = None self.optimizer_state_dict = None
self.filename = None self.filename = None
self.hash = None
self.shorthash = None
def save(self, filename): def save(self, filename):
embedding_data = { embedding_data = {
@ -81,6 +84,10 @@ class Embedding:
self.cached_checksum = f'{const_hash(self.vec.reshape(-1) * 100) & 0xffff:04x}' self.cached_checksum = f'{const_hash(self.vec.reshape(-1) * 100) & 0xffff:04x}'
return self.cached_checksum return self.cached_checksum
def set_hash(self, v):
self.hash = v
self.shorthash = self.hash[0:12]
class DirWithTextualInversionEmbeddings: class DirWithTextualInversionEmbeddings:
def __init__(self, path): def __init__(self, path):
@ -198,6 +205,7 @@ class EmbeddingDatabase:
embedding.vectors = vec.shape[0] embedding.vectors = vec.shape[0]
embedding.shape = vec.shape[-1] embedding.shape = vec.shape[-1]
embedding.filename = path embedding.filename = path
embedding.set_hash(hashes.sha256(embedding.filename, "textual_inversion/" + name) or '')
if self.expected_shape == -1 or self.expected_shape == embedding.shape: if self.expected_shape == -1 or self.expected_shape == embedding.shape:
self.register_embedding(embedding, shared.sd_model) self.register_embedding(embedding, shared.sd_model)
@ -248,7 +256,7 @@ class EmbeddingDatabase:
self.word_embeddings.update(sorted_word_embeddings) self.word_embeddings.update(sorted_word_embeddings)
displayed_embeddings = (tuple(self.word_embeddings.keys()), tuple(self.skipped_embeddings.keys())) displayed_embeddings = (tuple(self.word_embeddings.keys()), tuple(self.skipped_embeddings.keys()))
if self.previously_displayed_embeddings != displayed_embeddings: if shared.opts.textual_inversion_print_at_load and self.previously_displayed_embeddings != displayed_embeddings:
self.previously_displayed_embeddings = displayed_embeddings self.previously_displayed_embeddings = displayed_embeddings
print(f"Textual inversion embeddings loaded({len(self.word_embeddings)}): {', '.join(self.word_embeddings.keys())}") print(f"Textual inversion embeddings loaded({len(self.word_embeddings)}): {', '.join(self.word_embeddings.keys())}")
if self.skipped_embeddings: if self.skipped_embeddings:
@ -584,6 +592,7 @@ def train_embedding(id_task, embedding_name, learn_rate, batch_size, gradient_st
preview_text = p.prompt preview_text = p.prompt
with closing(p):
processed = processing.process_images(p) processed = processing.process_images(p)
image = processed.images[0] if len(processed.images) > 0 else None image = processed.images[0] if len(processed.images) > 0 else None

View File

@ -1,13 +1,15 @@
from contextlib import closing
import modules.scripts import modules.scripts
from modules import sd_samplers, processing from modules import sd_samplers, processing
from modules.generation_parameters_copypaste import create_override_settings_dict from modules.generation_parameters_copypaste import create_override_settings_dict
from modules.shared import opts, cmd_opts from modules.shared import opts, cmd_opts
import modules.shared as shared import modules.shared as shared
from modules.ui import plaintext_to_html from modules.ui import plaintext_to_html
import gradio as gr
def txt2img(id_task: str, prompt: str, negative_prompt: str, prompt_styles, steps: int, sampler_index: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, height: int, width: int, enable_hr: bool, denoising_strength: float, hr_scale: float, hr_upscaler: str, hr_second_pass_steps: int, hr_resize_x: int, hr_resize_y: int, hr_sampler_index: int, hr_prompt: str, hr_negative_prompt, override_settings_texts, request: gr.Request, *args):
def txt2img(id_task: str, prompt: str, negative_prompt: str, prompt_styles, steps: int, sampler_index: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, height: int, width: int, enable_hr: bool, denoising_strength: float, hr_scale: float, hr_upscaler: str, hr_second_pass_steps: int, hr_resize_x: int, hr_resize_y: int, hr_sampler_index: int, hr_prompt: str, hr_negative_prompt, override_settings_texts, *args):
override_settings = create_override_settings_dict(override_settings_texts) override_settings = create_override_settings_dict(override_settings_texts)
p = processing.StableDiffusionProcessingTxt2Img( p = processing.StableDiffusionProcessingTxt2Img(
@ -48,16 +50,17 @@ def txt2img(id_task: str, prompt: str, negative_prompt: str, prompt_styles, step
p.scripts = modules.scripts.scripts_txt2img p.scripts = modules.scripts.scripts_txt2img
p.script_args = args p.script_args = args
p.user = request.username
if cmd_opts.enable_console_prompts: if cmd_opts.enable_console_prompts:
print(f"\ntxt2img: {prompt}", file=shared.progress_print_out) print(f"\ntxt2img: {prompt}", file=shared.progress_print_out)
with closing(p):
processed = modules.scripts.scripts_txt2img.run(p, *args) processed = modules.scripts.scripts_txt2img.run(p, *args)
if processed is None: if processed is None:
processed = processing.process_images(p) processed = processing.process_images(p)
p.close()
shared.total_tqdm.clear() shared.total_tqdm.clear()
generation_info_js = processed.js() generation_info_js = processed.js()
@ -67,4 +70,4 @@ def txt2img(id_task: str, prompt: str, negative_prompt: str, prompt_styles, step
if opts.do_not_show_images: if opts.do_not_show_images:
processed.images = [] processed.images = []
return processed.images, generation_info_js, plaintext_to_html(processed.info), plaintext_to_html(processed.comments) return processed.images, generation_info_js, plaintext_to_html(processed.info), plaintext_to_html(processed.comments, classname="comments")

