Merge branch 'dev' into img2img-batch-png-info

This commit is contained in:
AUTOMATIC1111 2023-07-08 15:10:10 +03:00 committed by GitHub
commit ec9bbda3da
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
113 changed files with 3887 additions and 1331 deletions

View File

@ -50,13 +50,14 @@ module.exports = {
globals: { globals: {
//script.js //script.js
gradioApp: "readonly", gradioApp: "readonly",
executeCallbacks: "readonly",
onAfterUiUpdate: "readonly",
onOptionsChanged: "readonly",
onUiLoaded: "readonly", onUiLoaded: "readonly",
onUiUpdate: "readonly", onUiUpdate: "readonly",
onOptionsChanged: "readonly",
uiCurrentTab: "writable", uiCurrentTab: "writable",
uiElementIsVisible: "readonly",
uiElementInSight: "readonly", uiElementInSight: "readonly",
executeCallbacks: "readonly", uiElementIsVisible: "readonly",
//ui.js //ui.js
opts: "writable", opts: "writable",
all_gallery_buttons: "readonly", all_gallery_buttons: "readonly",
@ -84,5 +85,7 @@ module.exports = {
// imageviewer.js // imageviewer.js
modalPrevImage: "readonly", modalPrevImage: "readonly",
modalNextImage: "readonly", modalNextImage: "readonly",
// token-counters.js
setupTokenCounters: "readonly",
} }
}; };

View File

@ -43,8 +43,8 @@ body:
- type: input - type: input
id: commit id: commit
attributes: attributes:
label: Commit where the problem happens label: Version or Commit where the problem happens
description: Which commit are you running ? (Do not write *Latest version/repo/commit*, as this means nothing and will have changed by the time we read your issue. Rather, copy the **Commit** link at the bottom of the UI, or from the cmd/terminal if you can't launch it.) description: "Which webui version or commit are you running ? (Do not write *Latest Version/repo/commit*, as this means nothing and will have changed by the time we read your issue. Rather, copy the **Version: v1.2.3** link at the bottom of the UI, or from the cmd/terminal if you can't launch it.)"
validations: validations:
required: true required: true
- type: dropdown - type: dropdown
@ -80,6 +80,23 @@ body:
- AMD GPUs (RX 5000 below) - AMD GPUs (RX 5000 below)
- CPU - CPU
- Other GPUs - Other GPUs
- type: dropdown
id: cross_attention_opt
attributes:
label: Cross attention optimization
description: What cross attention optimization are you using, Settings -> Optimizations -> Cross attention optimization
multiple: false
options:
- Automatic
- xformers
- sdp-no-mem
- sdp
- Doggettx
- V1
- InvokeAI
- "None "
validations:
required: true
- type: dropdown - type: dropdown
id: browsers id: browsers
attributes: attributes:

View File

@ -18,7 +18,7 @@ jobs:
# not to have GHA download an (at the time of writing) 4 GB cache # not to have GHA download an (at the time of writing) 4 GB cache
# of PyTorch and other dependencies. # of PyTorch and other dependencies.
- name: Install Ruff - name: Install Ruff
run: pip install ruff==0.0.265 run: pip install ruff==0.0.272
- name: Run Ruff - name: Run Ruff
run: ruff . run: ruff .
lint-js: lint-js:

View File

@ -42,7 +42,7 @@ jobs:
--no-half --no-half
--disable-opt-split-attention --disable-opt-split-attention
--use-cpu all --use-cpu all
--add-stop-route --api-server-stop
2>&1 | tee output.txt & 2>&1 | tee output.txt &
- name: Run tests - name: Run tests
run: | run: |
@ -50,7 +50,7 @@ jobs:
python -m pytest -vv --junitxml=test/results.xml --cov . --cov-report=xml --verify-base-url test python -m pytest -vv --junitxml=test/results.xml --cov . --cov-report=xml --verify-base-url test
- name: Kill test server - name: Kill test server
if: always() if: always()
run: curl -vv -XPOST http://127.0.0.1:7860/_stop && sleep 10 run: curl -vv -XPOST http://127.0.0.1:7860/sdapi/v1/server-stop && sleep 10
- name: Show coverage - name: Show coverage
run: | run: |
python -m coverage combine .coverage* python -m coverage combine .coverage*

View File

@ -1,3 +1,60 @@
## 1.4.0
### Features:
* zoom controls for inpainting
* run basic torch calculation at startup in parallel to reduce the performance impact of first generation
* option to pad prompt/neg prompt to be same length
* remove taming_transformers dependency
* custom k-diffusion scheduler settings
* add an option to show selected settings in main txt2img/img2img UI
* sysinfo tab in settings
* infer styles from prompts when pasting params into the UI
* an option to control the behavior of the above
### Minor:
* bump Gradio to 3.32.0
* bump xformers to 0.0.20
* Add option to disable token counters
* tooltip fixes & optimizations
* make it possible to configure filename for the zip download
* `[vae_filename]` pattern for filenames
* Revert discarding penultimate sigma for DPM-Solver++(2M) SDE
* change UI reorder setting to multiselect
* read version info form CHANGELOG.md if git version info is not available
* link footer API to Wiki when API is not active
* persistent conds cache (opt-in optimization)
### Extensions:
* After installing extensions, webui properly restarts the process rather than reloads the UI
* Added VAE listing to web API. Via: /sdapi/v1/sd-vae
* custom unet support
* Add onAfterUiUpdate callback
* refactor EmbeddingDatabase.register_embedding() to allow unregistering
* add before_process callback for scripts
* add ability for alwayson scripts to specify section and let user reorder those sections
### Bug Fixes:
* Fix dragging text to prompt
* fix incorrect quoting for infotext values with colon in them
* fix "hires. fix" prompt sharing same labels with txt2img_prompt
* Fix s_min_uncond default type int
* Fix for #10643 (Inpainting mask sometimes not working)
* fix bad styling for thumbs view in extra networks #10639
* fix for empty list of optimizations #10605
* small fixes to prepare_tcmalloc for Debian/Ubuntu compatibility
* fix --ui-debug-mode exit
* patch GitPython to not use leaky persistent processes
* fix duplicate Cross attention optimization after UI reload
* torch.cuda.is_available() check for SdOptimizationXformers
* fix hires fix using wrong conds in second pass if using Loras.
* handle exception when parsing generation parameters from png info
* fix upcast attention dtype error
* forcing Torch Version to 1.13.1 for RX 5000 series GPUs
* split mask blur into X and Y components, patch Outpainting MK2 accordingly
* don't die when a LoRA is a broken symlink
* allow activation of Generate Forever during generation
## 1.3.2 ## 1.3.2
### Bug Fixes: ### Bug Fixes:

View File

@ -1,12 +1,9 @@
import os import os
import sys
import traceback
from basicsr.utils.download_util import load_file_from_url
from modules.modelloader import load_file_from_url
from modules.upscaler import Upscaler, UpscalerData from modules.upscaler import Upscaler, UpscalerData
from ldsr_model_arch import LDSR from ldsr_model_arch import LDSR
from modules import shared, script_callbacks from modules import shared, script_callbacks, errors
import sd_hijack_autoencoder # noqa: F401 import sd_hijack_autoencoder # noqa: F401
import sd_hijack_ddpm_v1 # noqa: F401 import sd_hijack_ddpm_v1 # noqa: F401
@ -45,22 +42,17 @@ class UpscalerLDSR(Upscaler):
if local_safetensors_path is not None and os.path.exists(local_safetensors_path): if local_safetensors_path is not None and os.path.exists(local_safetensors_path):
model = local_safetensors_path model = local_safetensors_path
else: else:
model = local_ckpt_path if local_ckpt_path is not None else load_file_from_url(url=self.model_url, model_dir=self.model_download_path, file_name="model.ckpt", progress=True) model = local_ckpt_path or load_file_from_url(self.model_url, model_dir=self.model_download_path, file_name="model.ckpt")
yaml = local_yaml_path if local_yaml_path is not None else load_file_from_url(url=self.yaml_url, model_dir=self.model_download_path, file_name="project.yaml", progress=True) yaml = local_yaml_path or load_file_from_url(self.yaml_url, model_dir=self.model_download_path, file_name="project.yaml")
try: return LDSR(model, yaml)
return LDSR(model, yaml)
except Exception:
print("Error importing LDSR:", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
return None
def do_upscale(self, img, path): def do_upscale(self, img, path):
ldsr = self.load_model(path) try:
if ldsr is None: ldsr = self.load_model(path)
print("NO LDSR!") except Exception:
errors.report(f"Failed loading LDSR model {path}", exc_info=True)
return img return img
ddim_steps = shared.opts.ldsr_steps ddim_steps = shared.opts.ldsr_steps
return ldsr.super_resolution(img, ddim_steps, self.scale) return ldsr.super_resolution(img, ddim_steps, self.scale)

View File

@ -10,7 +10,7 @@ from contextlib import contextmanager
from torch.optim.lr_scheduler import LambdaLR from torch.optim.lr_scheduler import LambdaLR
from ldm.modules.ema import LitEma from ldm.modules.ema import LitEma
from taming.modules.vqvae.quantize import VectorQuantizer2 as VectorQuantizer from vqvae_quantize import VectorQuantizer2 as VectorQuantizer
from ldm.modules.diffusionmodules.model import Encoder, Decoder from ldm.modules.diffusionmodules.model import Encoder, Decoder
from ldm.util import instantiate_from_config from ldm.util import instantiate_from_config
@ -91,8 +91,9 @@ class VQModel(pl.LightningModule):
del sd[k] del sd[k]
missing, unexpected = self.load_state_dict(sd, strict=False) missing, unexpected = self.load_state_dict(sd, strict=False)
print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys") print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
if len(missing) > 0: if missing:
print(f"Missing Keys: {missing}") print(f"Missing Keys: {missing}")
if unexpected:
print(f"Unexpected Keys: {unexpected}") print(f"Unexpected Keys: {unexpected}")
def on_train_batch_end(self, *args, **kwargs): def on_train_batch_end(self, *args, **kwargs):

View File

@ -195,9 +195,9 @@ class DDPMV1(pl.LightningModule):
missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict( missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict(
sd, strict=False) sd, strict=False)
print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys") print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
if len(missing) > 0: if missing:
print(f"Missing Keys: {missing}") print(f"Missing Keys: {missing}")
if len(unexpected) > 0: if unexpected:
print(f"Unexpected Keys: {unexpected}") print(f"Unexpected Keys: {unexpected}")
def q_mean_variance(self, x_start, t): def q_mean_variance(self, x_start, t):

View File

@ -0,0 +1,147 @@
# Vendored from https://raw.githubusercontent.com/CompVis/taming-transformers/24268930bf1dce879235a7fddd0b2355b84d7ea6/taming/modules/vqvae/quantize.py,
# where the license is as follows:
#
# Copyright (c) 2020 Patrick Esser and Robin Rombach and Björn Ommer
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
# IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
# DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
# OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE
# OR OTHER DEALINGS IN THE SOFTWARE./
import torch
import torch.nn as nn
import numpy as np
from einops import rearrange
class VectorQuantizer2(nn.Module):
"""
Improved version over VectorQuantizer, can be used as a drop-in replacement. Mostly
avoids costly matrix multiplications and allows for post-hoc remapping of indices.
"""
# NOTE: due to a bug the beta term was applied to the wrong term. for
# backwards compatibility we use the buggy version by default, but you can
# specify legacy=False to fix it.
def __init__(self, n_e, e_dim, beta, remap=None, unknown_index="random",
sane_index_shape=False, legacy=True):
super().__init__()
self.n_e = n_e
self.e_dim = e_dim
self.beta = beta
self.legacy = legacy
self.embedding = nn.Embedding(self.n_e, self.e_dim)
self.embedding.weight.data.uniform_(-1.0 / self.n_e, 1.0 / self.n_e)
self.remap = remap
if self.remap is not None:
self.register_buffer("used", torch.tensor(np.load(self.remap)))
self.re_embed = self.used.shape[0]
self.unknown_index = unknown_index # "random" or "extra" or integer
if self.unknown_index == "extra":
self.unknown_index = self.re_embed
self.re_embed = self.re_embed + 1
print(f"Remapping {self.n_e} indices to {self.re_embed} indices. "
f"Using {self.unknown_index} for unknown indices.")
else:
self.re_embed = n_e
self.sane_index_shape = sane_index_shape
def remap_to_used(self, inds):
ishape = inds.shape
assert len(ishape) > 1
inds = inds.reshape(ishape[0], -1)
used = self.used.to(inds)
match = (inds[:, :, None] == used[None, None, ...]).long()
new = match.argmax(-1)
unknown = match.sum(2) < 1
if self.unknown_index == "random":
new[unknown] = torch.randint(0, self.re_embed, size=new[unknown].shape).to(device=new.device)
else:
new[unknown] = self.unknown_index
return new.reshape(ishape)
def unmap_to_all(self, inds):
ishape = inds.shape
assert len(ishape) > 1
inds = inds.reshape(ishape[0], -1)
used = self.used.to(inds)
if self.re_embed > self.used.shape[0]: # extra token
inds[inds >= self.used.shape[0]] = 0 # simply set to zero
back = torch.gather(used[None, :][inds.shape[0] * [0], :], 1, inds)
return back.reshape(ishape)
def forward(self, z, temp=None, rescale_logits=False, return_logits=False):
assert temp is None or temp == 1.0, "Only for interface compatible with Gumbel"
assert rescale_logits is False, "Only for interface compatible with Gumbel"
assert return_logits is False, "Only for interface compatible with Gumbel"
# reshape z -> (batch, height, width, channel) and flatten
z = rearrange(z, 'b c h w -> b h w c').contiguous()
z_flattened = z.view(-1, self.e_dim)
# distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
d = torch.sum(z_flattened ** 2, dim=1, keepdim=True) + \
torch.sum(self.embedding.weight ** 2, dim=1) - 2 * \
torch.einsum('bd,dn->bn', z_flattened, rearrange(self.embedding.weight, 'n d -> d n'))
min_encoding_indices = torch.argmin(d, dim=1)
z_q = self.embedding(min_encoding_indices).view(z.shape)
perplexity = None
min_encodings = None
# compute loss for embedding
if not self.legacy:
loss = self.beta * torch.mean((z_q.detach() - z) ** 2) + \
torch.mean((z_q - z.detach()) ** 2)
else:
loss = torch.mean((z_q.detach() - z) ** 2) + self.beta * \
torch.mean((z_q - z.detach()) ** 2)
# preserve gradients
z_q = z + (z_q - z).detach()
# reshape back to match original input shape
z_q = rearrange(z_q, 'b h w c -> b c h w').contiguous()
if self.remap is not None:
min_encoding_indices = min_encoding_indices.reshape(z.shape[0], -1) # add batch axis
min_encoding_indices = self.remap_to_used(min_encoding_indices)
min_encoding_indices = min_encoding_indices.reshape(-1, 1) # flatten
if self.sane_index_shape:
min_encoding_indices = min_encoding_indices.reshape(
z_q.shape[0], z_q.shape[2], z_q.shape[3])
return z_q, loss, (perplexity, min_encodings, min_encoding_indices)
def get_codebook_entry(self, indices, shape):
# shape specifying (batch, height, width, channel)
if self.remap is not None:
indices = indices.reshape(shape[0], -1) # add batch axis
indices = self.unmap_to_all(indices)
indices = indices.reshape(-1) # flatten again
# get quantized latent vectors
z_q = self.embedding(indices)
if shape is not None:
z_q = z_q.view(shape)
# reshape back to match original input shape
z_q = z_q.permute(0, 3, 1, 2).contiguous()
return z_q

View File

@ -9,14 +9,14 @@ class ExtraNetworkLora(extra_networks.ExtraNetwork):
def activate(self, p, params_list): def activate(self, p, params_list):
additional = shared.opts.sd_lora additional = shared.opts.sd_lora
if additional != "None" and additional in lora.available_loras and len([x for x in params_list if x.items[0] == additional]) == 0: if additional != "None" and additional in lora.available_loras and not any(x for x in params_list if x.items[0] == additional):
p.all_prompts = [x + f"<lora:{additional}:{shared.opts.extra_networks_default_multiplier}>" for x in p.all_prompts] p.all_prompts = [x + f"<lora:{additional}:{shared.opts.extra_networks_default_multiplier}>" for x in p.all_prompts]
params_list.append(extra_networks.ExtraNetworkParams(items=[additional, shared.opts.extra_networks_default_multiplier])) params_list.append(extra_networks.ExtraNetworkParams(items=[additional, shared.opts.extra_networks_default_multiplier]))
names = [] names = []
multipliers = [] multipliers = []
for params in params_list: for params in params_list:
assert len(params.items) > 0 assert params.items
names.append(params.items[0]) names.append(params.items[0])
multipliers.append(float(params.items[1]) if len(params.items) > 1 else 1.0) multipliers.append(float(params.items[1]) if len(params.items) > 1 else 1.0)

View File

@ -219,7 +219,7 @@ def load_lora(name, lora_on_disk):
else: else:
raise AssertionError(f"Bad Lora layer name: {key_diffusers} - must end in lora_up.weight, lora_down.weight or alpha") raise AssertionError(f"Bad Lora layer name: {key_diffusers} - must end in lora_up.weight, lora_down.weight or alpha")
if len(keys_failed_to_match) > 0: if keys_failed_to_match:
print(f"Failed to match keys when loading Lora {lora_on_disk.filename}: {keys_failed_to_match}") print(f"Failed to match keys when loading Lora {lora_on_disk.filename}: {keys_failed_to_match}")
return lora return lora
@ -267,7 +267,7 @@ def load_loras(names, multipliers=None):
lora.multiplier = multipliers[i] if multipliers else 1.0 lora.multiplier = multipliers[i] if multipliers else 1.0
loaded_loras.append(lora) loaded_loras.append(lora)
if len(failed_to_load_loras) > 0: if failed_to_load_loras:
sd_hijack.model_hijack.comments.append("Failed to find Loras: " + ", ".join(failed_to_load_loras)) sd_hijack.model_hijack.comments.append("Failed to find Loras: " + ", ".join(failed_to_load_loras))
@ -448,7 +448,11 @@ def list_available_loras():
continue continue
name = os.path.splitext(os.path.basename(filename))[0] name = os.path.splitext(os.path.basename(filename))[0]
entry = LoraOnDisk(name, filename) try:
entry = LoraOnDisk(name, filename)
except OSError: # should catch FileNotFoundError and PermissionError etc.
errors.report(f"Failed to load LoRA {name} from {filename}", exc_info=True)
continue
available_loras[name] = entry available_loras[name] = entry

View File

@ -13,7 +13,7 @@ class ExtraNetworksPageLora(ui_extra_networks.ExtraNetworksPage):
lora.list_available_loras() lora.list_available_loras()
def list_items(self): def list_items(self):
for name, lora_on_disk in lora.available_loras.items(): for index, (name, lora_on_disk) in enumerate(lora.available_loras.items()):
path, ext = os.path.splitext(lora_on_disk.filename) path, ext = os.path.splitext(lora_on_disk.filename)
alias = lora_on_disk.get_alias() alias = lora_on_disk.get_alias()
@ -27,6 +27,8 @@ class ExtraNetworksPageLora(ui_extra_networks.ExtraNetworksPage):
"prompt": json.dumps(f"<lora:{alias}:") + " + opts.extra_networks_default_multiplier + " + json.dumps(">"), "prompt": json.dumps(f"<lora:{alias}:") + " + opts.extra_networks_default_multiplier + " + json.dumps(">"),
"local_preview": f"{path}.{shared.opts.samples_format}", "local_preview": f"{path}.{shared.opts.samples_format}",
"metadata": json.dumps(lora_on_disk.metadata, indent=4) if lora_on_disk.metadata else None, "metadata": json.dumps(lora_on_disk.metadata, indent=4) if lora_on_disk.metadata else None,
"sort_keys": {'default': index, **self.get_sort_keys(lora_on_disk.filename)},
} }
def allowed_directories_for_previews(self): def allowed_directories_for_previews(self):

