getting SD2.1 to run on SDXL repo
This commit is contained in:
parent
7b833291b3
commit
af081211ee
@ -235,11 +235,13 @@ def prepare_environment():
|
||||
openclip_package = os.environ.get('OPENCLIP_PACKAGE', "https://github.com/mlfoundations/open_clip/archive/bb6e834e9c70d9c27d0dc3ecedeebeaeb1ffad6b.zip")
|
||||
|
||||
stable_diffusion_repo = os.environ.get('STABLE_DIFFUSION_REPO', "https://github.com/Stability-AI/stablediffusion.git")
|
||||
stable_diffusion_xl_repo = os.environ.get('STABLE_DIFFUSION_XL_REPO', "https://github.com/Stability-AI/generative-models.git")
|
||||
k_diffusion_repo = os.environ.get('K_DIFFUSION_REPO', 'https://github.com/crowsonkb/k-diffusion.git')
|
||||
codeformer_repo = os.environ.get('CODEFORMER_REPO', 'https://github.com/sczhou/CodeFormer.git')
|
||||
blip_repo = os.environ.get('BLIP_REPO', 'https://github.com/salesforce/BLIP.git')
|
||||
|
||||
stable_diffusion_commit_hash = os.environ.get('STABLE_DIFFUSION_COMMIT_HASH', "cf1d67a6fd5ea1aa600c4df58e5b47da45f6bdbf")
|
||||
stable_diffusion_xl_commit_hash = os.environ.get('STABLE_DIFFUSION_XL_COMMIT_HASH', "5c10deee76adad0032b412294130090932317a87")
|
||||
k_diffusion_commit_hash = os.environ.get('K_DIFFUSION_COMMIT_HASH', "c9fe758757e022f05ca5a53fa8fac28889e4f1cf")
|
||||
codeformer_commit_hash = os.environ.get('CODEFORMER_COMMIT_HASH', "c5b4593074ba6214284d6acd5f1719b6c5d739af")
|
||||
blip_commit_hash = os.environ.get('BLIP_COMMIT_HASH', "48211a1594f1321b00f14c9f7a5b4813144b2fb9")
|
||||
@ -297,6 +299,7 @@ def prepare_environment():
|
||||
os.makedirs(os.path.join(script_path, dir_repos), exist_ok=True)
|
||||
|
||||
git_clone(stable_diffusion_repo, repo_dir('stable-diffusion-stability-ai'), "Stable Diffusion", stable_diffusion_commit_hash)
|
||||
git_clone(stable_diffusion_xl_repo, repo_dir('generative-models'), "Stable Diffusion XL", stable_diffusion_xl_commit_hash)
|
||||
git_clone(k_diffusion_repo, repo_dir('k-diffusion'), "K-diffusion", k_diffusion_commit_hash)
|
||||
git_clone(codeformer_repo, repo_dir('CodeFormer'), "CodeFormer", codeformer_commit_hash)
|
||||
git_clone(blip_repo, repo_dir('BLIP'), "BLIP", blip_commit_hash)
|
||||
|
@ -20,6 +20,7 @@ assert sd_path is not None, f"Couldn't find Stable Diffusion in any of: {possibl
|
||||
|
||||
path_dirs = [
|
||||
(sd_path, 'ldm', 'Stable Diffusion', []),
|
||||
(os.path.join(sd_path, '../generative-models'), 'sgm', 'Stable Diffusion XL', []),
|
||||
(os.path.join(sd_path, '../CodeFormer'), 'inference_codeformer.py', 'CodeFormer', []),
|
||||
(os.path.join(sd_path, '../BLIP'), 'models/blip.py', 'BLIP', []),
|
||||
(os.path.join(sd_path, '../k-diffusion'), 'k_diffusion/sampling.py', 'k_diffusion', ["atstart"]),
|
||||
|
@ -144,7 +144,12 @@ def get_learned_conditioning(model, prompts, steps):
|
||||
|
||||
cond_schedule = []
|
||||