View File

@ -83,8 +83,7 @@ detect_image_size_symbol = '\U0001F4D0' # 📐
up_down_symbol = '\u2195\ufe0f' # ↕️ up_down_symbol = '\u2195\ufe0f' # ↕️
def plaintext_to_html(text): plaintext_to_html = ui_common.plaintext_to_html
return ui_common.plaintext_to_html(text)
def send_gradio_gallery_to_image(x): def send_gradio_gallery_to_image(x):
@ -155,7 +154,7 @@ def process_interrogate(interrogation_function, mode, ii_input_dir, ii_output_di
img = Image.open(image) img = Image.open(image)
filename = os.path.basename(image) filename = os.path.basename(image)
left, _ = os.path.splitext(filename) left, _ = os.path.splitext(filename)
print(interrogation_function(img), file=open(os.path.join(ii_output_dir, f"{left}.txt"), 'a')) print(interrogation_function(img), file=open(os.path.join(ii_output_dir, f"{left}.txt"), 'a', encoding='utf-8'))
return [gr.update(), None] return [gr.update(), None]
@ -733,6 +732,10 @@ def create_ui():
img2img_batch_input_dir = gr.Textbox(label="Input directory", **shared.hide_dirs, elem_id="img2img_batch_input_dir") img2img_batch_input_dir = gr.Textbox(label="Input directory", **shared.hide_dirs, elem_id="img2img_batch_input_dir")
img2img_batch_output_dir = gr.Textbox(label="Output directory", **shared.hide_dirs, elem_id="img2img_batch_output_dir") img2img_batch_output_dir = gr.Textbox(label="Output directory", **shared.hide_dirs, elem_id="img2img_batch_output_dir")
img2img_batch_inpaint_mask_dir = gr.Textbox(label="Inpaint batch mask directory (required for inpaint batch processing only)", **shared.hide_dirs, elem_id="img2img_batch_inpaint_mask_dir") img2img_batch_inpaint_mask_dir = gr.Textbox(label="Inpaint batch mask directory (required for inpaint batch processing only)", **shared.hide_dirs, elem_id="img2img_batch_inpaint_mask_dir")
with gr.Accordion("PNG info", open=False):
img2img_batch_use_png_info = gr.Checkbox(label="Append png info to prompts", **shared.hide_dirs, elem_id="img2img_batch_use_png_info")
img2img_batch_png_info_dir = gr.Textbox(label="PNG info directory", **shared.hide_dirs, placeholder="Leave empty to use input directory", elem_id="img2img_batch_png_info_dir")
img2img_batch_png_info_props = gr.CheckboxGroup(["Prompt", "Negative prompt", "Seed", "CFG scale", "Sampler", "Steps"], label="Parameters to take from png info", info="Prompts from png info will be appended to prompts set in ui.")
img2img_tabs = [tab_img2img, tab_sketch, tab_inpaint, tab_inpaint_color, tab_inpaint_upload, tab_batch] img2img_tabs = [tab_img2img, tab_sketch, tab_inpaint, tab_inpaint_color, tab_inpaint_upload, tab_batch]
@ -773,7 +776,7 @@ def create_ui():
selected_scale_tab = gr.State(value=0) selected_scale_tab = gr.State(value=0)
with gr.Tabs(): with gr.Tabs():
with gr.Tab(label="Resize to") as tab_scale_to: with gr.Tab(label="Resize to", elem_id="img2img_tab_resize_to") as tab_scale_to:
with FormRow(): with FormRow():
with gr.Column(elem_id="img2img_column_size", scale=4): with gr.Column(elem_id="img2img_column_size", scale=4):
width = gr.Slider(minimum=64, maximum=2048, step=8, label="Width", value=512, elem_id="img2img_width") width = gr.Slider(minimum=64, maximum=2048, step=8, label="Width", value=512, elem_id="img2img_width")
@ -782,7 +785,7 @@ def create_ui():
res_switch_btn = ToolButton(value=switch_values_symbol, elem_id="img2img_res_switch_btn") res_switch_btn = ToolButton(value=switch_values_symbol, elem_id="img2img_res_switch_btn")
detect_image_size_btn = ToolButton(value=detect_image_size_symbol, elem_id="img2img_detect_image_size_btn") detect_image_size_btn = ToolButton(value=detect_image_size_symbol, elem_id="img2img_detect_image_size_btn")
with gr.Tab(label="Resize by") as tab_scale_by: with gr.Tab(label="Resize by", elem_id="img2img_tab_resize_by") as tab_scale_by:
scale_by = gr.Slider(minimum=0.05, maximum=4.0, step=0.05, label="Scale", value=1.0, elem_id="img2img_scale") scale_by = gr.Slider(minimum=0.05, maximum=4.0, step=0.05, label="Scale", value=1.0, elem_id="img2img_scale")
with FormRow(): with FormRow():
@ -934,6 +937,9 @@ def create_ui():
img2img_batch_output_dir, img2img_batch_output_dir,
img2img_batch_inpaint_mask_dir, img2img_batch_inpaint_mask_dir,
override_settings, override_settings,
img2img_batch_use_png_info,
img2img_batch_png_info_props,
img2img_batch_png_info_dir,
] + custom_inputs, ] + custom_inputs,
outputs=[ outputs=[
img2img_gallery, img2img_gallery,

View File

@ -29,9 +29,10 @@ def update_generation_info(generation_info, html_info, img_index):
return html_info, gr.update() return html_info, gr.update()
def plaintext_to_html(text): def plaintext_to_html(text, classname=None):
text = "<p>" + "<br>\n".join([f"{html.escape(x)}" for x in text.split('\n')]) + "</p>" content = "<br>\n".join(html.escape(x) for x in text.split('\n'))
return text
return f"<p class='{classname}'>{content}</p>" if classname else f"<p>{content}</p>"
def save_files(js_data, images, do_make_zip, index): def save_files(js_data, images, do_make_zip, index):
@ -157,7 +158,7 @@ Requested path was: {f}
with gr.Group(): with gr.Group():
html_info = gr.HTML(elem_id=f'html_info_{tabname}', elem_classes="infotext") html_info = gr.HTML(elem_id=f'html_info_{tabname}', elem_classes="infotext")
html_log = gr.HTML(elem_id=f'html_log_{tabname}') html_log = gr.HTML(elem_id=f'html_log_{tabname}', elem_classes="html-log")
generation_info = gr.Textbox(visible=False, elem_id=f'generation_info_{tabname}') generation_info = gr.Textbox(visible=False, elem_id=f'generation_info_{tabname}')
if tabname == 'txt2img' or tabname == 'img2img': if tabname == 'txt2img' or tabname == 'img2img':

View File

@ -1,5 +1,5 @@
import json import json
import os.path import os
import threading import threading
import time import time
from datetime import datetime from datetime import datetime
@ -138,7 +138,10 @@ def extension_table():
<table id="extensions"> <table id="extensions">
<thead> <thead>
<tr> <tr>
<th><abbr title="Use checkbox to enable the extension; it will be enabled or disabled when you click apply button">Extension</abbr></th> <th>
<input class="gr-check-radio gr-checkbox all_extensions_toggle" type="checkbox" {'checked="checked"' if all(ext.enabled for ext in extensions.extensions) else ''} onchange="toggle_all_extensions(event)" />
<abbr title="Use checkbox to enable the extension; it will be enabled or disabled when you click apply button">Extension</abbr>
</th>
<th>URL</th> <th>URL</th>
<th>Branch</th> <th>Branch</th>
<th>Version</th> <th>Version</th>
@ -170,7 +173,7 @@ def extension_table():
code += f""" code += f"""
<tr> <tr>
<td><label{style}><input class="gr-check-radio gr-checkbox" name="enable_{html.escape(ext.name)}" type="checkbox" {'checked="checked"' if ext.enabled else ''}>{html.escape(ext.name)}</label></td> <td><label{style}><input class="gr-check-radio gr-checkbox extension_toggle" name="enable_{html.escape(ext.name)}" type="checkbox" {'checked="checked"' if ext.enabled else ''} onchange="toggle_extension(event)" />{html.escape(ext.name)}</label></td>
<td>{remote}</td> <td>{remote}</td>
<td>{ext.branch}</td> <td>{ext.branch}</td>
<td>{version_link}</td> <td>{version_link}</td>
@ -421,9 +424,19 @@ sort_ordering = [
(False, lambda x: x.get('name', 'z')), (False, lambda x: x.get('name', 'z')),
(True, lambda x: x.get('name', 'z')), (True, lambda x: x.get('name', 'z')),
(False, lambda x: 'z'), (False, lambda x: 'z'),
(True, lambda x: x.get('commit_time', '')),
(True, lambda x: x.get('created_at', '')),
(True, lambda x: x.get('stars', 0)),
] ]
def get_date(info: dict, key):
try:
return datetime.strptime(info.get(key), "%Y-%m-%dT%H:%M:%SZ").strftime("%Y-%m-%d")
except (ValueError, TypeError):
return ''
def refresh_available_extensions_from_data(hide_tags, sort_column, filter_text=""): def refresh_available_extensions_from_data(hide_tags, sort_column, filter_text=""):
extlist = available_extensions["extensions"] extlist = available_extensions["extensions"]
installed_extension_urls = {normalize_git_url(extension.remote): extension.name for extension in extensions.extensions} installed_extension_urls = {normalize_git_url(extension.remote): extension.name for extension in extensions.extensions}
@ -448,7 +461,10 @@ def refresh_available_extensions_from_data(hide_tags, sort_column, filter_text="
for ext in sorted(extlist, key=sort_function, reverse=sort_reverse): for ext in sorted(extlist, key=sort_function, reverse=sort_reverse):
name = ext.get("name", "noname") name = ext.get("name", "noname")
stars = int(ext.get("stars", 0))
added = ext.get('added', 'unknown') added = ext.get('added', 'unknown')
update_time = get_date(ext, 'commit_time')
create_time = get_date(ext, 'created_at')
url = ext.get("url", None) url = ext.get("url", None)
description = ext.get("description", "") description = ext.get("description", "")
extension_tags = ext.get("tags", []) extension_tags = ext.get("tags", [])
@ -475,7 +491,8 @@ def refresh_available_extensions_from_data(hide_tags, sort_column, filter_text="
code += f""" code += f"""
<tr> <tr>
<td><a href="{html.escape(url)}" target="_blank">{html.escape(name)}</a><br />{tags_text}</td> <td><a href="{html.escape(url)}" target="_blank">{html.escape(name)}</a><br />{tags_text}</td>
<td>{html.escape(description)}<p class="info"><span class="date_added">Added: {html.escape(added)}</span></p></td> <td>{html.escape(description)}<p class="info">
<span class="date_added">Update: {html.escape(update_time)} Added: {html.escape(added)} Created: {html.escape(create_time)}</span><span class="star_count">stars: <b>{stars}</b></a></p></td>
<td>{install_code}</td> <td>{install_code}</td>
</tr> </tr>
@ -496,14 +513,8 @@ def refresh_available_extensions_from_data(hide_tags, sort_column, filter_text="
def preload_extensions_git_metadata(): def preload_extensions_git_metadata():
t0 = time.time()
for extension in extensions.extensions: for extension in extensions.extensions:
extension.read_info_from_repo() extension.read_info_from_repo()
print(
f"preload_extensions_git_metadata for "
f"{len(extensions.extensions)} extensions took "
f"{time.time() - t0:.2f}s"
)
def create_ui(): def create_ui():
@ -553,13 +564,14 @@ def create_ui():
with gr.TabItem("Available", id="available"): with gr.TabItem("Available", id="available"):
with gr.Row(): with gr.Row():
refresh_available_extensions_button = gr.Button(value="Load from:", variant="primary") refresh_available_extensions_button = gr.Button(value="Load from:", variant="primary")
available_extensions_index = gr.Text(value="https://raw.githubusercontent.com/AUTOMATIC1111/stable-diffusion-webui-extensions/master/index.json", label="Extension index URL").style(container=False) extensions_index_url = os.environ.get('WEBUI_EXTENSIONS_INDEX', "https://raw.githubusercontent.com/AUTOMATIC1111/stable-diffusion-webui-extensions/master/index.json")
available_extensions_index = gr.Text(value=extensions_index_url, label="Extension index URL").style(container=False)
extension_to_install = gr.Text(elem_id="extension_to_install", visible=False) extension_to_install = gr.Text(elem_id="extension_to_install", visible=False)
install_extension_button = gr.Button(elem_id="install_extension_button", visible=False) install_extension_button = gr.Button(elem_id="install_extension_button", visible=False)
with gr.Row(): with gr.Row():
hide_tags = gr.CheckboxGroup(value=["ads", "localization", "installed"], label="Hide extensions with tags", choices=["script", "ads", "localization", "installed"]) hide_tags = gr.CheckboxGroup(value=["ads", "localization", "installed"], label="Hide extensions with tags", choices=["script", "ads", "localization", "installed"])
sort_column = gr.Radio(value="newest first", label="Order", choices=["newest first", "oldest first", "a-z", "z-a", "internal order", ], type="index") sort_column = gr.Radio(value="newest first", label="Order", choices=["newest first", "oldest first", "a-z", "z-a", "internal order",'update time', 'create time', "stars"], type="index")
with gr.Row(): with gr.Row():
search_extensions_text = gr.Text(label="Search").style(container=False) search_extensions_text = gr.Text(label="Search").style(container=False)
@ -568,9 +580,9 @@ def create_ui():
available_extensions_table = gr.HTML() available_extensions_table = gr.HTML()
refresh_available_extensions_button.click( refresh_available_extensions_button.click(
fn=modules.ui.wrap_gradio_call(refresh_available_extensions, extra_outputs=[gr.update(), gr.update(), gr.update()]), fn=modules.ui.wrap_gradio_call(refresh_available_extensions, extra_outputs=[gr.update(), gr.update(), gr.update(), gr.update()]),
inputs=[available_extensions_index, hide_tags, sort_column], inputs=[available_extensions_index, hide_tags, sort_column],
outputs=[available_extensions_index, available_extensions_table, hide_tags, install_result, search_extensions_text], outputs=[available_extensions_index, available_extensions_table, hide_tags, search_extensions_text, install_result],
) )
install_extension_button.click( install_extension_button.click(