View File

@ -1,17 +1,15 @@
import os.path
import sys import sys
import traceback
import PIL.Image import PIL.Image
import numpy as np import numpy as np
import torch import torch
from tqdm import tqdm from tqdm import tqdm
from basicsr.utils.download_util import load_file_from_url
import modules.upscaler import modules.upscaler
from modules import devices, modelloader, script_callbacks from modules import devices, modelloader, script_callbacks, errors
from scunet_model_arch import SCUNet as net from scunet_model_arch import SCUNet
from modules.modelloader import load_file_from_url
from modules.shared import opts from modules.shared import opts
@ -28,7 +26,7 @@ class UpscalerScuNET(modules.upscaler.Upscaler):
scalers = [] scalers = []
add_model2 = True add_model2 = True
for file in model_paths: for file in model_paths:
if "http" in file: if file.startswith("http"):
name = self.model_name name = self.model_name
else: else:
name = modelloader.friendly_name(file) name = modelloader.friendly_name(file)
@ -38,8 +36,7 @@ class UpscalerScuNET(modules.upscaler.Upscaler):
scaler_data = modules.upscaler.UpscalerData(name, file, self, 4) scaler_data = modules.upscaler.UpscalerData(name, file, self, 4)
scalers.append(scaler_data) scalers.append(scaler_data)
except Exception: except Exception:
print(f"Error loading ScuNET model: {file}", file=sys.stderr) errors.report(f"Error loading ScuNET model: {file}", exc_info=True)
print(traceback.format_exc(), file=sys.stderr)
if add_model2: if add_model2:
scaler_data2 = modules.upscaler.UpscalerData(self.model_name2, self.model_url2, self) scaler_data2 = modules.upscaler.UpscalerData(self.model_name2, self.model_url2, self)
scalers.append(scaler_data2) scalers.append(scaler_data2)
@ -90,9 +87,10 @@ class UpscalerScuNET(modules.upscaler.Upscaler):
torch.cuda.empty_cache() torch.cuda.empty_cache()
model = self.load_model(selected_file) try:
if model is None: model = self.load_model(selected_file)
print(f"ScuNET: Unable to load model from {selected_file}", file=sys.stderr) except Exception as e:
print(f"ScuNET: Unable to load model from {selected_file}: {e}", file=sys.stderr)
return img return img
device = devices.get_device_for('scunet') device = devices.get_device_for('scunet')
@ -120,15 +118,12 @@ class UpscalerScuNET(modules.upscaler.Upscaler):
def load_model(self, path: str): def load_model(self, path: str):
device = devices.get_device_for('scunet') device = devices.get_device_for('scunet')
if "http" in path: if path.startswith("http"):
filename = load_file_from_url(url=self.model_url, model_dir=self.model_download_path, file_name="%s.pth" % self.name, progress=True) # TODO: this doesn't use `path` at all?
filename = load_file_from_url(self.model_url, model_dir=self.model_download_path, file_name=f"{self.name}.pth")
else: else:
filename = path filename = path
if not os.path.exists(os.path.join(self.model_path, filename)) or filename is None: model = SCUNet(in_nc=3, config=[4, 4, 4, 4, 4, 4, 4], dim=64)
print(f"ScuNET: Unable to load model from {filename}", file=sys.stderr)
return None
model = net(in_nc=3, config=[4, 4, 4, 4, 4, 4, 4], dim=64)
model.load_state_dict(torch.load(filename), strict=True) model.load_state_dict(torch.load(filename), strict=True)
model.eval() model.eval()
for _, v in model.named_parameters(): for _, v in model.named_parameters():

View File

@ -1,17 +1,17 @@
import os import sys
import numpy as np import numpy as np
import torch import torch
from PIL import Image from PIL import Image
from basicsr.utils.download_util import load_file_from_url
from tqdm import tqdm from tqdm import tqdm
from modules import modelloader, devices, script_callbacks, shared from modules import modelloader, devices, script_callbacks, shared
from modules.shared import opts, state from modules.shared import opts, state
from swinir_model_arch import SwinIR as net from swinir_model_arch import SwinIR
from swinir_model_arch_v2 import Swin2SR as net2 from swinir_model_arch_v2 import Swin2SR
from modules.upscaler import Upscaler, UpscalerData from modules.upscaler import Upscaler, UpscalerData
SWINIR_MODEL_URL = "https://github.com/JingyunLiang/SwinIR/releases/download/v0.0/003_realSR_BSRGAN_DFOWMFC_s64w8_SwinIR-L_x4_GAN.pth"
device_swinir = devices.get_device_for('swinir') device_swinir = devices.get_device_for('swinir')
@ -19,16 +19,14 @@ device_swinir = devices.get_device_for('swinir')
class UpscalerSwinIR(Upscaler): class UpscalerSwinIR(Upscaler):
def __init__(self, dirname): def __init__(self, dirname):
self.name = "SwinIR" self.name = "SwinIR"
self.model_url = "https://github.com/JingyunLiang/SwinIR/releases/download/v0.0" \ self.model_url = SWINIR_MODEL_URL
"/003_realSR_BSRGAN_DFOWMFC_s64w8_SwinIR" \
"-L_x4_GAN.pth "
self.model_name = "SwinIR 4x" self.model_name = "SwinIR 4x"
self.user_path = dirname self.user_path = dirname
super().__init__() super().__init__()
scalers = [] scalers = []
model_files = self.find_models(ext_filter=[".pt", ".pth"]) model_files = self.find_models(ext_filter=[".pt", ".pth"])
for model in model_files: for model in model_files:
if "http" in model: if model.startswith("http"):
name = self.model_name name = self.model_name
else: else:
name = modelloader.friendly_name(model) name = modelloader.friendly_name(model)
@ -37,8 +35,10 @@ class UpscalerSwinIR(Upscaler):
self.scalers = scalers self.scalers = scalers
def do_upscale(self, img, model_file): def do_upscale(self, img, model_file):
model = self.load_model(model_file) try:
if model is None: model = self.load_model(model_file)
except Exception as e:
print(f"Failed loading SwinIR model {model_file}: {e}", file=sys.stderr)
return img return img
model = model.to(device_swinir, dtype=devices.dtype) model = model.to(device_swinir, dtype=devices.dtype)
img = upscale(img, model) img = upscale(img, model)
@ -49,30 +49,31 @@ class UpscalerSwinIR(Upscaler):
return img return img
def load_model(self, path, scale=4): def load_model(self, path, scale=4):
if "http" in path: if path.startswith("http"):
dl_name = "%s%s" % (self.model_name.replace(" ", "_"), ".pth") filename = modelloader.load_file_from_url(
filename = load_file_from_url(url=path, model_dir=self.model_download_path, file_name=dl_name, progress=True) url=path,
model_dir=self.model_download_path,
file_name=f"{self.model_name.replace(' ', '_')}.pth",
)
else: else:
filename = path filename = path
if filename is None or not os.path.exists(filename):
return None
if filename.endswith(".v2.pth"): if filename.endswith(".v2.pth"):
model = net2( model = Swin2SR(
upscale=scale, upscale=scale,
in_chans=3, in_chans=3,
img_size=64, img_size=64,
window_size=8, window_size=8,
img_range=1.0, img_range=1.0,
depths=[6, 6, 6, 6, 6, 6], depths=[6, 6, 6, 6, 6, 6],
embed_dim=180, embed_dim=180,
num_heads=[6, 6, 6, 6, 6, 6], num_heads=[6, 6, 6, 6, 6, 6],
mlp_ratio=2, mlp_ratio=2,
upsampler="nearest+conv", upsampler="nearest+conv",
resi_connection="1conv", resi_connection="1conv",
) )
params = None params = None
else: else:
model = net( model = SwinIR(
upscale=scale, upscale=scale,
in_chans=3, in_chans=3,
img_size=64, img_size=64,

View File

@ -0,0 +1,776 @@
onUiLoaded(async() => {
const elementIDs = {
img2imgTabs: "#mode_img2img .tab-nav",
inpaint: "#img2maskimg",
inpaintSketch: "#inpaint_sketch",
rangeGroup: "#img2img_column_size",
sketch: "#img2img_sketch"
};
const tabNameToElementId = {
"Inpaint sketch": elementIDs.inpaintSketch,
"Inpaint": elementIDs.inpaint,
"Sketch": elementIDs.sketch
};
// Helper functions
// Get active tab
function getActiveTab(elements, all = false) {
const tabs = elements.img2imgTabs.querySelectorAll("button");
if (all) return tabs;
for (let tab of tabs) {
if (tab.classList.contains("selected")) {
return tab;
}
}
}
// Get tab ID
function getTabId(elements) {
const activeTab = getActiveTab(elements);
return tabNameToElementId[activeTab.innerText];
}
// Wait until opts loaded
async function waitForOpts() {
for (;;) {
if (window.opts && Object.keys(window.opts).length) {
return window.opts;
}
await new Promise(resolve => setTimeout(resolve, 100));
}
}
// Function for defining the "Ctrl", "Shift" and "Alt" keys
function isModifierKey(event, key) {
switch (key) {
case "Ctrl":
return event.ctrlKey;
case "Shift":
return event.shiftKey;
case "Alt":
return event.altKey;
default:
return false;
}
}
// Check if hotkey is valid
function isValidHotkey(value) {
const specialKeys = ["Ctrl", "Alt", "Shift", "Disable"];
return (
(typeof value === "string" &&
value.length === 1 &&
/[a-z]/i.test(value)) ||
specialKeys.includes(value)
);
}
// Normalize hotkey
function normalizeHotkey(hotkey) {
return hotkey.length === 1 ? "Key" + hotkey.toUpperCase() : hotkey;
}
// Format hotkey for display
function formatHotkeyForDisplay(hotkey) {
return hotkey.startsWith("Key") ? hotkey.slice(3) : hotkey;
}
// Create hotkey configuration with the provided options
function createHotkeyConfig(defaultHotkeysConfig, hotkeysConfigOpts) {
const result = {}; // Resulting hotkey configuration
const usedKeys = new Set(); // Set of used hotkeys
// Iterate through defaultHotkeysConfig keys
for (const key in defaultHotkeysConfig) {
const userValue = hotkeysConfigOpts[key]; // User-provided hotkey value
const defaultValue = defaultHotkeysConfig[key]; // Default hotkey value
// Apply appropriate value for undefined, boolean, or object userValue
if (
userValue === undefined ||
typeof userValue === "boolean" ||
typeof userValue === "object" ||
userValue === "disable"
) {
result[key] =
userValue === undefined ? defaultValue : userValue;
} else if (isValidHotkey(userValue)) {
const normalizedUserValue = normalizeHotkey(userValue);
// Check for conflicting hotkeys
if (!usedKeys.has(normalizedUserValue)) {
usedKeys.add(normalizedUserValue);
result[key] = normalizedUserValue;
} else {
console.error(
`Hotkey: ${formatHotkeyForDisplay(
userValue
)} for ${key} is repeated and conflicts with another hotkey. The default hotkey is used: ${formatHotkeyForDisplay(
defaultValue
)}`
);
result[key] = defaultValue;
}
} else {
console.error(
`Hotkey: ${formatHotkeyForDisplay(
userValue
)} for ${key} is not valid. The default hotkey is used: ${formatHotkeyForDisplay(
defaultValue
)}`
);
result[key] = defaultValue;
}
}
return result;
}
// Disables functions in the config object based on the provided list of function names
function disableFunctions(config, disabledFunctions) {
// Bind the hasOwnProperty method to the functionMap object to avoid errors
const hasOwnProperty =
Object.prototype.hasOwnProperty.bind(functionMap);
// Loop through the disabledFunctions array and disable the corresponding functions in the config object
disabledFunctions.forEach(funcName => {
if (hasOwnProperty(funcName)) {
const key = functionMap[funcName];
config[key] = "disable";
}
});
// Return the updated config object
return config;
}
/**
* The restoreImgRedMask function displays a red mask around an image to indicate the aspect ratio.
* If the image display property is set to 'none', the mask breaks. To fix this, the function
* temporarily sets the display property to 'block' and then hides the mask again after 300 milliseconds
* to avoid breaking the canvas. Additionally, the function adjusts the mask to work correctly on
* very long images.
*/
function restoreImgRedMask(elements) {
const mainTabId = getTabId(elements);
if (!mainTabId) return;
const mainTab = gradioApp().querySelector(mainTabId);
const img = mainTab.querySelector("img");
const imageARPreview = gradioApp().querySelector("#imageARPreview");
if (!img || !imageARPreview) return;
imageARPreview.style.transform = "";
if (parseFloat(mainTab.style.width) > 865) {
const transformString = mainTab.style.transform;
const scaleMatch = transformString.match(
/scale\(([-+]?[0-9]*\.?[0-9]+)\)/
);
let zoom = 1; // default zoom
if (scaleMatch && scaleMatch[1]) {
zoom = Number(scaleMatch[1]);
}
imageARPreview.style.transformOrigin = "0 0";
imageARPreview.style.transform = `scale(${zoom})`;
}
if (img.style.display !== "none") return;
img.style.display = "block";
setTimeout(() => {
img.style.display = "none";
}, 400);
}
const hotkeysConfigOpts = await waitForOpts();
// Default config
const defaultHotkeysConfig = {
canvas_hotkey_zoom: "Alt",
canvas_hotkey_adjust: "Ctrl",
canvas_hotkey_reset: "KeyR",
canvas_hotkey_fullscreen: "KeyS",
canvas_hotkey_move: "KeyF",
canvas_hotkey_overlap: "KeyO",
canvas_disabled_functions: [],
canvas_show_tooltip: true,
canvas_blur_prompt: false
};
const functionMap = {
"Zoom": "canvas_hotkey_zoom",
"Adjust brush size": "canvas_hotkey_adjust",
"Moving canvas": "canvas_hotkey_move",
"Fullscreen": "canvas_hotkey_fullscreen",
"Reset Zoom": "canvas_hotkey_reset",
"Overlap": "canvas_hotkey_overlap"
};
// Loading the configuration from opts
const preHotkeysConfig = createHotkeyConfig(
defaultHotkeysConfig,
hotkeysConfigOpts
);
// Disable functions that are not needed by the user
const hotkeysConfig = disableFunctions(
preHotkeysConfig,
preHotkeysConfig.canvas_disabled_functions
);
let isMoving = false;
let mouseX, mouseY;
let activeElement;
const elements = Object.fromEntries(
Object.keys(elementIDs).map(id => [
id,
gradioApp().querySelector(elementIDs[id])
])
);
const elemData = {};
// Apply functionality to the range inputs. Restore redmask and correct for long images.
const rangeInputs = elements.rangeGroup ?
Array.from(elements.rangeGroup.querySelectorAll("input")) :
[
gradioApp().querySelector("#img2img_width input[type='range']"),
gradioApp().querySelector("#img2img_height input[type='range']")
];
for (const input of rangeInputs) {
input?.addEventListener("input", () => restoreImgRedMask(elements));
}
function applyZoomAndPan(elemId) {
const targetElement = gradioApp().querySelector(elemId);
if (!targetElement) {
console.log("Element not found");
return;
}
targetElement.style.transformOrigin = "0 0";
elemData[elemId] = {
zoom: 1,
panX: 0,
panY: 0
};
let fullScreenMode = false;
// Create tooltip
function createTooltip() {
const toolTipElemnt =
targetElement.querySelector(".image-container");
const tooltip = document.createElement("div");
tooltip.className = "canvas-tooltip";
// Creating an item of information
const info = document.createElement("i");
info.className = "canvas-tooltip-info";
info.textContent = "";
// Create a container for the contents of the tooltip
const tooltipContent = document.createElement("div");
tooltipContent.className = "canvas-tooltip-content";
// Define an array with hotkey information and their actions
const hotkeysInfo = [
{
configKey: "canvas_hotkey_zoom",
action: "Zoom canvas",
keySuffix: " + wheel"
},
{
configKey: "canvas_hotkey_adjust",
action: "Adjust brush size",
keySuffix: " + wheel"
},
{configKey: "canvas_hotkey_reset", action: "Reset zoom"},
{
configKey: "canvas_hotkey_fullscreen",
action: "Fullscreen mode"
},
{configKey: "canvas_hotkey_move", action: "Move canvas"},
{configKey: "canvas_hotkey_overlap", action: "Overlap"}
];
// Create hotkeys array with disabled property based on the config values
const hotkeys = hotkeysInfo.map(info => {
const configValue = hotkeysConfig[info.configKey];
const key = info.keySuffix ?
`${configValue}${info.keySuffix}` :
configValue.charAt(configValue.length - 1);
return {
key,
action: info.action,
disabled: configValue === "disable"
};
});
for (const hotkey of hotkeys) {
if (hotkey.disabled) {
continue;
}
const p = document.createElement("p");
p.innerHTML = `<b>${hotkey.key}</b> - ${hotkey.action}`;
tooltipContent.appendChild(p);
}
// Add information and content elements to the tooltip element
tooltip.appendChild(info);
tooltip.appendChild(tooltipContent);
// Add a hint element to the target element
toolTipElemnt.appendChild(tooltip);
}
//Show tool tip if setting enable
if (hotkeysConfig.canvas_show_tooltip) {
createTooltip();
}
// In the course of research, it was found that the tag img is very harmful when zooming and creates white canvases. This hack allows you to almost never think about this problem, it has no effect on webui.
function fixCanvas() {
const activeTab = getActiveTab(elements).textContent.trim();
if (activeTab !== "img2img") {
const img = targetElement.querySelector(`${elemId} img`);
if (img && img.style.display !== "none") {
img.style.display = "none";
img.style.visibility = "hidden";
}
}
}
// Reset the zoom level and pan position of the target element to their initial values
function resetZoom() {
elemData[elemId] = {
zoomLevel: 1,
panX: 0,
panY: 0
};
fixCanvas();
targetElement.style.transform = `scale(${elemData[elemId].zoomLevel}) translate(${elemData[elemId].panX}px, ${elemData[elemId].panY}px)`;
const canvas = gradioApp().querySelector(
`${elemId} canvas[key="interface"]`
);
toggleOverlap("off");
fullScreenMode = false;
if (
canvas &&
parseFloat(canvas.style.width) > 865 &&
parseFloat(targetElement.style.width) > 865
) {
fitToElement();
return;
}
targetElement.style.width = "";
if (canvas) {
targetElement.style.height = canvas.style.height;
}
}
// Toggle the zIndex of the target element between two values, allowing it to overlap or be overlapped by other elements
function toggleOverlap(forced = "") {
const zIndex1 = "0";
const zIndex2 = "998";
targetElement.style.zIndex =
targetElement.style.zIndex !== zIndex2 ? zIndex2 : zIndex1;
if (forced === "off") {
targetElement.style.zIndex = zIndex1;
} else if (forced === "on") {
targetElement.style.zIndex = zIndex2;
}
}
// Adjust the brush size based on the deltaY value from a mouse wheel event
function adjustBrushSize(
elemId,
deltaY,
withoutValue = false,
percentage = 5
) {
const input =
gradioApp().querySelector(
`${elemId} input[aria-label='Brush radius']`
) ||
gradioApp().querySelector(
`${elemId} button[aria-label="Use brush"]`
);
if (input) {
input.click();
if (!withoutValue) {
const maxValue =
parseFloat(input.getAttribute("max")) || 100;
const changeAmount = maxValue * (percentage / 100);
const newValue =
parseFloat(input.value) +
(deltaY > 0 ? -changeAmount : changeAmount);
input.value = Math.min(Math.max(newValue, 0), maxValue);
input.dispatchEvent(new Event("change"));
}
}
}
// Reset zoom when uploading a new image
const fileInput = gradioApp().querySelector(
`${elemId} input[type="file"][accept="image/*"].svelte-116rqfv`
);
fileInput.addEventListener("click", resetZoom);
// Update the zoom level and pan position of the target element based on the values of the zoomLevel, panX and panY variables
function updateZoom(newZoomLevel, mouseX, mouseY) {
newZoomLevel = Math.max(0.5, Math.min(newZoomLevel, 15));
elemData[elemId].panX +=
mouseX - (mouseX * newZoomLevel) / elemData[elemId].zoomLevel;
elemData[elemId].panY +=
mouseY - (mouseY * newZoomLevel) / elemData[elemId].zoomLevel;
targetElement.style.transformOrigin = "0 0";
targetElement.style.transform = `translate(${elemData[elemId].panX}px, ${elemData[elemId].panY}px) scale(${newZoomLevel})`;
toggleOverlap("on");
return newZoomLevel;
}
// Change the zoom level based on user interaction
function changeZoomLevel(operation, e) {
if (isModifierKey(e, hotkeysConfig.canvas_hotkey_zoom)) {
e.preventDefault();
let zoomPosX, zoomPosY;
let delta = 0.2;
if (elemData[elemId].zoomLevel > 7) {
delta = 0.9;
} else if (elemData[elemId].zoomLevel > 2) {
delta = 0.6;
}
zoomPosX = e.clientX;
zoomPosY = e.clientY;
fullScreenMode = false;
elemData[elemId].zoomLevel = updateZoom(
elemData[elemId].zoomLevel +
(operation === "+" ? delta : -delta),
zoomPosX - targetElement.getBoundingClientRect().left,
zoomPosY - targetElement.getBoundingClientRect().top
);
}
}
/**
* This function fits the target element to the screen by calculating
* the required scale and offsets. It also updates the global variables
* zoomLevel, panX, and panY to reflect the new state.
*/
function fitToElement() {
//Reset Zoom
targetElement.style.transform = `translate(${0}px, ${0}px) scale(${1})`;
// Get element and screen dimensions
const elementWidth = targetElement.offsetWidth;
const elementHeight = targetElement.offsetHeight;
const parentElement = targetElement.parentElement;
const screenWidth = parentElement.clientWidth;
const screenHeight = parentElement.clientHeight;
// Get element's coordinates relative to the parent element
const elementRect = targetElement.getBoundingClientRect();
const parentRect = parentElement.getBoundingClientRect();
const elementX = elementRect.x - parentRect.x;
// Calculate scale and offsets
const scaleX = screenWidth / elementWidth;
const scaleY = screenHeight / elementHeight;
const scale = Math.min(scaleX, scaleY);
const transformOrigin =
window.getComputedStyle(targetElement).transformOrigin;
const [originX, originY] = transformOrigin.split(" ");
const originXValue = parseFloat(originX);
const originYValue = parseFloat(originY);
const offsetX =
(screenWidth - elementWidth * scale) / 2 -
originXValue * (1 - scale);
const offsetY =
(screenHeight - elementHeight * scale) / 2.5 -
originYValue * (1 - scale);
// Apply scale and offsets to the element
targetElement.style.transform = `translate(${offsetX}px, ${offsetY}px) scale(${scale})`;
// Update global variables
elemData[elemId].zoomLevel = scale;
elemData[elemId].panX = offsetX;
elemData[elemId].panY = offsetY;
fullScreenMode = false;
toggleOverlap("off");
}
/**
* This function fits the target element to the screen by calculating
* the required scale and offsets. It also updates the global variables
* zoomLevel, panX, and panY to reflect the new state.
*/
// Fullscreen mode
function fitToScreen() {
const canvas = gradioApp().querySelector(
`${elemId} canvas[key="interface"]`
);
if (!canvas) return;
if (canvas.offsetWidth > 862) {
targetElement.style.width = canvas.offsetWidth + "px";
}
if (fullScreenMode) {
resetZoom();
fullScreenMode = false;
return;
}
//Reset Zoom
targetElement.style.transform = `translate(${0}px, ${0}px) scale(${1})`;
// Get scrollbar width to right-align the image
const scrollbarWidth =
window.innerWidth - document.documentElement.clientWidth;
// Get element and screen dimensions
const elementWidth = targetElement.offsetWidth;
const elementHeight = targetElement.offsetHeight;
const screenWidth = window.innerWidth - scrollbarWidth;
const screenHeight = window.innerHeight;
// Get element's coordinates relative to the page
const elementRect = targetElement.getBoundingClientRect();
const elementY = elementRect.y;
const elementX = elementRect.x;
// Calculate scale and offsets
const scaleX = screenWidth / elementWidth;
const scaleY = screenHeight / elementHeight;
const scale = Math.min(scaleX, scaleY);
// Get the current transformOrigin
const computedStyle = window.getComputedStyle(targetElement);
const transformOrigin = computedStyle.transformOrigin;
const [originX, originY] = transformOrigin.split(" ");
const originXValue = parseFloat(originX);
const originYValue = parseFloat(originY);
// Calculate offsets with respect to the transformOrigin
const offsetX =
(screenWidth - elementWidth * scale) / 2 -
elementX -
originXValue * (1 - scale);
const offsetY =
(screenHeight - elementHeight * scale) / 2 -
elementY -
originYValue * (1 - scale);
// Apply scale and offsets to the element
targetElement.style.transform = `translate(${offsetX}px, ${offsetY}px) scale(${scale})`;
// Update global variables
elemData[elemId].zoomLevel = scale;
elemData[elemId].panX = offsetX;
elemData[elemId].panY = offsetY;
fullScreenMode = true;
toggleOverlap("on");
}
// Handle keydown events
function handleKeyDown(event) {
// Disable key locks to make pasting from the buffer work correctly
if ((event.ctrlKey && event.code === 'KeyV') || (event.ctrlKey && event.code === 'KeyC') || event.code === "F5") {
return;
}
// before activating shortcut, ensure user is not actively typing in an input field
if (!hotkeysConfig.canvas_blur_prompt) {
if (event.target.nodeName === 'TEXTAREA' || event.target.nodeName === 'INPUT') {
return;
}
}
const hotkeyActions = {
[hotkeysConfig.canvas_hotkey_reset]: resetZoom,
[hotkeysConfig.canvas_hotkey_overlap]: toggleOverlap,
[hotkeysConfig.canvas_hotkey_fullscreen]: fitToScreen
};
const action = hotkeyActions[event.code];
if (action) {
event.preventDefault();
action(event);
}
if (
isModifierKey(event, hotkeysConfig.canvas_hotkey_zoom) ||
isModifierKey(event, hotkeysConfig.canvas_hotkey_adjust)
) {
event.preventDefault();
}
}
// Get Mouse position
function getMousePosition(e) {
mouseX = e.offsetX;
mouseY = e.offsetY;
}
targetElement.addEventListener("mousemove", getMousePosition);
// Handle events only inside the targetElement
let isKeyDownHandlerAttached = false;
function handleMouseMove() {
if (!isKeyDownHandlerAttached) {
document.addEventListener("keydown", handleKeyDown);
isKeyDownHandlerAttached = true;
activeElement = elemId;
}
}
function handleMouseLeave() {
if (isKeyDownHandlerAttached) {
document.removeEventListener("keydown", handleKeyDown);
isKeyDownHandlerAttached = false;
activeElement = null;
}
}
// Add mouse event handlers
targetElement.addEventListener("mousemove", handleMouseMove);
targetElement.addEventListener("mouseleave", handleMouseLeave);
// Reset zoom when click on another tab
elements.img2imgTabs.addEventListener("click", resetZoom);
elements.img2imgTabs.addEventListener("click", () => {
// targetElement.style.width = "";
if (parseInt(targetElement.style.width) > 865) {
setTimeout(fitToElement, 0);
}
});
targetElement.addEventListener("wheel", e => {
// change zoom level
const operation = e.deltaY > 0 ? "-" : "+";
changeZoomLevel(operation, e);
// Handle brush size adjustment with ctrl key pressed
if (isModifierKey(e, hotkeysConfig.canvas_hotkey_adjust)) {
e.preventDefault();
// Increase or decrease brush size based on scroll direction
adjustBrushSize(elemId, e.deltaY);
}
});
// Handle the move event for pan functionality. Updates the panX and panY variables and applies the new transform to the target element.
function handleMoveKeyDown(e) {
// Disable key locks to make pasting from the buffer work correctly
if ((e.ctrlKey && e.code === 'KeyV') || (e.ctrlKey && event.code === 'KeyC') || e.code === "F5") {
return;
}
// before activating shortcut, ensure user is not actively typing in an input field
if (!hotkeysConfig.canvas_blur_prompt) {
if (e.target.nodeName === 'TEXTAREA' || e.target.nodeName === 'INPUT') {
return;
}
}
if (e.code === hotkeysConfig.canvas_hotkey_move) {
if (!e.ctrlKey && !e.metaKey && isKeyDownHandlerAttached) {
e.preventDefault();
document.activeElement.blur();
isMoving = true;
}
}
}
function handleMoveKeyUp(e) {
if (e.code === hotkeysConfig.canvas_hotkey_move) {
isMoving = false;
}
}
document.addEventListener("keydown", handleMoveKeyDown);
document.addEventListener("keyup", handleMoveKeyUp);
// Detect zoom level and update the pan speed.
function updatePanPosition(movementX, movementY) {
let panSpeed = 2;
if (elemData[elemId].zoomLevel > 8) {
panSpeed = 3.5;
}
elemData[elemId].panX += movementX * panSpeed;
elemData[elemId].panY += movementY * panSpeed;
// Delayed redraw of an element
requestAnimationFrame(() => {
targetElement.style.transform = `translate(${elemData[elemId].panX}px, ${elemData[elemId].panY}px) scale(${elemData[elemId].zoomLevel})`;
toggleOverlap("on");
});
}
function handleMoveByKey(e) {
if (isMoving && elemId === activeElement) {
updatePanPosition(e.movementX, e.movementY);
targetElement.style.pointerEvents = "none";
} else {
targetElement.style.pointerEvents = "auto";
}
}
// Prevents sticking to the mouse
window.onblur = function() {
isMoving = false;
};
gradioApp().addEventListener("mousemove", handleMoveByKey);
}
applyZoomAndPan(elementIDs.sketch);
applyZoomAndPan(elementIDs.inpaint);
applyZoomAndPan(elementIDs.inpaintSketch);
// Make the function global so that other extensions can take advantage of this solution
window.applyZoomAndPan = applyZoomAndPan;
});