for i, (end_at_step, _) in enumerate(prompt_schedule):
|
||||
cond_schedule.append(ScheduledPromptConditioning(end_at_step, conds[i]))
|
||||
if isinstance(conds, dict):
|
||||
cond = {k: v[i] for k, v in conds.items()}
|
||||
else:
|
||||
cond = conds[i]
|
||||
|
||||
cond_schedule.append(ScheduledPromptConditioning(end_at_step, cond))
|
||||
|
||||
cache[prompt] = cond_schedule
|
||||
res.append(cond_schedule)
|
||||
@ -214,20 +219,57 @@ def get_multicond_learned_conditioning(model, prompts, steps) -> MulticondLearne
|
||||
return MulticondLearnedConditioning(shape=(len(prompts),), batch=res)
|
||||
|
||||
|
||||
class DictWithShape(dict):
|
||||
def __init__(self, x, shape):
|
||||
super().__init__()
|
||||
self.update(x)
|
||||
|
||||
@property
|
||||
def shape(self):
|
||||
return self["crossattn"].shape
|
||||
|
||||
|
||||
def reconstruct_cond_batch(c: List[List[ScheduledPromptConditioning]], current_step):
|
||||
param = c[0][0].cond
|
||||
res = torch.zeros((len(c),) + param.shape, device=param.device, dtype=param.dtype)
|
||||
is_dict = isinstance(param, dict)
|
||||
|
||||
if is_dict:
|
||||
dict_cond = param
|
||||
res = {k: torch.zeros((len(c),) + param.shape, device=param.device, dtype=param.dtype) for k, param in dict_cond.items()}
|
||||
res = DictWithShape(res, (len(c),) + dict_cond['crossattn'].shape)
|
||||
else:
|
||||
res = torch.zeros((len(c),) + param.shape, device=param.device, dtype=param.dtype)
|
||||
|
||||
for i, cond_schedule in enumerate(c):
|
||||
target_index = 0
|
||||
for current, entry in enumerate(cond_schedule):
|
||||
if current_step <= entry.end_at_step:
|
||||
target_index = current
|
||||
break
|
||||
res[i] = cond_schedule[target_index].cond
|
||||
|
||||
if is_dict:
|
||||
for k, param in cond_schedule[target_index].cond.items():
|
||||
res[k][i] = param
|
||||
else:
|
||||
res[i] = cond_schedule[target_index].cond
|
||||
|
||||
return res
|
||||
|
||||
|
||||
def stack_conds(tensors):
|
||||
# if prompts have wildly different lengths above the limit we'll get tensors of different shapes
|
||||
# and won't be able to torch.stack them. So this fixes that.
|
||||
token_count = max([x.shape[0] for x in tensors])
|
||||
for i in range(len(tensors)):
|
||||
if tensors[i].shape[0] != token_count:
|
||||
last_vector = tensors[i][-1:]
|
||||
last_vector_repeated = last_vector.repeat([token_count - tensors[i].shape[0], 1])
|
||||
tensors[i] = torch.vstack([tensors[i], last_vector_repeated])
|
||||
|
||||
return torch.stack(tensors)
|
||||
|
||||
|
||||
|
||||
def reconstruct_multicond_batch(c: MulticondLearnedConditioning, current_step):
|
||||
param = c.batch[0][0].schedules[0].cond
|
||||
|
||||
@ -249,16 +291,14 @@ def reconstruct_multicond_batch(c: MulticondLearnedConditioning, current_step):
|
||||
|
||||
conds_list.append(conds_for_batch)