View File

@ -2,14 +2,16 @@ import os.path
import urllib.parse import urllib.parse
from pathlib import Path from pathlib import Path
from modules import shared from modules import shared, ui_extra_networks_user_metadata, errors
from modules.images import read_info_from_image, save_image_with_geninfo from modules.images import read_info_from_image, save_image_with_geninfo
from modules.ui import up_down_symbol from modules.ui import up_down_symbol
import gradio as gr import gradio as gr
import json import json
import html import html
from fastapi.exceptions import HTTPException
from modules.generation_parameters_copypaste import image_from_url_text from modules.generation_parameters_copypaste import image_from_url_text
from modules.ui_components import ToolButton
extra_pages = [] extra_pages = []
allowed_dirs = set() allowed_dirs = set()
@ -26,12 +28,15 @@ def register_page(page):
def fetch_file(filename: str = ""): def fetch_file(filename: str = ""):
from starlette.responses import FileResponse from starlette.responses import FileResponse
if not os.path.isfile(filename):
raise HTTPException(status_code=404, detail="File not found")
if not any(Path(x).absolute() in Path(filename).absolute().parents for x in allowed_dirs): if not any(Path(x).absolute() in Path(filename).absolute().parents for x in allowed_dirs):
raise ValueError(f"File cannot be fetched: {filename}. Must be in one of directories registered by extra pages.") raise ValueError(f"File cannot be fetched: {filename}. Must be in one of directories registered by extra pages.")
ext = os.path.splitext(filename)[1].lower() ext = os.path.splitext(filename)[1].lower()
if ext not in (".png", ".jpg", ".jpeg", ".webp"): if ext not in (".png", ".jpg", ".jpeg", ".webp", ".gif"):
raise ValueError(f"File cannot be fetched: {filename}. Only png and jpg and webp.") raise ValueError(f"File cannot be fetched: {filename}. Only png, jpg, webp, and gif.")
# would profit from returning 304 # would profit from returning 304
return FileResponse(filename, headers={"Accept-Ranges": "bytes"}) return FileResponse(filename, headers={"Accept-Ranges": "bytes"})
@ -48,25 +53,71 @@ def get_metadata(page: str = "", item: str = ""):
if metadata is None: if metadata is None:
return JSONResponse({}) return JSONResponse({})
return JSONResponse({"metadata": metadata}) return JSONResponse({"metadata": json.dumps(metadata, indent=4, ensure_ascii=False)})
def get_single_card(page: str = "", tabname: str = "", name: str = ""):
from starlette.responses import JSONResponse
page = next(iter([x for x in extra_pages if x.name == page]), None)
try:
item = page.create_item(name, enable_filter=False)
page.items[name] = item
except Exception as e:
errors.display(e, "creating item for extra network")
item = page.items.get(name)
page.read_user_metadata(item)
item_html = page.create_html_for_item(item, tabname)
return JSONResponse({"html": item_html})
def add_pages_to_demo(app): def add_pages_to_demo(app):
app.add_api_route("/sd_extra_networks/thumb", fetch_file, methods=["GET"]) app.add_api_route("/sd_extra_networks/thumb", fetch_file, methods=["GET"])
app.add_api_route("/sd_extra_networks/metadata", get_metadata, methods=["GET"]) app.add_api_route("/sd_extra_networks/metadata", get_metadata, methods=["GET"])
app.add_api_route("/sd_extra_networks/get-single-card", get_single_card, methods=["GET"])
def quote_js(s):
s = s.replace('\\', '\\\\')
s = s.replace('"', '\\"')
return f'"{s}"'
class ExtraNetworksPage: class ExtraNetworksPage:
def __init__(self, title): def __init__(self, title):
self.title = title self.title = title
self.name = title.lower() self.name = title.lower()
self.id_page = self.name.replace(" ", "_")
self.card_page = shared.html("extra-networks-card.html") self.card_page = shared.html("extra-networks-card.html")
self.allow_negative_prompt = False self.allow_negative_prompt = False
self.metadata = {} self.metadata = {}
self.items = {}
def refresh(self): def refresh(self):
pass pass
def read_user_metadata(self, item):
filename = item.get("filename", None)
basename, ext = os.path.splitext(filename)
metadata_filename = basename + '.json'
metadata = {}
try:
if os.path.isfile(metadata_filename):
with open(metadata_filename, "r", encoding="utf8") as file:
metadata = json.load(file)
except Exception as e:
errors.display(e, f"reading extra network user metadata from {metadata_filename}")
desc = metadata.get("description", None)
if desc is not None:
item["description"] = desc
item["user_metadata"] = metadata
def link_preview(self, filename): def link_preview(self, filename):
quoted_filename = urllib.parse.quote(filename.replace('\\', '/')) quoted_filename = urllib.parse.quote(filename.replace('\\', '/'))
mtime = os.path.getmtime(filename) mtime = os.path.getmtime(filename)
@ -83,15 +134,14 @@ class ExtraNetworksPage:
return "" return ""
def create_html(self, tabname): def create_html(self, tabname):
view = shared.opts.extra_networks_default_view
items_html = '' items_html = ''
self.metadata = {} self.metadata = {}
subdirs = {} subdirs = {}
for parentdir in [os.path.abspath(x) for x in self.allowed_directories_for_previews()]: for parentdir in [os.path.abspath(x) for x in self.allowed_directories_for_previews()]:
for root, dirs, _ in os.walk(parentdir, followlinks=True): for root, dirs, _ in sorted(os.walk(parentdir, followlinks=True), key=lambda x: shared.natural_sort_key(x[0])):
for dirname in dirs: for dirname in sorted(dirs, key=shared.natural_sort_key):
x = os.path.join(root, dirname) x = os.path.join(root, dirname)
if not os.path.isdir(x): if not os.path.isdir(x):
@ -119,11 +169,15 @@ class ExtraNetworksPage:
</button> </button>
""" for subdir in subdirs]) """ for subdir in subdirs])
for item in self.list_items(): self.items = {x["name"]: x for x in self.list_items()}
for item in self.items.values():
metadata = item.get("metadata") metadata = item.get("metadata")
if metadata: if metadata:
self.metadata[item["name"]] = metadata self.metadata[item["name"]] = metadata
if "user_metadata" not in item:
self.read_user_metadata(item)
items_html += self.create_html_for_item(item, tabname) items_html += self.create_html_for_item(item, tabname)
if items_html == '': if items_html == '':
@ -133,16 +187,19 @@ class ExtraNetworksPage:
self_name_id = self.name.replace(" ", "_") self_name_id = self.name.replace(" ", "_")
res = f""" res = f"""
<div id='{tabname}_{self_name_id}_subdirs' class='extra-network-subdirs extra-network-subdirs-{view}'> <div id='{tabname}_{self_name_id}_subdirs' class='extra-network-subdirs extra-network-subdirs-cards'>
{subdirs_html} {subdirs_html}
</div> </div>
<div id='{tabname}_{self_name_id}_cards' class='extra-network-{view}'> <div id='{tabname}_{self_name_id}_cards' class='extra-network-cards'>
{items_html} {items_html}
</div> </div>
""" """
