From 3ba6c3c83c0983a025c7bddc08bb7f49481b3cbb Mon Sep 17 00:00:00 2001 From: Aarni Koskela Date: Tue, 9 May 2023 22:17:58 +0300 Subject: [PATCH] Fix up string formatting/concatenation to f-strings where feasible --- modules/api/api.py | 22 ++++----- modules/call_queue.py | 5 +- modules/esrgan_model.py | 11 +++-- modules/esrgan_model_arch.py | 16 +++---- modules/extra_networks_hypernet.py | 3 +- modules/generation_parameters_copypaste.py | 4 +- modules/hashes.py | 4 +- modules/images.py | 8 ++-- modules/interrogate.py | 4 +- modules/models/diffusion/ddpm_edit.py | 4 +- modules/models/diffusion/uni_pc/uni_pc.py | 4 +- modules/ngrok.py | 4 +- modules/paths.py | 2 +- modules/processing.py | 13 +++++- modules/progress.py | 3 +- modules/realesrgan_model.py | 8 ++-- modules/scripts.py | 5 +- modules/sd_hijack_clip_old.py | 3 +- modules/sd_hijack_unet.py | 2 +- modules/sd_models.py | 4 +- modules/sd_models_config.py | 2 +- modules/sd_samplers_kdiffusion.py | 2 +- modules/sd_vae.py | 2 +- modules/styles.py | 2 +- modules/textual_inversion/autocrop.py | 6 +-- modules/textual_inversion/dataset.py | 2 +- modules/textual_inversion/preprocess.py | 6 +-- .../textual_inversion/textual_inversion.py | 12 ++--- modules/ui.py | 46 +++++++++---------- modules/ui_extensions.py | 3 +- modules/ui_extra_networks.py | 4 +- scripts/custom_code.py | 2 +- scripts/loopback.py | 2 +- scripts/xyz_grid.py | 2 +- 34 files changed, 121 insertions(+), 101 deletions(-) diff --git a/modules/api/api.py b/modules/api/api.py index cdbdce32..9bb95dfd 100644 --- a/modules/api/api.py +++ b/modules/api/api.py @@ -570,20 +570,20 @@ class Api: filename = create_embedding(**args) # create empty embedding sd_hijack.model_hijack.embedding_db.load_textual_inversion_embeddings() # reload embeddings so new one can be immediately used shared.state.end() - return CreateResponse(info = "create embedding filename: {filename}".format(filename = filename)) + return CreateResponse(info=f"create embedding filename: {filename}") except AssertionError as e: shared.state.end() - return TrainResponse(info = "create embedding error: {error}".format(error = e)) + return TrainResponse(info=f"create embedding error: {e}") def create_hypernetwork(self, args: dict): try: shared.state.begin() filename = create_hypernetwork(**args) # create empty embedding shared.state.end() - return CreateResponse(info = "create hypernetwork filename: {filename}".format(filename = filename)) + return CreateResponse(info=f"create hypernetwork filename: {filename}") except AssertionError as e: shared.state.end() - return TrainResponse(info = "create hypernetwork error: {error}".format(error = e)) + return TrainResponse(info=f"create hypernetwork error: {e}") def preprocess(self, args: dict): try: @@ -593,13 +593,13 @@ class Api: return PreprocessResponse(info = 'preprocess complete') except KeyError as e: shared.state.end() - return PreprocessResponse(info = "preprocess error: invalid token: {error}".format(error = e)) + return PreprocessResponse(info=f"preprocess error: invalid token: {e}") except AssertionError as e: shared.state.end() - return PreprocessResponse(info = "preprocess error: {error}".format(error = e)) + return PreprocessResponse(info=f"preprocess error: {e}") except FileNotFoundError as e: shared.state.end() - return PreprocessResponse(info = 'preprocess error: {error}'.format(error = e)) + return PreprocessResponse(info=f'preprocess error: {e}') def train_embedding(self, args: dict): try: @@ -617,10 +617,10 @@ class Api: if not apply_optimizations: sd_hijack.apply_optimizations() shared.state.end() - return TrainResponse(info = "train embedding complete: filename: {filename} error: {error}".format(filename = filename, error = error)) + return TrainResponse(info=f"train embedding complete: filename: {filename} error: {error}") except AssertionError as msg: shared.state.end() - return TrainResponse(info = "train embedding error: {msg}".format(msg = msg)) + return TrainResponse(info=f"train embedding error: {msg}") def train_hypernetwork(self, args: dict): try: @@ -641,10 +641,10 @@ class Api: if not apply_optimizations: sd_hijack.apply_optimizations() shared.state.end() - return TrainResponse(info="train embedding complete: filename: {filename} error: {error}".format(filename=filename, error=error)) + return TrainResponse(info=f"train embedding complete: filename: {filename} error: {error}") except AssertionError as msg: shared.state.end() - return TrainResponse(info="train embedding error: {error}".format(error=error)) + return TrainResponse(info=f"train embedding error: {error}") def get_memory(self): try: diff --git a/modules/call_queue.py b/modules/call_queue.py index 1829f3a6..447bb764 100644 --- a/modules/call_queue.py +++ b/modules/call_queue.py @@ -60,7 +60,7 @@ def wrap_gradio_call(func, extra_outputs=None, add_stats=False): max_debug_str_len = 131072 # (1024*1024)/8 print("Error completing request", file=sys.stderr) - argStr = f"Arguments: {str(args)} {str(kwargs)}" + argStr = f"Arguments: {args} {kwargs}" print(argStr[:max_debug_str_len], file=sys.stderr) if len(argStr) > max_debug_str_len: print(f"(Argument list truncated at {max_debug_str_len}/{len(argStr)} characters)", file=sys.stderr) @@ -73,7 +73,8 @@ def wrap_gradio_call(func, extra_outputs=None, add_stats=False): if extra_outputs_array is None: extra_outputs_array = [None, ''] - res = extra_outputs_array + [f"
