diff --git a/extensions-builtin/Lora/extra_networks_lora.py b/extensions-builtin/Lora/extra_networks_lora.py index 66ee9c85..8a6639cf 100644 --- a/extensions-builtin/Lora/extra_networks_lora.py +++ b/extensions-builtin/Lora/extra_networks_lora.py @@ -1,5 +1,5 @@ from modules import extra_networks, shared -import lora +import networks class ExtraNetworkLora(extra_networks.ExtraNetwork): @@ -9,7 +9,7 @@ class ExtraNetworkLora(extra_networks.ExtraNetwork): def activate(self, p, params_list): additional = shared.opts.sd_lora - if additional != "None" and additional in lora.available_loras and not any(x for x in params_list if x.items[0] == additional): + if additional != "None" and additional in networks.available_networks and not any(x for x in params_list if x.items[0] == additional): p.all_prompts = [x + f"" for x in p.all_prompts] params_list.append(extra_networks.ExtraNetworkParams(items=[additional, shared.opts.extra_networks_default_multiplier])) @@ -21,12 +21,12 @@ class ExtraNetworkLora(extra_networks.ExtraNetwork): names.append(params.items[0]) multipliers.append(float(params.items[1]) if len(params.items) > 1 else 1.0) - lora.load_loras(names, multipliers) + networks.load_networks(names, multipliers) if shared.opts.lora_add_hashes_to_infotext: - lora_hashes = [] - for item in lora.loaded_loras: - shorthash = item.lora_on_disk.shorthash + network_hashes = [] + for item in networks.loaded_networks: + shorthash = item.network_on_disk.shorthash if not shorthash: continue @@ -36,10 +36,10 @@ class ExtraNetworkLora(extra_networks.ExtraNetwork): alias = alias.replace(":", "").replace(",", "") - lora_hashes.append(f"{alias}: {shorthash}") + network_hashes.append(f"{alias}: {shorthash}") - if lora_hashes: - p.extra_generation_params["Lora hashes"] = ", ".join(lora_hashes) + if network_hashes: + p.extra_generation_params["Lora hashes"] = ", ".join(network_hashes) def deactivate(self, p): pass diff --git a/extensions-builtin/Lora/lora.py b/extensions-builtin/Lora/lora.py deleted file mode 100644 index 9cdff6ed..00000000 --- a/extensions-builtin/Lora/lora.py +++ /dev/null @@ -1,537 +0,0 @@ -import os -import re -import torch -from typing import Union - -from modules import shared, devices, sd_models, errors, scripts, sd_hijack, hashes, cache - -metadata_tags_order = {"ss_sd_model_name": 1, "ss_resolution": 2, "ss_clip_skip": 3, "ss_num_train_images": 10, "ss_tag_frequency": 20} - -re_digits = re.compile(r"\d+") -re_x_proj = re.compile(r"(.*)_([qkv]_proj)$") -re_compiled = {} - -suffix_conversion = { - "attentions": {}, - "resnets": { - "conv1": "in_layers_2", - "conv2": "out_layers_3", - "time_emb_proj": "emb_layers_1", - "conv_shortcut": "skip_connection", - } -} - - -def convert_diffusers_name_to_compvis(key, is_sd2): - def match(match_list, regex_text): - regex = re_compiled.get(regex_text) - if regex is None: - regex = re.compile(regex_text) - re_compiled[regex_text] = regex - - r = re.match(regex, key) - if not r: - return False - - match_list.clear() - match_list.extend([int(x) if re.match(re_digits, x) else x for x in r.groups()]) - return True - - m = [] - - if match(m, r"lora_unet_down_blocks_(\d+)_(attentions|resnets)_(\d+)_(.+)"): - suffix = suffix_conversion.get(m[1], {}).get(m[3], m[3]) - return f"diffusion_model_input_blocks_{1 + m[0] * 3 + m[2]}_{1 if m[1] == 'attentions' else 0}_{suffix}" - - if match(m, r"lora_unet_mid_block_(attentions|resnets)_(\d+)_(.+)"): - suffix = suffix_conversion.get(m[0], {}).get(m[2], m[2]) - return f"diffusion_model_middle_block_{1 if m[0] == 'attentions' else m[1] * 2}_{suffix}" - - if match(m, r"lora_unet_up_blocks_(\d+)_(attentions|resnets)_(\d+)_(.+)"): - suffix = suffix_conversion.get(m[1], {}).get(m[3], m[3]) - return f"diffusion_model_output_blocks_{m[0] * 3 + m[2]}_{1 if m[1] == 'attentions' else 0}_{suffix}" - - if match(m, r"lora_unet_down_blocks_(\d+)_downsamplers_0_conv"): - return f"diffusion_model_input_blocks_{3 + m[0] * 3}_0_op" - - if match(m, r"lora_unet_up_blocks_(\d+)_upsamplers_0_conv"): - return f"diffusion_model_output_blocks_{2 + m[0] * 3}_{2 if m[0]>0 else 1}_conv" - - if match(m, r"lora_te_text_model_encoder_layers_(\d+)_(.+)"): - if is_sd2: - if 'mlp_fc1' in m[1]: - return f"model_transformer_resblocks_{m[0]}_{m[1].replace('mlp_fc1', 'mlp_c_fc')}" - elif 'mlp_fc2' in m[1]: - return f"model_transformer_resblocks_{m[0]}_{m[1].replace('mlp_fc2', 'mlp_c_proj')}" - else: - return f"model_transformer_resblocks_{m[0]}_{m[1].replace('self_attn', 'attn')}" - - return f"transformer_text_model_encoder_layers_{m[0]}_{m[1]}" - - if match(m, r"lora_te2_text_model_encoder_layers_(\d+)_(.+)"): - if 'mlp_fc1' in m[1]: - return f"1_model_transformer_resblocks_{m[0]}_{m[1].replace('mlp_fc1', 'mlp_c_fc')}" - elif 'mlp_fc2' in m[1]: - return f"1_model_transformer_resblocks_{m[0]}_{m[1].replace('mlp_fc2', 'mlp_c_proj')}" - else: - return f"1_model_transformer_resblocks_{m[0]}_{m[1].replace('self_attn', 'attn')}" - - return key - - -class LoraOnDisk: - def __init__(self, name, filename): - self.name = name - self.filename = filename - self.metadata = {} - self.is_safetensors = os.path.splitext(filename)[1].lower() == ".safetensors" - - def read_metadata(): - metadata = sd_models.read_metadata_from_safetensors(filename) - metadata.pop('ssmd_cover_images', None) # those are cover images, and they are too big to display in UI as text - - return metadata - - if self.is_safetensors: - try: - self.metadata = cache.cached_data_for_file('safetensors-metadata', "lora/" + self.name, filename, read_metadata) - except Exception as e: - errors.display(e, f"reading lora {filename}") - - if self.metadata: - m = {} - for k, v in sorted(self.metadata.items(), key=lambda x: metadata_tags_order.get(x[0], 999)): - m[k] = v - - self.metadata = m - - self.alias = self.metadata.get('ss_output_name', self.name) - - self.hash = None - self.shorthash = None - self.set_hash( - self.metadata.get('sshs_model_hash') or - hashes.sha256_from_cache(self.filename, "lora/" + self.name, use_addnet_hash=self.is_safetensors) or - '' - ) - - def set_hash(self, v): - self.hash = v - self.shorthash = self.hash[0:12] - - if self.shorthash: - available_lora_hash_lookup[self.shorthash] = self - - def read_hash(self): - if not self.hash: - self.set_hash(hashes.sha256(self.filename, "lora/" + self.name, use_addnet_hash=self.is_safetensors) or '') - - def get_alias(self): - if shared.opts.lora_preferred_name == "Filename" or self.alias.lower() in forbidden_lora_aliases: - return self.name - else: - return self.alias - - -class LoraModule: - def __init__(self, name, lora_on_disk: LoraOnDisk): - self.name = name - self.lora_on_disk = lora_on_disk - self.multiplier = 1.0 - self.modules = {} - self.mtime = None - - self.mentioned_name = None - """the text that was used to add lora to prompt - can be either name or an alias""" - - -class LoraUpDownModule: - def __init__(self): - self.up = None - self.down = None - self.alpha = None - - -def assign_lora_names_to_compvis_modules(sd_model): - lora_layer_mapping = {} - - if shared.sd_model.is_sdxl: - for i, embedder in enumerate(shared.sd_model.conditioner.embedders): - if not hasattr(embedder, 'wrapped'): - continue - - for name, module in embedder.wrapped.named_modules(): - lora_name = f'{i}_{name.replace(".", "_")}' - lora_layer_mapping[lora_name] = module - module.lora_layer_name = lora_name - else: - for name, module in shared.sd_model.cond_stage_model.wrapped.named_modules(): - lora_name = name.replace(".", "_") - lora_layer_mapping[lora_name] = module - module.lora_layer_name = lora_name - - for name, module in shared.sd_model.model.named_modules(): - lora_name = name.replace(".", "_") - lora_layer_mapping[lora_name] = module - module.lora_layer_name = lora_name - - sd_model.lora_layer_mapping = lora_layer_mapping - - -def load_lora(name, lora_on_disk): - lora = LoraModule(name, lora_on_disk) - lora.mtime = os.path.getmtime(lora_on_disk.filename) - - sd = sd_models.read_state_dict(lora_on_disk.filename) - - # this should not be needed but is here as an emergency fix for an unknown error people are experiencing in 1.2.0 - if not hasattr(shared.sd_model, 'lora_layer_mapping'): - assign_lora_names_to_compvis_modules(shared.sd_model) - - keys_failed_to_match = {} - is_sd2 = 'model_transformer_resblocks' in shared.sd_model.lora_layer_mapping - - for key_lora, weight in sd.items(): - key_lora_without_lora_parts, lora_key = key_lora.split(".", 1) - - key = convert_diffusers_name_to_compvis(key_lora_without_lora_parts, is_sd2) - sd_module = shared.sd_model.lora_layer_mapping.get(key, None) - - if sd_module is None: - m = re_x_proj.match(key) - if m: - sd_module = shared.sd_model.lora_layer_mapping.get(m.group(1), None) - - # SDXL loras seem to already have correct compvis keys, so only need to replace "lora_unet" with "diffusion_model" - if sd_module is None and "lora_unet" in key_lora_without_lora_parts: - key = key_lora_without_lora_parts.replace("lora_unet", "diffusion_model") - sd_module = shared.sd_model.lora_layer_mapping.get(key, None) - elif sd_module is None and "lora_te1_text_model" in key_lora_without_lora_parts: - key = key_lora_without_lora_parts.replace("lora_te1_text_model", "0_transformer_text_model") - sd_module = shared.sd_model.lora_layer_mapping.get(key, None) - - if sd_module is None: - keys_failed_to_match[key_lora] = key - continue - - lora_module = lora.modules.get(key, None) - if lora_module is None: - lora_module = LoraUpDownModule() - lora.modules[key] = lora_module - - if lora_key == "alpha": - lora_module.alpha = weight.item() - continue - - if type(sd_module) == torch.nn.Linear: - module = torch.nn.Linear(weight.shape[1], weight.shape[0], bias=False) - elif type(sd_module) == torch.nn.modules.linear.NonDynamicallyQuantizableLinear: - module = torch.nn.Linear(weight.shape[1], weight.shape[0], bias=False) - elif type(sd_module) == torch.nn.MultiheadAttention: - module = torch.nn.Linear(weight.shape[1], weight.shape[0], bias=False) - elif type(sd_module) == torch.nn.Conv2d and weight.shape[2:] == (1, 1): - module = torch.nn.Conv2d(weight.shape[1], weight.shape[0], (1, 1), bias=False) - elif type(sd_module) == torch.nn.Conv2d and weight.shape[2:] == (3, 3): - module = torch.nn.Conv2d(weight.shape[1], weight.shape[0], (3, 3), bias=False) - else: - print(f'Lora layer {key_lora} matched a layer with unsupported type: {type(sd_module).__name__}') - continue - raise AssertionError(f"Lora layer {key_lora} matched a layer with unsupported type: {type(sd_module).__name__}") - - with torch.no_grad(): - module.weight.copy_(weight) - - module.to(device=devices.cpu, dtype=devices.dtype) - - if lora_key == "lora_up.weight": - lora_module.up = module - elif lora_key == "lora_down.weight": - lora_module.down = module - else: - raise AssertionError(f"Bad Lora layer name: {key_lora} - must end in lora_up.weight, lora_down.weight or alpha") - - if keys_failed_to_match: - print(f"Failed to match keys when loading Lora {lora_on_disk.filename}: {keys_failed_to_match}") - - return lora - - -def load_loras(names, multipliers=None): - already_loaded = {} - - for lora in loaded_loras: - if lora.name in names: - already_loaded[lora.name] = lora - - loaded_loras.clear() - - loras_on_disk = [available_lora_aliases.get(name, None) for name in names] - if any(x is None for x in loras_on_disk): - list_available_loras() - - loras_on_disk = [available_lora_aliases.get(name, None) for name in names] - - failed_to_load_loras = [] - - for i, name in enumerate(names): - lora = already_loaded.get(name, None) - - lora_on_disk = loras_on_disk[i] - - if lora_on_disk is not None: - if lora is None or os.path.getmtime(lora_on_disk.filename) > lora.mtime: - try: - lora = load_lora(name, lora_on_disk) - except Exception as e: - errors.display(e, f"loading Lora {lora_on_disk.filename}") - continue - - lora.mentioned_name = name - - lora_on_disk.read_hash() - - if lora is None: - failed_to_load_loras.append(name) - print(f"Couldn't find Lora with name {name}") - continue - - lora.multiplier = multipliers[i] if multipliers else 1.0 - loaded_loras.append(lora) - - if failed_to_load_loras: - sd_hijack.model_hijack.comments.append("Failed to find Loras: " + ", ".join(failed_to_load_loras)) - - -def lora_calc_updown(lora, module, target): - with torch.no_grad(): - up = module.up.weight.to(target.device, dtype=target.dtype) - down = module.down.weight.to(target.device, dtype=target.dtype) - - if up.shape[2:] == (1, 1) and down.shape[2:] == (1, 1): - updown = (up.squeeze(2).squeeze(2) @ down.squeeze(2).squeeze(2)).unsqueeze(2).unsqueeze(3) - elif up.shape[2:] == (3, 3) or down.shape[2:] == (3, 3): - updown = torch.nn.functional.conv2d(down.permute(1, 0, 2, 3), up).permute(1, 