return res return res
def create_item(self, name, index=None):
raise NotImplementedError()
def list_items(self): def list_items(self):
raise NotImplementedError() raise NotImplementedError()
@ -158,7 +215,7 @@ class ExtraNetworksPage:
onclick = item.get("onclick", None) onclick = item.get("onclick", None)
if onclick is None: if onclick is None:
onclick = '"' + html.escape(f"""return cardClicked({json.dumps(tabname)}, {item["prompt"]}, {"true" if self.allow_negative_prompt else "false"})""") + '"' onclick = '"' + html.escape(f"""return cardClicked({quote_js(tabname)}, {item["prompt"]}, {"true" if self.allow_negative_prompt else "false"})""") + '"'
height = f"height: {shared.opts.extra_networks_card_height}px;" if shared.opts.extra_networks_card_height else '' height = f"height: {shared.opts.extra_networks_card_height}px;" if shared.opts.extra_networks_card_height else ''
width = f"width: {shared.opts.extra_networks_card_width}px;" if shared.opts.extra_networks_card_width else '' width = f"width: {shared.opts.extra_networks_card_width}px;" if shared.opts.extra_networks_card_width else ''
@ -166,7 +223,9 @@ class ExtraNetworksPage:
metadata_button = "" metadata_button = ""
metadata = item.get("metadata") metadata = item.get("metadata")
if metadata: if metadata:
metadata_button = f"<div class='metadata-button' title='Show metadata' onclick='extraNetworksRequestMetadata(event, {json.dumps(self.name)}, {json.dumps(item['name'])})'></div>" metadata_button = f"<div class='metadata-button card-button' title='Show internal metadata' onclick='extraNetworksRequestMetadata(event, {quote_js(self.name)}, {quote_js(item['name'])})'></div>"
edit_button = f"<div class='edit-button card-button' title='Edit metadata' onclick='extraNetworksEditUserMetadata(event, {quote_js(tabname)}, {quote_js(self.id_page)}, {quote_js(item['name'])})'></div>"
local_path = "" local_path = ""
filename = item.get("filename", "") filename = item.get("filename", "")
@ -190,16 +249,17 @@ class ExtraNetworksPage:
args = { args = {
"background_image": background_image, "background_image": background_image,
"style": f"'display: none; {height}{width}'", "style": f"'display: none; {height}{width}; font-size: {shared.opts.extra_networks_card_text_scale*100}%'",
"prompt": item.get("prompt", None), "prompt": item.get("prompt", None),
"tabname": json.dumps(tabname), "tabname": quote_js(tabname),
"local_preview": json.dumps(item["local_preview"]), "local_preview": quote_js(item["local_preview"]),
"name": item["name"], "name": item["name"],
"description": (item.get("description") or ""), "description": (item.get("description") or "" if shared.opts.extra_networks_card_show_desc else ""),
"card_clicked": onclick, "card_clicked": onclick,
"save_card_preview": '"' + html.escape(f"""return saveCardPreview(event, {json.dumps(tabname)}, {json.dumps(item["local_preview"])})""") + '"', "save_card_preview": '"' + html.escape(f"""return saveCardPreview(event, {quote_js(tabname)}, {quote_js(item["local_preview"])})""") + '"',
"search_term": item.get("search_term", ""), "search_term": item.get("search_term", ""),
"metadata_button": metadata_button, "metadata_button": metadata_button,
"edit_button": edit_button,
"search_only": " search_only" if search_only else "", "search_only": " search_only" if search_only else "",
"sort_keys": sort_keys, "sort_keys": sort_keys,
} }
@ -247,6 +307,9 @@ class ExtraNetworksPage:
pass pass
return None return None
def create_user_metadata_editor(self, ui, tabname):
return ui_extra_networks_user_metadata.UserMetadataEditor(ui, tabname, self)
def initialize(): def initialize():
extra_pages.clear() extra_pages.clear()
@ -297,23 +360,26 @@ def create_ui(container, button, tabname):
ui = ExtraNetworksUi() ui = ExtraNetworksUi()
ui.pages = [] ui.pages = []
ui.pages_contents = [] ui.pages_contents = []
ui.user_metadata_editors = []
ui.stored_extra_pages = pages_in_preferred_order(extra_pages.copy()) ui.stored_extra_pages = pages_in_preferred_order(extra_pages.copy())
ui.tabname = tabname ui.tabname = tabname
with gr.Tabs(elem_id=tabname+"_extra_tabs"): with gr.Tabs(elem_id=tabname+"_extra_tabs"):
for page in ui.stored_extra_pages: for page in ui.stored_extra_pages:
page_id = page.title.lower().replace(" ", "_") with gr.Tab(page.title, id=page.id_page):
elem_id = f"{tabname}_{page.id_page}_cards_html"
with gr.Tab(page.title, id=page_id):
elem_id = f"{tabname}_{page_id}_cards_html"
page_elem = gr.HTML('Loading...', elem_id=elem_id) page_elem = gr.HTML('Loading...', elem_id=elem_id)
ui.pages.append(page_elem) ui.pages.append(page_elem)
page_elem.change(fn=lambda: None, _js='function(){applyExtraNetworkFilter(' + json.dumps(tabname) + '); return []}', inputs=[], outputs=[]) page_elem.change(fn=lambda: None, _js='function(){applyExtraNetworkFilter(' + quote_js(tabname) + '); return []}', inputs=[], outputs=[])
editor = page.create_user_metadata_editor(ui, tabname)
editor.create_ui()
ui.user_metadata_editors.append(editor)
gr.Textbox('', show_label=False, elem_id=tabname+"_extra_search", placeholder="Search...", visible=False) gr.Textbox('', show_label=False, elem_id=tabname+"_extra_search", placeholder="Search...", visible=False)
gr.Dropdown(choices=['Default Sort', 'Date Created', 'Date Modified', 'Name'], value='Default Sort', elem_id=tabname+"_extra_sort", multiselect=False, visible=False, show_label=False, interactive=True) gr.Dropdown(choices=['Default Sort', 'Date Created', 'Date Modified', 'Name'], value='Default Sort', elem_id=tabname+"_extra_sort", multiselect=False, visible=False, show_label=False, interactive=True)
gr.Button(up_down_symbol, elem_id=tabname+"_extra_sortorder") ToolButton(up_down_symbol, elem_id=tabname+"_extra_sortorder")
button_refresh = gr.Button('Refresh', elem_id=tabname+"_extra_refresh") button_refresh = gr.Button('Refresh', elem_id=tabname+"_extra_refresh")
ui.button_save_preview = gr.Button('Save preview', elem_id=tabname+"_save_preview", visible=False) ui.button_save_preview = gr.Button('Save preview', elem_id=tabname+"_save_preview", visible=False)
@ -363,6 +429,8 @@ def path_is_parent(parent_path, child_path):
def setup_ui(ui, gallery): def setup_ui(ui, gallery):
def save_preview(index, images, filename): def save_preview(index, images, filename):
# this function is here for backwards compatibility and likely will be removed soon
if len(images) == 0: if len(images) == 0:
print("There is no image in gallery to save as a preview.") print("There is no image in gallery to save as a preview.")
return [page.create_html(ui.tabname) for page in ui.stored_extra_pages] return [page.create_html(ui.tabname) for page in ui.stored_extra_pages]
@ -394,3 +462,7 @@ def setup_ui(ui, gallery):
outputs=[*ui.pages] outputs=[*ui.pages]
) )
for editor in ui.user_metadata_editors:
editor.setup_ui(gallery)