View File

@ -0,0 +1,14 @@
import gradio as gr
from modules import shared
shared.options_templates.update(shared.options_section(('canvas_hotkey', "Canvas Hotkeys"), {
"canvas_hotkey_zoom": shared.OptionInfo("Alt", "Zoom canvas", gr.Radio, {"choices": ["Shift","Ctrl", "Alt"]}).info("If you choose 'Shift' you cannot scroll horizontally, 'Alt' can cause a little trouble in firefox"),
"canvas_hotkey_adjust": shared.OptionInfo("Ctrl", "Adjust brush size", gr.Radio, {"choices": ["Shift","Ctrl", "Alt"]}).info("If you choose 'Shift' you cannot scroll horizontally, 'Alt' can cause a little trouble in firefox"),
"canvas_hotkey_move": shared.OptionInfo("F", "Moving the canvas").info("To work correctly in firefox, turn off 'Automatically search the page text when typing' in the browser settings"),
"canvas_hotkey_fullscreen": shared.OptionInfo("S", "Fullscreen Mode, maximizes the picture so that it fits into the screen and stretches it to its full width "),
"canvas_hotkey_reset": shared.OptionInfo("R", "Reset zoom and canvas positon"),
"canvas_hotkey_overlap": shared.OptionInfo("O", "Toggle overlap").info("Technical button, neededs for testing"),
"canvas_show_tooltip": shared.OptionInfo(True, "Enable tooltip on the canvas"),
"canvas_blur_prompt": shared.OptionInfo(False, "Take the focus off the prompt when working with a canvas"),
"canvas_disabled_functions": shared.OptionInfo(["Overlap"], "Disable function that you don't use", gr.CheckboxGroup, {"choices": ["Zoom","Adjust brush size", "Moving canvas","Fullscreen","Reset Zoom","Overlap"]}),
}))

View File

@ -0,0 +1,63 @@
.canvas-tooltip-info {
position: absolute;
top: 10px;
left: 10px;
cursor: help;
background-color: rgba(0, 0, 0, 0.3);
width: 20px;
height: 20px;
border-radius: 50%;
display: flex;
align-items: center;
justify-content: center;
flex-direction: column;
z-index: 100;
}
.canvas-tooltip-info::after {
content: '';
display: block;
width: 2px;
height: 7px;
background-color: white;
margin-top: 2px;
}
.canvas-tooltip-info::before {
content: '';
display: block;
width: 2px;
height: 2px;
background-color: white;
}
.canvas-tooltip-content {
display: none;
background-color: #f9f9f9;
color: #333;
border: 1px solid #ddd;
padding: 15px;
position: absolute;
top: 40px;
left: 10px;
width: 250px;
font-size: 16px;
opacity: 0;
border-radius: 8px;
box-shadow: 0px 8px 16px 0px rgba(0,0,0,0.2);
z-index: 100;
}
.canvas-tooltip:hover .canvas-tooltip-content {
display: block;
animation: fadeIn 0.5s;
opacity: 1;
}
@keyframes fadeIn {
from {opacity: 0;}
to {opacity: 1;}
}

View File

@ -0,0 +1,48 @@
import gradio as gr
from modules import scripts, shared, ui_components, ui_settings
from modules.ui_components import FormColumn
class ExtraOptionsSection(scripts.Script):
section = "extra_options"
def __init__(self):
self.comps = None
self.setting_names = None
def title(self):
return "Extra options"
def show(self, is_img2img):
return scripts.AlwaysVisible
def ui(self, is_img2img):
self.comps = []
self.setting_names = []
with gr.Blocks() as interface:
with gr.Accordion("Options", open=False) if shared.opts.extra_options_accordion and shared.opts.extra_options else gr.Group(), gr.Row():
for setting_name in shared.opts.extra_options:
with FormColumn():
comp = ui_settings.create_setting_component(setting_name)
self.comps.append(comp)
self.setting_names.append(setting_name)
def get_settings_values():
return [ui_settings.get_value_for_setting(key) for key in self.setting_names]
interface.load(fn=get_settings_values, inputs=[], outputs=self.comps, queue=False, show_progress=False)
return self.comps
def before_process(self, p, *args):
for name, value in zip(self.setting_names, args):
if name not in p.override_settings:
p.override_settings[name] = value
shared.options_templates.update(shared.options_section(('ui', "User interface"), {
"extra_options": shared.OptionInfo([], "Options in main UI", ui_components.DropdownMulti, lambda: {"choices": list(shared.opts.data_labels.keys())}).js("info", "settingsHintsShowQuicksettings").info("setting entries that also appear in txt2img/img2img interfaces").needs_restart(),
"extra_options_accordion": shared.OptionInfo(False, "Place options in main UI into an accordion")
}))

View File

@ -1,4 +1,4 @@
<div class='card' style={style} onclick={card_clicked}> <div class='card' style={style} onclick={card_clicked} {sort_keys}>
{background_image} {background_image}
{metadata_button} {metadata_button}
<div class='actions'> <div class='actions'>

View File

@ -1,10 +1,12 @@
<div> <div>
<a href="/docs">API</a> <a href="{api_docs}">API</a>
 •   • 
<a href="https://github.com/AUTOMATIC1111/stable-diffusion-webui">Github</a> <a href="https://github.com/AUTOMATIC1111/stable-diffusion-webui">Github</a>
 •   • 
<a href="https://gradio.app">Gradio</a> <a href="https://gradio.app">Gradio</a>
 •   • 
<a href="#" onclick="showProfile('./internal/profile-startup'); return false;">Startup profile</a>
 • 
<a href="/" onclick="javascript:gradioApp().getElementById('settings_restart_gradio').click(); return false">Reload UI</a> <a href="/" onclick="javascript:gradioApp().getElementById('settings_restart_gradio').click(); return false">Reload UI</a>
</div> </div>
<br /> <br />

View File

@ -81,7 +81,7 @@ function dimensionChange(e, is_width, is_height) {
} }
onUiUpdate(function() { onAfterUiUpdate(function() {
var arPreviewRect = gradioApp().querySelector('#imageARPreview'); var arPreviewRect = gradioApp().querySelector('#imageARPreview');
if (arPreviewRect) { if (arPreviewRect) {
arPreviewRect.style.display = 'none'; arPreviewRect.style.display = 'none';

View File

@ -148,12 +148,18 @@ var addContextMenuEventListener = initResponse[2];
500); 500);
}; };
appendContextMenuOption('#txt2img_generate', 'Generate forever', function() { let generateOnRepeat_txt2img = function() {
generateOnRepeat('#txt2img_generate', '#txt2img_interrupt'); generateOnRepeat('#txt2img_generate', '#txt2img_interrupt');
}); };
appendContextMenuOption('#img2img_generate', 'Generate forever', function() {
let generateOnRepeat_img2img = function() {
generateOnRepeat('#img2img_generate', '#img2img_interrupt'); generateOnRepeat('#img2img_generate', '#img2img_interrupt');
}); };
appendContextMenuOption('#txt2img_generate', 'Generate forever', generateOnRepeat_txt2img);
appendContextMenuOption('#txt2img_interrupt', 'Generate forever', generateOnRepeat_txt2img);
appendContextMenuOption('#img2img_generate', 'Generate forever', generateOnRepeat_img2img);
appendContextMenuOption('#img2img_interrupt', 'Generate forever', generateOnRepeat_img2img);
let cancelGenerateForever = function() { let cancelGenerateForever = function() {
clearInterval(window.generateOnRepeatInterval); clearInterval(window.generateOnRepeatInterval);
@ -167,6 +173,4 @@ var addContextMenuEventListener = initResponse[2];
})(); })();
//End example Context Menu Items //End example Context Menu Items
onUiUpdate(function() { onAfterUiUpdate(addContextMenuEventListener);
addContextMenuEventListener();
});

View File

@ -48,12 +48,27 @@ function dropReplaceImage(imgWrap, files) {
} }
} }
function eventHasFiles(e) {
if (!e.dataTransfer || !e.dataTransfer.files) return false;
if (e.dataTransfer.files.length > 0) return true;
if (e.dataTransfer.items.length > 0 && e.dataTransfer.items[0].kind == "file") return true;
return false;
}
function dragDropTargetIsPrompt(target) {
if (target?.placeholder && target?.placeholder.indexOf("Prompt") >= 0) return true;
if (target?.parentNode?.parentNode?.className?.indexOf("prompt") > 0) return true;
return false;
}
window.document.addEventListener('dragover', e => { window.document.addEventListener('dragover', e => {
const target = e.composedPath()[0]; const target = e.composedPath()[0];
const imgWrap = target.closest('[data-testid="image"]'); if (!eventHasFiles(e)) return;
if (!imgWrap && target.placeholder && target.placeholder.indexOf("Prompt") == -1) {
return; var targetImage = target.closest('[data-testid="image"]');
} if (!dragDropTargetIsPrompt(target) && !targetImage) return;
e.stopPropagation(); e.stopPropagation();
e.preventDefault(); e.preventDefault();
e.dataTransfer.dropEffect = 'copy'; e.dataTransfer.dropEffect = 'copy';
@ -61,17 +76,31 @@ window.document.addEventListener('dragover', e => {
window.document.addEventListener('drop', e => { window.document.addEventListener('drop', e => {
const target = e.composedPath()[0]; const target = e.composedPath()[0];
if (target.placeholder.indexOf("Prompt") == -1) { if (!eventHasFiles(e)) return;
if (dragDropTargetIsPrompt(target)) {
e.stopPropagation();
e.preventDefault();
let prompt_target = get_tab_index('tabs') == 1 ? "img2img_prompt_image" : "txt2img_prompt_image";
const imgParent = gradioApp().getElementById(prompt_target);
const files = e.dataTransfer.files;
const fileInput = imgParent.querySelector('input[type="file"]');
if (fileInput) {
fileInput.files = files;
fileInput.dispatchEvent(new Event('change'));
}
}
var targetImage = target.closest('[data-testid="image"]');
if (targetImage) {
e.stopPropagation();
e.preventDefault();
const files = e.dataTransfer.files;
dropReplaceImage(targetImage, files);
return; return;
} }
const imgWrap = target.closest('[data-testid="image"]');
if (!imgWrap) {
return;
}
e.stopPropagation();
e.preventDefault();
const files = e.dataTransfer.files;
dropReplaceImage(imgWrap, files);
}); });
window.addEventListener('paste', e => { window.addEventListener('paste', e => {

View File

@ -100,11 +100,12 @@ function keyupEditAttention(event) {
if (String(weight).length == 1) weight += ".0"; if (String(weight).length == 1) weight += ".0";
if (closeCharacter == ')' && weight == 1) { if (closeCharacter == ')' && weight == 1) {
text = text.slice(0, selectionStart - 1) + text.slice(selectionStart, selectionEnd) + text.slice(selectionEnd + 5); var endParenPos = text.substring(selectionEnd).indexOf(')');
text = text.slice(0, selectionStart - 1) + text.slice(selectionStart, selectionEnd) + text.slice(selectionEnd + endParenPos + 1);
selectionStart--; selectionStart--;
selectionEnd--; selectionEnd--;
} else { } else {
text = text.slice(0, selectionEnd + 1) + weight + text.slice(selectionEnd + 1 + end - 1); text = text.slice(0, selectionEnd + 1) + weight + text.slice(selectionEnd + end);
} }
target.focus(); target.focus();