|
||||
|
||||
# if prompts have wildly different lengths above the limit we'll get tensors fo different shapes
|
||||
# and won't be able to torch.stack them. So this fixes that.
|
||||
token_count = max([x.shape[0] for x in tensors])
|
||||
for i in range(len(tensors)):
|
||||
if tensors[i].shape[0] != token_count:
|
||||
last_vector = tensors[i][-1:]
|
||||
last_vector_repeated = last_vector.repeat([token_count - tensors[i].shape[0], 1])
|
||||
tensors[i] = torch.vstack([tensors[i], last_vector_repeated])
|
||||
if isinstance(tensors[0], dict):
|
||||
keys = list(tensors[0].keys())
|
||||
stacked = {k: stack_conds([x[k] for x in tensors]) for k in keys}
|
||||
stacked = DictWithShape(stacked, stacked['crossattn'].shape)
|
||||
else:
|
||||
stacked = stack_conds(tensors).to(device=param.device, dtype=param.dtype)
|
||||
|
||||
return conds_list, torch.stack(tensors).to(device=param.device, dtype=param.dtype)
|
||||
return conds_list, stacked
|
||||
|
||||
|
||||
re_attention = re.compile(r"""
|
||||
|
@ -166,6 +166,15 @@ class StableDiffusionModelHijack:
|
||||
undo_optimizations()
|
||||
|
||||
def hijack(self, m):
|
||||
conditioner = getattr(m, 'conditioner', None)
|
||||
if conditioner:
|
||||
for i in range(len(conditioner.embedders)):
|
||||
embedder = conditioner.embedders[i]
|
||||
if type(embedder).__name__ == 'FrozenOpenCLIPEmbedder':
|
||||
embedder.model.token_embedding = EmbeddingsWithFixes(embedder.model.token_embedding, self)
|
||||
m.cond_stage_model = sd_hijack_open_clip.FrozenOpenCLIPEmbedderWithCustomWords(embedder, self)
|
||||
conditioner.embedders[i] = m.cond_stage_model
|
||||
|
||||
if type(m.cond_stage_model) == xlmr.BertSeriesModelWithTransformation:
|
||||
model_embeddings = m.cond_stage_model.roberta.embeddings
|
||||
model_embeddings.token_embedding = EmbeddingsWithFixes(model_embeddings.word_embeddings, self)
|
||||
|
@ -16,6 +16,10 @@ class FrozenOpenCLIPEmbedderWithCustomWords(sd_hijack_clip.FrozenCLIPEmbedderWit
|
||||
self.id_end = tokenizer.encoder["<end_of_text>"]
|
||||
self.id_pad = 0
|
||||
|
||||
self.is_trainable = getattr(wrapped, 'is_trainable', False)
|
||||
self.input_key = getattr(wrapped, 'input_key', 'txt')
|
||||
self.legacy_ucg_val = None
|
||||
|
||||
def tokenize(self, texts):
|
||||
assert not opts.use_old_emphasis_implementation, 'Old emphasis implementation not supported for Open Clip'
|
||||
|
||||
|
@ -14,7 +14,7 @@ import ldm.modules.midas as midas
|
||||
|
||||
from ldm.util import instantiate_from_config
|
||||
|
||||
from modules import paths, shared, modelloader, devices, script_callbacks, sd_vae, sd_disable_initialization, errors, hashes, sd_models_config, sd_unet
|
||||
from modules import paths, shared, modelloader, devices, script_callbacks, sd_vae, sd_disable_initialization, errors, hashes, sd_models_config, sd_unet, sd_models_xl
|
||||
from modules.sd_hijack_inpainting import do_inpainting_hijack
|
||||
from modules.timer import Timer
|
||||
import tomesd
|
||||
@ -289,6 +289,9 @@ def load_model_weights(model, checkpoint_info: CheckpointInfo, state_dict, timer
|
||||
if state_dict is None:
|
||||
state_dict = get_checkpoint_state_dict(checkpoint_info, timer)
|
||||
|
||||
if hasattr(model, 'conditioner'):
|
||||
sd_models_xl.extend_sdxl(model)
|
||||
|
||||
model.load_state_dict(state_dict, strict=False)
|
||||
del state_dict
|
||||
timer.record("apply weights to model")
|
||||
@ -334,7 +337,8 @@ def load_model_weights(model, checkpoint_info: CheckpointInfo, state_dict, timer
|
||||
model.sd_checkpoint_info = checkpoint_info
|
||||
shared.opts.data["sd_checkpoint_hash"] = checkpoint_info.sha256
|
||||
|
||||
model.logvar = model.logvar.to(devices.device) # fix for training