0, 2, 3) - else: - updown = up @ down - - updown = updown * lora.multiplier * (module.alpha / module.up.weight.shape[1] if module.alpha else 1.0) - - return updown - - -def lora_restore_weights_from_backup(self: Union[torch.nn.Conv2d, torch.nn.Linear, torch.nn.MultiheadAttention]): - weights_backup = getattr(self, "lora_weights_backup", None) - - if weights_backup is None: - return - - if isinstance(self, torch.nn.MultiheadAttention): - self.in_proj_weight.copy_(weights_backup[0]) - self.out_proj.weight.copy_(weights_backup[1]) - else: - self.weight.copy_(weights_backup) - - -def lora_apply_weights(self: Union[torch.nn.Conv2d, torch.nn.Linear, torch.nn.MultiheadAttention]): - """ - Applies the currently selected set of Loras to the weights of torch layer self. - If weights already have this particular set of loras applied, does nothing. - If not, restores orginal weights from backup and alters weights according to loras. - """ - - lora_layer_name = getattr(self, 'lora_layer_name', None) - if lora_layer_name is None: - return - - current_names = getattr(self, "lora_current_names", ()) - wanted_names = tuple((x.name, x.multiplier) for x in loaded_loras) - - weights_backup = getattr(self, "lora_weights_backup", None) - if weights_backup is None: - if isinstance(self, torch.nn.MultiheadAttention): - weights_backup = (self.in_proj_weight.to(devices.cpu, copy=True), self.out_proj.weight.to(devices.cpu, copy=True)) - else: - weights_backup = self.weight.to(devices.cpu, copy=True) - - self.lora_weights_backup = weights_backup - - if current_names != wanted_names: - lora_restore_weights_from_backup(self) - - for lora in loaded_loras: - module = lora.modules.get(lora_layer_name, None) - if module is not None and hasattr(self, 'weight'): - self.weight += lora_calc_updown(lora, module, self.weight) - continue - - module_q = lora.modules.get(lora_layer_name + "_q_proj", None) - module_k = lora.modules.get(lora_layer_name + "_k_proj", None) - module_v = lora.modules.get(lora_layer_name + "_v_proj", None) - module_out = lora.modules.get(lora_layer_name + "_out_proj", None) - - if isinstance(self, torch.nn.MultiheadAttention) and module_q and module_k and module_v and module_out: - updown_q = lora_calc_updown(lora, module_q, self.in_proj_weight) - updown_k = lora_calc_updown(lora, module_k, self.in_proj_weight) - updown_v = lora_calc_updown(lora, module_v, self.in_proj_weight) - updown_qkv = torch.vstack([updown_q, updown_k, updown_v]) - - self.in_proj_weight += updown_qkv - self.out_proj.weight += lora_calc_updown(lora, module_out, self.out_proj.weight) - continue - - if module is None: - continue - - print(f'failed to calculate lora weights for layer {lora_layer_name}') - - self.lora_current_names = wanted_names - - -def lora_forward(module, input, original_forward): - """ - Old way of applying Lora by executing operations during layer's forward. - Stacking many loras this way results in big performance degradation. - """ - - if len(loaded_loras) == 0: - return original_forward(module, input) - - input = devices.cond_cast_unet(input) - - lora_restore_weights_from_backup(module) - lora_reset_cached_weight(module) - - res = original_forward(module, input) - - lora_layer_name = getattr(module, 'lora_layer_name', None) - for lora in loaded_loras: - module = lora.modules.get(lora_layer_name, None) - if module is None: - continue - - module.up.to(device=devices.device) - module.down.to(device=devices.device) - - res = res + module.up(module.down(input)) * lora.multiplier * (module.alpha / module.up.weight.shape[1] if module.alpha else 1.0) - - return res - - -def lora_reset_cached_weight(self: Union[torch.nn.Conv2d, torch.nn.Linear]): - self.lora_current_names = () - self.lora_weights_backup = None - - -def lora_Linear_forward(self, input): - if shared.opts.lora_functional: - return lora_forward(self, input, torch.nn.Linear_forward_before_lora) - - lora_apply_weights(self) - - return torch.nn.Linear_forward_before_lora(self, input) - - -def lora_Linear_load_state_dict(self, *args, **kwargs): - lora_reset_cached_weight(self) - - return torch.nn.Linear_load_state_dict_before_lora(self, *args, **kwargs) - - -def lora_Conv2d_forward(self, input): - if shared.opts.lora_functional: - return lora_forward(self, input, torch.nn.Conv2d_forward_before_lora) - - lora_apply_weights(self) - - return torch.nn.Conv2d_forward_before_lora(self, input) - - -def lora_Conv2d_load_state_dict(self, *args, **kwargs): - lora_reset_cached_weight(self) - - return torch.nn.Conv2d_load_state_dict_before_lora(self, *args, **kwargs) - - -def lora_MultiheadAttention_forward(self, *args, **kwargs): - lora_apply_weights(self) - - return torch.nn.MultiheadAttention_forward_before_lora(self, *args, **kwargs) - - -def lora_MultiheadAttention_load_state_dict(self, *args, **kwargs): - lora_reset_cached_weight(self) - - return torch.nn.MultiheadAttention_load_state_dict_before_lora(self, *args, **kwargs) - - -def list_available_loras(): - available_loras.clear() - available_lora_aliases.clear() - forbidden_lora_aliases.clear() - available_lora_hash_lookup.clear() - forbidden_lora_aliases.update({"none": 1, "Addams": 1}) - - os.makedirs(shared.cmd_opts.lora_dir, exist_ok=True) - - candidates = list(shared.walk_files(shared.cmd_opts.lora_dir, allowed_extensions=[".pt", ".ckpt", ".safetensors"])) - for filename in candidates: - if os.path.isdir(filename): - continue - - name = os.path.splitext(os.path.basename(filename))[0] - try: - entry = LoraOnDisk(name, filename) - except OSError: # should catch FileNotFoundError and PermissionError etc. - errors.report(f"Failed to load LoRA {name} from {filename}", exc_info=True) - continue - - available_loras[name] = entry - - if entry.alias in available_lora_aliases: - forbidden_lora_aliases[entry.alias.lower()] = 1 - - available_lora_aliases[name] = entry - available_lora_aliases[entry.alias] = entry - - -re_lora_name = re.compile(r"(.