changes for inpainting for #35
support for --medvram attempt to support share
This commit is contained in:
parent
3e4103541c
commit
e1648fc1d1
19
README.md
19
README.md
@ -71,10 +71,10 @@ Run the command to start web ui:
|
||||
python stable-diffusion-webui/webui.py
|
||||
```
|
||||
|
||||
If you have a 4GB video card, run the command with `--lowvram` argument:
|
||||
If you have a 4GB video card, run the command with either `--lowvram` or `--medvram` argument:
|
||||
|
||||
```
|
||||
python stable-diffusion-webui/webui.py --lowvram
|
||||
python stable-diffusion-webui/webui.py --medvram
|
||||
```
|
||||
|
||||
After a while, you will get a message like this:
|
||||
@ -280,17 +280,18 @@ print("Seed was: " + str(processed.seed))
|
||||
display(processed.images, processed.seed, processed.info)
|
||||
```
|
||||
|
||||
### `--lowvram`
|
||||
### 4GB videocard support
|
||||
Optimizations for GPUs with low VRAM. This should make it possible to generate 512x512 images on videocards with 4GB memory.
|
||||
|
||||
The original idea of those optimizations is by basujindal: https://github.com/basujindal/stable-diffusion. Model is separated into modules,
|
||||
and only one module is kept in GPU memory; when another module needs to run, the previous is removed from GPU memory.
|
||||
|
||||
It should be obvious but the nature of those optimizations makes the processing run slower -- about 10 times slower
|
||||
`--lowvram` is a reimplementation of optimization idea from by [basujindal](https://github.com/basujindal/stable-diffusion).
|
||||
Model is separated into modules, and only one module is kept in GPU memory; when another module needs to run, the previous
|
||||
is removed from GPU memory. The nature of this optimization makes the processing run slower -- about 10 times slower
|
||||
compared to normal operation on my RTX 3090.
|
||||
|
||||
This is an independent implementation that does not require any modification to original Stable Diffusion code, and
|
||||
with all code concenrated in one place rather than scattered around the program.
|
||||
`--medvram` is another optimization that should reduce VRAM usage significantly by not peocessing conditional and
|
||||
unconditional denoising in a same batch.
|
||||
|
||||
This implementation of optimization does not require any modification to original Stable Diffusion code.
|
||||
|
||||
### Inpainting
|
||||
In img2img tab, draw a mask over a part of image, and that part will be in-painted.
|
||||
|
76
webui.py
76
webui.py
@ -6,7 +6,10 @@ script_path = os.path.dirname(os.path.realpath(__file__))
|
||||
sd_path = os.path.dirname(script_path)
|
||||
|
||||
# add parent directory to path; this is where Stable diffusion repo should be
|
||||
path_dirs = [(sd_path, 'ldm', 'Stable Diffusion'), ('../../taming-transformers', 'taming', 'Taming Transformers')]
|
||||
path_dirs = [
|
||||
(sd_path, 'ldm', 'Stable Diffusion'),
|
||||
('../../taming-transformers', 'taming', 'Taming Transformers')
|
||||
]
|
||||
for d, must_exist, what in path_dirs:
|
||||
must_exist_path = os.path.abspath(os.path.join(script_path, d, must_exist))
|
||||
if not os.path.exists(must_exist_path):
|
||||
@ -38,15 +41,10 @@ from ldm.util import instantiate_from_config
|
||||
from ldm.models.diffusion.ddim import DDIMSampler
|
||||
from ldm.models.diffusion.plms import PLMSSampler
|
||||
|
||||
# fix gradio phoning home
|
||||
gradio.utils.version_check = lambda: None
|
||||
gradio.utils.get_local_ip_address = lambda: '127.0.0.1'
|
||||
|
||||
# this is a fix for Windows users. Without it, javascript files will be served with text/html content-type and the bowser will not show any UI
|
||||
mimetypes.init()
|
||||
mimetypes.add_type('application/javascript', '.js')