View File

@ -1,8 +1,8 @@
import html import html
import json
import os import os
from modules import shared, ui_extra_networks, sd_models from modules import shared, ui_extra_networks, sd_models
from modules.ui_extra_networks import quote_js
class ExtraNetworksPageCheckpoints(ui_extra_networks.ExtraNetworksPage): class ExtraNetworksPageCheckpoints(ui_extra_networks.ExtraNetworksPage):
@ -12,22 +12,24 @@ class ExtraNetworksPageCheckpoints(ui_extra_networks.ExtraNetworksPage):
def refresh(self): def refresh(self):
shared.refresh_checkpoints() shared.refresh_checkpoints()
def list_items(self): def create_item(self, name, index=None):
checkpoint: sd_models.CheckpointInfo checkpoint: sd_models.CheckpointInfo = sd_models.checkpoint_aliases.get(name)
for index, (name, checkpoint) in enumerate(sd_models.checkpoints_list.items()):
path, ext = os.path.splitext(checkpoint.filename) path, ext = os.path.splitext(checkpoint.filename)
yield { return {
"name": checkpoint.name_for_extra, "name": checkpoint.name_for_extra,
"filename": path, "filename": checkpoint.filename,
"preview": self.find_preview(path), "preview": self.find_preview(path),
"description": self.find_description(path), "description": self.find_description(path),
"search_term": self.search_terms_from_path(checkpoint.filename) + " " + (checkpoint.sha256 or ""), "search_term": self.search_terms_from_path(checkpoint.filename) + " " + (checkpoint.sha256 or ""),
"onclick": '"' + html.escape(f"""return selectCheckpoint({json.dumps(name)})""") + '"', "onclick": '"' + html.escape(f"""return selectCheckpoint({quote_js(name)})""") + '"',
"local_preview": f"{path}.{shared.opts.samples_format}", "local_preview": f"{path}.{shared.opts.samples_format}",
"sort_keys": {'default': index, **self.get_sort_keys(checkpoint.filename)}, "sort_keys": {'default': index, **self.get_sort_keys(checkpoint.filename)},
} }
def list_items(self):
for index, name in enumerate(sd_models.checkpoints_list):
yield self.create_item(name, index)
def allowed_directories_for_previews(self): def allowed_directories_for_previews(self):
return [v for v in [shared.cmd_opts.ckpt_dir, sd_models.model_path] if v is not None] return [v for v in [shared.cmd_opts.ckpt_dir, sd_models.model_path] if v is not None]

View File

@ -1,7 +1,7 @@
import json
import os import os
from modules import shared, ui_extra_networks from modules import shared, ui_extra_networks
from modules.ui_extra_networks import quote_js
class ExtraNetworksPageHypernetworks(ui_extra_networks.ExtraNetworksPage): class ExtraNetworksPageHypernetworks(ui_extra_networks.ExtraNetworksPage):
@ -11,22 +11,25 @@ class ExtraNetworksPageHypernetworks(ui_extra_networks.ExtraNetworksPage):
def refresh(self): def refresh(self):
shared.reload_hypernetworks() shared.reload_hypernetworks()
def list_items(self): def create_item(self, name, index=None):
for index, (name, path) in enumerate(shared.hypernetworks.items()): full_path = shared.hypernetworks[name]
path, ext = os.path.splitext(path) path, ext = os.path.splitext(full_path)
yield { return {
"name": name, "name": name,
"filename": path, "filename": full_path,
"preview": self.find_preview(path), "preview": self.find_preview(path),
"description": self.find_description(path), "description": self.find_description(path),
"search_term": self.search_terms_from_path(path), "search_term": self.search_terms_from_path(path),
"prompt": json.dumps(f"<hypernet:{name}:") + " + opts.extra_networks_default_multiplier + " + json.dumps(">"), "prompt": quote_js(f"<hypernet:{name}:") + " + opts.extra_networks_default_multiplier + " + quote_js(">"),
"local_preview": f"{path}.preview.{shared.opts.samples_format}", "local_preview": f"{path}.preview.{shared.opts.samples_format}",
"sort_keys": {'default': index, **self.get_sort_keys(path + ext)}, "sort_keys": {'default': index, **self.get_sort_keys(path + ext)},
} }
def list_items(self):
for index, name in enumerate(shared.hypernetworks):
yield self.create_item(name, index)
def allowed_directories_for_previews(self): def allowed_directories_for_previews(self):
return [shared.cmd_opts.hypernetwork_dir] return [shared.cmd_opts.hypernetwork_dir]

View File

@ -1,7 +1,7 @@
import json
import os import os
from modules import ui_extra_networks, sd_hijack, shared from modules import ui_extra_networks, sd_hijack, shared
from modules.ui_extra_networks import quote_js
class ExtraNetworksPageTextualInversion(ui_extra_networks.ExtraNetworksPage): class ExtraNetworksPageTextualInversion(ui_extra_networks.ExtraNetworksPage):
@ -12,20 +12,24 @@ class ExtraNetworksPageTextualInversion(ui_extra_networks.ExtraNetworksPage):
def refresh(self): def refresh(self):
sd_hijack.model_hijack.embedding_db.load_textual_inversion_embeddings(force_reload=True) sd_hijack.model_hijack.embedding_db.load_textual_inversion_embeddings(force_reload=True)
def list_items(self): def create_item(self, name, index=None):
for index, embedding in enumerate(sd_hijack.model_hijack.embedding_db.word_embeddings.values()): embedding = sd_hijack.model_hijack.embedding_db.word_embeddings.get(name)
path, ext = os.path.splitext(embedding.filename) path, ext = os.path.splitext(embedding.filename)
yield { return {
"name": embedding.name, "name": name,
"filename": embedding.filename, "filename": embedding.filename,
"preview": self.find_preview(path), "preview": self.find_preview(path),
"description": self.find_description(path), "description": self.find_description(path),
"search_term": self.search_terms_from_path(embedding.filename), "search_term": self.search_terms_from_path(embedding.filename),
"prompt": json.dumps(embedding.name), "prompt": quote_js(embedding.name),
"local_preview": f"{path}.preview.{shared.opts.samples_format}", "local_preview": f"{path}.preview.{shared.opts.samples_format}",
"sort_keys": {'default': index, **self.get_sort_keys(embedding.filename)}, "sort_keys": {'default': index, **self.get_sort_keys(embedding.filename)},
} }
def list_items(self):
for index, name in enumerate(sd_hijack.model_hijack.embedding_db.word_embeddings):
yield self.create_item(name, index)
def allowed_directories_for_previews(self): def allowed_directories_for_previews(self):
return list(sd_hijack.model_hijack.embedding_db.embedding_dirs) return list(sd_hijack.model_hijack.embedding_db.embedding_dirs)