*)\s*\([0-9a-fA-F]+\)") - - -def infotext_pasted(infotext, params): - if "AddNet Module 1" in [x[1] for x in scripts.scripts_txt2img.infotext_fields]: - return # if the other extension is active, it will handle those fields, no need to do anything - - added = [] - - for k in params: - if not k.startswith("AddNet Model "): - continue - - num = k[13:] - - if params.get("AddNet Module " + num) != "LoRA": - continue - - name = params.get("AddNet Model " + num) - if name is None: - continue - - m = re_lora_name.match(name) - if m: - name = m.group(1) - - multiplier = params.get("AddNet Weight A " + num, "1.0") - - added.append(f"") - - if added: - params["Prompt"] += "\n" + "".join(added) - - -available_loras = {} -available_lora_aliases = {} -available_lora_hash_lookup = {} -forbidden_lora_aliases = {} -loaded_loras = [] - -list_available_loras() diff --git a/extensions-builtin/Lora/lyco_helpers.py b/extensions-builtin/Lora/lyco_helpers.py new file mode 100644 index 00000000..9ea499fb --- /dev/null +++ b/extensions-builtin/Lora/lyco_helpers.py @@ -0,0 +1,15 @@ +import torch + + +def make_weight_cp(t, wa, wb): + temp = torch.einsum('i j k l, j r -> i r k l', t, wb) + return torch.einsum('i j k l, i r -> r j k l', temp, wa) + + +def rebuild_conventional(up, down, shape, dyn_dim=None): + up = up.reshape(up.size(0), -1) + down = down.reshape(down.size(0), -1) + if dyn_dim is not None: + up = up[:, :dyn_dim] + down = down[:dyn_dim, :] + return (up @ down).reshape(shape) diff --git a/extensions-builtin/Lora/network.py b/extensions-builtin/Lora/network.py new file mode 100644 index 00000000..a1fe6bbf --- /dev/null +++ b/extensions-builtin/Lora/network.py @@ -0,0 +1,98 @@ +import os +from collections import namedtuple + +import torch + +from modules import devices, sd_models, cache, errors, hashes, shared + +NetworkWeights = namedtuple('NetworkWeights', ['network_key', 'sd_key', 'w', 'sd_module']) + +metadata_tags_order = {"ss_sd_model_name": 1, "ss_resolution": 2, "ss_clip_skip": 3, "ss_num_train_images": 10, "ss_tag_frequency": 20} + + +class NetworkOnDisk: + def __init__(self, name, filename): + self.name = name + self.filename = filename + self.metadata = {} + self.is_safetensors = os.path.splitext(filename)[1].lower() == ".safetensors" + + def read_metadata(): + metadata = sd_models.read_metadata_from_safetensors(filename) + metadata.pop('ssmd_cover_images', None) # those are cover images, and they are too big to display in UI as text + + return metadata + + if self.is_safetensors: + try: + self.metadata = cache.cached_data_for_file('safetensors-metadata', "lora/" + self.name, filename, read_metadata) + except Exception as e: + errors.display(e, f"reading lora {filename}") + + if self.metadata: + m = {} + for k, v in sorted(self.metadata.items(), key=lambda x: metadata_tags_order.get(x[0], 999)): + m[k] = v + + self.metadata = m + + self.alias = self.metadata.get('ss_output_name', self.name) + + self.hash = None + self.shorthash = None + self.set_hash( + self.metadata.get('sshs_model_hash') or + hashes.sha256_from_cache(self.filename, "lora/" + self.name, use_addnet_hash=self.is_safetensors) or + '' + ) + + def set_hash(self, v): + self.hash = v + self.shorthash = self.hash[0:12] + + if self.shorthash: + import networks + networks.available_network_hash_lookup[self.shorthash] = self + + def read_hash(self): + if not self.hash: + self.set_hash(hashes.sha256(self.filename, "lora/" + self.name, use_addnet_hash=self.is_safetensors) or '') + + def get_alias(self): + import networks + if shared.opts.lora_preferred_name == "Filename" or self.alias.lower() in networks.forbidden_network_aliases: + return self.name + else: + return self.alias + + +class Network: # LoraModule + def __init__(self, name, network_on_disk: NetworkOnDisk): + self.name = name + self.network_on_disk = network_on_disk + self.multiplier = 1.0 + self.modules = {} + self.mtime = None + + self.mentioned_name = None + """the text that was used to add the network to prompt - can be either name or an alias""" + + +class ModuleType: + def create_module(self, net: Network, weights: NetworkWeights) -> Network | None: + return None + + +class NetworkModule: + def __init__(self, net: Network, weights: NetworkWeights): + self.network = net + self.network_key = weights.network_key + self.sd_key = weights.sd_key + self.sd_module = weights.sd_module + + def calc_updown(self, target): + raise NotImplementedError() + + def forward(self, x, y): + raise NotImplementedError() + diff --git a/extensions-builtin/Lora/network_hada.py b/extensions-builtin/Lora/network_hada.py new file mode 100644 index 00000000..15e7ffd8 --- /dev/null +++ b/extensions-builtin/Lora/network_hada.py @@ -0,0 +1,59 @@ +import lyco_helpers +import network +import network_lyco + + +class ModuleTypeHada(network.ModuleType): + def create_module(self, net: network.Network, weights: network.NetworkWeights): + if all(x in weights.w for x in ["hada_w1_a", "hada_w1_b", "hada_w2_a", "hada_w2_b"]): + return NetworkModuleHada(net, weights) + + return None + + +class NetworkModuleHada(network_lyco.NetworkModuleLyco): + def __init__(self, net: network.Network, weights: network.NetworkWeights): + super().__init__(net, weights) + + if hasattr(self.sd_module, 'weight'): + self.shape = self.sd_module.weight.shape + + self.w1a = weights.w["hada_w1_a"] + self.w1b = weights.w["hada_w1_b"] + self.dim = self.w1b.shape[0] + self.w2a = weights.w["hada_w2_a"] + self.w2b = weights.w["hada_w2_b"] + + self.t1 = weights.w.get("hada_t1") + self.t2 = weights.w.get("hada_t2") + + self.alpha = weights.w["alpha"].item() if "alpha" in weights.w else None + self.scale = weights.w["scale"].item() if "scale" in weights.w else None + + def calc_updown(self, orig_weight): + w1a = self.w1a.to(orig_weight.device, dtype=orig_weight.dtype) + w1b = self.w1b.to(orig_weight.device, dtype=orig_weight.dtype) + w2a = self.w2a.to(orig_weight.device, dtype=orig_weight.dtype) + w2b = self.w2b.to(orig_weight.device, dtype=orig_weight.dtype) + + output_shape = [w1a.size(0), w1b.size(1)] + + if self.t1 is not None: + output_shape = [w1a.size(1), w1b.size(1)] + t1 = self.t1.to(orig_weight.device, dtype=orig_weight.dtype) + updown1 = lyco_helpers.make_weight_cp(t1, w1a, w1b) + output_shape += t1.shape[2:] + else: + if len(w1b.shape) == 4: + output_shape += w1b.shape[2:] + updown1 = lyco_helpers.rebuild_conventional(w1a, w1b, output_shape) + + if self.t2 is not None: + t2 = self.t2.to(orig_weight.device, dtype=orig_weight.dtype) + updown2 = lyco_helpers.make_weight_cp(t2, w2a, w2b) + else: + updown2 = lyco_helpers.rebuild_conventional(w2a, w2b, output_shape) + + updown = updown1 * updown2 + + return self.finalize_updown(updown, orig_weight, output_shape) diff --git a/extensions-builtin/Lora/network_lora.py b/extensions-builtin/Lora/network_lora.py new file mode 100644 index 00000000..b2d96537 --- /dev/null +++ b/extensions-builtin/Lora/network_lora.py @@ -0,0 +1,70 @@ +import torch + +import network +from modules import devices + + +class ModuleTypeLora(network.ModuleType): + def create_module(self, net: network.Network, weights: network.NetworkWeights): + if all(x in weights.w for x in ["lora_up.weight", "lora_down.weight"]): + return NetworkModuleLora(net, weights) + + return None + + +class NetworkModuleLora(network.NetworkModule): + def __init__(self, net: network.Network, weights: network.NetworkWeights): + super().