|
||||
|
||||
|
||||
# some of those options should not be changed at all because they would break the model, so I removed them from options.
|
||||
opt_C = 4
|
||||
opt_f = 8
|
||||
@ -65,14 +63,21 @@ parser.add_argument("--no-progressbar-hiding", action='store_true', help="do not
|
||||
parser.add_argument("--max-batch-count", type=int, default=16, help="maximum batch count value for the UI")
|
||||
parser.add_argument("--embeddings-dir", type=str, default='embeddings', help="embeddings dirtectory for textual inversion (default: embeddings)")
|
||||
parser.add_argument("--allow-code", action='store_true', help="allow custom script execution from webui")
|
||||
parser.add_argument("--lowvram", action='store_true', help="enamble stable diffusion model optimizations for low vram")
|
||||
parser.add_argument("--medvram", action='store_true', help="enable stable diffusion model optimizations for sacrficing a little speed for low VRM usage")
|
||||
parser.add_argument("--lowvram", action='store_true', help="enable stable diffusion model optimizations for sacrficing a lot of speed for very low VRM usage")
|
||||
parser.add_argument("--precision", type=str, help="evaluate at this precision", choices=["full", "autocast"], default="autocast")
|
||||
|
||||
parser.add_argument("--share", action='store_true', help="use share=True for gradio and make the UI accessible through their site (doesn't work for me but you might have better luck)")
|
||||
cmd_opts = parser.parse_args()
|
||||
|
||||
cpu = torch.device("cpu")
|
||||
gpu = torch.device("cuda")
|
||||
device = gpu if torch.cuda.is_available() else cpu
|
||||
batch_cond_uncond = not (cmd_opts.lowvram or cmd_opts.medvram)
|
||||
|
||||
if not cmd_opts.share:
|
||||
# fix gradio phoning home
|
||||
gradio.utils.version_check = lambda: None
|
||||
gradio.utils.get_local_ip_address = lambda: '127.0.0.1'
|
||||
|
||||
css_hide_progressbar = """
|
||||
.wrap .m-12 svg { display:none!important; }
|
||||
@ -294,9 +299,13 @@ def setup_for_low_vram(sd_model):
|
||||
sd_model.first_stage_model.decode = lambda z, de=sd_model.first_stage_model.decode: first_stage_model_decode_wrap(sd_model.first_stage_model, de, z)
|
||||
parents[sd_model.cond_stage_model.transformer] = sd_model.cond_stage_model
|
||||
|
||||
if cmd_opts.medvram:
|
||||
sd_model.model.register_forward_pre_hook(send_me_to_gpu)
|
||||
else:
|
||||
diff_model = sd_model.model.diffusion_model
|
||||
|
||||
# the third remaining model is still too big for 4GB, so we also do the same for its submodules
|
||||
# so that only one of them is in GPU at a time
|
||||
diff_model = sd_model.model.diffusion_model
|
||||
stored = diff_model.input_blocks, diff_model.middle_block, diff_model.output_blocks, diff_model.time_embed
|
||||
diff_model.input_blocks, diff_model.middle_block, diff_model.output_blocks, diff_model.time_embed = None, None, None, None
|
||||
sd_model.model.to(device)
|
||||
@ -860,7 +869,7 @@ class VanillaStableDiffusionSampler:
|
||||
def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning):
|
||||
t_enc = int(min(p.denoising_strength, 0.999) * p.steps)
|
||||
|
||||
# existing code fail with cetin step counts, like 9
|
||||
# existing code fails with cetin step counts, like 9
|
||||
try:
|
||||
self.sampler.make_schedule(ddim_num_steps=p.steps, verbose=False)
|
||||
except Exception:
|
||||
@ -887,13 +896,26 @@ class CFGDenoiser(nn.Module):
|
||||
def __init__(self, model):
|
||||
super().__init__()
|
||||
self.inner_model = model
|
||||
self.mask = None
|
||||
self.nmask = None
|
||||
self.init_latent = None
|
||||
|
||||
def forward(self, x, sigma, uncond, cond, cond_scale):
|
||||
if batch_cond_uncond:
|
||||
x_in = torch.cat([x] * 2)
|
||||
sigma_in = torch.cat([sigma] * 2)
|
||||
cond_in = torch.cat([uncond, cond])
|