View File

@ -0,0 +1,195 @@
import datetime
import html
import json
import os.path
import gradio as gr
from modules import generation_parameters_copypaste, images, sysinfo, errors
class UserMetadataEditor:
def __init__(self, ui, tabname, page):
self.ui = ui
self.tabname = tabname
self.page = page
self.id_part = f"{self.tabname}_{self.page.id_page}_edit_user_metadata"
self.box = None
self.edit_name_input = None
self.button_edit = None
self.edit_name = None
self.edit_description = None
self.edit_notes = None
self.html_filedata = None
self.html_preview = None
self.html_status = None
self.button_cancel = None
self.button_replace_preview = None
self.button_save = None
def get_user_metadata(self, name):
item = self.page.items.get(name, {})
user_metadata = item.get('user_metadata', None)
if user_metadata is None:
user_metadata = {}
item['user_metadata'] = user_metadata
return user_metadata
def create_extra_default_items_in_left_column(self):
pass
def create_default_editor_elems(self):
with gr.Row():
with gr.Column(scale=2):
self.edit_name = gr.HTML(elem_classes="extra-network-name")
self.edit_description = gr.Textbox(label="Description", lines=4)
self.html_filedata = gr.HTML()
self.create_extra_default_items_in_left_column()
with gr.Column(scale=1, min_width=0):
self.html_preview = gr.HTML()
def create_default_buttons(self):
with gr.Row(elem_classes="edit-user-metadata-buttons"):
self.button_cancel = gr.Button('Cancel')
self.button_replace_preview = gr.Button('Replace preview', variant='primary')
self.button_save = gr.Button('Save', variant='primary')
self.html_status = gr.HTML(elem_classes="edit-user-metadata-status")
self.button_cancel.click(fn=None, _js="closePopup")
def get_card_html(self, name):
item = self.page.items.get(name, {})
preview_url = item.get("preview", None)
if not preview_url:
filename, _ = os.path.splitext(item["filename"])
preview_url = self.page.find_preview(filename)
item["preview"] = preview_url
if preview_url:
preview = f'''
<div class='card standalone-card-preview'>
<img src="{html.escape(preview_url)}" class="preview">
</div>
'''
else:
preview = "<div class='card standalone-card-preview'></div>"
return preview
def get_metadata_table(self, name):
item = self.page.items.get(name, {})
try:
filename = item["filename"]
stats = os.stat(filename)
params = [
('File size: ', sysinfo.pretty_bytes(stats.st_size)),
('Modified: ', datetime.datetime.fromtimestamp(stats.st_mtime).strftime('%Y-%m-%d %H:%M')),
]
return params
except Exception as e:
errors.display(e, f"reading info for {name}")
return []
def put_values_into_components(self, name):
user_metadata = self.get_user_metadata(name)
try:
params = self.get_metadata_table(name)
except Exception as e:
errors.display(e, f"reading metadata info for {name}")
params = []
table = '<table class="file-metadata">' + "".join(f"<tr><th>{name}</th><td>{value}</td></tr>" for name, value in params) + '</table>'
return html.escape(name), user_metadata.get('description', ''), table, self.get_card_html(name), user_metadata.get('notes', '')
def write_user_metadata(self, name, metadata):
item = self.page.items.get(name, {})
filename = item.get("filename", None)
basename, ext = os.path.splitext(filename)
with open(basename + '.json', "w", encoding="utf8") as file:
json.dump(metadata, file)
def save_user_metadata(self, name, desc, notes):
user_metadata = self.get_user_metadata(name)
user_metadata["description"] = desc
user_metadata["notes"] = notes
self.write_user_metadata(name, user_metadata)
def setup_save_handler(self, button, func, components):
button\
.click(fn=func, inputs=[self.edit_name_input, *components], outputs=[])\
.then(fn=None, _js="function(name){closePopup(); extraNetworksRefreshSingleCard(" + json.dumps(self.page.name) + "," + json.dumps(self.tabname) + ", name);}", inputs=[self.edit_name_input], outputs=[])
def create_editor(self):
self.create_default_editor_elems()
self.edit_notes = gr.TextArea(label='Notes', lines=4)
self.create_default_buttons()
self.button_edit\
.click(fn=self.put_values_into_components, inputs=[self.edit_name_input], outputs=[self.edit_name, self.edit_description, self.html_filedata, self.html_preview, self.edit_notes])\
.then(fn=lambda: gr.update(visible=True), inputs=[], outputs=[self.box])
self.setup_save_handler(self.button_save, self.save_user_metadata, [self.edit_description, self.edit_notes])
def create_ui(self):
with gr.Box(visible=False, elem_id=self.id_part, elem_classes="edit-user-metadata") as box:
self.box = box
self.edit_name_input = gr.Textbox("Edit user metadata card id", visible=False, elem_id=f"{self.id_part}_name")
self.button_edit = gr.Button("Edit user metadata", visible=False, elem_id=f"{self.id_part}_button")
self.create_editor()
def save_preview(self, index, gallery, name):
if len(gallery) == 0:
return self.get_card_html(name), "There is no image in gallery to save as a preview."
item = self.page.items.get(name, {})
index = int(index)
index = 0 if index < 0 else index
index = len(gallery) - 1 if index >= len(gallery) else index
img_info = gallery[index if index >= 0 else 0]
image = generation_parameters_copypaste.image_from_url_text(img_info)
geninfo, items = images.read_info_from_image(image)
images.save_image_with_geninfo(image, geninfo, item["local_preview"])
return self.get_card_html(name), ''
def setup_ui(self, gallery):
self.button_replace_preview.click(
fn=self.save_preview,
_js="function(x, y, z){return [selected_gallery_index(), y, z]}",
inputs=[self.edit_name_input, gallery, self.edit_name_input],
outputs=[self.html_preview, self.html_status]
).then(
fn=None,
_js="function(name){extraNetworksRefreshSingleCard(" + json.dumps(self.page.name) + "," + json.dumps(self.tabname) + ", name);}",
inputs=[self.edit_name_input],
outputs=[]
)

View File

@ -260,8 +260,15 @@ class UiSettings:
component = self.component_dict[k] component = self.component_dict[k]
info = opts.data_labels[k] info = opts.data_labels[k]
change_handler = component.release if hasattr(component, 'release') else component.change if isinstance(component, gr.Textbox):
change_handler( methods = [component.submit, component.blur]
elif hasattr(component, 'release'):
methods = [component.release]
else:
methods = [component.change]
for method in methods:
method(
fn=lambda value, k=k: self.run_settings_single(value, key=k), fn=lambda value, k=k: self.run_settings_single(value, key=k),
inputs=[component], inputs=[component],
outputs=[component, self.text_settings], outputs=[component, self.text_settings],

View File

@ -14,6 +14,7 @@ kornia
lark lark
numpy numpy
omegaconf omegaconf
open-clip-torch
piexif piexif
psutil psutil

View File

@ -8,15 +8,16 @@ einops==0.4.1
fastapi==0.94.0 fastapi==0.94.0
gfpgan==1.3.8 gfpgan==1.3.8
gradio==3.32.0 gradio==3.32.0
httpcore<=0.15 httpcore==0.15
inflection==0.5.1 inflection==0.5.1
jsonmerge==1.8.0 jsonmerge==1.8.0
kornia==0.6.7 kornia==0.6.7
lark==1.1.2 lark==1.1.2
numpy==1.23.5 numpy==1.23.5
omegaconf==2.2.3 omegaconf==2.2.3
open-clip-torch==2.20.0
piexif==1.1.3 piexif==1.1.3
psutil~=5.9.5 psutil==5.9.5
pytorch_lightning==1.9.4 pytorch_lightning==1.9.4
realesrgan==0.3.0 realesrgan==0.3.0
resize-right==0.0.2 resize-right==0.0.2