|
||||
if hasattr(model, 'logvar'):
|
||||
model.logvar = model.logvar.to(devices.device) # fix for training
|
||||
|
||||
sd_vae.delete_base_vae()
|
||||
sd_vae.clear_loaded_vae()
|
||||
|
@ -6,11 +6,13 @@ from modules import shared, paths, sd_disable_initialization
|
||||
|
||||
sd_configs_path = shared.sd_configs_path
|
||||
sd_repo_configs_path = os.path.join(paths.paths['Stable Diffusion'], "configs", "stable-diffusion")
|
||||
sd_xl_repo_configs_path = os.path.join(paths.paths['Stable Diffusion XL'], "configs", "inference")
|
||||
|
||||
|
||||
config_default = shared.sd_default_config
|
||||
config_sd2 = os.path.join(sd_repo_configs_path, "v2-inference.yaml")
|
||||
config_sd2v = os.path.join(sd_repo_configs_path, "v2-inference-v.yaml")
|
||||
config_sd2v = os.path.join(sd_xl_repo_configs_path, "sd_2_1_768.yaml")
|
||||
config_sd2_inpainting = os.path.join(sd_repo_configs_path, "v2-inpainting-inference.yaml")
|
||||
config_depth_model = os.path.join(sd_repo_configs_path, "v2-midas-inference.yaml")
|
||||
config_unclip = os.path.join(sd_repo_configs_path, "v2-1-stable-unclip-l-inference.yaml")
|
||||
|
40
modules/sd_models_xl.py
Normal file
40
modules/sd_models_xl.py
Normal file
@ -0,0 +1,40 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import torch
|
||||
|
||||
import sgm.models.diffusion
|
||||
import sgm.modules.diffusionmodules.denoiser_scaling
|
||||
import sgm.modules.diffusionmodules.discretizer
|
||||
from modules import devices
|
||||
|
||||
|
||||
def get_learned_conditioning(self: sgm.models.diffusion.DiffusionEngine, batch: list[str]):
|
||||
for embedder in self.conditioner.embedders:
|
||||
embedder.ucg_rate = 0.0
|
||||
|
||||
c = self.conditioner({'txt': batch})
|
||||
|
||||
return c
|
||||
|
||||
|
||||
def apply_model(self: sgm.models.diffusion.DiffusionEngine, x, t, cond):
|
||||
return self.model(x, t, cond)
|
||||
|
||||
|
||||
def extend_sdxl(model):
|
||||
dtype = next(model.model.diffusion_model.parameters()).dtype
|
||||
model.model.diffusion_model.dtype = dtype
|
||||
model.model.conditioning_key = 'crossattn'
|
||||
|
||||
model.cond_stage_model = [x for x in model.conditioner.embedders if type(x).__name__ == 'FrozenOpenCLIPEmbedder'][0]
|
||||
model.cond_stage_key = model.cond_stage_model.input_key
|
||||
|
||||
model.parameterization = "v" if isinstance(model.denoiser.scaling, sgm.modules.diffusionmodules.denoiser_scaling.VScaling) else "eps"
|
||||
|
||||
discretization = sgm.modules.diffusionmodules.discretizer.LegacyDDPMDiscretization()
|
||||
model.alphas_cumprod = torch.asarray(discretization.alphas_cumprod, device=devices.device, dtype=dtype)
|
||||
|
||||
|
||||
sgm.models.diffusion.DiffusionEngine.get_learned_conditioning = get_learned_conditioning
|
||||
sgm.models.diffusion.DiffusionEngine.apply_model = apply_model
|
||||
|
@ -53,6 +53,28 @@ k_diffusion_scheduler = {
|
||||
}
|
||||
|
||||
|
||||
def catenate_conds(conds):
|
||||
if not isinstance(conds[0], dict):
|
||||
return torch.cat(conds)
|
||||
|
||||
return {key: torch.cat([x[key] for x in conds]) for key in conds[0].keys()}
|
||||
|
||||
|
||||
def subscript_cond(cond, a, b):
|
||||
if not isinstance(cond, dict):
|
||||
return cond[a:b]
|
||||
|
||||
return {key: vec[a:b] for key, vec in cond.items()}
|
||||
|
||||
|
||||
def pad_cond(tensor, repeats, empty):
|
||||
if not isinstance(tensor, dict):
|
||||
return torch.cat([tensor, empty.repeat((tensor.shape[0], repeats, 1))], axis=1)
|
||||
|
||||
tensor['crossattn'] = pad_cond(tensor['crossattn'], repeats, empty)
|
||||
return tensor
|
||||
|
||||
|
||||
class CFGDenoiser(torch.nn.Module):
|
||||
"""
|
||||