{html.escape(type(e).__name__+': '+str(e))}
"] + error_message = f'{type(e).__name__}: {e}' + res = extra_outputs_array + [f"
{html.escape(error_message)}
"] shared.state.skipped = False shared.state.interrupted = False diff --git a/modules/esrgan_model.py b/modules/esrgan_model.py index 9a9c38f1..f4369257 100644 --- a/modules/esrgan_model.py +++ b/modules/esrgan_model.py @@ -156,13 +156,16 @@ class UpscalerESRGAN(Upscaler): def load_model(self, path: str): if "http" in path: - filename = load_file_from_url(url=self.model_url, model_dir=self.model_path, - file_name="%s.pth" % self.model_name, - progress=True) + filename = load_file_from_url( + url=self.model_url, + model_dir=self.model_path, + file_name=f"{self.model_name}.pth", + progress=True, + ) else: filename = path if not os.path.exists(filename) or filename is None: - print("Unable to load %s from %s" % (self.model_path, filename)) + print(f"Unable to load {self.model_path} from {filename}") return None state_dict = torch.load(filename, map_location='cpu' if devices.device_esrgan.type == 'mps' else None) diff --git a/modules/esrgan_model_arch.py b/modules/esrgan_model_arch.py index 1b52b0f5..6071fea7 100644 --- a/modules/esrgan_model_arch.py +++ b/modules/esrgan_model_arch.py @@ -38,7 +38,7 @@ class RRDBNet(nn.Module): elif upsample_mode == 'pixelshuffle': upsample_block = pixelshuffle_block else: - raise NotImplementedError('upsample mode [{:s}] is not found'.format(upsample_mode)) + raise NotImplementedError(f'upsample mode [{upsample_mode}] is not found') if upscale == 3: upsampler = upsample_block(nf, nf, 3, act_type=act_type, convtype=convtype) else: @@ -261,10 +261,10 @@ class Upsample(nn.Module): def extra_repr(self): if self.scale_factor is not None: - info = 'scale_factor=' + str(self.scale_factor) + info = f'scale_factor={self.scale_factor}' else: - info = 'size=' + str(self.size) - info += ', mode=' + self.mode + info = f'size={self.size}' + info += f', mode={self.mode}' return info @@ -350,7 +350,7 @@ def act(act_type, inplace=True, neg_slope=0.2, n_prelu=1, beta=1.0): elif act_type == 'sigmoid': # [0, 1] range output layer = nn.Sigmoid() else: - raise NotImplementedError('activation layer [{:s}] is not found'.format(act_type)) + raise NotImplementedError(f'activation layer [{act_type}] is not found') return layer @@ -372,7 +372,7 @@ def norm(norm_type, nc): elif norm_type == 'none': def norm_layer(x): return Identity() else: - raise NotImplementedError('normalization layer [{:s}] is not found'.format(norm_type)) + raise NotImplementedError(f'normalization layer [{norm_type}] is not found') return layer @@ -388,7 +388,7 @@ def pad(pad_type, padding): elif pad_type == 'zero': layer = nn.ZeroPad2d(padding) else: - raise NotImplementedError('padding layer [{:s}] is not implemented'.format(pad_type)) + raise NotImplementedError(f'padding layer [{pad_type}] is not implemented') return layer @@ -432,7 +432,7 @@ def conv_block(in_nc, out_nc, kernel_size, stride=1, dilation=1, groups=1, bias= pad_type='zero', norm_type=None, act_type='relu', mode='CNA', convtype='Conv2D', spectral_norm=False): """ Conv layer with padding, normalization, activation """ - assert mode in ['CNA', 'NAC', 'CNAC'], 'Wrong conv mode [{:s}]'.format(mode) + assert mode in ['CNA', 'NAC', 'CNAC'], f'Wrong conv mode [{mode}]' padding = get_valid_padding(kernel_size, dilation) p = pad(pad_type, padding) if pad_type and pad_type != 'zero' else None padding = padding if pad_type == 'zero' else 0 diff --git a/modules/extra_networks_hypernet.py b/modules/extra_networks_hypernet.py index 33d100dd..04f27c9f 100644 --- a/modules/extra_networks_hypernet.py +++ b/modules/extra_networks_hypernet.py @@ -10,7 +10,8 @@ class ExtraNetworkHypernet(extra_networks.ExtraNetwork): additional = shared.opts.sd_hypernetwork if additional != "None" and additional in shared.hypernetworks and len([x for x in params_list if x.items[0] == additional]) == 0: - p.all_prompts = [x + f"" for x in p.all_prompts] + hypernet_prompt_text = f"" + p.all_prompts = [f"{prompt}{hypernet_prompt_text}" for prompt in p.all_prompts] params_list.append(extra_networks.ExtraNetworkParams(items=[additional, shared.opts.extra_networks_default_multiplier])) names = [] diff --git a/modules/generation_parameters_copypaste.py b/modules/generation_parameters_copypaste.py index 78248ed2..fe8b18b2 100644 --- a/modules/generation_parameters_copypaste.py +++ b/modules/generation_parameters_copypaste.py @@ -269,8 +269,8 @@ Steps: 20, Sampler: Euler a, CFG scale: 7, Seed: 965400086, Size: 512x512, Model v = v[1:-1] if v[0] == '"' and v[-1] == '"' else v m = re_imagesize.match(v) if m is not None: - res[k+"-1"] = m.group(1) - res[k+"-2"] = m.group(2) + res[f"{k}-1"] = m.group(1) + res[f"{k}-2"] = m.group(2) else: res[k] = v diff --git a/modules/hashes.py b/modules/hashes.py index 83272a07..032120f4 100644 --- a/modules/hashes.py +++ b/modules/hashes.py @@ -13,7 +13,7 @@ cache_data = None def dump_cache(): - with filelock.FileLock(cache_filename+".lock"): + with filelock.FileLock(f"{cache_filename}.lock"): with open(cache_filename, "w", encoding="utf8") as file: json.dump(cache_data, file, indent=4) @@ -22,7 +22,7 @@ def cache(subsection): global cache_data if cache_data is None: - with filelock.FileLock(cache_filename+".lock"): + with filelock.FileLock(f"{cache_filename}.lock"): if not os.path.isfile(cache_filename): cache_data = {} else: diff --git a/modules/images.py b/modules/images.py index 6ceb7c7c..a41965ab 100644 --- a/modules/images.py +++ b/modules/images.py @@ -467,7 +467,7 @@ def get_next_sequence_number(path, basename): """ result = -1 if basename != '': - basename = basename + "-" + basename = f"{basename}-" prefix_length = len(basename) for p in os.listdir(path): @@ -536,7 +536,7 @@ def save_image(image, path, basename, seed=None, prompt=None, extension='png', i add_number = opts.save_images_add_number or file_decoration == '' if file_decoration != "" and add_number: - file_decoration = "-" + file_decoration + file_decoration = f"-{file_decoration}" file_decoration = namegen.apply(file_decoration) + suffix @@ -566,7 +566,7 @@ def save_image(image, path, basename, seed=None, prompt=None, extension='png', i def _atomically_save_image(image_to_save, filename_without_extension, extension): # save image with .tmp extension to avoid race condition when another process detects new image in the directory - temp_file_path = filename_without_extension + ".tmp" + temp_file_path = f"{filename_without_extension}.tmp" image_format = Image.registered_extensions()[extension] if extension.lower() == '.png': @@ -626,7 +626,7 @@ def save_image(image, path, basename, seed=None, prompt=None, extension='png', i if opts.save_txt and info is not None: txt_fullfn = f"{fullfn_without_extension}.txt" with open(txt_fullfn, "w", encoding="utf8") as file: - file.write(info + "\n") + file.write(f"{info}\n") else: txt_fullfn = None diff --git a/modules/interrogate.py b/modules/interrogate.py index e1665708..9f7d657f 100644 --- a/modules/interrogate.py +++ b/modules/interrogate.py @@ -28,7 +28,7 @@ def category_types(): def download_default_clip_interrogate_categories(content_dir): print("Downloading CLIP categories...") - tmpdir = content_dir + "_tmp" + tmpdir = f"{content_dir}_tmp" category_types = ["artists", "flavors", "mediums", "movements"] try: @@ -214,7 +214,7 @@ class InterrogateModels: if shared.opts.interrogate_return_ranks: res += f", ({match}:{score/100:.3f})" else: - res += ", " + match + res += f", {match}" except Exception: print("Error interrogating", file=sys.stderr) diff --git a/modules/models/diffusion/ddpm_edit.py b/modules/models/diffusion/ddpm_edit.py index f3d49c44..f880bc3c 100644 --- a/modules/models/diffusion/ddpm_edit.py +++ b/modules/models/diffusion/ddpm_edit.py @@ -223,7 +223,7 @@ class DDPM(pl.LightningModule): for k in keys: for ik in ignore_keys: if k.startswith(ik): - print("Deleting key {} from state_dict.".format(k)) + print(f"Deleting key {k} from state_dict.") del sd[k] missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict( sd, strict=False) @@ -386,7 +386,7 @@ class DDPM(pl.LightningModule): _, loss_dict_no_ema = self.shared_step(batch) with self.ema_scope(): _, loss_dict_ema = self.shared_step(batch) - loss_dict_ema = {key + '_ema': loss_dict_ema[key] for key in loss_dict_ema} + loss_dict_ema = {f"{key}_ema": loss_dict_ema[key] for key in loss_dict_ema} self.log_dict(loss_dict_no_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True) self.log_dict(loss_dict_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True) diff --git a/modules/models/diffusion/uni_pc/uni_pc.py b/modules/models/diffusion/uni_pc/uni_pc.py index eb5f4e76..11b330bc 100644 --- a/modules/models/diffusion/uni_pc/uni_pc.py +++ b/modules/models/diffusion/uni_pc/uni_pc.py @@ -94,7 +94,7 @@ class NoiseScheduleVP: """ if schedule not in ['discrete', 'linear', 'cosine']: - raise ValueError("Unsupported noise schedule {}. The