init
This commit is contained in:
parent
fdecb63685
commit
bb57f30c2d
@ -70,6 +70,7 @@ Check the [custom scripts](https://github.com/AUTOMATIC1111/stable-diffusion-web
|
||||
- No token limit for prompts (original stable diffusion lets you use up to 75 tokens)
|
||||
- DeepDanbooru integration, creates danbooru style tags for anime prompts (add --deepdanbooru to commandline args)
|
||||
- [xformers](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Xformers), major speed increase for select cards: (add --xformers to commandline args)
|
||||
- Aesthetic, a way to generate images with a specific aesthetic by using clip images embds (implementation of https://github.com/vicgalle/stable-diffusion-aesthetic-gradients)
|
||||
|
||||
## Installation and Running
|
||||
Make sure the required [dependencies](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Dependencies) are met and follow the instructions available for both [NVidia](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-NVidia-GPUs) (recommended) and [AMD](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-AMD-GPUs) GPUs.
|
||||
|
0
aesthetic_embeddings/insert_embs_here.txt
Normal file
0
aesthetic_embeddings/insert_embs_here.txt
Normal file
@ -316,11 +316,16 @@ def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments, iteration
|
||||
return f"{all_prompts[index]}{negative_prompt_text}\n{generation_params_text}".strip()
|
||||
|
||||
|
||||
def process_images(p: StableDiffusionProcessing) -> Processed:
|
||||
def process_images(p: StableDiffusionProcessing, aesthetic_lr=0, aesthetic_weight=0, aesthetic_steps=0,
|
||||
aesthetic_imgs=None,aesthetic_slerp=False) -> Processed:
|
||||
"""this is the main loop that both txt2img and img2img use; it calls func_init once inside all the scopes and func_sample once per batch"""
|
||||
|
||||
aesthetic_lr = float(aesthetic_lr)
|
||||
aesthetic_weight = float(aesthetic_weight)
|
||||
aesthetic_steps = int(aesthetic_steps)
|
||||
|
||||
if type(p.prompt) == list:
|
||||
assert(len(p.prompt) > 0)
|
||||
assert (len(p.prompt) > 0)
|
||||
else:
|
||||
assert p.prompt is not None
|
||||
|
||||
@ -394,7 +399,13 @@ def process_images(p: StableDiffusionProcessing) -> Processed:
|
||||
#uc = p.sd_model.get_learned_conditioning(len(prompts) * [p.negative_prompt])
|
||||
#c = p.sd_model.get_learned_conditioning(prompts)
|
||||
with devices.autocast():
|
||||
uc = prompt_parser.get_learned_conditioning(shared.sd_model, len(prompts) * [p.negative_prompt], p.steps)
|
||||
if hasattr(shared.sd_model.cond_stage_model, "set_aesthetic_params"):
|
||||
shared.sd_model.cond_stage_model.set_aesthetic_params(0, 0, 0)
|
||||
uc = prompt_parser.get_learned_conditioning(shared.sd_model, len(prompts) * [p.negative_prompt],
|
||||
p.steps)
|
||||
if hasattr(shared.sd_model.cond_stage_model, "set_aesthetic_params"):
|
||||
shared.sd_model.cond_stage_model.set_aesthetic_params(aesthetic_lr, aesthetic_weight,
|
||||
aesthetic_steps, aesthetic_imgs,aesthetic_slerp)
|
||||
c = prompt_parser.get_multicond_learned_conditioning(shared.sd_model, prompts, p.steps)
|
||||
|
||||
if len(model_hijack.comments) > 0:
|
||||
|
@ -9,11 +9,14 @@ from torch.nn.functional import silu
|
||||
|
||||
import modules.textual_inversion.textual_inversion
|
||||
from modules import prompt_parser, devices, sd_hijack_optimizations, shared
|
||||