Classifier free guidance denoiser. A wrapper for stable diffusion model (specifically for unet)
|
||||
@ -105,10 +127,13 @@ class CFGDenoiser(torch.nn.Module):
|
||||
|
||||
if shared.sd_model.model.conditioning_key == "crossattn-adm":
|
||||
image_uncond = torch.zeros_like(image_cond)
|
||||
make_condition_dict = lambda c_crossattn, c_adm: {"c_crossattn": c_crossattn, "c_adm": c_adm}
|
||||
make_condition_dict = lambda c_crossattn, c_adm: {"c_crossattn": [c_crossattn], "c_adm": c_adm}
|
||||
else:
|
||||
image_uncond = image_cond
|
||||
make_condition_dict = lambda c_crossattn, c_concat: {"c_crossattn": c_crossattn, "c_concat": [c_concat]}
|
||||
if isinstance(uncond, dict):
|
||||
make_condition_dict = lambda c_crossattn, c_concat: {**c_crossattn, "c_concat": [c_concat]}
|
||||
else:
|
||||
make_condition_dict = lambda c_crossattn, c_concat: {"c_crossattn": [c_crossattn], "c_concat": [c_concat]}
|
||||
|
||||
if not is_edit_model:
|
||||
x_in = torch.cat([torch.stack([x[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [x])
|
||||
@ -140,28 +165,28 @@ class CFGDenoiser(torch.nn.Module):
|
||||
num_repeats = (tensor.shape[1] - uncond.shape[1]) // empty.shape[1]
|
||||
|
||||
if num_repeats < 0:
|
||||
tensor = torch.cat([tensor, empty.repeat((tensor.shape[0], -num_repeats, 1))], axis=1)
|
||||
tensor = pad_cond(tensor, -num_repeats, empty)
|
||||
self.padded_cond_uncond = True
|
||||
elif num_repeats > 0:
|
||||
uncond = torch.cat([uncond, empty.repeat((uncond.shape[0], num_repeats, 1))], axis=1)
|
||||
uncond = pad_cond(uncond, num_repeats, empty)
|
||||
self.padded_cond_uncond = True
|
||||
|
||||
if tensor.shape[1] == uncond.shape[1] or skip_uncond:
|
||||
if is_edit_model:
|
||||
cond_in = torch.cat([tensor, uncond, uncond])
|
||||
cond_in = catenate_conds([tensor, uncond, uncond])
|
||||
elif skip_uncond:
|
||||
cond_in = tensor
|
||||
else:
|
||||
cond_in = torch.cat([tensor, uncond])
|
||||
cond_in = catenate_conds([tensor, uncond])
|
||||
|
||||
if shared.batch_cond_uncond:
|
||||
x_out = self.inner_model(x_in, sigma_in, cond=make_condition_dict([cond_in], image_cond_in))
|
||||
x_out = self.inner_model(x_in, sigma_in, cond=make_condition_dict(cond_in, image_cond_in))
|
||||
else:
|
||||
x_out = torch.zeros_like(x_in)
|
||||
for batch_offset in range(0, x_out.shape[0], batch_size):
|
||||
a = batch_offset
|
||||
b = a + batch_size
|
||||
x_out[a:b] = self.inner_model(x_in[a:b], sigma_in[a:b], cond=make_condition_dict([cond_in[a:b]], image_cond_in[a:b]))
|
||||
x_out[a:b] = self.inner_model(x_in[a:b], sigma_in[a:b], cond=make_condition_dict(cond_in[a:b], image_cond_in[a:b]))
|
||||
else:
|
||||
x_out = torch.zeros_like(x_in)
|
||||
batch_size = batch_size*2 if shared.batch_cond_uncond else batch_size
|
||||
@ -170,14 +195,14 @@ class CFGDenoiser(torch.nn.Module):
|
||||
b = min(a + batch_size, tensor.shape[0])
|
||||
|
||||
if not is_edit_model:
|
||||
c_crossattn = [tensor[a:b]]
|
||||
c_crossattn = subscript_cond(tensor, a, b)
|
||||
else:
|
||||
c_crossattn = torch.cat([tensor[a:b]], uncond)
|
||||
|
||||
x_out[a:b] = self.inner_model(x_in[a:b], sigma_in[a:b], cond=make_condition_dict(c_crossattn, image_cond_in[a:b]))
|
||||
|
||||
if not skip_uncond:
|
||||
x_out[-uncond.shape[0]:] = self.inner_model(x_in[-uncond.shape[0]:], sigma_in[-uncond.shape[0]:], cond=make_condition_dict([uncond], image_cond_in[-uncond.shape[0]:]))
|
||||
x_out[-uncond.shape[0]:] = self.inner_model(x_in[-uncond.shape[0]:], sigma_in[-uncond.shape[0]:], cond=make_condition_dict(uncond, image_cond_in[-uncond.shape[0]:]))
|
||||
|
||||
denoised_image_indexes = [x[0][0] for x in conds_list]
|
||||
if skip_uncond:
|
||||
|
Loading…
Reference in New Issue
Block a user