__init__(net, weights) + + self.up = self.create_module(weights.w["lora_up.weight"]) + self.down = self.create_module(weights.w["lora_down.weight"]) + self.alpha = weights.w["alpha"] if "alpha" in weights.w else None + + def create_module(self, weight, none_ok=False): + if weight is None and none_ok: + return None + + if type(self.sd_module) == torch.nn.Linear: + module = torch.nn.Linear(weight.shape[1], weight.shape[0], bias=False) + elif type(self.sd_module) == torch.nn.modules.linear.NonDynamicallyQuantizableLinear: + module = torch.nn.Linear(weight.shape[1], weight.shape[0], bias=False) + elif type(self.sd_module) == torch.nn.MultiheadAttention: + module = torch.nn.Linear(weight.shape[1], weight.shape[0], bias=False) + elif type(self.sd_module) == torch.nn.Conv2d and weight.shape[2:] == (1, 1): + module = torch.nn.Conv2d(weight.shape[1], weight.shape[0], (1, 1), bias=False) + elif type(self.sd_module) == torch.nn.Conv2d and weight.shape[2:] == (3, 3): + module = torch.nn.Conv2d(weight.shape[1], weight.shape[0], (3, 3), bias=False) + else: + print(f'Network layer {self.network_key} matched a layer with unsupported type: {type(self.sd_module).__name__}') + return None + + with torch.no_grad(): + module.weight.copy_(weight) + + module.to(device=devices.cpu, dtype=devices.dtype) + module.weight.requires_grad_(False) + + return module + + def calc_updown(self, target): + up = self.up.weight.to(target.device, dtype=target.dtype) + down = self.down.weight.to(target.device, dtype=target.dtype) + + if up.shape[2:] == (1, 1) and down.shape[2:] == (1, 1): + updown = (up.squeeze(2).squeeze(2) @ down.squeeze(2).squeeze(2)).unsqueeze(2).unsqueeze(3) + elif up.shape[2:] == (3, 3) or down.shape[2:] == (3, 3): + updown = torch.nn.functional.conv2d(down.permute(1, 0, 2, 3), up).permute(1, 0, 2, 3) + else: + updown = up @ down + + updown = updown * self.network.multiplier * (self.alpha / self.up.weight.shape[1] if self.alpha else 1.0) + + return updown + + def forward(self, x, y): + self.up.to(device=devices.device) + self.down.to(device=devices.device) + + return y + self.up(self.down(x)) * self.network.multiplier * (self.alpha / self.up.weight.shape[1] if self.alpha else 1.0) + + diff --git a/extensions-builtin/Lora/network_lyco.py b/extensions-builtin/Lora/network_lyco.py new file mode 100644 index 00000000..18a822fa --- /dev/null +++ b/extensions-builtin/Lora/network_lyco.py @@ -0,0 +1,39 @@ +import torch + +import lyco_helpers +import network +from modules import devices + + +class NetworkModuleLyco(network.NetworkModule): + def __init__(self, net: network.Network, weights: network.NetworkWeights): + super().__init__(net, weights) + + if hasattr(self.sd_module, 'weight'): + self.shape = self.sd_module.weight.shape + + self.dim = None + self.bias = weights.w.get("bias") + self.alpha = weights.w["alpha"].item() if "alpha" in weights.w else None + self.scale = weights.w["scale"].item() if "scale" in weights.w else None + + def finalize_updown(self, updown, orig_weight, output_shape): + if self.bias is not None: + updown = updown.reshape(self.bias.shape) + updown += self.bias.to(orig_weight.device, dtype=orig_weight.dtype) + updown = updown.reshape(output_shape) + + if len(output_shape) == 4: + updown = updown.reshape(output_shape) + + if orig_weight.size().numel() == updown.size().numel(): + updown = updown.reshape(orig_weight.shape) + + scale = ( + self.scale if self.scale is not None + else self.alpha / self.dim if self.dim is not None and self.alpha is not None + else 1.0 + ) + + return updown * scale * self.network.multiplier + diff --git a/extensions-builtin/Lora/networks.py b/extensions-builtin/Lora/networks.py new file mode 100644 index 00000000..5b0ddfb6 --- /dev/null +++ b/extensions-builtin/Lora/networks.py @@ -0,0 +1,443 @@ +import os +import re + +import network +import network_lora +import network_hada + +import torch +from typing import Union + +from modules import shared, devices, sd_models, errors, scripts, sd_hijack + +module_types = [ + network_lora.ModuleTypeLora(), + network_hada.ModuleTypeHada(), +] + + +re_digits = re.compile(r"\d+") +re_x_proj = re.compile(r"(.*)_([qkv]_proj)$") +re_compiled = {} + +suffix_conversion = { + "attentions": {}, + "resnets": { + "conv1": "in_layers_2", + "conv2": "out_layers_3", + "time_emb_proj": "emb_layers_1", + "conv_shortcut": "skip_connection", + } +} + + +def convert_diffusers_name_to_compvis(key, is_sd2): + def match(match_list, regex_text): + regex = re_compiled.get(regex_text) + if regex is None: + regex = re.compile(regex_text) + re_compiled[regex_text] = regex + + r = re.match(regex, key) + if not r: + return False + + match_list.clear() + match_list.extend([int(x) if re.match(re_digits, x) else x for x in r.groups()]) + return True + + m = [] + + if match(m, r"lora_unet_down_blocks_(\d+)_(attentions|resnets)_(\d+)_(.+)"): + suffix = suffix_conversion.get(m[1], {}).get(m[3], m[3]) + return f"diffusion_model_input_blocks_{1 + m[0] * 3 + m[2]}_{1 if m[1] == 'attentions' else 0}_{suffix}" + + if match(m, r"lora_unet_mid_block_(attentions|resnets)_(\d+)_(.+)"): + suffix = suffix_conversion.get(m[0], {}).get(m[2], m[2]) + return f"diffusion_model_middle_block_{1 if m[0] == 'attentions' else m[1] * 2}_{suffix}" + + if match(m, r"lora_unet_up_blocks_(\d+)_(attentions|resnets)_(\d+)_(.+)"): + suffix = suffix_conversion.get(m[1], {}).get(m[3], m[3]) + return f"diffusion_model_output_blocks_{m[0] * 3 + m[2]}_{1 if m[1] == 'attentions' else 0}_{suffix}" + + if match(m, r"lora_unet_down_blocks_(\d+)_downsamplers_0_conv"): + return f"diffusion_model_input_blocks_{3 + m[0] * 3}_0_op" + + if match(m, r"lora_unet_up_blocks_(\d+)_upsamplers_0_conv"): + return f"diffusion_model_output_blocks_{2 + m[0] * 3}_{2 if m[0]>0 else 1}_conv" + + if match(m, r"lora_te_text_model_encoder_layers_(\d+)_(.