from modules.shared import opts, device, cmd_opts
|
||||
from modules.shared import opts, device, cmd_opts, aesthetic_embeddings
|
||||
from modules.sd_hijack_optimizations import invokeAI_mps_available
|
||||
|
||||
import ldm.modules.attention
|
||||
import ldm.modules.diffusionmodules.model
|
||||
from transformers import CLIPVisionModel, CLIPModel
|
||||
import torch.optim as optim
|
||||
import copy
|
||||
|
||||
attention_CrossAttention_forward = ldm.modules.attention.CrossAttention.forward
|
||||
diffusionmodules_model_nonlinearity = ldm.modules.diffusionmodules.model.nonlinearity
|
||||
@ -109,13 +112,29 @@ class StableDiffusionModelHijack:
|
||||
_, remade_batch_tokens, _, _, _, token_count = self.clip.process_text([text])
|
||||
return remade_batch_tokens[0], token_count, get_target_prompt_token_count(token_count)
|
||||
|
||||
def slerp(low, high, val):
|
||||
low_norm = low/torch.norm(low, dim=1, keepdim=True)
|
||||
high_norm = high/torch.norm(high, dim=1, keepdim=True)
|
||||
omega = torch.acos((low_norm*high_norm).sum(1))
|
||||
so = torch.sin(omega)
|
||||
res = (torch.sin((1.0-val)*omega)/so).unsqueeze(1)*low + (torch.sin(val*omega)/so).unsqueeze(1) * high
|
||||
return res
|
||||
|
||||
class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module):
|
||||
def __init__(self, wrapped, hijack):
|
||||
super().__init__()
|
||||
self.wrapped = wrapped
|
||||
self.clipModel = CLIPModel.from_pretrained(
|
||||
self.wrapped.transformer.name_or_path
|
||||
)
|
||||
del self.clipModel.vision_model
|
||||
self.hijack: StableDiffusionModelHijack = hijack
|
||||
self.tokenizer = wrapped.tokenizer
|
||||
# self.vision = CLIPVisionModel.from_pretrained(self.wrapped.transformer.name_or_path).eval()
|
||||
self.image_embs_name = None
|
||||
self.image_embs = None
|
||||
self.load_image_embs(None)
|
||||
|
||||
self.token_mults = {}
|
||||
|
||||
self.comma_token = [v for k, v in self.tokenizer.get_vocab().items() if k == ',</w>'][0]
|
||||
@ -136,6 +155,23 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module):
|
||||
if mult != 1.0:
|
||||
self.token_mults[ident] = mult
|
||||
|
||||
def set_aesthetic_params(self, aesthetic_lr, aesthetic_weight, aesthetic_steps, image_embs_name=None,
|
||||
aesthetic_slerp=True):
|
||||
self.slerp = aesthetic_slerp
|
||||
self.aesthetic_lr = aesthetic_lr
|
||||
self.aesthetic_weight = aesthetic_weight
|
||||
self.aesthetic_steps = aesthetic_steps
|
||||
self.load_image_embs(image_embs_name)
|
||||
|
||||
def load_image_embs(self, image_embs_name):
|
||||
if image_embs_name is None or len(image_embs_name) == 0:
|
||||
image_embs_name = None
|
||||
if image_embs_name is not None and self.image_embs_name != image_embs_name:
|
||||
self.image_embs_name = image_embs_name
|
||||
self.image_embs = torch.load(aesthetic_embeddings[self.image_embs_name], map_location=device)
|
||||
self.image_embs /= self.image_embs.norm(dim=-1, keepdim=True)
|
||||
self.image_embs.requires_grad_(False)
|
||||
|
||||
def tokenize_line(self, line, used_custom_terms, hijack_comments):
|
||||
id_end = self.wrapped.tokenizer.eos_token_id
|
||||
|
||||
@ -333,7 +369,47 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module):
|
||||
|
||||
z1 = self.process_tokens(tokens, multipliers)
|
||||
z = z1 if z is None else torch.cat((z, z1), axis=-2)
|
||||
|
||||
|
||||
if len(text[
|
||||
