diff --git a/modules/sd_models_xl.py b/modules/sd_models_xl.py index b19036f1..af445a61 100644 --- a/modules/sd_models_xl.py +++ b/modules/sd_models_xl.py @@ -48,7 +48,7 @@ def extend_sdxl(model): discretization = sgm.modules.diffusionmodules.discretizer.LegacyDDPMDiscretization() model.alphas_cumprod = torch.asarray(discretization.alphas_cumprod, device=devices.device, dtype=dtype) - model.is_xl = True + model.is_sdxl = True sgm.models.diffusion.DiffusionEngine.get_learned_conditioning = get_learned_conditioning diff --git a/modules/sd_vae_approx.py b/modules/sd_vae_approx.py index e2f00468..b348f3ae 100644 --- a/modules/sd_vae_approx.py +++ b/modules/sd_vae_approx.py @@ -2,9 +2,9 @@ import os import torch from torch import nn -from modules import devices, paths +from modules import devices, paths, shared -sd_vae_approx_model = None +sd_vae_approx_models = {} class VAEApprox(nn.Module): @@ -31,19 +31,34 @@ class VAEApprox(nn.Module): return x +def download_model(model_path, model_url): + if not os.path.exists(model_path): + os.makedirs(os.path.dirname(model_path), exist_ok=True) + + print(f'Downloading VAEApprox model to: {model_path}') + torch.hub.download_url_to_file(model_url, model_path) + + def model(): - global sd_vae_approx_model + model_name = "vaeapprox-sdxl.pt" if getattr(shared.sd_model, 'is_sdxl', False) else "model.pt" + loaded_model = sd_vae_approx_models.get(model_name) - if sd_vae_approx_model is None: - model_path = os.path.join(paths.models_path, "VAE-approx", "model.pt") - sd_vae_approx_model = VAEApprox() + if loaded_model is None: + model_path = os.path.join(paths.models_path, "VAE-approx", model_name) if not os.path.exists(model_path): - model_path = os.path.join(paths.script_path, "models", "VAE-approx", "model.pt") - sd_vae_approx_model.load_state_dict(torch.load(model_path, map_location='cpu' if devices.device.type != 'cuda' else None)) - sd_vae_approx_model.eval() - sd_vae_approx_model.to(devices.device, devices.dtype) + model_path = os.path.join(paths.script_path, "models", "VAE-approx", model_name) - return sd_vae_approx_model + if not os.path.exists(model_path): + model_path = os.path.join(paths.models_path, "VAE-approx", model_name) + download_model(model_path, 'https://github.com/AUTOMATIC1111/stable-diffusion-webui/releases/download/v1.0.0-pre/' + model_name) + + loaded_model = VAEApprox() + loaded_model.load_state_dict(torch.load(model_path, map_location='cpu' if devices.device.type != 'cuda' else None)) + loaded_model.eval() + loaded_model.to(devices.device, devices.dtype) + sd_vae_approx_models[model_name] = loaded_model + + return loaded_model def cheap_approximation(sample): diff --git a/modules/sd_vae_taesd.py b/modules/sd_vae_taesd.py index 5e8496e8..5bf7c76e 100644 --- a/modules/sd_vae_taesd.py +++ b/modules/sd_vae_taesd.py @@ -8,9 +8,9 @@ import os import torch import torch.nn as nn -from modules import devices, paths_internal +from modules import devices, paths_internal, shared -sd_vae_taesd = None +sd_vae_taesd_models = {} def conv(n_in, n_out, **kwargs): @@ -61,9 +61,7 @@ class TAESD(nn.Module): return x.sub(TAESD.latent_shift).mul(2 * TAESD.latent_magnitude) -def download_model(model_path): - model_url = 'https://github.com/madebyollin/taesd/raw/main/taesd_decoder.pth' - +def download_model(model_path, model_url): if not os.path.exists(model_path): os.makedirs(os.path.dirname(model_path), exist_ok=True) @@ -72,17 +70,19 @@ def download_model(model_path): def model(): - global sd_vae_taesd + model_name = "taesdxl_decoder.pth" if getattr(shared.sd_model, 'is_sdxl', False) else "taesd_decoder.pth" + loaded_model = sd_vae_taesd_models.get(model_name) - if sd_vae_taesd is None: - model_path = os.path.join(paths_internal.models_path, "VAE-taesd", "taesd_decoder.pth") - download_model(model_path) + if loaded_model is None: + model_path = os.path.join(paths_internal.models_path, "VAE-taesd", model_name) + download_model(model_path, 'https://github.com/madebyollin/taesd/raw/main/' + model_name) if os.path.exists(model_path): - sd_vae_taesd = TAESD(model_path) - sd_vae_taesd.eval() - sd_vae_taesd.to(devices.device, devices.dtype) + loaded_model = TAESD(model_path) + loaded_model.eval() + loaded_model.to(devices.device, devices.dtype) + sd_vae_taesd_models[model_name] = loaded_model else: raise FileNotFoundError('TAESD model not found') - return sd_vae_taesd.decoder + return loaded_model.decoder