View File

@ -72,3 +72,21 @@ function config_state_confirm_restore(_, config_state_name, config_restore_type)
} }
return [confirmed, config_state_name, config_restore_type]; return [confirmed, config_state_name, config_restore_type];
} }
function toggle_all_extensions(event) {
gradioApp().querySelectorAll('#extensions .extension_toggle').forEach(function(checkbox_el) {
checkbox_el.checked = event.target.checked;
});
}
function toggle_extension() {
let all_extensions_toggled = true;
for (const checkbox_el of gradioApp().querySelectorAll('#extensions .extension_toggle')) {
if (!checkbox_el.checked) {
all_extensions_toggled = false;
break;
}
}
gradioApp().querySelector('#extensions .all_extensions_toggle').checked = all_extensions_toggled;
}

View File

@ -3,10 +3,17 @@ function setupExtraNetworksForTab(tabname) {
var tabs = gradioApp().querySelector('#' + tabname + '_extra_tabs > div'); var tabs = gradioApp().querySelector('#' + tabname + '_extra_tabs > div');
var search = gradioApp().querySelector('#' + tabname + '_extra_search textarea'); var search = gradioApp().querySelector('#' + tabname + '_extra_search textarea');
var sort = gradioApp().getElementById(tabname + '_extra_sort');
var sortOrder = gradioApp().getElementById(tabname + '_extra_sortorder');
var refresh = gradioApp().getElementById(tabname + '_extra_refresh'); var refresh = gradioApp().getElementById(tabname + '_extra_refresh');
search.classList.add('search'); search.classList.add('search');
sort.classList.add('sort');
sortOrder.classList.add('sortorder');
sort.dataset.sortkey = 'sortDefault';
tabs.appendChild(search); tabs.appendChild(search);
tabs.appendChild(sort);
tabs.appendChild(sortOrder);
tabs.appendChild(refresh); tabs.appendChild(refresh);
var applyFilter = function() { var applyFilter = function() {
@ -26,8 +33,51 @@ function setupExtraNetworksForTab(tabname) {
}); });
}; };
var applySort = function() {
var reverse = sortOrder.classList.contains("sortReverse");
var sortKey = sort.querySelector("input").value.toLowerCase().replace("sort", "").replaceAll(" ", "_").replace(/_+$/, "").trim();
sortKey = sortKey ? "sort" + sortKey.charAt(0).toUpperCase() + sortKey.slice(1) : "";
var sortKeyStore = sortKey ? sortKey + (reverse ? "Reverse" : "") : "";
if (!sortKey || sortKeyStore == sort.dataset.sortkey) {
return;
}
sort.dataset.sortkey = sortKeyStore;
var cards = gradioApp().querySelectorAll('#' + tabname + '_extra_tabs div.card');
cards.forEach(function(card) {
card.originalParentElement = card.parentElement;
});
var sortedCards = Array.from(cards);
sortedCards.sort(function(cardA, cardB) {
var a = cardA.dataset[sortKey];
var b = cardB.dataset[sortKey];
if (!isNaN(a) && !isNaN(b)) {
return parseInt(a) - parseInt(b);
}
return (a < b ? -1 : (a > b ? 1 : 0));
});
if (reverse) {
sortedCards.reverse();
}
cards.forEach(function(card) {
card.remove();
});
sortedCards.forEach(function(card) {
card.originalParentElement.appendChild(card);
});
};
search.addEventListener("input", applyFilter); search.addEventListener("input", applyFilter);
applyFilter(); applyFilter();
["change", "blur", "click"].forEach(function(evt) {
sort.querySelector("input").addEventListener(evt, applySort);
});
sortOrder.addEventListener("click", function() {
sortOrder.classList.toggle("sortReverse");
applySort();
});
extraNetworksApplyFilter[tabname] = applyFilter; extraNetworksApplyFilter[tabname] = applyFilter;
} }

View File

@ -1,7 +1,7 @@
// attaches listeners to the txt2img and img2img galleries to update displayed generation param text when the image changes // attaches listeners to the txt2img and img2img galleries to update displayed generation param text when the image changes
let txt2img_gallery, img2img_gallery, modal = undefined; let txt2img_gallery, img2img_gallery, modal = undefined;
onUiUpdate(function() { onAfterUiUpdate(function() {
if (!txt2img_gallery) { if (!txt2img_gallery) {
txt2img_gallery = attachGalleryListeners("txt2img"); txt2img_gallery = attachGalleryListeners("txt2img");
} }

View File

@ -15,7 +15,7 @@ var titles = {
"CFG Scale": "Classifier Free Guidance Scale - how strongly the image should conform to prompt - lower values produce more creative results", "CFG Scale": "Classifier Free Guidance Scale - how strongly the image should conform to prompt - lower values produce more creative results",
"Seed": "A value that determines the output of random number generator - if you create an image with same parameters and seed as another image, you'll get the same result", "Seed": "A value that determines the output of random number generator - if you create an image with same parameters and seed as another image, you'll get the same result",
"\u{1f3b2}\ufe0f": "Set seed to -1, which will cause a new random number to be used every time", "\u{1f3b2}\ufe0f": "Set seed to -1, which will cause a new random number to be used every time",
"\u267b\ufe0f": "Reuse seed from last generation, mostly useful if it was randomed", "\u267b\ufe0f": "Reuse seed from last generation, mostly useful if it was randomized",
"\u2199\ufe0f": "Read generation parameters from prompt or last generation if prompt is empty into user interface.", "\u2199\ufe0f": "Read generation parameters from prompt or last generation if prompt is empty into user interface.",
"\u{1f4c2}": "Open images output directory", "\u{1f4c2}": "Open images output directory",
"\u{1f4be}": "Save style", "\u{1f4be}": "Save style",
@ -112,21 +112,29 @@ var titles = {
"Resize height to": "Resizes image to this height. If 0, height is inferred from either of two nearby sliders.", "Resize height to": "Resizes image to this height. If 0, height is inferred from either of two nearby sliders.",
"Multiplier for extra networks": "When adding extra network such as Hypernetwork or Lora to prompt, use this multiplier for it.", "Multiplier for extra networks": "When adding extra network such as Hypernetwork or Lora to prompt, use this multiplier for it.",
"Discard weights with matching name": "Regular expression; if weights's name matches it, the weights is not written to the resulting checkpoint. Use ^model_ema to discard EMA weights.", "Discard weights with matching name": "Regular expression; if weights's name matches it, the weights is not written to the resulting checkpoint. Use ^model_ema to discard EMA weights.",
"Extra networks tab order": "Comma-separated list of tab names; tabs listed here will appear in the extra networks UI first and in order lsited.", "Extra networks tab order": "Comma-separated list of tab names; tabs listed here will appear in the extra networks UI first and in order listed.",
"Negative Guidance minimum sigma": "Skip negative prompt for steps where image is already mostly denoised; the higher this value, the more skips there will be; provides increased performance in exchange for minor quality reduction." "Negative Guidance minimum sigma": "Skip negative prompt for steps where image is already mostly denoised; the higher this value, the more skips there will be; provides increased performance in exchange for minor quality reduction."
}; };
function updateTooltipForSpan(span) { function updateTooltip(element) {
if (span.title) return; // already has a title if (element.title) return; // already has a title
let tooltip = localization[titles[span.textContent]] || titles[span.textContent]; let text = element.textContent;
let tooltip = localization[titles[text]] || titles[text];
if (!tooltip) { if (!tooltip) {
tooltip = localization[titles[span.value]] || titles[span.value]; let value = element.value;
if (value) tooltip = localization[titles[value]] || titles[value];
} }
if (!tooltip) { if (!tooltip) {
for (const c of span.classList) { // Gradio dropdown options have `data-value`.
let dataValue = element.dataset.value;
if (dataValue) tooltip = localization[titles[dataValue]] || titles[dataValue];
}
if (!tooltip) {
for (const c of element.classList) {
if (c in titles) { if (c in titles) {
tooltip = localization[titles[c]] || titles[c]; tooltip = localization[titles[c]] || titles[c];
break; break;
@ -135,34 +143,53 @@ function updateTooltipForSpan(span) {
} }
if (tooltip) { if (tooltip) {
span.title = tooltip; element.title = tooltip;
} }
} }
function updateTooltipForSelect(select) { // Nodes to check for adding tooltips.
if (select.onchange != null) return; const tooltipCheckNodes = new Set();
// Timer for debouncing tooltip check.
let tooltipCheckTimer = null;
select.onchange = function() { function processTooltipCheckNodes() {
select.title = localization[titles[select.value]] || titles[select.value] || ""; for (const node of tooltipCheckNodes) {
}; updateTooltip(node);
}
tooltipCheckNodes.clear();
} }
var observedTooltipElements = {SPAN: 1, BUTTON: 1, SELECT: 1, P: 1}; onUiUpdate(function(mutationRecords) {
for (const record of mutationRecords) {
onUiUpdate(function(m) { if (record.type === "childList" && record.target.classList.contains("options")) {
m.forEach(function(record) { // This smells like a Gradio dropdown menu having changed,
record.addedNodes.forEach(function(node) { // so let's enqueue an update for the input element that shows the current value.
if (observedTooltipElements[node.tagName]) { let wrap = record.target.parentNode;
updateTooltipForSpan(node); let input = wrap?.querySelector("input");
if (input) {
input.title = ""; // So we'll even have a chance to update it.
tooltipCheckNodes.add(input);
} }
if (node.tagName == "SELECT") { }
updateTooltipForSelect(node); for (const node of record.addedNodes) {
if (node.nodeType === Node.ELEMENT_NODE && !node.classList.contains("hide")) {
if (!node.title) {
if (
node.tagName === "SPAN" ||
node.tagName === "BUTTON" ||
node.tagName === "P" ||
node.tagName === "INPUT" ||
(node.tagName === "LI" && node.classList.contains("item")) // Gradio dropdown item
) {
tooltipCheckNodes.add(node);
}
}
node.querySelectorAll('span, button, p').forEach(n => tooltipCheckNodes.add(n));
} }
}
if (node.querySelectorAll) { }
node.querySelectorAll('span, button, select, p').forEach(updateTooltipForSpan); if (tooltipCheckNodes.size) {
node.querySelectorAll('select').forEach(updateTooltipForSelect); clearTimeout(tooltipCheckTimer);
} tooltipCheckTimer = setTimeout(processTooltipCheckNodes, 1000);
}); }
});
}); });

View File

@ -39,5 +39,5 @@ function imageMaskResize() {
}); });
} }
onUiUpdate(imageMaskResize); onAfterUiUpdate(imageMaskResize);
window.addEventListener('resize', imageMaskResize); window.addEventListener('resize', imageMaskResize);

View File

@ -1,18 +0,0 @@
window.onload = (function() {
window.addEventListener('drop', e => {
const target = e.composedPath()[0];
if (target.placeholder.indexOf("Prompt") == -1) return;
let prompt_target = get_tab_index('tabs') == 1 ? "img2img_prompt_image" : "txt2img_prompt_image";
e.stopPropagation();
e.preventDefault();
const imgParent = gradioApp().getElementById(prompt_target);
const files = e.dataTransfer.files;
const fileInput = imgParent.querySelector('input[type="file"]');
if (fileInput) {
fileInput.files = files;
fileInput.dispatchEvent(new Event('change'));
}
});
});

View File

@ -170,7 +170,7 @@ function modalTileImageToggle(event) {
event.stopPropagation(); event.stopPropagation();
} }
onUiUpdate(function() { onAfterUiUpdate(function() {
var fullImg_preview = gradioApp().querySelectorAll('.gradio-gallery > div > img'); var fullImg_preview = gradioApp().querySelectorAll('.gradio-gallery > div > img');
if (fullImg_preview != null) { if (fullImg_preview != null) {
fullImg_preview.forEach(setupImageForLightbox); fullImg_preview.forEach(setupImageForLightbox);

View File

@ -1,7 +1,9 @@
let gamepads = [];
window.addEventListener('gamepadconnected', (e) => { window.addEventListener('gamepadconnected', (e) => {
const index = e.gamepad.index; const index = e.gamepad.index;
let isWaiting = false; let isWaiting = false;
setInterval(async() => { gamepads[index] = setInterval(async() => {
if (!opts.js_modal_lightbox_gamepad || isWaiting) return; if (!opts.js_modal_lightbox_gamepad || isWaiting) return;
const gamepad = navigator.getGamepads()[index]; const gamepad = navigator.getGamepads()[index];
const xValue = gamepad.axes[0]; const xValue = gamepad.axes[0];
@ -24,6 +26,10 @@ window.addEventListener('gamepadconnected', (e) => {
}, 10); }, 10);
}); });
window.addEventListener('gamepaddisconnected', (e) => {
clearInterval(gamepads[e.gamepad.index]);
});
/* /*
Primarily for vr controller type pointer devices. Primarily for vr controller type pointer devices.
I use the wheel event because there's currently no way to do it properly with web xr. I use the wheel event because there's currently no way to do it properly with web xr.

View File

@ -4,7 +4,7 @@ let lastHeadImg = null;
let notificationButton = null; let notificationButton = null;
onUiUpdate(function() { onAfterUiUpdate(function() {
if (notificationButton == null) { if (notificationButton == null) {
notificationButton = gradioApp().getElementById('request_notifications'); notificationButton = gradioApp().getElementById('request_notifications');

View File

@ -0,0 +1,153 @@
function createRow(table, cellName, items) {
var tr = document.createElement('tr');
var res = [];
items.forEach(function(x, i) {
if (x === undefined) {
res.push(null);
return;
}
var td = document.createElement(cellName);
td.textContent = x;
tr.appendChild(td);
res.push(td);
var colspan = 1;
for (var n = i + 1; n < items.length; n++) {
if (items[n] !== undefined) {
break;
}
colspan += 1;
}
if (colspan > 1) {
td.colSpan = colspan;
}
});
table.appendChild(tr);
return res;
}
function showProfile(path, cutoff = 0.05) {
requestGet(path, {}, function(data) {
var table = document.createElement('table');
table.className = 'popup-table';
data.records['total'] = data.total;
var keys = Object.keys(data.records).sort(function(a, b) {
return data.records[b] - data.records[a];
});
var items = keys.map(function(x) {
return {key: x, parts: x.split('/'), time: data.records[x]};
});
var maxLength = items.reduce(function(a, b) {
return Math.max(a, b.parts.length);
}, 0);
var cols = createRow(table, 'th', ['record', 'seconds']);
cols[0].colSpan = maxLength;
function arraysEqual(a, b) {
return !(a < b || b < a);
}
var addLevel = function(level, parent, hide) {
var matching = items.filter(function(x) {
return x.parts[level] && !x.parts[level + 1] && arraysEqual(x.parts.slice(0, level), parent);
});
var sorted = matching.sort(function(a, b) {
return b.time - a.time;
});
var othersTime = 0;
var othersList = [];
var othersRows = [];
var childrenRows = [];
sorted.forEach(function(x) {
var visible = x.time >= cutoff && !hide;
var cells = [];
for (var i = 0; i < maxLength; i++) {
cells.push(x.parts[i]);
}
cells.push(x.time.toFixed(3));
var cols = createRow(table, 'td', cells);
for (i = 0; i < level; i++) {
cols[i].className = 'muted';
}
var tr = cols[0].parentNode;
if (!visible) {
tr.classList.add("hidden");
}
if (x.time >= cutoff) {
childrenRows.push(tr);
} else {
othersTime += x.time;
othersList.push(x.parts[level]);
othersRows.push(tr);
}
var children = addLevel(level + 1, parent.concat([x.parts[level]]), true);
if (children.length > 0) {
var cell = cols[level];
var onclick = function() {
cell.classList.remove("link");
cell.removeEventListener("click", onclick);
children.forEach(function(x) {
x.classList.remove("hidden");
});
};
cell.classList.add("link");
cell.addEventListener("click", onclick);
}
});
if (othersTime > 0) {
var cells = [];
for (var i = 0; i < maxLength; i++) {
cells.push(parent[i]);
}
cells.push(othersTime.toFixed(3));
cells[level] = 'others';
var cols = createRow(table, 'td', cells);
for (i = 0; i < level; i++) {
cols[i].className = 'muted';
}
var cell = cols[level];
var tr = cell.parentNode;
var onclick = function() {
tr.classList.add("hidden");
cell.classList.remove("link");
cell.removeEventListener("click", onclick);
othersRows.forEach(function(x) {
x.classList.remove("hidden");
});
};
cell.title = othersList.join(", ");
cell.classList.add("link");
cell.addEventListener("click", onclick);
if (hide) {
tr.classList.add("hidden");
}
childrenRows.push(tr);
}
return childrenRows;
};
addLevel(0, []);
popup(table);
});
}

View File

@ -0,0 +1,83 @@
let promptTokenCountDebounceTime = 800;
let promptTokenCountTimeouts = {};
var promptTokenCountUpdateFunctions = {};
function update_txt2img_tokens(...args) {
// Called from Gradio
update_token_counter("txt2img_token_button");
if (args.length == 2) {
return args[0];
}
return args;
}
function update_img2img_tokens(...args) {
// Called from Gradio
update_token_counter("img2img_token_button");
if (args.length == 2) {
return args[0];
}
return args;
}
function update_token_counter(button_id) {
if (opts.disable_token_counters) {
return;
}
if (promptTokenCountTimeouts[button_id]) {
clearTimeout(promptTokenCountTimeouts[button_id]);
}
promptTokenCountTimeouts[button_id] = setTimeout(
() => gradioApp().getElementById(button_id)?.click(),
promptTokenCountDebounceTime,
);
}
function recalculatePromptTokens(name) {
promptTokenCountUpdateFunctions[name]?.();
}
function recalculate_prompts_txt2img() {
// Called from Gradio
recalculatePromptTokens('txt2img_prompt');
recalculatePromptTokens('txt2img_neg_prompt');
return Array.from(arguments);
}
function recalculate_prompts_img2img() {
// Called from Gradio
recalculatePromptTokens('img2img_prompt');
recalculatePromptTokens('img2img_neg_prompt');
return Array.from(arguments);
}
function setupTokenCounting(id, id_counter, id_button) {
var prompt = gradioApp().getElementById(id);
var counter = gradioApp().getElementById(id_counter);
var textarea = gradioApp().querySelector(`#${id} > label > textarea`);
if (opts.disable_token_counters) {
counter.style.display = "none";
return;
}
if (counter.parentElement == prompt.parentElement) {
return;
}
prompt.parentElement.insertBefore(counter, prompt);
prompt.parentElement.style.position = "relative";
promptTokenCountUpdateFunctions[id] = function() {
update_token_counter(id_button);
};
textarea.addEventListener("input", promptTokenCountUpdateFunctions[id]);
}
function setupTokenCounters() {
setupTokenCounting('txt2img_prompt', 'txt2img_token_counter', 'txt2img_token_button');
setupTokenCounting('txt2img_neg_prompt', 'txt2img_negative_token_counter', 'txt2img_negative_token_button');
setupTokenCounting('img2img_prompt', 'img2img_token_counter', 'img2img_token_button');
setupTokenCounting('img2img_neg_prompt', 'img2img_negative_token_counter', 'img2img_negative_token_button');
}