0]) != 0 and self.aesthetic_steps != 0 and self.aesthetic_lr != 0 and self.aesthetic_weight != 0 and self.image_embs_name != None:
|
||||
if not opts.use_old_emphasis_implementation:
|
||||
remade_batch_tokens = [
|
||||
[self.wrapped.tokenizer.bos_token_id] + x[:75] + [self.wrapped.tokenizer.eos_token_id] for x in
|
||||
remade_batch_tokens]
|
||||
|
||||
tokens = torch.asarray(remade_batch_tokens).to(device)
|
||||
with torch.enable_grad():
|
||||
model = copy.deepcopy(self.clipModel).to(device)
|
||||
model.requires_grad_(True)
|
||||
|
||||
# We optimize the model to maximize the similarity
|
||||
optimizer = optim.Adam(
|
||||
model.text_model.parameters(), lr=self.aesthetic_lr
|
||||
)
|
||||
|
||||
for i in range(self.aesthetic_steps):
|
||||
text_embs = model.get_text_features(input_ids=tokens)
|
||||
text_embs = text_embs / text_embs.norm(dim=-1, keepdim=True)
|
||||
sim = text_embs @ self.image_embs.T
|
||||
loss = -sim
|
||||
optimizer.zero_grad()
|
||||
loss.mean().backward()
|
||||
optimizer.step()
|
||||
|
||||
zn = model.text_model(input_ids=tokens, output_hidden_states=-opts.CLIP_stop_at_last_layers)
|
||||
if opts.CLIP_stop_at_last_layers > 1:
|
||||
zn = zn.hidden_states[-opts.CLIP_stop_at_last_layers]
|
||||
zn = model.text_model.final_layer_norm(zn)
|
||||
else:
|
||||
zn = zn.last_hidden_state
|
||||
model.cpu()
|
||||
del model
|
||||
|
||||
if self.slerp:
|
||||
z = slerp(z, zn, self.aesthetic_weight)
|
||||
else:
|
||||
z = z * (1 - self.aesthetic_weight) + zn * self.aesthetic_weight
|
||||
|
||||
remade_batch_tokens = rem_tokens
|
||||
batch_multipliers = rem_multipliers
|
||||
i += 1
|
||||
|
@ -30,6 +30,8 @@ parser.add_argument("--no-half-vae", action='store_true', help="do not switch th
|
||||
parser.add_argument("--no-progressbar-hiding", action='store_true', help="do not hide progressbar in gradio UI (we hide it because it slows down ML if you have hardware acceleration in browser)")
|
||||
parser.add_argument("--max-batch-count", type=int, default=16, help="maximum batch count value for the UI")
|
||||
parser.add_argument("--embeddings-dir", type=str, default=os.path.join(script_path, 'embeddings'), help="embeddings directory for textual inversion (default: embeddings)")
|
||||
parser.add_argument("--aesthetic_embeddings-dir", type=str, default=os.path.join(script_path, 'aesthetic_embeddings'),
|
||||
help="aesthetic_embeddings directory(default: aesthetic_embeddings)")
|
||||
parser.add_argument("--hypernetwork-dir", type=str, default=os.path.join(models_path, 'hypernetworks'), help="hypernetwork directory")
|
||||
parser.add_argument("--allow-code", action='store_true', help="allow custom script execution from webui")
|
||||
parser.add_argument("--medvram", action='store_true', help="enable stable diffusion model optimizations for sacrificing a little speed for low VRM usage")
|
||||
@ -90,6 +92,9 @@ os.makedirs(cmd_opts.hypernetwork_dir, exist_ok=True)
|
||||
hypernetworks = hypernetwork.list_hypernetworks(cmd_opts.hypernetwork_dir)
|
||||
loaded_hypernetwork = None
|
||||
|
||||
aesthetic_embeddings = {f.replace(".pt",""): os.path.join(cmd_opts.aesthetic_embeddings_dir, f) for f in
|
||||
os.listdir(cmd_opts.aesthetic_embeddings_dir) if f.endswith(".pt")}
|
||||
|
||||
|
||||
def reload_hypernetworks():
|
||||
global hypernetworks
|
||||
|
@ -48,7 +48,7 @@ class PersonalizedBase(Dataset):
|
||||
print("Preparing dataset...")
