Add Tiny AE live preview

This commit is contained in:
Sakura-Luna 2023-05-14 12:42:44 +08:00
parent b08500cec8
commit e14b586d04
4 changed files with 101 additions and 9 deletions

View File

@ -2,7 +2,7 @@ from collections import namedtuple
import numpy as np
import torch
from PIL import Image
from modules import devices, processing, images, sd_vae_approx
from modules import devices, processing, images, sd_vae_approx, sd_vae_taesd
from modules.shared import opts, state
import modules.shared as shared
@ -22,21 +22,26 @@ def setup_img2img_steps(p, steps=None):
return steps, t_enc
approximation_indexes = {"Full": 0, "Approx NN": 1, "Approx cheap": 2}
approximation_indexes = {"Full": 0, "Tiny AE": 1, "Approx NN": 2, "Approx cheap": 3}
def single_sample_to_image(sample, approximation=None):
if approximation is None:
approximation = approximation_indexes.get(opts.show_progress_type, 0)
if approximation == 2:
if approximation == 1:
x_sample = sd_vae_taesd.decode()(sample.to(devices.device, devices.dtype).unsqueeze(0))[0].detach()
x_sample = sd_vae_taesd.TAESD.unscale_latents(x_sample)
x_sample = torch.clamp((x_sample * 0.25) + 0.5, 0, 1)
else:
if approximation == 3:
x_sample = sd_vae_approx.cheap_approximation(sample)
elif approximation == 1:
elif approximation == 2:
x_sample = sd_vae_approx.model()(sample.to(devices.device, devices.dtype).unsqueeze(0))[0].detach()
else:
x_sample = processing.decode_first_stage(shared.sd_model, sample.unsqueeze(0))[0]
x_sample = torch.clamp((x_sample + 1.0) / 2.0, min=0.0, max=1.0)
x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2)
x_sample = x_sample.astype(np.uint8)
return Image.fromarray(x_sample)

76
modules/sd_vae_taesd.py Normal file
View File

@ -0,0 +1,76 @@
"""
Tiny AutoEncoder for Stable Diffusion
(DNN for encoding / decoding SD's latent space)
https://github.com/madebyollin/taesd
"""
import os
import torch
import torch.nn as nn
from modules import devices, paths_internal
sd_vae_taesd = None
def conv(n_in, n_out, **kwargs):
return nn.Conv2d(n_in, n_out, 3, padding=1, **kwargs)
class Clamp(nn.Module):
@staticmethod
def forward(x):
return torch.tanh(x / 3) * 3
class Block(nn.Module):
def __init__(self, n_in, n_out):
super().__init__()
self.conv = nn.Sequential(conv(n_in, n_out), nn.ReLU(), conv(n_out, n_out), nn.ReLU(), conv(n_out, n_out))
self.skip = nn.Conv2d(n_in, n_out, 1, bias=False) if n_in != n_out else nn.Identity()
self.fuse = nn.ReLU()
def forward(self, x):
return self.fuse(self.conv(x) + self.skip(x))
def decoder():
return nn.Sequential(
Clamp(), conv(4, 64), nn.ReLU(),
Block(64, 64), Block(64, 64), Block(64, 64), nn.Upsample(scale_factor=2), conv(64, 64, bias=False),
Block(64, 64), Block(64, 64), Block(64, 64), nn.Upsample(scale_factor=2), conv(64, 64, bias=False),
Block(64, 64), Block(64, 64), Block(64, 64), nn.Upsample(scale_factor=2), conv(64, 64, bias=False),
Block(64, 64), conv(64, 3),
)
class TAESD(nn.Module):
latent_magnitude = 2
latent_shift = 0.5
def __init__(self, decoder_path="taesd_decoder.pth"):
"""Initialize pretrained TAESD on the given device from the given checkpoints."""
super().__init__()
self.decoder = decoder()
self.decoder.load_state_dict(
torch.load(decoder_path, map_location='cpu' if devices.device.type != 'cuda' else None))
@staticmethod
def unscale_latents(x):
"""[0, 1] -> raw latents"""
return x.sub(TAESD.latent_shift).mul(2 * TAESD.latent_magnitude)
def decode():
global sd_vae_taesd
if sd_vae_taesd is None:
model_path = os.path.join(paths_internal.models_path, "VAE-approx", "taesd_decoder.pth")
if os.path.exists(model_path):
sd_vae_taesd = TAESD(model_path)
sd_vae_taesd.eval()
sd_vae_taesd.to(devices.device, devices.dtype)
else:
raise FileNotFoundError('Tiny AE mdoel not found')
return sd_vae_taesd.decoder

View File

@ -425,7 +425,7 @@ options_templates.update(options_section(('ui', "Live previews"), {
"live_previews_enable": OptionInfo(True, "Show live previews of the created image"),
"show_progress_grid": OptionInfo(True, "Show previews of all images generated in a batch as a grid"),
"show_progress_every_n_steps": OptionInfo(10, "Show new live preview image every N sampling steps. Set to -1 to show after completion of batch.", gr.Slider, {"minimum": -1, "maximum": 32, "step": 1}),
"show_progress_type": OptionInfo("Approx NN", "Image creation progress preview mode", gr.Radio, {"choices": ["Full", "Approx NN", "Approx cheap"]}),
"show_progress_type": OptionInfo("Tiny AE", "Image creation progress preview mode", gr.Radio, {"choices": ["Full", "Tiny AE", "Approx NN", "Approx cheap"]}),
"live_preview_content": OptionInfo("Prompt", "Live preview subject", gr.Radio, {"choices": ["Combined", "Prompt", "Negative prompt"]}),
"live_preview_refresh_period": OptionInfo(1000, "Progressbar/preview update period, in milliseconds")
}))

View File

@ -144,10 +144,21 @@ Use --skip-version-check commandline argument to disable this check.
""".strip())
def check_taesd():
from modules.paths_internal import models_path
model_url = 'https://github.com/madebyollin/taesd/raw/main/taesd_decoder.pth'
model_path = os.path.join(models_path, "VAE-approx", "taesd_decoder.pth")
if not os.path.exists(model_path):
print('download taesd model')
torch.hub.download_url_to_file(model_url, os.path.dirname(model_path))
def initialize():
fix_asyncio_event_loop_policy()
check_versions()
check_taesd()
extensions.list_extensions()
localization.list_localizations(cmd_opts.localizations_dir)