View File

@ -248,29 +248,8 @@ function confirm_clear_prompt(prompt, negative_prompt) {
} }
var promptTokecountUpdateFuncs = {};
function recalculatePromptTokens(name) {
if (promptTokecountUpdateFuncs[name]) {
promptTokecountUpdateFuncs[name]();
}
}
function recalculate_prompts_txt2img() {
recalculatePromptTokens('txt2img_prompt');
recalculatePromptTokens('txt2img_neg_prompt');
return Array.from(arguments);
}
function recalculate_prompts_img2img() {
recalculatePromptTokens('img2img_prompt');
recalculatePromptTokens('img2img_neg_prompt');
return Array.from(arguments);
}
var opts = {}; var opts = {};
onUiUpdate(function() { onAfterUiUpdate(function() {
if (Object.keys(opts).length != 0) return; if (Object.keys(opts).length != 0) return;
var json_elem = gradioApp().getElementById('settings_json'); var json_elem = gradioApp().getElementById('settings_json');
@ -302,28 +281,7 @@ onUiUpdate(function() {
json_elem.parentElement.style.display = "none"; json_elem.parentElement.style.display = "none";
function registerTextarea(id, id_counter, id_button) { setupTokenCounters();
var prompt = gradioApp().getElementById(id);
var counter = gradioApp().getElementById(id_counter);
var textarea = gradioApp().querySelector("#" + id + " > label > textarea");
if (counter.parentElement == prompt.parentElement) {
return;
}
prompt.parentElement.insertBefore(counter, prompt);
prompt.parentElement.style.position = "relative";
promptTokecountUpdateFuncs[id] = function() {
update_token_counter(id_button);
};
textarea.addEventListener("input", promptTokecountUpdateFuncs[id]);
}
registerTextarea('txt2img_prompt', 'txt2img_token_counter', 'txt2img_token_button');
registerTextarea('txt2img_neg_prompt', 'txt2img_negative_token_counter', 'txt2img_negative_token_button');
registerTextarea('img2img_prompt', 'img2img_token_counter', 'img2img_token_button');
registerTextarea('img2img_neg_prompt', 'img2img_negative_token_counter', 'img2img_negative_token_button');
var show_all_pages = gradioApp().getElementById('settings_show_all_pages'); var show_all_pages = gradioApp().getElementById('settings_show_all_pages');
var settings_tabs = gradioApp().querySelector('#settings div'); var settings_tabs = gradioApp().querySelector('#settings div');
@ -354,33 +312,6 @@ onOptionsChanged(function() {
}); });
let txt2img_textarea, img2img_textarea = undefined; let txt2img_textarea, img2img_textarea = undefined;
let wait_time = 800;
let token_timeouts = {};
function update_txt2img_tokens(...args) {
update_token_counter("txt2img_token_button");
if (args.length == 2) {
return args[0];
}
return args;
}
function update_img2img_tokens(...args) {
update_token_counter(
"img2img_token_button"
);
if (args.length == 2) {
return args[0];
}
return args;
}
function update_token_counter(button_id) {
if (token_timeouts[button_id]) {
clearTimeout(token_timeouts[button_id]);
}
token_timeouts[button_id] = setTimeout(() => gradioApp().getElementById(button_id)?.click(), wait_time);
}
function restart_reload() { function restart_reload() {
document.body.innerHTML = '<h1 style="font-family:monospace;margin-top:20%;color:lightgray;text-align:center;">Reloading...</h1>'; document.body.innerHTML = '<h1 style="font-family:monospace;margin-top:20%;color:lightgray;text-align:center;">Reloading...</h1>';

View File

@ -42,7 +42,7 @@ onOptionsChanged(function() {
function settingsHintsShowQuicksettings() { function settingsHintsShowQuicksettings() {
requestGet("./internal/quicksettings-hint", {}, function(data) { requestGet("./internal/quicksettings-hint", {}, function(data) {
var table = document.createElement('table'); var table = document.createElement('table');
table.className = 'settings-value-table'; table.className = 'popup-table';
data.forEach(function(obj) { data.forEach(function(obj) {
var tr = document.createElement('tr'); var tr = document.createElement('tr');

View File

@ -14,7 +14,7 @@ from fastapi.encoders import jsonable_encoder
from secrets import compare_digest from secrets import compare_digest
import modules.shared as shared import modules.shared as shared
from modules import sd_samplers, deepbooru, sd_hijack, images, scripts, ui, postprocessing from modules import sd_samplers, deepbooru, sd_hijack, images, scripts, ui, postprocessing, errors, restart
from modules.api import models from modules.api import models
from modules.shared import opts from modules.shared import opts
from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img, process_images from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img, process_images
@ -22,20 +22,15 @@ from modules.textual_inversion.textual_inversion import create_embedding, train_
from modules.textual_inversion.preprocess import preprocess from modules.textual_inversion.preprocess import preprocess
from modules.hypernetworks.hypernetwork import create_hypernetwork, train_hypernetwork from modules.hypernetworks.hypernetwork import create_hypernetwork, train_hypernetwork
from PIL import PngImagePlugin,Image from PIL import PngImagePlugin,Image
from modules.sd_models import checkpoints_list, unload_model_weights, reload_model_weights from modules.sd_models import checkpoints_list, unload_model_weights, reload_model_weights, checkpoint_alisases
from modules.sd_vae import vae_dict
from modules.sd_models_config import find_checkpoint_config_near_filename from modules.sd_models_config import find_checkpoint_config_near_filename
from modules.realesrgan_model import get_realesrgan_models from modules.realesrgan_model import get_realesrgan_models
from modules import devices from modules import devices
from typing import Dict, List, Any from typing import Dict, List, Any
import piexif import piexif
import piexif.helper import piexif.helper
from contextlib import closing
def upscaler_to_index(name: str):
try:
return [x.name.lower() for x in shared.sd_upscalers].index(name.lower())
except Exception as e:
raise HTTPException(status_code=400, detail=f"Invalid upscaler, needs to be one of these: {' , '.join([x.name for x in shared.sd_upscalers])}") from e
def script_name_to_index(name, scripts): def script_name_to_index(name, scripts):
@ -83,6 +78,8 @@ def encode_pil_to_base64(image):
image.save(output_bytes, format="PNG", pnginfo=(metadata if use_metadata else None), quality=opts.jpeg_quality) image.save(output_bytes, format="PNG", pnginfo=(metadata if use_metadata else None), quality=opts.jpeg_quality)
elif opts.samples_format.lower() in ("jpg", "jpeg", "webp"): elif opts.samples_format.lower() in ("jpg", "jpeg", "webp"):
if image.mode == "RGBA":
image = image.convert("RGB")
parameters = image.info.get('parameters', None) parameters = image.info.get('parameters', None)
exif_bytes = piexif.dump({ exif_bytes = piexif.dump({
"Exif": { piexif.ExifIFD.UserComment: piexif.helper.UserComment.dump(parameters or "", encoding="unicode") } "Exif": { piexif.ExifIFD.UserComment: piexif.helper.UserComment.dump(parameters or "", encoding="unicode") }
@ -108,7 +105,6 @@ def api_middleware(app: FastAPI):
from rich.console import Console from rich.console import Console
console = Console() console = Console()
except Exception: except Exception:
import traceback
rich_available = False rich_available = False
@app.middleware("http") @app.middleware("http")
@ -139,11 +135,12 @@ def api_middleware(app: FastAPI):
"errors": str(e), "errors": str(e),
} }
if not isinstance(e, HTTPException): # do not print backtrace on known httpexceptions if not isinstance(e, HTTPException): # do not print backtrace on known httpexceptions
print(f"API error: {request.method}: {request.url} {err}") message = f"API error: {request.method}: {request.url} {err}"
if rich_available: if rich_available:
print(message)
console.print_exception(show_locals=True, max_frames=2, extra_lines=1, suppress=[anyio, starlette], word_wrap=False, width=min([console.width, 200])) console.print_exception(show_locals=True, max_frames=2, extra_lines=1, suppress=[anyio, starlette], word_wrap=False, width=min([console.width, 200]))
else: else:
traceback.print_exc() errors.report(message, exc_info=True)
return JSONResponse(status_code=vars(e).get('status_code', 500), content=jsonable_encoder(err)) return JSONResponse(status_code=vars(e).get('status_code', 500), content=jsonable_encoder(err))
@app.middleware("http") @app.middleware("http")
@ -188,7 +185,9 @@ class Api:
self.add_api_route("/sdapi/v1/cmd-flags", self.get_cmd_flags, methods=["GET"], response_model=models.FlagsModel) self.add_api_route("/sdapi/v1/cmd-flags", self.get_cmd_flags, methods=["GET"], response_model=models.FlagsModel)
self.add_api_route("/sdapi/v1/samplers", self.get_samplers, methods=["GET"], response_model=List[models.SamplerItem]) self.add_api_route("/sdapi/v1/samplers", self.get_samplers, methods=["GET"], response_model=List[models.SamplerItem])
self.add_api_route("/sdapi/v1/upscalers", self.get_upscalers, methods=["GET"], response_model=List[models.UpscalerItem]) self.add_api_route("/sdapi/v1/upscalers", self.get_upscalers, methods=["GET"], response_model=List[models.UpscalerItem])
self.add_api_route("/sdapi/v1/latent-upscale-modes", self.get_latent_upscale_modes, methods=["GET"], response_model=List[models.LatentUpscalerModeItem])
self.add_api_route("/sdapi/v1/sd-models", self.get_sd_models, methods=["GET"], response_model=List[models.SDModelItem]) self.add_api_route("/sdapi/v1/sd-models", self.get_sd_models, methods=["GET"], response_model=List[models.SDModelItem])
self.add_api_route("/sdapi/v1/sd-vae", self.get_sd_vaes, methods=["GET"], response_model=List[models.SDVaeItem])
self.add_api_route("/sdapi/v1/hypernetworks", self.get_hypernetworks, methods=["GET"], response_model=List[models.HypernetworkItem]) self.add_api_route("/sdapi/v1/hypernetworks", self.get_hypernetworks, methods=["GET"], response_model=List[models.HypernetworkItem])
self.add_api_route("/sdapi/v1/face-restorers", self.get_face_restorers, methods=["GET"], response_model=List[models.FaceRestorerItem]) self.add_api_route("/sdapi/v1/face-restorers", self.get_face_restorers, methods=["GET"], response_model=List[models.FaceRestorerItem])
self.add_api_route("/sdapi/v1/realesrgan-models", self.get_realesrgan_models, methods=["GET"], response_model=List[models.RealesrganItem]) self.add_api_route("/sdapi/v1/realesrgan-models", self.get_realesrgan_models, methods=["GET"], response_model=List[models.RealesrganItem])
@ -206,6 +205,11 @@ class Api:
self.add_api_route("/sdapi/v1/scripts", self.get_scripts_list, methods=["GET"], response_model=models.ScriptsList) self.add_api_route("/sdapi/v1/scripts", self.get_scripts_list, methods=["GET"], response_model=models.ScriptsList)
self.add_api_route("/sdapi/v1/script-info", self.get_script_info, methods=["GET"], response_model=List[models.ScriptInfo]) self.add_api_route("/sdapi/v1/script-info", self.get_script_info, methods=["GET"], response_model=List[models.ScriptInfo])
if shared.cmd_opts.api_server_stop:
self.add_api_route("/sdapi/v1/server-kill", self.kill_webui, methods=["POST"])
self.add_api_route("/sdapi/v1/server-restart", self.restart_webui, methods=["POST"])
self.add_api_route("/sdapi/v1/server-stop", self.stop_webui, methods=["POST"])
self.default_script_arg_txt2img = [] self.default_script_arg_txt2img = []
self.default_script_arg_img2img = [] self.default_script_arg_img2img = []
@ -278,7 +282,7 @@ class Api:
script_args[0] = selectable_idx + 1 script_args[0] = selectable_idx + 1
# Now check for always on scripts # Now check for always on scripts
if request.alwayson_scripts and (len(request.alwayson_scripts) > 0): if request.alwayson_scripts:
for alwayson_script_name in request.alwayson_scripts.keys(): for alwayson_script_name in request.alwayson_scripts.keys():
alwayson_script = self.get_script(alwayson_script_name, script_runner) alwayson_script = self.get_script(alwayson_script_name, script_runner)
if alwayson_script is None: if alwayson_script is None:
@ -321,19 +325,19 @@ class Api:
args.pop('save_images', None) args.pop('save_images', None)
with self.queue_lock: with self.queue_lock:
p = StableDiffusionProcessingTxt2Img(sd_model=shared.sd_model, **args) with closing(StableDiffusionProcessingTxt2Img(sd_model=shared.sd_model, **args)) as p:
p.scripts = script_runner p.scripts = script_runner
p.outpath_grids = opts.outdir_txt2img_grids p.outpath_grids = opts.outdir_txt2img_grids
p.outpath_samples = opts.outdir_txt2img_samples p.outpath_samples = opts.outdir_txt2img_samples
shared.state.begin() shared.state.begin(job="scripts_txt2img")
if selectable_scripts is not None: if selectable_scripts is not None:
p.script_args = script_args p.script_args = script_args
processed = scripts.scripts_txt2img.run(p, *p.script_args) # Need to pass args as list here processed = scripts.scripts_txt2img.run(p, *p.script_args) # Need to pass args as list here
else: else:
p.script_args = tuple(script_args) # Need to pass args as tuple here p.script_args = tuple(script_args) # Need to pass args as tuple here
processed = process_images(p) processed = process_images(p)
shared.state.end() shared.state.end()
b64images = list(map(encode_pil_to_base64, processed.images)) if send_images else [] b64images = list(map(encode_pil_to_base64, processed.images)) if send_images else []
@ -377,20 +381,20 @@ class Api:
args.pop('save_images', None) args.pop('save_images', None)
with self.queue_lock: with self.queue_lock:
p = StableDiffusionProcessingImg2Img(sd_model=shared.sd_model, **args) with closing(StableDiffusionProcessingImg2Img(sd_model=shared.sd_model, **args)) as p:
p.init_images = [decode_base64_to_image(x) for x in init_images] p.init_images = [decode_base64_to_image(x) for x in init_images]
p.scripts = script_runner p.scripts = script_runner
p.outpath_grids = opts.outdir_img2img_grids p.outpath_grids = opts.outdir_img2img_grids
p.outpath_samples = opts.outdir_img2img_samples p.outpath_samples = opts.outdir_img2img_samples
shared.state.begin() shared.state.begin(job="scripts_img2img")
if selectable_scripts is not None: if selectable_scripts is not None:
p.script_args = script_args p.script_args = script_args
processed = scripts.scripts_img2img.run(p, *p.script_args) # Need to pass args as list here processed = scripts.scripts_img2img.run(p, *p.script_args) # Need to pass args as list here
else: else:
p.script_args = tuple(script_args) # Need to pass args as tuple here p.script_args = tuple(script_args) # Need to pass args as tuple here
processed = process_images(p) processed = process_images(p)
shared.state.end() shared.state.end()
b64images = list(map(encode_pil_to_base64, processed.images)) if send_images else [] b64images = list(map(encode_pil_to_base64, processed.images)) if send_images else []
@ -514,6 +518,10 @@ class Api:
return options return options
def set_config(self, req: Dict[str, Any]): def set_config(self, req: Dict[str, Any]):
checkpoint_name = req.get("sd_model_checkpoint", None)
if checkpoint_name is not None and checkpoint_name not in checkpoint_alisases:
raise RuntimeError(f"model {checkpoint_name!r} not found")
for k, v in req.items(): for k, v in req.items():
shared.opts.set(k, v) shared.opts.set(k, v)
@ -538,9 +546,20 @@ class Api:
for upscaler in shared.sd_upscalers for upscaler in shared.sd_upscalers
] ]
def get_latent_upscale_modes(self):
return [
{
"name": upscale_mode,
}
for upscale_mode in [*(shared.latent_upscale_modes or {})]
]
def get_sd_models(self): def get_sd_models(self):
return [{"title": x.title, "model_name": x.model_name, "hash": x.shorthash, "sha256": x.sha256, "filename": x.filename, "config": find_checkpoint_config_near_filename(x)} for x in checkpoints_list.values()] return [{"title": x.title, "model_name": x.model_name, "hash": x.shorthash, "sha256": x.sha256, "filename": x.filename, "config": find_checkpoint_config_near_filename(x)} for x in checkpoints_list.values()]
def get_sd_vaes(self):
return [{"model_name": x, "filename": vae_dict[x]} for x in vae_dict.keys()]
def get_hypernetworks(self): def get_hypernetworks(self):
return [{"name": name, "path": shared.hypernetworks[name]} for name in shared.hypernetworks] return [{"name": name, "path": shared.hypernetworks[name]} for name in shared.hypernetworks]
@ -583,44 +602,42 @@ class Api:
def create_embedding(self, args: dict): def create_embedding(self, args: dict):
try: try:
shared.state.begin() shared.state.begin(job="create_embedding")
filename = create_embedding(**args) # create empty embedding filename = create_embedding(**args) # create empty embedding
sd_hijack.model_hijack.embedding_db.load_textual_inversion_embeddings() # reload embeddings so new one can be immediately used sd_hijack.model_hijack.embedding_db.load_textual_inversion_embeddings() # reload embeddings so new one can be immediately used
shared.state.end()
return models.CreateResponse(info=f"create embedding filename: {filename}") return models.CreateResponse(info=f"create embedding filename: {filename}")
except AssertionError as e: except AssertionError as e:
shared.state.end()
return models.TrainResponse(info=f"create embedding error: {e}") return models.TrainResponse(info=f"create embedding error: {e}")
finally:
shared.state.end()
def create_hypernetwork(self, args: dict): def create_hypernetwork(self, args: dict):
try: try:
shared.state.begin() shared.state.begin(job="create_hypernetwork")
filename = create_hypernetwork(**args) # create empty embedding filename = create_hypernetwork(**args) # create empty embedding
shared.state.end()
return models.CreateResponse(info=f"create hypernetwork filename: {filename}") return models.CreateResponse(info=f"create hypernetwork filename: {filename}")
except AssertionError as e: except AssertionError as e:
shared.state.end()
return models.TrainResponse(info=f"create hypernetwork error: {e}") return models.TrainResponse(info=f"create hypernetwork error: {e}")
finally:
shared.state.end()
def preprocess(self, args: dict): def preprocess(self, args: dict):
try: try:
shared.state.begin() shared.state.begin(job="preprocess")
preprocess(**args) # quick operation unless blip/booru interrogation is enabled preprocess(**args) # quick operation unless blip/booru interrogation is enabled
shared.state.end() shared.state.end()
return models.PreprocessResponse(info = 'preprocess complete') return models.PreprocessResponse(info='preprocess complete')
except KeyError as e: except KeyError as e:
shared.state.end()
return models.PreprocessResponse(info=f"preprocess error: invalid token: {e}") return models.PreprocessResponse(info=f"preprocess error: invalid token: {e}")
except AssertionError as e: except Exception as e:
shared.state.end()
return models.PreprocessResponse(info=f"preprocess error: {e}") return models.PreprocessResponse(info=f"preprocess error: {e}")
except FileNotFoundError as e: finally:
shared.state.end() shared.state.end()
return models.PreprocessResponse(info=f'preprocess error: {e}')
def train_embedding(self, args: dict): def train_embedding(self, args: dict):
try: try:
shared.state.begin() shared.state.begin(job="train_embedding")
apply_optimizations = shared.opts.training_xattention_optimizations apply_optimizations = shared.opts.training_xattention_optimizations
error = None error = None
filename = '' filename = ''
@ -633,15 +650,15 @@ class Api:
finally: finally:
if not apply_optimizations: if not apply_optimizations:
sd_hijack.apply_optimizations() sd_hijack.apply_optimizations()
shared.state.end()
return models.TrainResponse(info=f"train embedding complete: filename: {filename} error: {error}") return models.TrainResponse(info=f"train embedding complete: filename: {filename} error: {error}")
except AssertionError as msg: except Exception as msg:
shared.state.end()
return models.TrainResponse(info=f"train embedding error: {msg}") return models.TrainResponse(info=f"train embedding error: {msg}")
finally:
shared.state.end()
def train_hypernetwork(self, args: dict): def train_hypernetwork(self, args: dict):
try: try:
shared.state.begin() shared.state.begin(job="train_hypernetwork")
shared.loaded_hypernetworks = [] shared.loaded_hypernetworks = []
apply_optimizations = shared.opts.training_xattention_optimizations apply_optimizations = shared.opts.training_xattention_optimizations
error = None error = None
@ -659,9 +676,10 @@ class Api:
sd_hijack.apply_optimizations() sd_hijack.apply_optimizations()
shared.state.end() shared.state.end()
return models.TrainResponse(info=f"train embedding complete: filename: {filename} error: {error}") return models.TrainResponse(info=f"train embedding complete: filename: {filename} error: {error}")
except AssertionError: except Exception as exc:
return models.TrainResponse(info=f"train embedding error: {exc}")
finally:
shared.state.end() shared.state.end()
return models.TrainResponse(info=f"train embedding error: {error}")
def get_memory(self): def get_memory(self):
try: try:
@ -700,4 +718,16 @@ class Api:
def launch(self, server_name, port): def launch(self, server_name, port):
self.app.include_router(self.router) self.app.include_router(self.router)
uvicorn.run(self.app, host=server_name, port=port) uvicorn.run(self.app, host=server_name, port=port, timeout_keep_alive=0)
def kill_webui(self):
restart.stop_program()
def restart_webui(self):
if restart.is_restartable():
restart.restart_program()
return Response(status_code=501)
def stop_webui(request):
shared.state.server_command = "stop"
return Response("Stopping.")