|
||||
for path in tqdm.tqdm(self.image_paths):
|
||||
try:
|
||||
image = Image.open(path).convert('RGB').resize((self.width, self.height), PIL.Image.BICUBIC)
|
||||
image = Image.open(path).convert('RGB').resize((self.width, self.height), PIL.Image.Resampling.BICUBIC)
|
||||
except Exception:
|
||||
continue
|
||||
|
||||
|
@ -172,7 +172,15 @@ def create_embedding(name, num_vectors_per_token, init_text='*'):
|
||||
return fn
|
||||
|
||||
|
||||
def train_embedding(embedding_name, learn_rate, data_root, log_directory, training_width, training_height, steps, create_image_every, save_embedding_every, template_file, save_image_with_stored_embedding, preview_image_prompt):
|
||||
def batched(dataset, total, n=1):
|
||||
for ndx in range(0, total, n):
|
||||
yield [dataset.__getitem__(i) for i in range(ndx, min(ndx + n, total))]
|
||||
|
||||
|
||||
def train_embedding(embedding_name, learn_rate, data_root, log_directory, training_width, training_height, steps,
|
||||
create_image_every, save_embedding_every, template_file, save_image_with_stored_embedding,
|
||||
preview_image_prompt, batch_size=1,
|
||||
gradient_accumulation=1):
|
||||
assert embedding_name, 'embedding not selected'
|
||||
|
||||
shared.state.textinfo = "Initializing textual inversion training..."
|
||||
@ -204,7 +212,11 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini
|
||||
|
||||
shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..."
|
||||
with torch.autocast("cuda"):
|
||||
ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=embedding_name, model=shared.sd_model, device=devices.device, template_file=template_file)
|
||||
ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width,
|
||||
height=training_height,
|
||||
repeats=shared.opts.training_image_repeats_per_epoch,
|
||||
placeholder_token=embedding_name, model=shared.sd_model,
|
||||
device=devices.device, template_file=template_file)
|
||||
|
||||
hijack = sd_hijack.model_hijack
|
||||
|
||||
@ -223,7 +235,7 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini
|
||||
scheduler = LearnRateScheduler(learn_rate, steps, ititial_step)
|
||||
optimizer = torch.optim.AdamW([embedding.vec], lr=scheduler.learn_rate)
|
||||
|
||||
pbar = tqdm.tqdm(enumerate(ds), total=steps-ititial_step)
|
||||
pbar = tqdm.tqdm(enumerate(batched(ds, steps - ititial_step, batch_size)), total=steps - ititial_step)
|
||||
for i, entry in pbar:
|
||||
embedding.step = i + ititial_step
|
||||
|
||||
@ -235,17 +247,20 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini
|
||||
break
|
||||
|
||||
with torch.autocast("cuda"):
|
||||
c = cond_model([entry.cond_text])
|
||||
c = cond_model([e.cond_text for e in entry])
|
||||
|
||||
x = torch.stack([e.latent for e in entry]).to(devices.device)
|
||||
loss = shared.sd_model(x, c)[0]
|
||||
|
||||
x = entry.latent.to(devices.device)
|
||||
loss = shared.sd_model(x.unsqueeze(0), c)[0]
|
||||
del x
|
||||
|
||||
losses[embedding.step % losses.shape[0]] = loss.item()
|
||||
|
||||
optimizer.zero_grad()
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
if ((i + 1) % gradient_accumulation == 0) or (i + 1 == steps - ititial_step):
|
||||
optimizer.step()
|
||||
optimizer.zero_grad()
|
||||
|
||||
|
||||
epoch_num = embedding.step // len(ds)