schedule needs to be 'discrete' or 'linear' or 'cosine'".format(schedule)) + raise ValueError(f"Unsupported noise schedule {schedule}. The schedule needs to be 'discrete' or 'linear' or 'cosine'") self.schedule = schedule if schedule == 'discrete': @@ -469,7 +469,7 @@ class UniPC: t = torch.linspace(t_T**(1. / t_order), t_0**(1. / t_order), N + 1).pow(t_order).to(device) return t else: - raise ValueError("Unsupported skip_type {}, need to be 'logSNR' or 'time_uniform' or 'time_quadratic'".format(skip_type)) + raise ValueError(f"Unsupported skip_type {skip_type}, need to be 'logSNR' or 'time_uniform' or 'time_quadratic'") def get_orders_and_timesteps_for_singlestep_solver(self, steps, order, skip_type, t_T, t_0, device): """ diff --git a/modules/ngrok.py b/modules/ngrok.py index 1ad7989b..7a7b4b26 100644 --- a/modules/ngrok.py +++ b/modules/ngrok.py @@ -7,8 +7,8 @@ def connect(token, port, region): else: if ':' in token: # token = authtoken:username:password - account = token.split(':')[1] + ':' + token.split(':')[-1] - token = token.split(':')[0] + token, username, password = token.split(':', 2) + account = f"{username}:{password}" config = conf.PyngrokConfig( auth_token=token, region=region diff --git a/modules/paths.py b/modules/paths.py index 0e1e00e7..acf1894b 100644 --- a/modules/paths.py +++ b/modules/paths.py @@ -16,7 +16,7 @@ for possible_sd_path in possible_sd_paths: sd_path = os.path.abspath(possible_sd_path) break -assert sd_path is not None, "Couldn't find Stable Diffusion in any of: " + str(possible_sd_paths) +assert sd_path is not None, f"Couldn't find Stable Diffusion in any of: {possible_sd_paths}" path_dirs = [ (sd_path, 'ldm', 'Stable Diffusion', []), diff --git a/modules/processing.py b/modules/processing.py index e786791a..1a76e552 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -500,7 +500,7 @@ def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments=None, iter generation_params_text = ", ".join([k if k == v else f'{k}: {generation_parameters_copypaste.quote(v)}' for k, v in generation_params.items() if v is not None]) - negative_prompt_text = "\nNegative prompt: " + p.all_negative_prompts[index] if p.all_negative_prompts[index] else "" + negative_prompt_text = f"\nNegative prompt: {p.all_negative_prompts[index]}" if p.all_negative_prompts[index] else "" return f"{all_prompts[index]}{negative_prompt_text}\n{generation_params_text}".strip() @@ -780,7 +780,16 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed: devices.torch_gc() - res = Processed(p, output_images, p.all_seeds[0], infotext(), comments="".join(["\n\n" + x for x in comments]), subseed=p.all_subseeds[0], index_of_first_image=index_of_first_image, infotexts=infotexts) + res = Processed( + p, + images_list=output_images, + seed=p.all_seeds[0], + info=infotext(), + comments="".join(f"\n\n{comment}" for comment in comments), + subseed=p.all_subseeds[0], + index_of_first_image=index_of_first_image, + infotexts=infotexts, + ) if p.scripts is not None: p.scripts.postprocess(p, res) diff --git a/modules/progress.py b/modules/progress.py index 5655346b..948e6f00 100644 --- a/modules/progress.py +++ b/modules/progress.py @@ -96,7 +96,8 @@ def progressapi(req: ProgressRequest): if image is not None: buffered = io.BytesIO() image.save(buffered, format="png") - live_preview = 'data:image/png;base64,' + base64.b64encode(buffered.getvalue()).decode("ascii") + base64_image = base64.b64encode(buffered.getvalue()).decode('ascii') + live_preview = f"data:image/png;base64,{base64_image}" id_live_preview = shared.state.id_live_preview else: live_preview = None diff --git a/modules/realesrgan_model.py b/modules/realesrgan_model.py index d6079433..efd7fca5 100644 --- a/modules/realesrgan_model.py +++ b/modules/realesrgan_model.py @@ -28,9 +28,9 @@ class UpscalerRealESRGAN(Upscaler): for scaler in scalers: if scaler.local_data_path.startswith("http"): filename = modelloader.friendly_name(scaler.local_data_path) - local = next(iter([local_model for local_model in local_model_paths if local_model.endswith(filename + '.pth')]), None) - if local: - scaler.local_data_path = local + local_model_candidates = [local_model for local_model in local_model_paths if local_model.endswith(f"{filename}.pth")] + if local_model_candidates: + scaler.local_data_path = local_model_candidates[0] if scaler.name in opts.realesrgan_enabled_models: self.scalers.append(scaler) @@ -47,7 +47,7 @@ class UpscalerRealESRGAN(Upscaler): info = self.load_model(path) if not os.path.exists(info.local_data_path): - print("Unable to load RealESRGAN model: %s" % info.name) + print(f"Unable to load RealESRGAN model: {info.name}") return img upsampler = RealESRGANer( diff --git a/modules/scripts.py b/modules/scripts.py index 4d0bbd66..d945b89f 100644 --- a/modules/scripts.py +++ b/modules/scripts.py @@ -163,7 +163,8 @@ class Script: """helper function to generate id for a HTML element, constructs final id out of script name, tab and user-supplied item_id""" need_tabname = self.show(True) == self.show(False) - tabname = ('img2img' if self.is_img2img else 'txt2txt') + "_" if need_tabname else "" + tabkind = 'img2img' if self.is_img2img else 'txt2txt' + tabname = f"{tabkind}_" if need_tabname else "" title = re.sub(r'[^a-z_0-9]', '', re.sub(r'\s', '_', self.title().lower())) return f'script_{tabname}{title}_{item_id}' @@ -526,7 +527,7 @@ def add_classes_to_gradio_component(comp): this adds gradio-* to the component for css styling (ie gradio-button to gr.Button), as well as some others """ - comp.elem_classes = ["gradio-" + comp.get_block_name(), *(comp.elem_classes or [])] + comp.elem_classes = [f"gradio-{comp.get_block_name()}", *(comp.elem_classes or [])] if getattr(comp, 'multiselect', False): comp.elem_classes.append('multiselect') diff --git a/modules/sd_hijack_clip_old.py b/modules/sd_hijack_clip_old.py index 6d9fbbe6..a3476e95 100644 --- a/modules/sd_hijack_clip_old.py +++ b/modules/sd_hijack_clip_old.py @@ -75,7 +75,8 @@ def forward_old(self: sd_hijack_clip.FrozenCLIPEmbedderWithCustomWordsBase, text self.hijack.comments += hijack_comments if len(used_custom_terms) > 0: - self.hijack.comments.append("Used embeddings: " + ", ".join([f'{word} [{checksum}]' for word, checksum in used_custom_terms])) + embedding_names = ", ".join(f"{word} [{checksum}]" for word, checksum in used_custom_terms) + self.hijack.comments.append(f"Used embeddings: {embedding_names}") self.hijack.fixes = hijack_fixes return self.process_tokens(remade_batch_tokens, batch_multipliers) diff --git a/modules/sd_hijack_unet.py b/modules/sd_hijack_unet.py index 15858263..ca1daf45 100644 --- a/modules/sd_hijack_unet.py +++ b/modules/sd_hijack_unet.py @@ -18,7 +18,7 @@ class TorchHijackForUnet: if hasattr(torch, item): return getattr(torch, item) - raise AttributeError("'{}' object has no attribute '{}'".format(type(self).__name__, item)) + raise AttributeError(f"'{type(self).__name__}' object has no attribute '{item}'") def cat(self, tensors, *args, **kwargs): if len(tensors) == 2: diff --git a/modules/sd_models.py b/modules/sd_models.py index 59adc7cc..36f643e1 100644 --- a/modules/sd_models.py +++ b/modules/sd_models.py @@ -47,7 +47,7 @@ class CheckpointInfo: self.model_name = os.path.splitext(name.replace("/", "_").replace("\\", "_"))[0] self.hash = model_hash(filename) - self.sha256 = hashes.sha256_from_cache(self.filename, "checkpoint/" + name) + self.sha256 = hashes.sha256_from_cache(self.filename, f"checkpoint/{name}") self.shorthash = self.sha256[0:10] if self.sha256 else None self.title = name if self.shorthash is None else f'{name} [{self.shorthash}]' @@ -69,7 +69,7 @@ class CheckpointInfo: checkpoint_alisases[id] = self def calculate_shorthash(self): - self.sha256 = hashes.sha256(self.filename, "checkpoint/" + self.name) + self.sha256 = hashes.sha256(self.filename, f"checkpoint/{self.name}") if self.sha256 is None: return diff --git a/modules/sd_models_config.py b/modules/sd_models_config.py index 9398f528..7a79925a 100644 --- a/modules/sd_models_config.py +++ b/modules/sd_models_config.py @@ -111,7 +111,7 @@ def find_checkpoint_config_near_filename(info): if info is None: return None - config = os.path.splitext(info.filename)[0] + ".yaml" + config = f"{os.path.splitext(info.filename)[0]}.yaml" if os.path.exists(config): return config diff --git a/modules/sd_samplers_kdiffusion.py b/modules/sd_samplers_kdiffusion.py index eb98e599..0fc9f456 100644 --- a/modules/sd_samplers_kdiffusion.py +++ b/modules/sd_samplers_kdiffusion.py @@ -198,7 +198,7 @@ class TorchHijack: if hasattr(torch, item): return getattr(torch, item) - raise AttributeError("'{}' object has no attribute '{}'".format(type(self).__name__, item)) + raise AttributeError(f"'{type(self).__name__}' object has no attribute '{item}'") def randn_like(self, x): if self.sampler_noises: diff --git a/modules/sd_vae.py b/modules/sd_vae.py index 9b00f76e..521e485a 100644 --- a/modules/sd_vae.py +++ b/modules/sd_vae.py @@ -89,7 +89,7 @@ def refresh_vae_list(): def find_vae_near_checkpoint(checkpoint_file): checkpoint_path = os.path.splitext(checkpoint_file)[0] - for vae_location in [checkpoint_path + ".vae.pt", checkpoint_path + ".vae.ckpt", checkpoint_path + ".vae.safetensors"]: + for vae_location in [f"{checkpoint_path}.vae.pt", f"{checkpoint_path}.vae.ckpt", f"{checkpoint_path}.vae.safetensors"]: if os.path.isfile(vae_location): return vae_location diff --git a/modules/styles.py b/modules/styles.py index 9ed85991..11642075 100644 --- a/modules/styles.py +++ b/modules/styles.py @@ -74,7 +74,7 @@ class StyleDatabase: def save_styles(self, path: str) -> None: # Always keep a backup file around if os.path.exists(path): - shutil.copy(path, path + ".bak") + shutil.copy(path, f"{path}.bak") fd = os.open(path, os.O_RDWR|os.O_CREAT) with os.fdopen(fd, "w", encoding="utf-8-sig", newline='') as file: diff --git a/modules/textual_inversion/autocrop.py b/modules/textual_inversion/autocrop.py index 68e1103c..ba1bdcd4 100644 --- a/modules/textual_inversion/autocrop.py +++ b/modules/textual_inversion/autocrop.py @@ -111,7 +111,7 @@ def focal_point(im, settings): if corner_centroid is not None: color = BLUE box = corner_centroid.bounding(max_size * corner_centroid.weight) - d.text((box[0], box[1]-15), "Edge: %.02f" % corner_centroid.weight, fill=color) + d.text((box[0], box[1]-15), f"Edge: {corner_centroid.weight:.02f}", fill=color) d.ellipse(box, outline=color) if len(corner_points) > 1: for f in corner_points: @@ -119,7 +119,7 @@ def focal_point(im, settings): if entropy_centroid is not None: color = "#ff0" box = entropy_centroid.bounding(max_size * entropy_centroid.weight) - d.text((box[0], box[1]-15), "Entropy: %.02f" % entropy_centroid.weight, fill=color) + d.text((box[0], box[1]-15), f"Entropy: {entropy_centroid.weight:.02f}", fill=color) d.ellipse(box, outline=color) if len(entropy_points) > 1: for f in entropy_points: @@ -127,7 +127,7 @@ def focal_point(im, settings): if face_centroid is not None: color = RED box = face_centroid.bounding(max_size * face_centroid.weight) - d.text((box[0], box[1]-15), "Face: %.02f" % face_centroid.weight, fill=color) + d.text((box[0], box[1]-15), f"Face: {face_centroid.weight:.02f}", fill=color) d.ellipse(box, outline=color) if len(face_points) > 1: for f in face_points: diff --git a/modules/textual_inversion/dataset.py b/modules/textual_inversion/dataset.py index af9fbcf2..41610e03 100644 --- a/modules/textual_inversion/dataset.py +++ b/modules/textual_inversion/dataset.py @@ -72,7 +72,7 @@ class PersonalizedBase(Dataset): except Exception: continue - text_filename = os.path.splitext(path)[0] + ".txt" + text_filename = f"{os.path.splitext(path)[0]}.txt" filename = os.path.basename(path) if os.path.exists(text_filename): diff --git a/modules/textual_inversion/preprocess.py b/modules/textual_inversion/preprocess.py index 4a29151d..da0bcb26 100644 --- a/modules/textual_inversion/preprocess.py +++ b/modules/textual_inversion/preprocess.py @@ -63,9 +63,9 @@ def save_pic_with_caption(image, index, params: PreprocessParams, existing_capti image.save(os.path.join(params.dstdir, f"{basename}.png")) if params.preprocess_txt_action == 'prepend' and existing_caption: - caption = existing_caption + ' ' + caption + caption = f"{existing_caption} {caption}" elif params.preprocess_txt_action == 'append' and existing_caption: - caption = caption + ' ' + existing_caption + caption = f"{caption} {existing_caption}" elif params.preprocess_txt_action == 'copy' and existing_caption: caption = existing_caption @@ -174,7 +174,7 @@ def preprocess_work(process_src, process_dst, process_width, process_height, pre params.src = filename existing_caption = None - existing_caption_filename = os.path.splitext(filename)[0] + '.txt' + existing_caption_filename = f"{os.path.splitext(filename)[0]}.txt" if os.path.exists(existing_caption_filename): with open(existing_caption_filename, 'r', encoding="utf8") as file: existing_caption = file.read() diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py index 379df243..4368eb63 100644 --- a/modules/textual_inversion/textual_inversion.py +++ b/modules/textual_inversion/textual_inversion.py @@ -69,7 +69,7 @@ class Embedding: 'hash': self.checksum(), 'optimizer_state_dict': self.optimizer_state_dict, } - torch.save(optimizer_saved_dict, filename + '.optim') + torch.save(optimizer_saved_dict, f"{filename}.optim") def checksum(self): if self.cached_checksum is not None: @@ -437,8 +437,8 @@ def train_embedding(id_task, embedding_name, learn_rate, batch_size, gradient_st optimizer = torch.optim.AdamW([embedding.vec], lr=scheduler.learn_rate, weight_decay=0.0) if shared.opts.save_optimizer_state: optimizer_state_dict = None - if os.path.exists(filename + '.optim'): - optimizer_saved_dict = torch.load(filename + '.optim', map_location='cpu') + if os.path.exists(f"{filename}.optim"): + optimizer_saved_dict = torch.load(f"{filename}.optim", map_location='cpu') if embedding.checksum() == optimizer_saved_dict.get('hash', None): optimizer_state_dict = optimizer_saved_dict.get('optimizer_state_dict', None) @@ -599,7 +599,7 @@ def train_embedding(id_task, embedding_name, learn_rate, batch_size, gradient_st data = torch.load(last_saved_file) info.add_text("sd-ti-embedding", embedding_to_b64(data)) - title = "<{}>".format(data.get('name', '???')) + title = f"<{data.get('name', '???')