View File

@ -241,6 +241,9 @@ class UpscalerItem(BaseModel):
model_url: Optional[str] = Field(title="URL") model_url: Optional[str] = Field(title="URL")
scale: Optional[float] = Field(title="Scale") scale: Optional[float] = Field(title="Scale")
class LatentUpscalerModeItem(BaseModel):
name: str = Field(title="Name")
class SDModelItem(BaseModel): class SDModelItem(BaseModel):
title: str = Field(title="Title") title: str = Field(title="Title")
model_name: str = Field(title="Model Name") model_name: str = Field(title="Model Name")
@ -249,6 +252,10 @@ class SDModelItem(BaseModel):
filename: str = Field(title="Filename") filename: str = Field(title="Filename")
config: Optional[str] = Field(title="Config file") config: Optional[str] = Field(title="Config file")
class SDVaeItem(BaseModel):
model_name: str = Field(title="Model Name")
filename: str = Field(title="Filename")
class HypernetworkItem(BaseModel): class HypernetworkItem(BaseModel):
name: str = Field(title="Name") name: str = Field(title="Name")
path: Optional[str] = Field(title="Path") path: Optional[str] = Field(title="Path")
@ -267,10 +274,6 @@ class PromptStyleItem(BaseModel):
prompt: Optional[str] = Field(title="Prompt") prompt: Optional[str] = Field(title="Prompt")
negative_prompt: Optional[str] = Field(title="Negative Prompt") negative_prompt: Optional[str] = Field(title="Negative Prompt")
class ArtistItem(BaseModel):
name: str = Field(title="Name")
score: float = Field(title="Score")
category: str = Field(title="Category")
class EmbeddingItem(BaseModel): class EmbeddingItem(BaseModel):
step: Optional[int] = Field(title="Step", description="The number of steps that were used to train this embedding, if available") step: Optional[int] = Field(title="Step", description="The number of steps that were used to train this embedding, if available")

View File

@ -1,10 +1,9 @@
from functools import wraps
import html import html
import sys
import threading import threading
import traceback
import time import time
from modules import shared, progress from modules import shared, progress, errors
queue_lock = threading.Lock() queue_lock = threading.Lock()
@ -20,17 +19,18 @@ def wrap_queued_call(func):
def wrap_gradio_gpu_call(func, extra_outputs=None): def wrap_gradio_gpu_call(func, extra_outputs=None):
@wraps(func)
def f(*args, **kwargs): def f(*args, **kwargs):
# if the first argument is a string that says "task(...)", it is treated as a job id # if the first argument is a string that says "task(...)", it is treated as a job id
if len(args) > 0 and type(args[0]) == str and args[0][0:5] == "task(" and args[0][-1] == ")": if args and type(args[0]) == str and args[0].startswith("task(") and args[0].endswith(")"):
id_task = args[0] id_task = args[0]
progress.add_task_to_queue(id_task) progress.add_task_to_queue(id_task)
else: else:
id_task = None id_task = None
with queue_lock: with queue_lock:
shared.state.begin() shared.state.begin(job=id_task)
progress.start_task(id_task) progress.start_task(id_task)
try: try:
@ -47,6 +47,7 @@ def wrap_gradio_gpu_call(func, extra_outputs=None):
def wrap_gradio_call(func, extra_outputs=None, add_stats=False): def wrap_gradio_call(func, extra_outputs=None, add_stats=False):
@wraps(func)
def f(*args, extra_outputs_array=extra_outputs, **kwargs): def f(*args, extra_outputs_array=extra_outputs, **kwargs):
run_memmon = shared.opts.memmon_poll_rate > 0 and not shared.mem_mon.disabled and add_stats run_memmon = shared.opts.memmon_poll_rate > 0 and not shared.mem_mon.disabled and add_stats
if run_memmon: if run_memmon:
@ -56,16 +57,14 @@ def wrap_gradio_call(func, extra_outputs=None, add_stats=False):
try: try:
res = list(func(*args, **kwargs)) res = list(func(*args, **kwargs))
except Exception as e: except Exception as e:
# When printing out our debug argument list, do not print out more than a MB of text # When printing out our debug argument list,
max_debug_str_len = 131072 # (1024*1024)/8 # do not print out more than a 100 KB of text
max_debug_str_len = 131072
print("Error completing request", file=sys.stderr) message = "Error completing request"
argStr = f"Arguments: {args} {kwargs}" arg_str = f"Arguments: {args} {kwargs}"[:max_debug_str_len]
print(argStr[:max_debug_str_len], file=sys.stderr) if len(arg_str) > max_debug_str_len:
if len(argStr) > max_debug_str_len: arg_str += f" (Argument list truncated at {max_debug_str_len}/{len(arg_str)} characters)"
print(f"(Argument list truncated at {max_debug_str_len}/{len(argStr)} characters)", file=sys.stderr) errors.report(f"{message}\n{arg_str}", exc_info=True)
print(traceback.format_exc(), file=sys.stderr)
shared.state.job = "" shared.state.job = ""
shared.state.job_count = 0 shared.state.job_count = 0
@ -108,4 +107,3 @@ def wrap_gradio_call(func, extra_outputs=None, add_stats=False):
return tuple(res) return tuple(res)
return f return f

View File

@ -11,7 +11,7 @@ parser.add_argument("--skip-python-version-check", action='store_true', help="la
parser.add_argument("--skip-torch-cuda-test", action='store_true', help="launch.py argument: do not check if CUDA is able to work properly") parser.add_argument("--skip-torch-cuda-test", action='store_true', help="launch.py argument: do not check if CUDA is able to work properly")
parser.add_argument("--reinstall-xformers", action='store_true', help="launch.py argument: install the appropriate version of xformers even if you have some version already installed") parser.add_argument("--reinstall-xformers", action='store_true', help="launch.py argument: install the appropriate version of xformers even if you have some version already installed")
parser.add_argument("--reinstall-torch", action='store_true', help="launch.py argument: install the appropriate version of torch even if you have some version already installed") parser.add_argument("--reinstall-torch", action='store_true', help="launch.py argument: install the appropriate version of torch even if you have some version already installed")
parser.add_argument("--update-check", action='store_true', help="launch.py argument: chck for updates at startup") parser.add_argument("--update-check", action='store_true', help="launch.py argument: check for updates at startup")
parser.add_argument("--test-server", action='store_true', help="launch.py argument: configure server for testing") parser.add_argument("--test-server", action='store_true', help="launch.py argument: configure server for testing")
parser.add_argument("--skip-prepare-environment", action='store_true', help="launch.py argument: skip all environment preparation") parser.add_argument("--skip-prepare-environment", action='store_true', help="launch.py argument: skip all environment preparation")
parser.add_argument("--skip-install", action='store_true', help="launch.py argument: skip installation of packages") parser.add_argument("--skip-install", action='store_true', help="launch.py argument: skip installation of packages")
@ -106,4 +106,4 @@ parser.add_argument("--skip-version-check", action='store_true', help="Do not ch
parser.add_argument("--no-hashing", action='store_true', help="disable sha256 hashing of checkpoints to help loading performance", default=False) parser.add_argument("--no-hashing", action='store_true', help="disable sha256 hashing of checkpoints to help loading performance", default=False)
parser.add_argument("--no-download-sd-model", action='store_true', help="don't download SD1.5 model even if no model is found in --ckpt-dir", default=False) parser.add_argument("--no-download-sd-model", action='store_true', help="don't download SD1.5 model even if no model is found in --ckpt-dir", default=False)
parser.add_argument('--subpath', type=str, help='customize the subpath for gradio, use with reverse proxy') parser.add_argument('--subpath', type=str, help='customize the subpath for gradio, use with reverse proxy')
parser.add_argument('--add-stop-route', action='store_true', help='add /_stop route to stop server') parser.add_argument('--api-server-stop', action='store_true', help='enable server stop/restart/kill via api')

View File

@ -1,13 +1,11 @@
import os import os
import sys
import traceback
import cv2 import cv2
import torch import torch
import modules.face_restoration import modules.face_restoration
import modules.shared import modules.shared
from modules import shared, devices, modelloader from modules import shared, devices, modelloader, errors
from modules.paths import models_path from modules.paths import models_path
# codeformer people made a choice to include modified basicsr library to their project which makes # codeformer people made a choice to include modified basicsr library to their project which makes
@ -17,14 +15,11 @@ model_dir = "Codeformer"
model_path = os.path.join(models_path, model_dir) model_path = os.path.join(models_path, model_dir)
model_url = 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/codeformer.pth' model_url = 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/codeformer.pth'
have_codeformer = False
codeformer = None codeformer = None
def setup_model(dirname): def setup_model(dirname):
global model_path os.makedirs(model_path, exist_ok=True)
if not os.path.exists(model_path):
os.makedirs(model_path)
path = modules.paths.paths.get("CodeFormer", None) path = modules.paths.paths.get("CodeFormer", None)
if path is None: if path is None:
@ -105,8 +100,8 @@ def setup_model(dirname):
restored_face = tensor2img(output, rgb2bgr=True, min_max=(-1, 1)) restored_face = tensor2img(output, rgb2bgr=True, min_max=(-1, 1))
del output del output
torch.cuda.empty_cache() torch.cuda.empty_cache()
except Exception as error: except Exception:
print(f'\tFailed inference for CodeFormer: {error}', file=sys.stderr) errors.report('Failed inference for CodeFormer', exc_info=True)
restored_face = tensor2img(cropped_face_t, rgb2bgr=True, min_max=(-1, 1)) restored_face = tensor2img(cropped_face_t, rgb2bgr=True, min_max=(-1, 1))
restored_face = restored_face.astype('uint8') restored_face = restored_face.astype('uint8')
@ -127,15 +122,11 @@ def setup_model(dirname):
return restored_img return restored_img
global have_codeformer
have_codeformer = True
global codeformer global codeformer
codeformer = FaceRestorerCodeFormer(dirname) codeformer = FaceRestorerCodeFormer(dirname)
shared.face_restorers.append(codeformer) shared.face_restorers.append(codeformer)
except Exception: except Exception:
print("Error setting up CodeFormer:", file=sys.stderr) errors.report("Error setting up CodeFormer", exc_info=True)
print(traceback.format_exc(), file=sys.stderr)
# sys.path = stored_sys_path # sys.path = stored_sys_path

View File

@ -3,8 +3,6 @@ Supports saving and restoring webui and extensions from a known working set of c
""" """
import os import os
import sys
import traceback
import json import json
import time import time
import tqdm import tqdm
@ -13,7 +11,7 @@ from datetime import datetime
from collections import OrderedDict from collections import OrderedDict
import git import git
from modules import shared, extensions from modules import shared, extensions, errors
from modules.paths_internal import script_path, config_states_dir from modules.paths_internal import script_path, config_states_dir
@ -53,8 +51,7 @@ def get_webui_config():
if os.path.exists(os.path.join(script_path, ".git")): if os.path.exists(os.path.join(script_path, ".git")):
webui_repo = git.Repo(script_path) webui_repo = git.Repo(script_path)
except Exception: except Exception:
print(f"Error reading webui git info from {script_path}:", file=sys.stderr) errors.report(f"Error reading webui git info from {script_path}", exc_info=True)
print(traceback.format_exc(), file=sys.stderr)
webui_remote = None webui_remote = None
webui_commit_hash = None webui_commit_hash = None
@ -134,8 +131,7 @@ def restore_webui_config(config):
if os.path.exists(os.path.join(script_path, ".git")): if os.path.exists(os.path.join(script_path, ".git")):
webui_repo = git.Repo(script_path) webui_repo = git.Repo(script_path)
except Exception: except Exception:
print(f"Error reading webui git info from {script_path}:", file=sys.stderr) errors.report(f"Error reading webui git info from {script_path}", exc_info=True)
print(traceback.format_exc(), file=sys.stderr)
return return
try: try:
@ -143,8 +139,7 @@ def restore_webui_config(config):
webui_repo.git.reset(webui_commit_hash, hard=True) webui_repo.git.reset(webui_commit_hash, hard=True)
print(f"* Restored webui to commit {webui_commit_hash}.") print(f"* Restored webui to commit {webui_commit_hash}.")
except Exception: except Exception:
print(f"Error restoring webui to commit {webui_commit_hash}:", file=sys.stderr) errors.report(f"Error restoring webui to commit{webui_commit_hash}")
print(traceback.format_exc(), file=sys.stderr)
def restore_extension_config(config): def restore_extension_config(config):

View File

@ -1,5 +1,7 @@
import sys import sys
import contextlib import contextlib
from functools import lru_cache
import torch import torch
from modules import errors from modules import errors
@ -13,13 +15,6 @@ def has_mps() -> bool:
else: else:
return mac_specific.has_mps return mac_specific.has_mps
def extract_device_id(args, name):
for x in range(len(args)):
if name in args[x]:
return args[x + 1]
return None
def get_cuda_device_string(): def get_cuda_device_string():
from modules import shared from modules import shared
@ -154,3 +149,19 @@ def test_for_nans(x, where):
message += " Use --disable-nan-check commandline argument to disable this check." message += " Use --disable-nan-check commandline argument to disable this check."
raise NansException(message) raise NansException(message)
@lru_cache
def first_time_calculation():
"""
just do any calculation with pytorch layers - the first time this is done it allocaltes about 700MB of memory and
spends about 2.7 seconds doing that, at least wih NVidia.
"""
x = torch.zeros((1, 1)).to(device, dtype)
linear = torch.nn.Linear(1, 1).to(device, dtype)
linear(x)
x = torch.zeros((1, 1, 3, 3)).to(device, dtype)
conv2d = torch.nn.Conv2d(1, 1, (3, 3)).to(device, dtype)
conv2d(x)

View File

@ -1,8 +1,42 @@
import sys import sys
import textwrap
import traceback import traceback
exception_records = []
def record_exception():
_, e, tb = sys.exc_info()
if e is None:
return
if exception_records and exception_records[-1] == e:
return
exception_records.append((e, tb))
if len(exception_records) > 5:
exception_records.pop(0)
def report(message: str, *, exc_info: bool = False) -> None:
"""
Print an error message to stderr, with optional traceback.
"""
record_exception()
for line in message.splitlines():
print("***", line, file=sys.stderr)
if exc_info:
print(textwrap.indent(traceback.format_exc(), " "), file=sys.stderr)
print("---", file=sys.stderr)
def print_error_explanation(message): def print_error_explanation(message):
record_exception()
lines = message.strip().split("\n") lines = message.strip().split("\n")
max_len = max([len(x) for x in lines]) max_len = max([len(x) for x in lines])
@ -12,9 +46,15 @@ def print_error_explanation(message):
print('=' * max_len, file=sys.stderr) print('=' * max_len, file=sys.stderr)
def display(e: Exception, task): def display(e: Exception, task, *, full_traceback=False):
record_exception()
print(f"{task or 'error'}: {type(e).__name__}", file=sys.stderr) print(f"{task or 'error'}: {type(e).__name__}", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr) te = traceback.TracebackException.from_exception(e)
if full_traceback:
# include frames leading up to the try-catch block
te.stack = traceback.StackSummary(traceback.extract_stack()[:-2] + te.stack)
print(*te.format(), sep="", file=sys.stderr)
message = str(e) message = str(e)
if "copying a param with shape torch.Size([640, 1024]) from checkpoint, the shape in current model is torch.Size([640, 768])" in message: if "copying a param with shape torch.Size([640, 1024]) from checkpoint, the shape in current model is torch.Size([640, 768])" in message:
@ -28,6 +68,8 @@ already_displayed = {}
def display_once(e: Exception, task): def display_once(e: Exception, task):
record_exception()
if task in already_displayed: if task in already_displayed:
return return

View File

@ -1,15 +1,13 @@
import os import sys
import numpy as np import numpy as np
import torch import torch
from PIL import Image from PIL import Image
from basicsr.utils.download_util import load_file_from_url
import modules.esrgan_model_arch as arch import modules.esrgan_model_arch as arch
from modules import modelloader, images, devices from modules import modelloader, images, devices
from modules.upscaler import Upscaler, UpscalerData
from modules.shared import opts from modules.shared import opts
from modules.upscaler import Upscaler, UpscalerData
def mod2normal(state_dict): def mod2normal(state_dict):
@ -134,7 +132,7 @@ class UpscalerESRGAN(Upscaler):
scaler_data = UpscalerData(self.model_name, self.model_url, self, 4) scaler_data = UpscalerData(self.model_name, self.model_url, self, 4)
scalers.append(scaler_data) scalers.append(scaler_data)
for file in model_paths: for file in model_paths:
if "http" in file: if file.startswith("http"):
name = self.model_name name = self.model_name
else: else:
name = modelloader.friendly_name(file) name = modelloader.friendly_name(file)
@ -143,26 +141,25 @@ class UpscalerESRGAN(Upscaler):
self.scalers.append(scaler_data) self.scalers.append(scaler_data)
def do_upscale(self, img, selected_model): def do_upscale(self, img, selected_model):
model = self.load_model(selected_model) try:
if model is None: model = self.load_model(selected_model)
except Exception as e:
print(f"Unable to load ESRGAN model {selected_model}: {e}", file=sys.stderr)
return img return img
model.to(devices.device_esrgan) model.to(devices.device_esrgan)
img = esrgan_upscale(model, img) img = esrgan_upscale(model, img)
return img return img
def load_model(self, path: str): def load_model(self, path: str):
if "http" in path: if path.startswith("http"):
filename = load_file_from_url( # TODO: this doesn't use `path` at all?
filename = modelloader.load_file_from_url(
url=self.model_url, url=self.model_url,
model_dir=self.model_download_path, model_dir=self.model_download_path,
file_name=f"{self.model_name}.pth", file_name=f"{self.model_name}.pth",
progress=True,
) )
else: else:
filename = path filename = path
if not os.path.exists(filename) or filename is None:
print(f"Unable to load {self.model_path} from {filename}")
return None
state_dict = torch.load(filename, map_location='cpu' if devices.device_esrgan.type == 'mps' else None) state_dict = torch.load(filename, map_location='cpu' if devices.device_esrgan.type == 'mps' else None)

View File

@ -1,17 +1,13 @@
import os import os
import sys
import threading import threading
import traceback
import git from modules import shared, errors
from modules.gitpython_hack import Repo
from modules import shared
from modules.paths_internal import extensions_dir, extensions_builtin_dir, script_path # noqa: F401 from modules.paths_internal import extensions_dir, extensions_builtin_dir, script_path # noqa: F401
extensions = [] extensions = []
if not os.path.exists(extensions_dir): os.makedirs(extensions_dir, exist_ok=True)
os.makedirs(extensions_dir)
def active(): def active():
@ -54,10 +50,9 @@ class Extension:
repo = None repo = None
try: try:
if os.path.exists(os.path.join(self.path, ".git")): if os.path.exists(os.path.join(self.path, ".git")):
repo = git.Repo(self.path) repo = Repo(self.path)
except Exception: except Exception:
print(f"Error reading github repository info from {self.path}:", file=sys.stderr) errors.report(f"Error reading github repository info from {self.path}", exc_info=True)
print(traceback.format_exc(), file=sys.stderr)
if repo is None or repo.bare: if repo is None or repo.bare:
self.remote = None self.remote = None
@ -72,8 +67,8 @@ class Extension:
self.commit_hash = commit.hexsha self.commit_hash = commit.hexsha
self.version = self.commit_hash[:8] self.version = self.commit_hash[:8]
except Exception as ex: except Exception:
print(f"Failed reading extension data from Git repository ({self.name}): {ex}", file=sys.stderr) errors.report(f"Failed reading extension data from Git repository ({self.name})", exc_info=True)
self.remote = None self.remote = None
self.have_info_from_repo = True self.have_info_from_repo = True
@ -94,7 +89,7 @@ class Extension:
return res return res
def check_updates(self): def check_updates(self):
repo = git.Repo(self.path) repo = Repo(self.path)
for fetch in repo.remote().fetch(dry_run=True): for fetch in repo.remote().fetch(dry_run=True):
if fetch.flags != fetch.HEAD_UPTODATE: if fetch.flags != fetch.HEAD_UPTODATE:
self.can_update = True self.can_update = True
@ -116,7 +111,7 @@ class Extension:
self.status = "latest" self.status = "latest"
def fetch_and_reset_hard(self, commit='origin'): def fetch_and_reset_hard(self, commit='origin'):
repo = git.Repo(self.path) repo = Repo(self.path)
# Fix: `error: Your local changes to the following files would be overwritten by merge`, # Fix: `error: Your local changes to the following files would be overwritten by merge`,
# because WSL2 Docker set 755 file permissions instead of 644, this results to the error. # because WSL2 Docker set 755 file permissions instead of 644, this results to the error.
repo.git.fetch(all=True) repo.git.fetch(all=True)