+)"): + if is_sd2: + if 'mlp_fc1' in m[1]: + return f"model_transformer_resblocks_{m[0]}_{m[1].replace('mlp_fc1', 'mlp_c_fc')}" + elif 'mlp_fc2' in m[1]: + return f"model_transformer_resblocks_{m[0]}_{m[1].replace('mlp_fc2', 'mlp_c_proj')}" + else: + return f"model_transformer_resblocks_{m[0]}_{m[1].replace('self_attn', 'attn')}" + + return f"transformer_text_model_encoder_layers_{m[0]}_{m[1]}" + + if match(m, r"lora_te2_text_model_encoder_layers_(\d+)_(.+)"): + if 'mlp_fc1' in m[1]: + return f"1_model_transformer_resblocks_{m[0]}_{m[1].replace('mlp_fc1', 'mlp_c_fc')}" + elif 'mlp_fc2' in m[1]: + return f"1_model_transformer_resblocks_{m[0]}_{m[1].replace('mlp_fc2', 'mlp_c_proj')}" + else: + return f"1_model_transformer_resblocks_{m[0]}_{m[1].replace('self_attn', 'attn')}" + + return key + + +def assign_network_names_to_compvis_modules(sd_model): + network_layer_mapping = {} + + if shared.sd_model.is_sdxl: + for i, embedder in enumerate(shared.sd_model.conditioner.embedders): + if not hasattr(embedder, 'wrapped'): + continue + + for name, module in embedder.wrapped.named_modules(): + network_name = f'{i}_{name.replace(".", "_")}' + network_layer_mapping[network_name] = module + module.network_layer_name = network_name + else: + for name, module in shared.sd_model.cond_stage_model.wrapped.named_modules(): + network_name = name.replace(".", "_") + network_layer_mapping[network_name] = module + module.network_layer_name = network_name + + for name, module in shared.sd_model.model.named_modules(): + network_name = name.replace(".", "_") + network_layer_mapping[network_name] = module + module.network_layer_name = network_name + + sd_model.network_layer_mapping = network_layer_mapping + + +def load_network(name, network_on_disk): + net = network.Network(name, network_on_disk) + net.mtime = os.path.getmtime(network_on_disk.filename) + + sd = sd_models.read_state_dict(network_on_disk.filename) + + # this should not be needed but is here as an emergency fix for an unknown error people are experiencing in 1.2.0 + if not hasattr(shared.sd_model, 'network_layer_mapping'): + assign_network_names_to_compvis_modules(shared.sd_model) + + keys_failed_to_match = {} + is_sd2 = 'model_transformer_resblocks' in shared.sd_model.network_layer_mapping + + matched_networks = {} + + for key_network, weight in sd.items(): + key_network_without_network_parts, network_part = key_network.split(".", 1) + + key = convert_diffusers_name_to_compvis(key_network_without_network_parts, is_sd2) + sd_module = shared.sd_model.network_layer_mapping.get(key, None) + + if sd_module is None: + m = re_x_proj.match(key) + if m: + sd_module = shared.sd_model.network_layer_mapping.get(m.group(1), None) + + # SDXL loras seem to already have correct compvis keys, so only need to replace "lora_unet" with "diffusion_model" + if sd_module is None and "lora_unet" in key_network_without_network_parts: + key = key_network_without_network_parts.replace("lora_unet", "diffusion_model") + sd_module = shared.sd_model.network_layer_mapping.get(key, None) + elif sd_module is None and "lora_te1_text_model" in key_network_without_network_parts: + key = key_network_without_network_parts.replace("lora_te1_text_model", "0_transformer_text_model") + sd_module = shared.sd_model.network_layer_mapping.get(key, None) + + if sd_module is None: + keys_failed_to_match[key_network] = key + continue + + if key not in matched_networks: + matched_networks[key] = network.NetworkWeights(network_key=key_network, sd_key=key, w={}, sd_module=sd_module) + + matched_networks[key].w[network_part] = weight + + for key, weights in matched_networks.items(): + net_module = None + for nettype in module_types: + net_module = nettype.create_module(net, weights) + if net_module is not None: + break + + if net_module is None: + raise AssertionError(f"Could not find a module type (out of {', '.join([x.__class__.__name__ for x in module_types])}) that would accept those keys: {', '.join(weights.w)}") + + net.modules[key] = net_module + + if keys_failed_to_match: + print(f"Failed to match keys when loading network {network_on_disk.filename}: {keys_failed_to_match}") + + return net + + +def load_networks(names, multipliers=None): + already_loaded = {} + + for net in loaded_networks: + if net.name in names: + already_loaded[net.name] = net + + loaded_networks.clear() + + networks_on_disk = [available_network_aliases.get(name, None) for name in names] + if any(x is None for x in networks_on_disk): + list_available_networks() + + networks_on_disk = [available_network_aliases.get(name, None) for name in names] + + failed_to_load_networks = [] + + for i, name in enumerate(names): + net = already_loaded.get(name, None) + + network_on_disk = networks_on_disk[i] + + if network_on_disk is not None: + if net is None or os.path.getmtime(network_on_disk.filename) > net.mtime: + try: + net = load_network(name, network_on_disk) + except Exception as e: + errors.display(e, f"loading network {network_on_disk.filename}") + continue + + net.mentioned_name = name + + network_on_disk.read_hash() + + if net is None: + failed_to_load_networks.append(name) + print(f"Couldn't find network with name {name}") + continue + + net.multiplier = multipliers[i] if multipliers else 1.0 + loaded_networks.append(net) + + if failed_to_load_networks: + sd_hijack.model_hijack.comments.append("Failed to find networks: " + ", ".join(failed_to_load_networks)) + + +def network_restore_weights_from_backup(self: Union[torch.nn.Conv2d, torch.nn.Linear, torch.nn.MultiheadAttention]): + weights_backup = getattr(self, "network_weights_backup", None) + + if weights_backup is None: + return + + if isinstance(self, torch.nn.MultiheadAttention): + self.in_proj_weight.copy_(weights_backup[0]) + self.out_proj.weight.copy_(weights_backup[1]) + else: + self.weight.copy_(weights_backup) + + +def network_apply_weights(self: Union[torch.nn.Conv2d, torch.nn.Linear, torch.nn.MultiheadAttention]): + """ + Applies the currently selected set of networks to the weights of torch layer self. + If weights already have this particular set of networks applied, does nothing. + If not, restores orginal weights from backup and alters weights according to networks. + """ + + network_layer_name = getattr(self, 