View File

@ -144,11 +144,20 @@ def apply_face_restore(p, opt, x):
p.restore_faces = is_active p.restore_faces = is_active
def apply_override(field): def apply_override(field, boolean: bool = False):
def fun(p, x, xs): def fun(p, x, xs):
if boolean:
x = True if x.lower() == "true" else False
p.override_settings[field] = x p.override_settings[field] = x
return fun return fun
def boolean_choice(reverse: bool = False):
def choice():
return ["False", "True"] if reverse else ["True", "False"]
return choice
def format_value_add_label(p, opt, x): def format_value_add_label(p, opt, x):
if type(x) == float: if type(x) == float:
x = round(x, 8) x = round(x, 8)
@ -235,6 +244,7 @@ axis_options = [
AxisOption("Face restore", str, apply_face_restore, format_value=format_value), AxisOption("Face restore", str, apply_face_restore, format_value=format_value),
AxisOption("Token merging ratio", float, apply_override('token_merging_ratio')), AxisOption("Token merging ratio", float, apply_override('token_merging_ratio')),
AxisOption("Token merging ratio high-res", float, apply_override('token_merging_ratio_hr')), AxisOption("Token merging ratio high-res", float, apply_override('token_merging_ratio_hr')),
AxisOption("Always discard next-to-last sigma", str, apply_override('always_discard_next_to_last_sigma', boolean=True), choices=boolean_choice(reverse=True)),
] ]

204
style.css
View File

@ -227,20 +227,39 @@ button.custom-button{
align-self: end; align-self: end;
} }
.performance { .html-log .comments{
font-size: 0.85em; padding-top: 0.5em;
color: #444;
} }
.performance p{ .html-log .comments:empty{
padding-top: 0;
}
.html-log .performance {
font-size: 0.85em;
color: #444;
display: flex;
}
.html-log .performance p{
display: inline-block; display: inline-block;
} }
.performance .time { .html-log .performance p.time, .performance p.vram, .performance p.time abbr, .performance p.vram abbr {
margin-right: 0; margin-bottom: 0;
color: var(--block-title-text-color);
} }
.performance .vram { .html-log .performance p.time {
}
.html-log .performance p.vram {
margin-left: auto;
}
.html-log .performance .measurement{
color: var(--body-text-color);
font-weight: bold;
} }
#txt2img_generate, #img2img_generate { #txt2img_generate, #img2img_generate {
@ -531,6 +550,9 @@ table.popup-table .link{
background-color: rgba(20, 20, 20, 0.95); background-color: rgba(20, 20, 20, 0.95);
} }
.global-popup *{
box-sizing: border-box;
}
.global-popup-close:before { .global-popup-close:before {
content: "×"; content: "×";
@ -704,11 +726,24 @@ table.popup-table .link{
margin: 0; margin: 0;
} }
#available_extensions .date_added{ #available_extensions .info{
opacity: 0.85; margin: 0.5em 0;
display: flex;
margin-top: auto;
opacity: 0.80;
font-size: 90%; font-size: 90%;
} }
#available_extensions .date_added{
margin-right: auto;
display: inline-block;
}
#available_extensions .star_count{
margin-left: auto;
display: inline-block;
}
/* replace original footer with ours */ /* replace original footer with ours */
footer { footer {
@ -748,8 +783,7 @@ footer {
margin: 0 0.15em; margin: 0 0.15em;
} }
.extra-networks .tab-nav .search, .extra-networks .tab-nav .search,
.extra-networks .tab-nav .sort, .extra-networks .tab-nav .sort{
.extra-networks .tab-nav .sortorder{
display: inline-block; display: inline-block;
margin: 0.3em; margin: 0.3em;
align-self: center; align-self: center;
@ -769,117 +803,67 @@ footer {
width: auto; width: auto;
} }
.extra-network-cards .nocards, .extra-network-thumbs .nocards{ .extra-network-cards .nocards{
margin: 1.25em 0.5em 0.5em 0.5em; margin: 1.25em 0.5em 0.5em 0.5em;
} }
.extra-network-cards .nocards h1, .extra-network-thumbs .nocards h1{ .extra-network-cards .nocards h1{
font-size: 1.5em; font-size: 1.5em;
margin-bottom: 1em; margin-bottom: 1em;
} }
.extra-network-cards .nocards li, .extra-network-thumbs .nocards li{ .extra-network-cards .nocards li{
margin-left: 0.5em; margin-left: 0.5em;
} }
.extra-network-cards .card .metadata-button:before, .extra-network-thumbs .card .metadata-button:before{ .extra-network-cards .card .button-row{
content: "🛈";
}
.extra-network-cards .card .metadata-button, .extra-network-thumbs .card .metadata-button{
display: none; display: none;
position: absolute; position: absolute;
color: white; color: white;
right: 0; right: 0;
} }
.extra-network-cards .card .metadata-button { .extra-network-cards .card:hover .button-row{
display: flex;
}
.extra-network-cards .card .card-button{
color: white;
}
.extra-network-cards .card .metadata-button:before{
content: "🛈";
}
.extra-network-cards .card .edit-button:before{
content: "🛠";
}
.extra-network-cards .card .card-button {
text-shadow: 2px 2px 3px black; text-shadow: 2px 2px 3px black;
padding: 0.25em; padding: 0.25em 0.1em;
font-size: 22pt; font-size: 200%;
width: 1.5em; width: 1.5em;
} }
.extra-network-thumbs .card .metadata-button { .extra-network-cards .card .card-button:hover{
text-shadow: 1px 1px 2px black;
padding: 0;
font-size: 16pt;
width: 1em;
top: -0.25em;
}
.extra-network-cards .card:hover .metadata-button, .extra-network-thumbs .card:hover .metadata-button{
display: inline-block;
}
.extra-network-cards .card .metadata-button:hover, .extra-network-thumbs .card .metadata-button:hover{
color: red; color: red;
} }
.extra-network-thumbs { .standalone-card-preview.card .preview{
display: flex;
flex-flow: row wrap;
gap: 10px;
}
.extra-network-thumbs .card {
height: 6em;
width: 6em;
cursor: pointer;
background-image: url('./file=html/card-no-preview.png');
background-size: cover;
background-position: center center;
position: relative;
}
.extra-network-thumbs .card .preview{
position: absolute; position: absolute;
object-fit: cover; object-fit: cover;
width: 100%; width: 100%;
height:100%; height:100%;
} }
.extra-network-thumbs .card:hover .additional a { .extra-network-cards .card, .standalone-card-preview.card{
display: inline-block; display: inline-block;
} margin: 0.5rem;
width: 16rem;
.extra-network-thumbs .actions .additional a { height: 24rem;
background-image: url('./file=html/image-update.svg');
background-repeat: no-repeat;
background-size: cover;
background-position: center center;
position: absolute;
top: 0;
left: 0;
width: 24px;
height: 24px;
display: none;
font-size: 0;
text-align: -9999;
}
.extra-network-thumbs .actions .name {
position: absolute;
bottom: 0;
font-size: 10px;
padding: 3px;
width: 100%;
overflow: hidden;
white-space: nowrap;
text-overflow: ellipsis;
background: rgba(0,0,0,.5);
color: white;
}
.extra-network-thumbs .card:hover .actions .name {
white-space: normal;
word-break: break-all;
}
.extra-network-cards .card{
display: inline-block;
margin: 0.5em;
width: 16em;
height: 24em;
box-shadow: 0 0 5px rgba(128, 128, 128, 0.5); box-shadow: 0 0 5px rgba(128, 128, 128, 0.5);
border-radius: 0.2em; border-radius: 0.2rem;
position: relative; position: relative;
background-size: auto 100%; background-size: auto 100%;
@ -913,10 +897,6 @@ footer {
color: white; color: white;
} }
.extra-network-cards .card .actions:hover{
box-shadow: 0 0 0.75em 0.75em rgba(0,0,0,0.5) !important;
}
.extra-network-cards .card .actions .name{ .extra-network-cards .card .actions .name{
font-size: 1.7em; font-size: 1.7em;
font-weight: bold; font-weight: bold;
@ -957,3 +937,37 @@ footer {
width: 100%; width: 100%;
height:100%; height:100%;
} }
div.block.gradio-box.edit-user-metadata {
width: 56em;
background: var(--body-background-fill);
padding: 2em !important;
}
.edit-user-metadata .extra-network-name{
font-size: 18pt;
color: var(--body-text-color);
}
.edit-user-metadata .file-metadata{
color: var(--body-text-color);
}
.edit-user-metadata .file-metadata th{
text-align: left;
}
.edit-user-metadata .file-metadata th, .edit-user-metadata .file-metadata td{
padding: 0.3em 1em;
}
.edit-user-metadata .wrap.translucent{
background: var(--body-background-fill);
}
.edit-user-metadata .gradio-highlightedtext span{
word-break: break-word;
}
.edit-user-metadata-buttons{
margin-top: 1.5em;
}