||||
uncond, cond = self.inner_model(x_in, sigma_in, cond=cond_in).chunk(2)
|
||||
return uncond + (cond - uncond) * cond_scale
|
||||
denoised = uncond + (cond - uncond) * cond_scale
|
||||
else:
|
||||
uncond = self.inner_model(x, sigma, cond=uncond)
|
||||
cond = self.inner_model(x, sigma, cond=cond)
|
||||
denoised = uncond + (cond - uncond) * cond_scale
|
||||
|
||||
if self.mask is not None:
|
||||
denoised = self.init_latent * self.mask + self.nmask * denoised
|
||||
|
||||
return denoised
|
||||
|
||||
|
||||
class KDiffusionSampler:
|
||||
@ -910,19 +932,13 @@ class KDiffusionSampler:
|
||||
|
||||
xi = x + noise
|
||||
|
||||
if p.mask is not None:
|
||||
if p.inpainting_fill == 2:
|
||||
xi = xi * p.mask + noise * p.nmask
|
||||
elif p.inpainting_fill == 3:
|
||||
xi = xi * p.mask
|
||||
|
||||
sigma_sched = sigmas[p.steps - t_enc - 1:]
|
||||
|
||||
def mask_cb(v):
|
||||
v["denoised"][:] = v["denoised"][:] * p.nmask + p.init_latent * p.mask
|
||||
|
||||
return self.func(self.model_wrap_cfg, xi, sigma_sched, extra_args={'cond': conditioning, 'uncond': unconditional_conditioning, 'cond_scale': p.cfg_scale}, disable=False, callback=mask_cb if p.mask is not None else None)
|
||||
self.model_wrap_cfg.mask = p.mask
|
||||
self.model_wrap_cfg.nmask = p.nmask
|
||||
self.model_wrap_cfg.init_latent = p.init_latent
|
||||
|
||||
return self.func(self.model_wrap_cfg, xi, sigma_sched, extra_args={'cond': conditioning, 'uncond': unconditional_conditioning, 'cond_scale': p.cfg_scale}, disable=False)
|
||||
|
||||
def sample(self, p: StableDiffusionProcessing, x, conditioning, unconditional_conditioning):
|
||||
sigmas = self.model_wrap.get_sigmas(p.steps)
|
||||
@ -932,7 +948,7 @@ class KDiffusionSampler:
|
||||
return samples_ddim
|
||||
|
||||
|
||||
Processed = namedtuple('Processed', ['images','seed', 'info'])
|
||||
Processed = namedtuple('Processed', ['images', 'seed', 'info'])
|
||||
|
||||
|
||||
def process_images(p: StableDiffusionProcessing) -> Processed:
|
||||
@ -1315,7 +1331,6 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
|
||||
if self.mask_blur > 0:
|
||||
self.image_mask = self.image_mask.filter(ImageFilter.GaussianBlur(self.mask_blur)).convert('L')
|
||||
|
||||
|
||||
if self.inpaint_full_res:
|
||||
self.mask_for_overlay = self.image_mask
|
||||
mask = self.image_mask.convert('L')
|
||||
@ -1383,6 +1398,13 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
|
||||
self.nmask = torch.asarray(latmask).to(device).type(sd_model.dtype)
|
||||
|
||||
def sample(self, x, conditioning, unconditional_conditioning):
|
||||
|
||||
if self.mask is not None:
|
||||
if self.inpainting_fill == 2:
|
||||
x = x * self.mask + create_random_tensors(x.shape[1:], [self.seed + x + 1 for x in range(x.shape[0])]) * self.nmask
|
||||
elif self.inpainting_fill == 3:
|
||||
x = x * self.mask
|
||||
|
||||
samples = self.sampler.sample_img2img(self, self.init_latent, x, conditioning, unconditional_conditioning)
|
||||
|
||||
if self.mask is not None:
|
||||
@ -1805,10 +1827,10 @@ sd_config = OmegaConf.load(cmd_opts.config)
|
||||
sd_model = load_model_from_config(sd_config, cmd_opts.ckpt)
|
||||
sd_model = (sd_model if cmd_opts.no_half else sd_model.half())
|
||||
|
||||
if not cmd_opts.lowvram:
|
||||
sd_model = sd_model.to(device)
|
||||
else:
|
||||
if cmd_opts.lowvram or cmd_opts.medvram:
|
||||
setup_for_low_vram(sd_model)
|
||||
else:
|
||||
sd_model = sd_model.to(device)
|
||||
|
||||
model_hijack = StableDiffusionModelHijack()
|
||||
model_hijack.hijack(sd_model)
|
||||
@ -1855,5 +1877,5 @@ def inject_gradio_html(javascript):
|
||||
inject_gradio_html(javascript)
|
||||
|
||||
demo.queue(concurrency_count=1)
|
||||
demo.launch()
|
||||
demo.launch(share=cmd_opts.share)
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user