}>" try: vectorSize = list(data['string_to_param'].values())[0].shape[0] @@ -608,8 +608,8 @@ def train_embedding(id_task, embedding_name, learn_rate, batch_size, gradient_st checkpoint = sd_models.select_checkpoint() footer_left = checkpoint.model_name - footer_mid = '[{}]'.format(checkpoint.shorthash) - footer_right = '{}v {}s'.format(vectorSize, steps_done) + footer_mid = f'[{checkpoint.shorthash}]' + footer_right = f'{vectorSize}v {steps_done}s' captioned_image = caption_image_overlay(image, title, footer_left, footer_mid, footer_right) captioned_image = insert_image_data_embed(captioned_image, data) diff --git a/modules/ui.py b/modules/ui.py index 34b2aaff..d02f6e82 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -101,7 +101,7 @@ def visit(x, func, path=""): for c in x.children: visit(c, func, path) elif x.label is not None: - func(path + "/" + str(x.label), x) + func(f"{path}/{x.label}", x) def add_style(name: str, prompt: str, negative_prompt: str): @@ -166,7 +166,7 @@ def process_interrogate(interrogation_function, mode, ii_input_dir, ii_output_di img = Image.open(image) filename = os.path.basename(image) left, _ = os.path.splitext(filename) - print(interrogation_function(img), file=open(os.path.join(ii_output_dir, left + ".txt"), 'a')) + print(interrogation_function(img), file=open(os.path.join(ii_output_dir, f"{left}.txt"), 'a')) return [gr.update(), None] @@ -182,29 +182,29 @@ def interrogate_deepbooru(image): def create_seed_inputs(target_interface): - with FormRow(elem_id=target_interface + '_seed_row', variant="compact"): - seed = (gr.Textbox if cmd_opts.use_textbox_seed else gr.Number)(label='Seed', value=-1, elem_id=target_interface + '_seed') + with FormRow(elem_id=f"{target_interface}_seed_row", variant="compact"): + seed = (gr.Textbox if cmd_opts.use_textbox_seed else gr.Number)(label='Seed', value=-1, elem_id=f"{target_interface}_seed") seed.style(container=False) - random_seed = ToolButton(random_symbol, elem_id=target_interface + '_random_seed', label='Random seed') - reuse_seed = ToolButton(reuse_symbol, elem_id=target_interface + '_reuse_seed', label='Reuse seed') + random_seed = ToolButton(random_symbol, elem_id=f"{target_interface}_random_seed", label='Random seed') + reuse_seed = ToolButton(reuse_symbol, elem_id=f"{target_interface}_reuse_seed", label='Reuse seed') - seed_checkbox = gr.Checkbox(label='Extra', elem_id=target_interface + '_subseed_show', value=False) + seed_checkbox = gr.Checkbox(label='Extra', elem_id=f"{target_interface}_subseed_show", value=False) # Components to show/hide based on the 'Extra' checkbox seed_extras = [] - with FormRow(visible=False, elem_id=target_interface + '_subseed_row') as seed_extra_row_1: + with FormRow(visible=False, elem_id=f"{target_interface}_subseed_row") as seed_extra_row_1: seed_extras.append(seed_extra_row_1) - subseed = gr.Number(label='Variation seed', value=-1, elem_id=target_interface + '_subseed') + subseed = gr.Number(label='Variation seed', value=-1, elem_id=f"{target_interface}_subseed") subseed.style(container=False) - random_subseed = ToolButton(random_symbol, elem_id=target_interface + '_random_subseed') - reuse_subseed = ToolButton(reuse_symbol, elem_id=target_interface + '_reuse_subseed') - subseed_strength = gr.Slider(label='Variation strength', value=0.0, minimum=0, maximum=1, step=0.01, elem_id=target_interface + '_subseed_strength') + random_subseed = ToolButton(random_symbol, elem_id=f"{target_interface}_random_subseed") + reuse_subseed = ToolButton(reuse_symbol, elem_id=f"{target_interface}_reuse_subseed") + subseed_strength = gr.Slider(label='Variation strength', value=0.0, minimum=0, maximum=1, step=0.01, elem_id=f"{target_interface}_subseed_strength") with FormRow(visible=False) as seed_extra_row_2: seed_extras.append(seed_extra_row_2) - seed_resize_from_w = gr.Slider(minimum=0, maximum=2048, step=8, label="Resize seed from width", value=0, elem_id=target_interface + '_seed_resize_from_w') - seed_resize_from_h = gr.Slider(minimum=0, maximum=2048, step=8, label="Resize seed from height", value=0, elem_id=target_interface + '_seed_resize_from_h') + seed_resize_from_w = gr.Slider(minimum=0, maximum=2048, step=8, label="Resize seed from width", value=0, elem_id=f"{target_interface}_seed_resize_from_w") + seed_resize_from_h = gr.Slider(minimum=0, maximum=2048, step=8, label="Resize seed from height", value=0, elem_id=f"{target_interface}_seed_resize_from_h") random_seed.click(fn=lambda: -1, show_progress=False, inputs=[], outputs=[seed]) random_subseed.click(fn=lambda: -1, show_progress=False, inputs=[], outputs=[subseed]) @@ -765,7 +765,7 @@ def create_ui(): ) button.click( fn=lambda: None, - _js="switch_to_"+name.replace(" ", "_"), + _js=f"switch_to_{name.replace(' ', '_')}", inputs=[], outputs=[], ) @@ -1462,18 +1462,18 @@ def