|
||||
epoch_step = embedding.step - (epoch_num * len(ds)) + 1
|
||||
@ -259,7 +274,7 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini
|
||||
if embedding.step > 0 and images_dir is not None and embedding.step % create_image_every == 0:
|
||||
last_saved_image = os.path.join(images_dir, f'{embedding_name}-{embedding.step}.png')
|
||||
|
||||
preview_text = entry.cond_text if preview_image_prompt == "" else preview_image_prompt
|
||||
preview_text = entry[0].cond_text if preview_image_prompt == "" else preview_image_prompt
|
||||
|
||||
p = processing.StableDiffusionProcessingTxt2Img(
|
||||
sd_model=shared.sd_model,
|
||||
@ -305,7 +320,7 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini
|
||||
<p>
|
||||
Loss: {losses.mean():.7f}<br/>
|
||||
Step: {embedding.step}<br/>
|
||||
Last prompt: {html.escape(entry.cond_text)}<br/>
|
||||
Last prompt: {html.escape(entry[-1].cond_text)}<br/>
|
||||
Last saved embedding: {html.escape(last_saved_file)}<br/>
|
||||
Last saved image: {html.escape(last_saved_image)}<br/>
|
||||
</p>
|
||||
|
@ -6,7 +6,14 @@ import modules.processing as processing
|
||||
from modules.ui import plaintext_to_html
|
||||
|
||||
|
||||
def txt2img(prompt: str, negative_prompt: str, prompt_style: str, prompt_style2: str, steps: int, sampler_index: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, height: int, width: int, enable_hr: bool, scale_latent: bool, denoising_strength: float, *args):
|
||||
def txt2img(prompt: str, negative_prompt: str, prompt_style: str, prompt_style2: str, steps: int, sampler_index: int,
|
||||
restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, seed: int, subseed: int,
|
||||
subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool,
|
||||
height: int, width: int, enable_hr: bool, scale_latent: bool, denoising_strength: float,
|
||||
aesthetic_lr=0,
|
||||
aesthetic_weight=0, aesthetic_steps=0,
|
||||
aesthetic_imgs=None,
|
||||
aesthetic_slerp=False, *args):
|
||||
p = StableDiffusionProcessingTxt2Img(
|
||||
sd_model=shared.sd_model,
|
||||
outpath_samples=opts.outdir_samples or opts.outdir_txt2img_samples,
|
||||
@ -40,7 +47,7 @@ def txt2img(prompt: str, negative_prompt: str, prompt_style: str, prompt_style2:
|
||||
processed = modules.scripts.scripts_txt2img.run(p, *args)
|
||||
|
||||
if processed is None:
|
||||
processed = process_images(p)
|
||||
processed = process_images(p, aesthetic_lr, aesthetic_weight, aesthetic_steps, aesthetic_imgs, aesthetic_slerp)
|
||||
|
||||
shared.total_tqdm.clear()
|
||||
|
||||
|
@ -24,7 +24,8 @@ import gradio.routes
|
||||
|
||||
from modules import sd_hijack
|
||||
from modules.paths import script_path
|
||||
from modules.shared import opts, cmd_opts
|
||||
from modules.shared import opts, cmd_opts,aesthetic_embeddings
|
||||
|
||||
if cmd_opts.deepdanbooru:
|
||||
from modules.deepbooru import get_deepbooru_tags
|
||||
import modules.shared as shared
|
||||
@ -534,6 +535,14 @@ def create_ui(wrap_gradio_gpu_call):
|
||||
width = gr.Slider(minimum=64, maximum=2048, step=64, label="Width", value=512)
|
||||
height = gr.Slider(minimum=64, maximum=2048, step=64, label="Height", value=512)
|
||||
|
||||
with gr.Group():
|
||||
aesthetic_lr = gr.Textbox(label='Learning rate', placeholder="Learning rate", value="0.005")