'network_layer_name', None) + if network_layer_name is None: + return + + current_names = getattr(self, "network_current_names", ()) + wanted_names = tuple((x.name, x.multiplier) for x in loaded_networks) + + weights_backup = getattr(self, "network_weights_backup", None) + if weights_backup is None: + if isinstance(self, torch.nn.MultiheadAttention): + weights_backup = (self.in_proj_weight.to(devices.cpu, copy=True), self.out_proj.weight.to(devices.cpu, copy=True)) + else: + weights_backup = self.weight.to(devices.cpu, copy=True) + + self.network_weights_backup = weights_backup + + if current_names != wanted_names: + network_restore_weights_from_backup(self) + + for net in loaded_networks: + module = net.modules.get(network_layer_name, None) + if module is not None and hasattr(self, 'weight'): + with torch.no_grad(): + updown = module.calc_updown(self.weight) + + if len(self.weight.shape) == 4 and self.weight.shape[1] == 9: + # inpainting model. zero pad updown to make channel[1] 4 to 9 + updown = torch.nn.functional.pad(updown, (0, 0, 0, 0, 0, 5)) + + self.weight += updown + + module_q = net.modules.get(network_layer_name + "_q_proj", None) + module_k = net.modules.get(network_layer_name + "_k_proj", None) + module_v = net.modules.get(network_layer_name + "_v_proj", None) + module_out = net.modules.get(network_layer_name + "_out_proj", None) + + if isinstance(self, torch.nn.MultiheadAttention) and module_q and module_k and module_v and module_out: + with torch.no_grad(): + updown_q = module_q.calc_updown(self.in_proj_weight) + updown_k = module_k.calc_updown(self.in_proj_weight) + updown_v = module_v.calc_updown(self.in_proj_weight) + updown_qkv = torch.vstack([updown_q, updown_k, updown_v]) + + self.in_proj_weight += updown_qkv + self.out_proj.weight += module_out.calc_updown(self.out_proj.weight) + continue + + if module is None: + continue + + print(f'failed to calculate network weights for layer {network_layer_name}') + + self.network_current_names = wanted_names + + +def network_forward(module, input, original_forward): + """ + Old way of applying Lora by executing operations during layer's forward. + Stacking many loras this way results in big performance degradation. + """ + + if len(loaded_networks) == 0: + return original_forward(module, input) + + input = devices.cond_cast_unet(input) + + network_restore_weights_from_backup(module) + network_reset_cached_weight(module) + + y = original_forward(module, input) + + network_layer_name = getattr(module, 'network_layer_name', None) + for lora in loaded_networks: + module = lora.modules.get(network_layer_name, None) + if module is None: + continue + + y = module.forward(y, input) + + return y + + +def network_reset_cached_weight(self: Union[torch.nn.Conv2d, torch.nn.Linear]): + self.network_current_names = () + self.network_weights_backup = None + + +def network_Linear_forward(self, input): + if shared.opts.lora_functional: + return network_forward(self, input, torch.nn.Linear_forward_before_network) + + network_apply_weights(self) + + return torch.nn.Linear_forward_before_network(self, input) + + +def network_Linear_load_state_dict(self, *args, **kwargs): + network_reset_cached_weight(self) + + return torch.nn.Linear_load_state_dict_before_network(self, *args, **kwargs) + + +def network_Conv2d_forward(self, input): + if shared.opts.lora_functional: + return network_forward(self, input, torch.nn.Conv2d_forward_before_network) + + network_apply_weights(self) + + return torch.nn.Conv2d_forward_before_network(self, input) + + +def network_Conv2d_load_state_dict(self, *args, **kwargs): + network_reset_cached_weight(self) + + return torch.nn.Conv2d_load_state_dict_before_network(self, *args, **kwargs) + + +def network_MultiheadAttention_forward(self, *args, **kwargs): + network_apply_weights(self) + + return torch.nn.MultiheadAttention_forward_before_network(self, *args, **kwargs) + + +def network_MultiheadAttention_load_state_dict(self, *args, **kwargs): + network_reset_cached_weight(self) + + return torch.nn.MultiheadAttention_load_state_dict_before_network(self, *args, **kwargs) + + +def list_available_networks(): + available_networks.clear() + available_network_aliases.clear() + forbidden_network_aliases.clear() + available_network_hash_lookup.clear() + forbidden_network_aliases.update({"none": 1, "Addams": 1}) + + os.makedirs(shared.cmd_opts.lora_dir, exist_ok=True) + + candidates = list(shared.walk_files(shared.cmd_opts.lora_dir, allowed_extensions=[".pt", ".ckpt", ".safetensors"])) + for filename in candidates: + if os.path.isdir(filename): + continue + + name = os.path.splitext(os.path.basename(filename))[0] + try: + entry = network.NetworkOnDisk(name, filename) + except OSError: # should catch FileNotFoundError and PermissionError etc. + errors.report(f"Failed to load network {name} from {filename}", exc_info=True) + continue + + available_networks[name] = entry + + if entry.alias in available_network_aliases: + forbidden_network_aliases[entry.alias.lower()] = 1 + + available_network_aliases[name] = entry + available_network_aliases[entry.alias] = entry + + +re_network_name = re.compile(r"(.*)\s*\([0-9a-fA-F]+\)") + + +def infotext_pasted(infotext, params): + if "AddNet Module 1" in [x[1] for x in scripts.scripts_txt2img.infotext_fields]: + return # if the other extension is active, it will handle those fields, no need to do anything + + added = [] + + for k in params: + if not k.startswith("AddNet Model "): + continue + + num = k[13:] + + if params.get("AddNet Module " + num) != "LoRA": + continue + + name = params.get("AddNet Model " + num) + if name is None: + continue + + m = re_network_name.match(name) + if m: + name = m.group(1) + + multiplier = params.get("AddNet Weight A " + num, "1.0") + + added.append(f"") + + if added: + params["Prompt"] += "\n" + "".join(added) + + +available_networks = {} +available_network_aliases = {} +loaded_networks = [] +available_network_hash_lookup = {} +forbidden_network_aliases = {} + +list_available_networks() diff --git a/extensions-builtin/Lora/scripts/lora_script.py b/extensions-builtin/Lora/scripts/lora_script.py index e650f469..81e6572a 100644 --- a/extensions-builtin/Lora/scripts/lora_script.py +++ b/extensions-builtin/Lora/scripts/lora_script.py @@ -4,18 +4,19 @@ import torch import gradio as gr from fastapi import FastAPI -import lora +import