View File

@ -32,6 +32,9 @@ class ExtraNetworkParams:
else: else:
self.positional.append(item) self.positional.append(item)
def __eq__(self, other):
return self.items == other.items
class ExtraNetwork: class ExtraNetwork:
def __init__(self, name): def __init__(self, name):
@ -100,6 +103,9 @@ def activate(p, extra_network_data):
except Exception as e: except Exception as e:
errors.display(e, f"activating extra network {extra_network_name}") errors.display(e, f"activating extra network {extra_network_name}")
if p.scripts is not None:
p.scripts.after_extra_networks_activate(p, batch_number=p.iteration, prompts=p.prompts, seeds=p.seeds, subseeds=p.subseeds, extra_network_data=extra_network_data)
def deactivate(p, extra_network_data): def deactivate(p, extra_network_data):
"""call deactivate for extra networks in extra_network_data in specified order, then call """call deactivate for extra networks in extra_network_data in specified order, then call

View File

@ -9,7 +9,7 @@ class ExtraNetworkHypernet(extra_networks.ExtraNetwork):
def activate(self, p, params_list): def activate(self, p, params_list):
additional = shared.opts.sd_hypernetwork additional = shared.opts.sd_hypernetwork
if additional != "None" and additional in shared.hypernetworks and len([x for x in params_list if x.items[0] == additional]) == 0: if additional != "None" and additional in shared.hypernetworks and not any(x for x in params_list if x.items[0] == additional):
hypernet_prompt_text = f"<hypernet:{additional}:{shared.opts.extra_networks_default_multiplier}>" hypernet_prompt_text = f"<hypernet:{additional}:{shared.opts.extra_networks_default_multiplier}>"
p.all_prompts = [f"{prompt}{hypernet_prompt_text}" for prompt in p.all_prompts] p.all_prompts = [f"{prompt}{hypernet_prompt_text}" for prompt in p.all_prompts]
params_list.append(extra_networks.ExtraNetworkParams(items=[additional, shared.opts.extra_networks_default_multiplier])) params_list.append(extra_networks.ExtraNetworkParams(items=[additional, shared.opts.extra_networks_default_multiplier]))
@ -17,7 +17,7 @@ class ExtraNetworkHypernet(extra_networks.ExtraNetwork):
names = [] names = []
multipliers = [] multipliers = []
for params in params_list: for params in params_list:
assert len(params.items) > 0 assert params.items
names.append(params.items[0]) names.append(params.items[0])
multipliers.append(float(params.items[1]) if len(params.items) > 1 else 1.0) multipliers.append(float(params.items[1]) if len(params.items) > 1 else 1.0)

View File

@ -73,8 +73,7 @@ def to_half(tensor, enable):
def run_modelmerger(id_task, primary_model_name, secondary_model_name, tertiary_model_name, interp_method, multiplier, save_as_half, custom_name, checkpoint_format, config_source, bake_in_vae, discard_weights, save_metadata): def run_modelmerger(id_task, primary_model_name, secondary_model_name, tertiary_model_name, interp_method, multiplier, save_as_half, custom_name, checkpoint_format, config_source, bake_in_vae, discard_weights, save_metadata):
shared.state.begin() shared.state.begin(job="model-merge")
shared.state.job = 'model-merge'
def fail(message): def fail(message):
shared.state.textinfo = message shared.state.textinfo = message

View File

@ -55,7 +55,7 @@ def image_from_url_text(filedata):
if filedata is None: if filedata is None:
return None return None
if type(filedata) == list and len(filedata) > 0 and type(filedata[0]) == dict and filedata[0].get("is_file", False): if type(filedata) == list and filedata and type(filedata[0]) == dict and filedata[0].get("is_file", False):
filedata = filedata[0] filedata = filedata[0]
if type(filedata) == dict and filedata.get("is_file", False): if type(filedata) == dict and filedata.get("is_file", False):
@ -174,31 +174,6 @@ def send_image_and_dimensions(x):
return img, w, h return img, w, h
def find_hypernetwork_key(hypernet_name, hypernet_hash=None):
"""Determines the config parameter name to use for the hypernet based on the parameters in the infotext.
Example: an infotext provides "Hypernet: ke-ta" and "Hypernet hash: 1234abcd". For the "Hypernet" config
parameter this means there should be an entry that looks like "ke-ta-10000(1234abcd)" to set it to.
If the infotext has no hash, then a hypernet with the same name will be selected instead.
"""
hypernet_name = hypernet_name.lower()
if hypernet_hash is not None:
# Try to match the hash in the name
for hypernet_key in shared.hypernetworks.keys():
result = re_hypernet_hash.search(hypernet_key)
if result is not None and result[1] == hypernet_hash:
return hypernet_key
else:
# Fall back to a hypernet with the same name
for hypernet_key in shared.hypernetworks.keys():
if hypernet_key.lower().startswith(hypernet_name):
return hypernet_key
return None
def restore_old_hires_fix_params(res): def restore_old_hires_fix_params(res):
"""for infotexts that specify old First pass size parameter, convert it into """for infotexts that specify old First pass size parameter, convert it into
width, height, and hr scale""" width, height, and hr scale"""
@ -265,19 +240,30 @@ Steps: 20, Sampler: Euler a, CFG scale: 7, Seed: 965400086, Size: 512x512, Model
else: else:
prompt += ("" if prompt == "" else "\n") + line prompt += ("" if prompt == "" else "\n") + line
if shared.opts.infotext_styles != "Ignore":
found_styles, prompt, negative_prompt = shared.prompt_styles.extract_styles_from_prompt(prompt, negative_prompt)
if shared.opts.infotext_styles == "Apply":
res["Styles array"] = found_styles
elif shared.opts.infotext_styles == "Apply if any" and found_styles:
res["Styles array"] = found_styles
res["Prompt"] = prompt res["Prompt"] = prompt
res["Negative prompt"] = negative_prompt res["Negative prompt"] = negative_prompt
for k, v in re_param.findall(lastline): for k, v in re_param.findall(lastline):
if v[0] == '"' and v[-1] == '"': try:
v = unquote(v) if v[0] == '"' and v[-1] == '"':
v = unquote(v)
m = re_imagesize.match(v) m = re_imagesize.match(v)
if m is not None: if m is not None:
res[f"{k}-1"] = m.group(1) res[f"{k}-1"] = m.group(1)
res[f"{k}-2"] = m.group(2) res[f"{k}-2"] = m.group(2)
else: else:
res[k] = v res[k] = v
except Exception:
print(f"Error parsing \"{k}: {v}\"")
# Missing CLIP skip means it was set to 1 (the default) # Missing CLIP skip means it was set to 1 (the default)
if "Clip skip" not in res: if "Clip skip" not in res:
@ -306,18 +292,30 @@ Steps: 20, Sampler: Euler a, CFG scale: 7, Seed: 965400086, Size: 512x512, Model
if "RNG" not in res: if "RNG" not in res:
res["RNG"] = "GPU" res["RNG"] = "GPU"
if "Schedule type" not in res:
res["Schedule type"] = "Automatic"
if "Schedule max sigma" not in res:
res["Schedule max sigma"] = 0
if "Schedule min sigma" not in res:
res["Schedule min sigma"] = 0
if "Schedule rho" not in res:
res["Schedule rho"] = 0
return res return res
settings_map = {}
infotext_to_setting_name_mapping = [ infotext_to_setting_name_mapping = [
('Clip skip', 'CLIP_stop_at_last_layers', ), ('Clip skip', 'CLIP_stop_at_last_layers', ),
('Conditional mask weight', 'inpainting_mask_weight'), ('Conditional mask weight', 'inpainting_mask_weight'),
('Model hash', 'sd_model_checkpoint'), ('Model hash', 'sd_model_checkpoint'),
('ENSD', 'eta_noise_seed_delta'), ('ENSD', 'eta_noise_seed_delta'),
('Schedule type', 'k_sched_type'),
('Schedule max sigma', 'sigma_max'),
('Schedule min sigma', 'sigma_min'),
('Schedule rho', 'rho'),
('Noise multiplier', 'initial_noise_multiplier'), ('Noise multiplier', 'initial_noise_multiplier'),
('Eta', 'eta_ancestral'), ('Eta', 'eta_ancestral'),
('Eta DDIM', 'eta_ddim'), ('Eta DDIM', 'eta_ddim'),
@ -330,6 +328,7 @@ infotext_to_setting_name_mapping = [
('Token merging ratio hr', 'token_merging_ratio_hr'), ('Token merging ratio hr', 'token_merging_ratio_hr'),
('RNG', 'randn_source'), ('RNG', 'randn_source'),
('NGMS', 's_min_uncond'), ('NGMS', 's_min_uncond'),
('Pad conds', 'pad_cond_uncond'),
] ]
@ -421,7 +420,7 @@ def connect_paste(button, paste_fields, input_comp, override_settings_component,
vals_pairs = [f"{k}: {v}" for k, v in vals.items()] vals_pairs = [f"{k}: {v}" for k, v in vals.items()]
return gr.Dropdown.update(value=vals_pairs, choices=vals_pairs, visible=len(vals_pairs) > 0) return gr.Dropdown.update(value=vals_pairs, choices=vals_pairs, visible=bool(vals_pairs))
paste_fields = paste_fields + [(override_settings_component, paste_settings)] paste_fields = paste_fields + [(override_settings_component, paste_settings)]
@ -438,5 +437,3 @@ def connect_paste(button, paste_fields, input_comp, override_settings_component,
outputs=[], outputs=[],
show_progress=False, show_progress=False,
) )

View File

@ -1,12 +1,10 @@
import os import os
import sys
import traceback
import facexlib import facexlib
import gfpgan import gfpgan
import modules.face_restoration import modules.face_restoration
from modules import paths, shared, devices, modelloader from modules import paths, shared, devices, modelloader, errors
model_dir = "GFPGAN" model_dir = "GFPGAN"
user_path = None user_path = None
@ -27,7 +25,7 @@ def gfpgann():
return None return None
models = modelloader.load_models(model_path, model_url, user_path, ext_filter="GFPGAN") models = modelloader.load_models(model_path, model_url, user_path, ext_filter="GFPGAN")
if len(models) == 1 and "http" in models[0]: if len(models) == 1 and models[0].startswith("http"):
model_file = models[0] model_file = models[0]
elif len(models) != 0: elif len(models) != 0:
latest_file = max(models, key=os.path.getctime) latest_file = max(models, key=os.path.getctime)
@ -72,11 +70,8 @@ gfpgan_constructor = None
def setup_model(dirname): def setup_model(dirname):
global model_path
if not os.path.exists(model_path):
os.makedirs(model_path)
try: try:
os.makedirs(model_path, exist_ok=True)
from gfpgan import GFPGANer from gfpgan import GFPGANer
from facexlib import detection, parsing # noqa: F401 from facexlib import detection, parsing # noqa: F401
global user_path global user_path
@ -112,5 +107,4 @@ def setup_model(dirname):
shared.face_restorers.append(FaceRestorerGFPGAN()) shared.face_restorers.append(FaceRestorerGFPGAN())
except Exception: except Exception:
print("Error setting up GFPGAN:", file=sys.stderr) errors.report("Error setting up GFPGAN", exc_info=True)
print(traceback.format_exc(), file=sys.stderr)

42
modules/gitpython_hack.py Normal file
View File

@ -0,0 +1,42 @@
from __future__ import annotations
import io
import subprocess
import git
class Git(git.Git):
"""
Git subclassed to never use persistent processes.
"""
def _get_persistent_cmd(self, attr_name, cmd_name, *args, **kwargs):
raise NotImplementedError(f"Refusing to use persistent process: {attr_name} ({cmd_name} {args} {kwargs})")
def get_object_header(self, ref: str | bytes) -> tuple[str, str, int]:
ret = subprocess.check_output(
[self.GIT_PYTHON_GIT_EXECUTABLE, "cat-file", "--batch-check"],
input=self._prepare_ref(ref),
cwd=self._working_dir,
timeout=2,
)
return self._parse_object_header(ret)
def stream_object_data(self, ref: str) -> tuple[str, str, int, "Git.CatFileContentStream"]:
# Not really streaming, per se; this buffers the entire object in memory.
# Shouldn't be a problem for our use case, since we're only using this for
# object headers (commit objects).
ret = subprocess.check_output(
[self.GIT_PYTHON_GIT_EXECUTABLE, "cat-file", "--batch"],
input=self._prepare_ref(ref),
cwd=self._working_dir,
timeout=30,
)
bio = io.BytesIO(ret)
hexsha, typename, size = self._parse_object_header(bio.readline())
return (hexsha, typename, size, self.CatFileContentStream(size, bio))
class Repo(git.Repo):
GitCommandWrapperType = Git

View File

@ -2,8 +2,6 @@ import datetime
import glob import glob
import html import html
import os import os
import sys
import traceback
import inspect import inspect
import modules.textual_inversion.dataset import modules.textual_inversion.dataset
@ -11,7 +9,7 @@ import torch
import tqdm import tqdm
from einops import rearrange, repeat from einops import rearrange, repeat
from ldm.util import default from ldm.util import default
from modules import devices, processing, sd_models, shared, sd_samplers, hashes, sd_hijack_checkpoint from modules import devices, processing, sd_models, shared, sd_samplers, hashes, sd_hijack_checkpoint, errors
from modules.textual_inversion import textual_inversion, logging from modules.textual_inversion import textual_inversion, logging
from modules.textual_inversion.learn_schedule import LearnRateScheduler from modules.textual_inversion.learn_schedule import LearnRateScheduler
from torch import einsum from torch import einsum
@ -325,17 +323,14 @@ def load_hypernetwork(name):
if path is None: if path is None:
return None return None
hypernetwork = Hypernetwork()
try: try:
hypernetwork = Hypernetwork()
hypernetwork.load(path) hypernetwork.load(path)
return hypernetwork
except Exception: except Exception:
print(f"Error loading hypernetwork {path}", file=sys.stderr) errors.report(f"Error loading hypernetwork {path}", exc_info=True)
print(traceback.format_exc(), file=sys.stderr)
return None return None
return hypernetwork
def load_hypernetworks(names, multipliers=None): def load_hypernetworks(names, multipliers=None):
already_loaded = {} already_loaded = {}
@ -358,17 +353,6 @@ def load_hypernetworks(names, multipliers=None):
shared.loaded_hypernetworks.append(hypernetwork) shared.loaded_hypernetworks.append(hypernetwork)
def find_closest_hypernetwork_name(search: str):
if not search:
return None
search = search.lower()
applicable = [name for name in shared.hypernetworks if search in name.lower()]
if not applicable:
return None
applicable = sorted(applicable, key=lambda name: len(name))
return applicable[0]
def apply_single_hypernetwork(hypernetwork, context_k, context_v, layer=None): def apply_single_hypernetwork(hypernetwork, context_k, context_v, layer=None):
hypernetwork_layers = (hypernetwork.layers if hypernetwork is not None else {}).get(context_k.shape[2], None) hypernetwork_layers = (hypernetwork.layers if hypernetwork is not None else {}).get(context_k.shape[2], None)
@ -451,18 +435,6 @@ def statistics(data):
return total_information, recent_information return total_information, recent_information
def report_statistics(loss_info:dict):
keys = sorted(loss_info.keys(), key=lambda x: sum(loss_info[x]) / len(loss_info[x]))
for key in keys:
try:
print("Loss statistics for file " + key)
info, recent = statistics(list(loss_info[key]))
print(info)
print(recent)
except Exception as e:
print(e)
def create_hypernetwork(name, enable_sizes, overwrite_old, layer_structure=None, activation_func=None, weight_init=None, add_layer_norm=False, use_dropout=False, dropout_structure=None): def create_hypernetwork(name, enable_sizes, overwrite_old, layer_structure=None, activation_func=None, weight_init=None, add_layer_norm=False, use_dropout=False, dropout_structure=None):
# Remove illegal characters from name. # Remove illegal characters from name.
name = "".join( x for x in name if (x.isalnum() or x in "._- ")) name = "".join( x for x in name if (x.isalnum() or x in "._- "))
@ -770,12 +742,11 @@ Last saved image: {html.escape(last_saved_image)}<br/>
</p> </p>
""" """
except Exception: except Exception:
print(traceback.format_exc(), file=sys.stderr) errors.report("Exception in training hypernetwork", exc_info=True)
finally: finally:
pbar.leave = False pbar.leave = False
pbar.close() pbar.close()
hypernetwork.eval() hypernetwork.eval()
#report_statistics(loss_dict)
sd_hijack_checkpoint.remove() sd_hijack_checkpoint.remove()