View File

@ -11,30 +11,42 @@ import json
from threading import Thread from threading import Thread
from typing import Iterable from typing import Iterable
from fastapi import FastAPI, Response from fastapi import FastAPI
from fastapi.middleware.cors import CORSMiddleware from fastapi.middleware.cors import CORSMiddleware
from fastapi.middleware.gzip import GZipMiddleware from fastapi.middleware.gzip import GZipMiddleware
from packaging import version from packaging import version
import logging import logging
# We can't use cmd_opts for this because it will not have been initialized at this point.
log_level = os.environ.get("SD_WEBUI_LOG_LEVEL")
if log_level:
log_level = getattr(logging, log_level.upper(), None) or logging.INFO
logging.basicConfig(
level=log_level,
format='%(asctime)s %(levelname)s [%(name)s] %(message)s',
datefmt='%Y-%m-%d %H:%M:%S',
)
logging.getLogger("torch.distributed.nn").setLevel(logging.ERROR) # sshh...
logging.getLogger("xformers").addFilter(lambda record: 'A matching Triton is not available' not in record.getMessage()) logging.getLogger("xformers").addFilter(lambda record: 'A matching Triton is not available' not in record.getMessage())
from modules import paths, timer, import_hook, errors, devices # noqa: F401 from modules import timer
startup_timer = timer.startup_timer startup_timer = timer.startup_timer
startup_timer.record("launcher")
import torch import torch
import pytorch_lightning # noqa: F401 # pytorch_lightning should be imported after torch, but it re-enables warnings on import so import once to disable them import pytorch_lightning # noqa: F401 # pytorch_lightning should be imported after torch, but it re-enables warnings on import so import once to disable them
warnings.filterwarnings(action="ignore", category=DeprecationWarning, module="pytorch_lightning") warnings.filterwarnings(action="ignore", category=DeprecationWarning, module="pytorch_lightning")
warnings.filterwarnings(action="ignore", category=UserWarning, module="torchvision") warnings.filterwarnings(action="ignore", category=UserWarning, module="torchvision")
startup_timer.record("import torch") startup_timer.record("import torch")
import gradio import gradio # noqa: F401
startup_timer.record("import gradio") startup_timer.record("import gradio")
from modules import paths, timer, import_hook, errors, devices # noqa: F401
startup_timer.record("setup paths")
import ldm.modules.encoders.modules # noqa: F401 import ldm.modules.encoders.modules # noqa: F401
startup_timer.record("import ldm") startup_timer.record("import ldm")
@ -359,12 +371,11 @@ def api_only():
modules.script_callbacks.app_started_callback(None, app) modules.script_callbacks.app_started_callback(None, app)
print(f"Startup time: {startup_timer.summary()}.") print(f"Startup time: {startup_timer.summary()}.")
api.launch(server_name="0.0.0.0" if cmd_opts.listen else "127.0.0.1", port=cmd_opts.port if cmd_opts.port else 7861) api.launch(
server_name="0.0.0.0" if cmd_opts.listen else "127.0.0.1",
port=cmd_opts.port if cmd_opts.port else 7861,
def stop_route(request): root_path = f"/{cmd_opts.subpath}"
shared.state.server_command = "stop" )
return Response("Stopping.")
def webui(): def webui():
@ -403,9 +414,8 @@ def webui():
"docs_url": "/docs", "docs_url": "/docs",
"redoc_url": "/redoc", "redoc_url": "/redoc",
}, },
root_path=f"/{cmd_opts.subpath}" if cmd_opts.subpath else "",
) )
if cmd_opts.add_stop_route:
app.add_route("/_stop", stop_route, methods=["POST"])
# after initial launch, disable --autolaunch for subsequent restarts # after initial launch, disable --autolaunch for subsequent restarts
cmd_opts.autolaunch = False cmd_opts.autolaunch = False
@ -436,11 +446,6 @@ def webui():
timer.startup_record = startup_timer.dump() timer.startup_record = startup_timer.dump()
print(f"Startup time: {startup_timer.summary()}.") print(f"Startup time: {startup_timer.summary()}.")
if cmd_opts.subpath:
redirector = FastAPI()
redirector.get("/")
gradio.mount_gradio_app(redirector, shared.demo, path=f"/{cmd_opts.subpath}")
try: try:
while True: while True:
server_command = shared.state.wait_for_server_command(timeout=5) server_command = shared.state.wait_for_server_command(timeout=5)

View File

@ -4,26 +4,28 @@
# change the variables in webui-user.sh instead # # change the variables in webui-user.sh instead #
################################################# #################################################
SCRIPT_DIR=$( cd -- "$( dirname -- "${BASH_SOURCE[0]}" )" &> /dev/null && pwd )
# If run from macOS, load defaults from webui-macos-env.sh # If run from macOS, load defaults from webui-macos-env.sh
if [[ "$OSTYPE" == "darwin"* ]]; then if [[ "$OSTYPE" == "darwin"* ]]; then
if [[ -f webui-macos-env.sh ]] if [[ -f "$SCRIPT_DIR"/webui-macos-env.sh ]]
then then
source ./webui-macos-env.sh source "$SCRIPT_DIR"/webui-macos-env.sh
fi fi
fi fi
# Read variables from webui-user.sh # Read variables from webui-user.sh
# shellcheck source=/dev/null # shellcheck source=/dev/null
if [[ -f webui-user.sh ]] if [[ -f "$SCRIPT_DIR"/webui-user.sh ]]
then then
source ./webui-user.sh source "$SCRIPT_DIR"/webui-user.sh
fi fi
# Set defaults # Set defaults
# Install directory without trailing slash # Install directory without trailing slash
if [[ -z "${install_dir}" ]] if [[ -z "${install_dir}" ]]
then then
install_dir="$(pwd)" install_dir="$SCRIPT_DIR"
fi fi
# Name of the subdirectory (defaults to stable-diffusion-webui) # Name of the subdirectory (defaults to stable-diffusion-webui)
@ -131,6 +133,10 @@ case "$gpu_info" in
;; ;;
*"Navi 2"*) export HSA_OVERRIDE_GFX_VERSION=10.3.0 *"Navi 2"*) export HSA_OVERRIDE_GFX_VERSION=10.3.0
;; ;;
*"Navi 3"*) [[ -z "${TORCH_COMMAND}" ]] && \
export TORCH_COMMAND="pip install --pre torch==2.1.0.dev-20230614+rocm5.5 torchvision==0.16.0.dev-20230614+rocm5.5 --index-url https://download.pytorch.org/whl/nightly/rocm5.5"
# Navi 3 needs at least 5.5 which is only on the nightly chain
;;
*"Renoir"*) export HSA_OVERRIDE_GFX_VERSION=9.0.0 *"Renoir"*) export HSA_OVERRIDE_GFX_VERSION=9.0.0
printf "\n%s\n" "${delimiter}" printf "\n%s\n" "${delimiter}"
printf "Experimental support for Renoir: make sure to have at least 4GB of VRAM and 10GB of RAM or enable cpu mode: --use-cpu all --no-half" printf "Experimental support for Renoir: make sure to have at least 4GB of VRAM and 10GB of RAM or enable cpu mode: --use-cpu all --no-half"