network +import networks import extra_networks_lora import ui_extra_networks_lora from modules import script_callbacks, ui_extra_networks, extra_networks, shared def unload(): - torch.nn.Linear.forward = torch.nn.Linear_forward_before_lora - torch.nn.Linear._load_from_state_dict = torch.nn.Linear_load_state_dict_before_lora - torch.nn.Conv2d.forward = torch.nn.Conv2d_forward_before_lora - torch.nn.Conv2d._load_from_state_dict = torch.nn.Conv2d_load_state_dict_before_lora - torch.nn.MultiheadAttention.forward = torch.nn.MultiheadAttention_forward_before_lora - torch.nn.MultiheadAttention._load_from_state_dict = torch.nn.MultiheadAttention_load_state_dict_before_lora + torch.nn.Linear.forward = torch.nn.Linear_forward_before_network + torch.nn.Linear._load_from_state_dict = torch.nn.Linear_load_state_dict_before_network + torch.nn.Conv2d.forward = torch.nn.Conv2d_forward_before_network + torch.nn.Conv2d._load_from_state_dict = torch.nn.Conv2d_load_state_dict_before_network + torch.nn.MultiheadAttention.forward = torch.nn.MultiheadAttention_forward_before_network + torch.nn.MultiheadAttention._load_from_state_dict = torch.nn.MultiheadAttention_load_state_dict_before_network def before_ui(): @@ -23,50 +24,50 @@ def before_ui(): extra_networks.register_extra_network(extra_networks_lora.ExtraNetworkLora()) -if not hasattr(torch.nn, 'Linear_forward_before_lora'): - torch.nn.Linear_forward_before_lora = torch.nn.Linear.forward +if not hasattr(torch.nn, 'Linear_forward_before_network'): + torch.nn.Linear_forward_before_network = torch.nn.Linear.forward -if not hasattr(torch.nn, 'Linear_load_state_dict_before_lora'): - torch.nn.Linear_load_state_dict_before_lora = torch.nn.Linear._load_from_state_dict +if not hasattr(torch.nn, 'Linear_load_state_dict_before_network'): + torch.nn.Linear_load_state_dict_before_network = torch.nn.Linear._load_from_state_dict -if not hasattr(torch.nn, 'Conv2d_forward_before_lora'): - torch.nn.Conv2d_forward_before_lora = torch.nn.Conv2d.forward +if not hasattr(torch.nn, 'Conv2d_forward_before_network'): + torch.nn.Conv2d_forward_before_network = torch.nn.Conv2d.forward -if not hasattr(torch.nn, 'Conv2d_load_state_dict_before_lora'): - torch.nn.Conv2d_load_state_dict_before_lora = torch.nn.Conv2d._load_from_state_dict +if not hasattr(torch.nn, 'Conv2d_load_state_dict_before_network'): + torch.nn.Conv2d_load_state_dict_before_network = torch.nn.Conv2d._load_from_state_dict -if not hasattr(torch.nn, 'MultiheadAttention_forward_before_lora'): - torch.nn.MultiheadAttention_forward_before_lora = torch.nn.MultiheadAttention.forward +if not hasattr(torch.nn, 'MultiheadAttention_forward_before_network'): + torch.nn.MultiheadAttention_forward_before_network = torch.nn.MultiheadAttention.forward -if not hasattr(torch.nn, 'MultiheadAttention_load_state_dict_before_lora'): - torch.nn.MultiheadAttention_load_state_dict_before_lora = torch.nn.MultiheadAttention._load_from_state_dict +if not hasattr(torch.nn, 'MultiheadAttention_load_state_dict_before_network'): + torch.nn.MultiheadAttention_load_state_dict_before_network = torch.nn.MultiheadAttention._load_from_state_dict -torch.nn.Linear.forward = lora.lora_Linear_forward -torch.nn.Linear._load_from_state_dict = lora.lora_Linear_load_state_dict -torch.nn.Conv2d.forward = lora.lora_Conv2d_forward -torch.nn.Conv2d._load_from_state_dict = lora.lora_Conv2d_load_state_dict -torch.nn.MultiheadAttention.forward = lora.lora_MultiheadAttention_forward -torch.nn.MultiheadAttention._load_from_state_dict = lora.lora_MultiheadAttention_load_state_dict +torch.nn.Linear.forward = networks.network_Linear_forward +torch.nn.Linear._load_from_state_dict = networks.network_Linear_load_state_dict +torch.nn.Conv2d.forward = networks.network_Conv2d_forward +torch.nn.Conv2d._load_from_state_dict = networks.network_Conv2d_load_state_dict +torch.nn.MultiheadAttention.forward = networks.network_MultiheadAttention_forward +torch.nn.MultiheadAttention._load_from_state_dict = networks.network_MultiheadAttention_load_state_dict -script_callbacks.on_model_loaded(lora.assign_lora_names_to_compvis_modules) +script_callbacks.on_model_loaded(networks.assign_network_names_to_compvis_modules) script_callbacks.on_script_unloaded(unload) script_callbacks.on_before_ui(before_ui) -script_callbacks.on_infotext_pasted(lora.infotext_pasted) +script_callbacks.on_infotext_pasted(networks.infotext_pasted) shared.options_templates.update(shared.options_section(('extra_networks', "Extra Networks"), { - "sd_lora": shared.OptionInfo("None", "Add Lora to prompt", gr.Dropdown, lambda: {"choices": ["None", *lora.available_loras]}, refresh=lora.list_available_loras), + "sd_lora": shared.OptionInfo("None", "Add network to prompt", gr.Dropdown, lambda: {"choices": ["None", *networks.available_networks]}, refresh=networks.list_available_networks), "lora_preferred_name": shared.OptionInfo("Alias from file", "When adding to prompt, refer to Lora by", gr.Radio, {"choices": ["Alias from file", "Filename"]}), "lora_add_hashes_to_infotext": shared.OptionInfo(True, "Add Lora hashes to infotext"), })) shared.options_templates.update(shared.options_section(('compatibility', "Compatibility"), { - "lora_functional": shared.OptionInfo(False, "Lora: use old method that takes longer when you have multiple Loras active and produces same results as kohya-ss/sd-webui-additional-networks extension"), + "lora_functional": shared.OptionInfo(False, "Lora/Networks: use old method that takes longer when you have multiple Loras active and produces same results as kohya-ss/sd-webui-additional-networks extension"), })) -def create_lora_json(obj: lora.LoraOnDisk): +def create_lora_json(obj: network.NetworkOnDisk): return { "name": obj.name, "alias": obj.alias, @@ -75,17 +76,17 @@ def create_lora_json(obj: lora.LoraOnDisk): } -def api_loras(_: gr.Blocks, app: FastAPI): +def api_networks(_: gr.Blocks, app: FastAPI): @app.get("/sdapi/v1/loras") async def get_loras(): - return [create_lora_json(obj) for obj in lora.available_loras.values()] + return [create_lora_json(obj) for obj in networks.available_networks.values()] @app.post("/sdapi/v1/refresh-loras") async def refresh_loras(): - return lora.list_available_loras() + return networks.list_available_networks() -script_callbacks.on_app_started(api_loras) +script_callbacks.on_app_started(api_networks) re_lora = re.compile("