|
||||
aesthetic_weight = gr.Slider(minimum=0, maximum=1, step=0.01, label="Aesthetic weight", value=0.7)
|
||||
aesthetic_steps = gr.Slider(minimum=0, maximum=50, step=1, label="Aesthetic steps", value=50)
|
||||
|
||||
aesthetic_imgs = gr.Dropdown(sorted(aesthetic_embeddings.keys()), label="Imgs embedding", value=sorted(aesthetic_embeddings.keys())[0] if len(aesthetic_embeddings) > 0 else None)
|
||||
aesthetic_slerp = gr.Checkbox(label="Slerp interpolation", value=False)
|
||||
|
||||
with gr.Row():
|
||||
restore_faces = gr.Checkbox(label='Restore faces', value=False, visible=len(shared.face_restorers) > 1)
|
||||
tiling = gr.Checkbox(label='Tiling', value=False)
|
||||
@ -586,25 +595,30 @@ def create_ui(wrap_gradio_gpu_call):
|
||||
fn=wrap_gradio_gpu_call(modules.txt2img.txt2img),
|
||||
_js="submit",
|
||||
inputs=[
|
||||
txt2img_prompt,
|
||||
txt2img_negative_prompt,
|
||||
txt2img_prompt_style,
|
||||
txt2img_prompt_style2,
|
||||
steps,
|
||||
sampler_index,
|
||||
restore_faces,
|
||||
tiling,
|
||||
batch_count,
|
||||
batch_size,
|
||||
cfg_scale,
|
||||
seed,
|
||||
subseed, subseed_strength, seed_resize_from_h, seed_resize_from_w, seed_checkbox,
|
||||
height,
|
||||
width,
|
||||
enable_hr,
|
||||
scale_latent,
|
||||
denoising_strength,
|
||||
] + custom_inputs,
|
||||
txt2img_prompt,
|
||||
txt2img_negative_prompt,
|
||||
txt2img_prompt_style,
|
||||
txt2img_prompt_style2,
|
||||
steps,
|
||||
sampler_index,
|
||||
restore_faces,
|
||||
tiling,
|
||||
batch_count,
|
||||
batch_size,
|
||||
cfg_scale,
|
||||
seed,
|
||||
subseed, subseed_strength, seed_resize_from_h, seed_resize_from_w, seed_checkbox,
|
||||
height,
|
||||
width,
|
||||
enable_hr,
|
||||
scale_latent,
|
||||
denoising_strength,
|
||||
aesthetic_lr,
|
||||
aesthetic_weight,
|
||||
aesthetic_steps,
|
||||
aesthetic_imgs,
|
||||
aesthetic_slerp
|
||||
] + custom_inputs,
|
||||
outputs=[
|
||||
txt2img_gallery,
|
||||
generation_info,
|
||||
@ -1097,6 +1111,9 @@ def create_ui(wrap_gradio_gpu_call):
|
||||
template_file = gr.Textbox(label='Prompt template file', value=os.path.join(script_path, "textual_inversion_templates", "style_filewords.txt"))
|
||||
training_width = gr.Slider(minimum=64, maximum=2048, step=64, label="Width", value=512)
|
||||
training_height = gr.Slider(minimum=64, maximum=2048, step=64, label="Height", value=512)
|
||||
batch_size = gr.Slider(minimum=1, maximum=64, step=1, label="Batch Size", value=4)
|
||||
gradient_accumulation = gr.Slider(minimum=1, maximum=256, step=1, label="Gradient accumulation",
|
||||
value=1)
|
||||
steps = gr.Number(label='Max steps', value=100000, precision=0)
|
||||
create_image_every = gr.Number(label='Save an image to log directory every N steps, 0 to disable', value=500, precision=0)
|
||||
save_embedding_every = gr.Number(label='Save a copy of embedding to log directory every N steps, 0 to disable', value=500, precision=0)
|
||||
@ -1180,6 +1197,8 @@ def create_ui(wrap_gradio_gpu_call):
|
||||
template_file,
|
||||
save_image_with_stored_embedding,
|
||||
preview_image_prompt,
|
||||
batch_size,
|
||||
gradient_accumulation
|
||||
],
|
||||
outputs=[
|
||||
ti_output,
|
||||
|
Loading…
Reference in New Issue
Block a user