create_ui(): elif t == bool: comp = gr.Checkbox else: - raise Exception(f'bad options item type: {str(t)} for key {key}') + raise Exception(f'bad options item type: {t} for key {key}') - elem_id = "setting_"+key + elem_id = f"setting_{key}" if info.refresh is not None: if is_quicksettings: res = comp(label=info.label, value=fun(), elem_id=elem_id, **(args or {})) - create_refresh_button(res, info.refresh, info.component_args, "refresh_" + key) + create_refresh_button(res, info.refresh, info.component_args, f"refresh_{key}") else: with FormRow(): res = comp(label=info.label, value=fun(), elem_id=elem_id, **(args or {})) - create_refresh_button(res, info.refresh, info.component_args, "refresh_" + key) + create_refresh_button(res, info.refresh, info.component_args, f"refresh_{key}") else: res = comp(label=info.label, value=fun(), elem_id=elem_id, **(args or {})) @@ -1545,7 +1545,7 @@ def create_ui(): current_tab.__exit__() gr.Group() - current_tab = gr.TabItem(elem_id="settings_{}".format(elem_id), label=text) + current_tab = gr.TabItem(elem_id=f"settings_{elem_id}", label=text) current_tab.__enter__() current_row = gr.Column(variant='compact') current_row.__enter__() @@ -1664,7 +1664,7 @@ def create_ui(): for interface, label, ifid in interfaces: if label in shared.opts.hidden_tabs: continue - with gr.TabItem(label, id=ifid, elem_id='tab_' + ifid): + with gr.TabItem(label, id=ifid, elem_id=f"tab_{ifid}"): interface.render() if os.path.exists(os.path.join(script_path, "notification.mp3")): @@ -1771,10 +1771,10 @@ def create_ui(): def loadsave(path, x): def apply_field(obj, field, condition=None, init_field=None): - key = path + "/" + field + key = f"{path}/{field}" if getattr(obj, 'custom_script_source', None) is not None: - key = 'customscript/' + obj.custom_script_source + '/' + key + key = f"customscript/{obj.custom_script_source}/{key}" if getattr(obj, 'do_not_save_to_config', False): return diff --git a/modules/ui_extensions.py b/modules/ui_extensions.py index 99ac8756..d9faf85a 100644 --- a/modules/ui_extensions.py +++ b/modules/ui_extensions.py @@ -61,7 +61,8 @@ def save_config_state(name): if not name: name = "Config" current_config_state["name"] = name - filename = os.path.join(config_states_dir, datetime.now().strftime("%Y_%m_%d-%H_%M_%S") + "_" + name + ".json") + timestamp = datetime.now().strftime('%Y_%m_%d-%H_%M_%S') + filename = os.path.join(config_states_dir, f"{timestamp}_{name}.json") print(f"Saving backup of webui/extension state to {filename}.") with open(filename, "w", encoding="utf-8") as f: json.dump(current_config_state, f) diff --git a/modules/ui_extra_networks.py b/modules/ui_extra_networks.py index 86c05a55..8c3dea56 100644 --- a/modules/ui_extra_networks.py +++ b/modules/ui_extra_networks.py @@ -69,7 +69,9 @@ class ExtraNetworksPage: pass def link_preview(self, filename): - return "./sd_extra_networks/thumb?filename=" + urllib.parse.quote(filename.replace('\\', '/')) + "&mtime=" + str(os.path.getmtime(filename)) + quoted_filename = urllib.parse.quote(filename.replace('\\', '/')) + mtime = os.path.getmtime(filename) + return f"./sd_extra_networks/thumb?filename={quoted_filename}&mtime={mtime}" def search_terms_from_path(self, filename, possible_directories=None): abspath = os.path.abspath(filename) diff --git a/scripts/custom_code.py b/scripts/custom_code.py index 4071d86d..f36a3675 100644 --- a/scripts/custom_code.py +++ b/scripts/custom_code.py @@ -77,7 +77,7 @@ return process_images(p) module.display = display indent = " " * indent_level - indented = code.replace('\n', '\n' + indent) + indented = code.replace('\n', f"\n{indent}") body = f"""def __webuitemp__(): {indent}{indented} __webuitemp__()""" diff --git a/scripts/loopback.py b/scripts/loopback.py index d3065fe6..ad6609be 100644 --- a/scripts/loopback.py +++ b/scripts/loopback.py @@ -84,7 +84,7 @@ class Script(scripts.Script): p.color_corrections = initial_color_corrections if append_interrogation != "None": - p.prompt = original_prompt + ", " if original_prompt != "" else "" + p.prompt = f"{original_prompt}, " if original_prompt else "" if append_interrogation == "CLIP": p.prompt += shared.interrogator.interrogate(p.init_images[0]) elif append_interrogation == "DeepBooru": diff --git a/scripts/xyz_grid.py b/scripts/xyz_grid.py index 01d97791..a725d74a 100644 --- a/scripts/xyz_grid.py +++ b/scripts/xyz_grid.py @@ -439,7 +439,7 @@ class Script(scripts.Script): z_type.change(fn=select_axis, inputs=[z_type,z_values_dropdown], outputs=[fill_z_button,z_values,z_values_dropdown]) def get_dropdown_update_from_params(axis,params): - val_key = axis + " Values" + val_key = f"{axis} Values" vals = params.get(val_key,"") valslist = [x.strip() for x in chain.from_iterable(csv.reader(StringIO(vals))) if x] return gr.update(value = valslist)