View File

@ -1,6 +1,6 @@
from __future__ import annotations
import datetime import datetime
import sys
import traceback
import pytz import pytz
import io import io
@ -12,7 +12,7 @@ import re
import numpy as np import numpy as np
import piexif import piexif
import piexif.helper import piexif.helper
from PIL import Image, ImageFont, ImageDraw, PngImagePlugin from PIL import Image, ImageFont, ImageDraw, ImageColor, PngImagePlugin
import string import string
import json import json
import hashlib import hashlib
@ -21,6 +21,8 @@ from modules import sd_samplers, shared, script_callbacks, errors
from modules.paths_internal import roboto_ttf_file from modules.paths_internal import roboto_ttf_file
from modules.shared import opts from modules.shared import opts
import modules.sd_vae as sd_vae
LANCZOS = (Image.Resampling.LANCZOS if hasattr(Image, 'Resampling') else Image.LANCZOS) LANCZOS = (Image.Resampling.LANCZOS if hasattr(Image, 'Resampling') else Image.LANCZOS)
@ -139,6 +141,11 @@ class GridAnnotation:
def draw_grid_annotations(im, width, height, hor_texts, ver_texts, margin=0): def draw_grid_annotations(im, width, height, hor_texts, ver_texts, margin=0):
color_active = ImageColor.getcolor(opts.grid_text_active_color, 'RGB')
color_inactive = ImageColor.getcolor(opts.grid_text_inactive_color, 'RGB')
color_background = ImageColor.getcolor(opts.grid_background_color, 'RGB')
def wrap(drawing, text, font, line_length): def wrap(drawing, text, font, line_length):
lines = [''] lines = ['']
for word in text.split(): for word in text.split():
@ -168,9 +175,6 @@ def draw_grid_annotations(im, width, height, hor_texts, ver_texts, margin=0):
fnt = get_font(fontsize) fnt = get_font(fontsize)
color_active = (0, 0, 0)
color_inactive = (153, 153, 153)
pad_left = 0 if sum([sum([len(line.text) for line in lines]) for lines in ver_texts]) == 0 else width * 3 // 4 pad_left = 0 if sum([sum([len(line.text) for line in lines]) for lines in ver_texts]) == 0 else width * 3 // 4
cols = im.width // width cols = im.width // width
@ -179,7 +183,7 @@ def draw_grid_annotations(im, width, height, hor_texts, ver_texts, margin=0):
assert cols == len(hor_texts), f'bad number of horizontal texts: {len(hor_texts)}; must be {cols}' assert cols == len(hor_texts), f'bad number of horizontal texts: {len(hor_texts)}; must be {cols}'
assert rows == len(ver_texts), f'bad number of vertical texts: {len(ver_texts)}; must be {rows}' assert rows == len(ver_texts), f'bad number of vertical texts: {len(ver_texts)}; must be {rows}'
calc_img = Image.new("RGB", (1, 1), "white") calc_img = Image.new("RGB", (1, 1), color_background)
calc_d = ImageDraw.Draw(calc_img) calc_d = ImageDraw.Draw(calc_img)
for texts, allowed_width in zip(hor_texts + ver_texts, [width] * len(hor_texts) + [pad_left] * len(ver_texts)): for texts, allowed_width in zip(hor_texts + ver_texts, [width] * len(hor_texts) + [pad_left] * len(ver_texts)):
@ -200,7 +204,7 @@ def draw_grid_annotations(im, width, height, hor_texts, ver_texts, margin=0):
pad_top = 0 if sum(hor_text_heights) == 0 else max(hor_text_heights) + line_spacing * 2 pad_top = 0 if sum(hor_text_heights) == 0 else max(hor_text_heights) + line_spacing * 2
result = Image.new("RGB", (im.width + pad_left + margin * (cols-1), im.height + pad_top + margin * (rows-1)), "white") result = Image.new("RGB", (im.width + pad_left + margin * (cols-1), im.height + pad_top + margin * (rows-1)), color_background)
for row in range(rows): for row in range(rows):
for col in range(cols): for col in range(cols):
@ -336,8 +340,20 @@ def sanitize_filename_part(text, replace_spaces=True):
class FilenameGenerator: class FilenameGenerator:
def get_vae_filename(self): #get the name of the VAE file.
if sd_vae.loaded_vae_file is None:
return "NoneType"
file_name = os.path.basename(sd_vae.loaded_vae_file)
split_file_name = file_name.split('.')
if len(split_file_name) > 1 and split_file_name[0] == '':
return split_file_name[1] # if the first character of the filename is "." then [1] is obtained.
else:
return split_file_name[0]
replacements = { replacements = {
'seed': lambda self: self.seed if self.seed is not None else '', 'seed': lambda self: self.seed if self.seed is not None else '',
'seed_first': lambda self: self.seed if self.p.batch_size == 1 else self.p.all_seeds[0],
'seed_last': lambda self: NOTHING_AND_SKIP_PREVIOUS_TEXT if self.p.batch_size == 1 else self.p.all_seeds[-1],
'steps': lambda self: self.p and self.p.steps, 'steps': lambda self: self.p and self.p.steps,
'cfg': lambda self: self.p and self.p.cfg_scale, 'cfg': lambda self: self.p and self.p.cfg_scale,
'width': lambda self: self.image.width, 'width': lambda self: self.image.width,
@ -354,19 +370,23 @@ class FilenameGenerator:
'prompt_no_styles': lambda self: self.prompt_no_style(), 'prompt_no_styles': lambda self: self.prompt_no_style(),
'prompt_spaces': lambda self: sanitize_filename_part(self.prompt, replace_spaces=False), 'prompt_spaces': lambda self: sanitize_filename_part(self.prompt, replace_spaces=False),
'prompt_words': lambda self: self.prompt_words(), 'prompt_words': lambda self: self.prompt_words(),
'batch_number': lambda self: NOTHING_AND_SKIP_PREVIOUS_TEXT if self.p.batch_size == 1 else self.p.batch_index + 1, 'batch_number': lambda self: NOTHING_AND_SKIP_PREVIOUS_TEXT if self.p.batch_size == 1 or self.zip else self.p.batch_index + 1,
'generation_number': lambda self: NOTHING_AND_SKIP_PREVIOUS_TEXT if self.p.n_iter == 1 and self.p.batch_size == 1 else self.p.iteration * self.p.batch_size + self.p.batch_index + 1, 'batch_size': lambda self: self.p.batch_size,
'generation_number': lambda self: NOTHING_AND_SKIP_PREVIOUS_TEXT if (self.p.n_iter == 1 and self.p.batch_size == 1) or self.zip else self.p.iteration * self.p.batch_size + self.p.batch_index + 1,
'hasprompt': lambda self, *args: self.hasprompt(*args), # accepts formats:[hasprompt<prompt1|default><prompt2>..] 'hasprompt': lambda self, *args: self.hasprompt(*args), # accepts formats:[hasprompt<prompt1|default><prompt2>..]
'clip_skip': lambda self: opts.data["CLIP_stop_at_last_layers"], 'clip_skip': lambda self: opts.data["CLIP_stop_at_last_layers"],
'denoising': lambda self: self.p.denoising_strength if self.p and self.p.denoising_strength else NOTHING_AND_SKIP_PREVIOUS_TEXT, 'denoising': lambda self: self.p.denoising_strength if self.p and self.p.denoising_strength else NOTHING_AND_SKIP_PREVIOUS_TEXT,
'user': lambda self: self.p.user,
'vae_filename': lambda self: self.get_vae_filename(),
} }
default_time_format = '%Y%m%d%H%M%S' default_time_format = '%Y%m%d%H%M%S'
def __init__(self, p, seed, prompt, image): def __init__(self, p, seed, prompt, image, zip=False):
self.p = p self.p = p
self.seed = seed self.seed = seed
self.prompt = prompt self.prompt = prompt
self.image = image self.image = image
self.zip = zip
def hasprompt(self, *args): def hasprompt(self, *args):
lower = self.prompt.lower() lower = self.prompt.lower()
@ -390,7 +410,7 @@ class FilenameGenerator:
prompt_no_style = self.prompt prompt_no_style = self.prompt
for style in shared.prompt_styles.get_style_prompts(self.p.styles): for style in shared.prompt_styles.get_style_prompts(self.p.styles):
if len(style) > 0: if style:
for part in style.split("{prompt}"): for part in style.split("{prompt}"):
prompt_no_style = prompt_no_style.replace(part, "").replace(", ,", ",").strip().strip(',') prompt_no_style = prompt_no_style.replace(part, "").replace(", ,", ",").strip().strip(',')
@ -399,7 +419,7 @@ class FilenameGenerator:
return sanitize_filename_part(prompt_no_style, replace_spaces=False) return sanitize_filename_part(prompt_no_style, replace_spaces=False)
def prompt_words(self): def prompt_words(self):
words = [x for x in re_nonletters.split(self.prompt or "") if len(x) > 0] words = [x for x in re_nonletters.split(self.prompt or "") if x]
if len(words) == 0: if len(words) == 0:
words = ["empty"] words = ["empty"]
return sanitize_filename_part(" ".join(words[0:opts.directories_max_prompt_words]), replace_spaces=False) return sanitize_filename_part(" ".join(words[0:opts.directories_max_prompt_words]), replace_spaces=False)
@ -407,7 +427,7 @@ class FilenameGenerator:
def datetime(self, *args): def datetime(self, *args):
time_datetime = datetime.datetime.now() time_datetime = datetime.datetime.now()
time_format = args[0] if len(args) > 0 and args[0] != "" else self.default_time_format time_format = args[0] if (args and args[0] != "") else self.default_time_format
try: try:
time_zone = pytz.timezone(args[1]) if len(args) > 1 else None time_zone = pytz.timezone(args[1]) if len(args) > 1 else None
except pytz.exceptions.UnknownTimeZoneError: except pytz.exceptions.UnknownTimeZoneError:
@ -446,8 +466,7 @@ class FilenameGenerator:
replacement = fun(self, *pattern_args) replacement = fun(self, *pattern_args)
except Exception: except Exception:
replacement = None replacement = None
print(f"Error adding [{pattern}] to filename", file=sys.stderr) errors.report(f"Error adding [{pattern}] to filename", exc_info=True)
print(traceback.format_exc(), file=sys.stderr)
if replacement == NOTHING_AND_SKIP_PREVIOUS_TEXT: if replacement == NOTHING_AND_SKIP_PREVIOUS_TEXT:
continue continue
@ -482,13 +501,23 @@ def get_next_sequence_number(path, basename):
return result + 1 return result + 1
def save_image_with_geninfo(image, geninfo, filename, extension=None, existing_pnginfo=None): def save_image_with_geninfo(image, geninfo, filename, extension=None, existing_pnginfo=None, pnginfo_section_name='parameters'):
"""
Saves image to filename, including geninfo as text information for generation info.
For PNG images, geninfo is added to existing pnginfo dictionary using the pnginfo_section_name argument as key.
For JPG images, there's no dictionary and geninfo just replaces the EXIF description.
"""
if extension is None: if extension is None:
extension = os.path.splitext(filename)[1] extension = os.path.splitext(filename)[1]
image_format = Image.registered_extensions()[extension] image_format = Image.registered_extensions()[extension]
if extension.lower() == '.png': if extension.lower() == '.png':
existing_pnginfo = existing_pnginfo or {}
if opts.enable_pnginfo:
existing_pnginfo[pnginfo_section_name] = geninfo
if opts.enable_pnginfo: if opts.enable_pnginfo:
pnginfo_data = PngImagePlugin.PngInfo() pnginfo_data = PngImagePlugin.PngInfo()
for k, v in (existing_pnginfo or {}).items(): for k, v in (existing_pnginfo or {}).items():
@ -607,7 +636,7 @@ def save_image(image, path, basename, seed=None, prompt=None, extension='png', i
""" """
temp_file_path = f"{filename_without_extension}.tmp" temp_file_path = f"{filename_without_extension}.tmp"
save_image_with_geninfo(image_to_save, info, temp_file_path, extension, params.pnginfo) save_image_with_geninfo(image_to_save, info, temp_file_path, extension, existing_pnginfo=params.pnginfo, pnginfo_section_name=pnginfo_section_name)
os.replace(temp_file_path, filename_without_extension + extension) os.replace(temp_file_path, filename_without_extension + extension)
@ -624,12 +653,18 @@ def save_image(image, path, basename, seed=None, prompt=None, extension='png', i
oversize = image.width > opts.target_side_length or image.height > opts.target_side_length oversize = image.width > opts.target_side_length or image.height > opts.target_side_length
if opts.export_for_4chan and (oversize or os.stat(fullfn).st_size > opts.img_downscale_threshold * 1024 * 1024): if opts.export_for_4chan and (oversize or os.stat(fullfn).st_size > opts.img_downscale_threshold * 1024 * 1024):
ratio = image.width / image.height ratio = image.width / image.height
resize_to = None
if oversize and ratio > 1: if oversize and ratio > 1:
image = image.resize((round(opts.target_side_length), round(image.height * opts.target_side_length / image.width)), LANCZOS) resize_to = round(opts.target_side_length), round(image.height * opts.target_side_length / image.width)
elif oversize: elif oversize:
image = image.resize((round(image.width * opts.target_side_length / image.height), round(opts.target_side_length)), LANCZOS) resize_to = round(image.width * opts.target_side_length / image.height), round(opts.target_side_length)
if resize_to is not None:
try:
# Resizing image with LANCZOS could throw an exception if e.g. image mode is I;16
image = image.resize(resize_to, LANCZOS)
except Exception:
image = image.resize(resize_to)
try: try:
_atomically_save_image(image, fullfn_without_extension, ".jpg") _atomically_save_image(image, fullfn_without_extension, ".jpg")
except Exception as e: except Exception as e:
@ -647,8 +682,15 @@ def save_image(image, path, basename, seed=None, prompt=None, extension='png', i
return fullfn, txt_fullfn return fullfn, txt_fullfn
def read_info_from_image(image): IGNORED_INFO_KEYS = {
items = image.info or {} 'jfif', 'jfif_version', 'jfif_unit', 'jfif_density', 'dpi', 'exif',
'loop', 'background', 'timestamp', 'duration', 'progressive', 'progression',
'icc_profile', 'chromaticity', 'photoshop',
}
def read_info_from_image(image: Image.Image) -> tuple[str | None, dict]:
items = (image.info or {}).copy()
geninfo = items.pop('parameters', None) geninfo = items.pop('parameters', None)
@ -664,9 +706,8 @@ def read_info_from_image(image):
items['exif comment'] = exif_comment items['exif comment'] = exif_comment
geninfo = exif_comment geninfo = exif_comment
for field in ['jfif', 'jfif_version', 'jfif_unit', 'jfif_density', 'dpi', 'exif', for field in IGNORED_INFO_KEYS:
'loop', 'background', 'timestamp', 'duration']: items.pop(field, None)
items.pop(field, None)
if items.get("Software", None) == "NovelAI": if items.get("Software", None) == "NovelAI":
try: try:
@ -677,8 +718,7 @@ def read_info_from_image(image):
Negative prompt: {json_info["uc"]} Negative prompt: {json_info["uc"]}
Steps: {json_info["steps"]}, Sampler: {sampler}, CFG scale: {json_info["scale"]}, Seed: {json_info["seed"]}, Size: {image.width}x{image.height}, Clip skip: 2, ENSD: 31337""" Steps: {json_info["steps"]}, Sampler: {sampler}, CFG scale: {json_info["scale"]}, Seed: {json_info["seed"]}, Size: {image.width}x{image.height}, Clip skip: 2, ENSD: 31337"""
except Exception: except Exception:
print("Error parsing NovelAI image generation parameters:", file=sys.stderr) errors.report("Error parsing NovelAI image generation parameters", exc_info=True)
print(traceback.format_exc(), file=sys.stderr)
return geninfo, items return geninfo, items

View File

@ -1,7 +1,9 @@
import os import os
from pathlib import Path
import numpy as np import numpy as np
from PIL import Image, ImageOps, ImageFilter, ImageEnhance, ImageChops, UnidentifiedImageError from PIL import Image, ImageOps, ImageFilter, ImageEnhance, ImageChops, UnidentifiedImageError
import gradio as gr
from modules import sd_samplers, images as imgutil from modules import sd_samplers, images as imgutil
from modules.generation_parameters_copypaste import create_override_settings_dict, parse_generation_parameters from modules.generation_parameters_copypaste import create_override_settings_dict, parse_generation_parameters
@ -13,7 +15,7 @@ from modules.ui import plaintext_to_html
import modules.scripts import modules.scripts
def process_batch(p, use_png_info, png_info_props, png_info_dir, input_dir, output_dir, inpaint_mask_dir, args): def process_batch(p, input_dir, output_dir, inpaint_mask_dir, args, to_scale=False, scale_by=1.0, use_png_info=False, png_info_props=None, png_info_dir=None):
processing.fix_seed(p) processing.fix_seed(p)
images = shared.listfiles(input_dir) images = shared.listfiles(input_dir)
@ -21,9 +23,10 @@ def process_batch(p, use_png_info, png_info_props, png_info_dir, input_dir, outp
is_inpaint_batch = False is_inpaint_batch = False
if inpaint_mask_dir: if inpaint_mask_dir:
inpaint_masks = shared.listfiles(inpaint_mask_dir) inpaint_masks = shared.listfiles(inpaint_mask_dir)
is_inpaint_batch = len(inpaint_masks) > 0 is_inpaint_batch = bool(inpaint_masks)
if is_inpaint_batch:
print(f"\nInpaint batch is enabled. {len(inpaint_masks)} masks found.") if is_inpaint_batch:
print(f"\nInpaint batch is enabled. {len(inpaint_masks)} masks found.")
print(f"Will process {len(images)} images, creating {p.n_iter * p.batch_size} new images for each.") print(f"Will process {len(images)} images, creating {p.n_iter * p.batch_size} new images for each.")
@ -57,14 +60,31 @@ def process_batch(p, use_png_info, png_info_props, png_info_dir, input_dir, outp
continue continue
# Use the EXIF orientation of photos taken by smartphones. # Use the EXIF orientation of photos taken by smartphones.
img = ImageOps.exif_transpose(img) img = ImageOps.exif_transpose(img)
if to_scale:
p.width = int(img.width * scale_by)
p.height = int(img.height * scale_by)
p.init_images = [img] * p.batch_size p.init_images = [img] * p.batch_size
image_path = Path(image)
if is_inpaint_batch: if is_inpaint_batch:
# try to find corresponding mask for an image using simple filename matching # try to find corresponding mask for an image using simple filename matching
mask_image_path = os.path.join(inpaint_mask_dir, os.path.basename(image)) if len(inpaint_masks) == 1:
# if not found use first one ("same mask for all images" use-case)
if mask_image_path not in inpaint_masks:
mask_image_path = inpaint_masks[0] mask_image_path = inpaint_masks[0]
else:
# try to find corresponding mask for an image using simple filename matching
mask_image_dir = Path(inpaint_mask_dir)
masks_found = list(mask_image_dir.glob(f"{image_path.stem}.*"))
if len(masks_found) == 0:
print(f"Warning: mask is not found for {image_path} in {mask_image_dir}. Skipping it.")
continue
# it should contain only 1 matching mask
# otherwise user has many masks with the same name but different extensions
mask_image_path = masks_found[0]
mask_image = Image.open(mask_image_path) mask_image = Image.open(mask_image_path)
p.image_mask = mask_image p.image_mask = mask_image
@ -103,7 +123,7 @@ def process_batch(p, use_png_info, png_info_props, png_info_dir, input_dir, outp
proc = process_images(p) proc = process_images(p)
for n, processed_image in enumerate(proc.images): for n, processed_image in enumerate(proc.images):
filename = os.path.basename(image) filename = image_path.name
if n > 0: if n > 0:
left, right = os.path.splitext(filename) left, right = os.path.splitext(filename)
@ -116,7 +136,7 @@ def process_batch(p, use_png_info, png_info_props, png_info_dir, input_dir, outp
processed_image.save(os.path.join(output_dir, filename)) processed_image.save(os.path.join(output_dir, filename))
def img2img(id_task: str, mode: int, prompt: str, negative_prompt: str, prompt_styles, init_img, sketch, init_img_with_mask, inpaint_color_sketch, inpaint_color_sketch_orig, init_img_inpaint, init_mask_inpaint, steps: int, sampler_index: int, mask_blur: int, mask_alpha: float, inpainting_fill: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, image_cfg_scale: float, denoising_strength: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, selected_scale_tab: int, height: int, width: int, scale_by: float, resize_mode: int, inpaint_full_res: bool, inpaint_full_res_padding: int, inpainting_mask_invert: int, img2img_batch_use_png_info: bool, img2img_batch_png_info_props: list, img2img_batch_png_info_dir: str, img2img_batch_input_dir: str, img2img_batch_output_dir: str, img2img_batch_inpaint_mask_dir: str, override_settings_texts, *args): def img2img(id_task: str, mode: int, prompt: str, negative_prompt: str, prompt_styles, init_img, sketch, init_img_with_mask, inpaint_color_sketch, inpaint_color_sketch_orig, init_img_inpaint, init_mask_inpaint, steps: int, sampler_index: int, mask_blur: int, mask_alpha: float, inpainting_fill: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, image_cfg_scale: float, denoising_strength: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, selected_scale_tab: int, height: int, width: int, scale_by: float, resize_mode: int, inpaint_full_res: bool, inpaint_full_res_padding: int, inpainting_mask_invert: int, img2img_batch_input_dir: str, img2img_batch_output_dir: str, img2img_batch_inpaint_mask_dir: str, override_settings_texts, img2img_batch_use_png_info: bool, img2img_batch_png_info_props: list, img2img_batch_png_info_dir: str, request: gr.Request, *args):
override_settings = create_override_settings_dict(override_settings_texts) override_settings = create_override_settings_dict(override_settings_texts)
is_batch = mode == 5 is_batch = mode == 5
@ -130,7 +150,8 @@ def img2img(id_task: str, mode: int, prompt: str, negative_prompt: str, prompt_s
elif mode == 2: # inpaint elif mode == 2: # inpaint
image, mask = init_img_with_mask["image"], init_img_with_mask["mask"] image, mask = init_img_with_mask["image"], init_img_with_mask["mask"]
alpha_mask = ImageOps.invert(image.split()[-1]).convert('L').point(lambda x: 255 if x > 0 else 0, mode='1') alpha_mask = ImageOps.invert(image.split()[-1]).convert('L').point(lambda x: 255 if x > 0 else 0, mode='1')
mask = ImageChops.lighter(alpha_mask, mask.convert('L')).convert('L') mask = mask.convert('L').point(lambda x: 255 if x > 128 else 0, mode='1')
mask = ImageChops.lighter(alpha_mask, mask).convert('L')
image = image.convert("RGB") image = image.convert("RGB")
elif mode == 3: # inpaint sketch elif mode == 3: # inpaint sketch
image = inpaint_color_sketch image = inpaint_color_sketch
@ -152,7 +173,7 @@ def img2img(id_task: str, mode: int, prompt: str, negative_prompt: str, prompt_s
if image is not None: if image is not None:
image = ImageOps.exif_transpose(image) image = ImageOps.exif_transpose(image)
if selected_scale_tab == 1: if selected_scale_tab == 1 and not is_batch:
assert image, "Can't scale by because no image is selected" assert image, "Can't scale by because no image is selected"
width = int(image.width * scale_by) width = int(image.width * scale_by)
@ -198,6 +219,8 @@ def img2img(id_task: str, mode: int, prompt: str, negative_prompt: str, prompt_s
p.scripts = modules.scripts.scripts_img2img p.scripts = modules.scripts.scripts_img2img
p.script_args = args p.script_args = args
p.user = request.username
if shared.cmd_opts.enable_console_prompts: if shared.cmd_opts.enable_console_prompts:
print(f"\nimg2img: {prompt}", file=shared.progress_print_out) print(f"\nimg2img: {prompt}", file=shared.progress_print_out)
@ -207,7 +230,7 @@ def img2img(id_task: str, mode: int, prompt: str, negative_prompt: str, prompt_s
if is_batch: if is_batch:
assert not shared.cmd_opts.hide_ui_dir_config, "Launched with --hide-ui-dir-config, batch img2img disabled" assert not shared.cmd_opts.hide_ui_dir_config, "Launched with --hide-ui-dir-config, batch img2img disabled"
process_batch(p, img2img_batch_use_png_info, img2img_batch_png_info_props, img2img_batch_png_info_dir, img2img_batch_input_dir, img2img_batch_output_dir, img2img_batch_inpaint_mask_dir, args) process_batch(p, img2img_batch_input_dir, img2img_batch_output_dir, img2img_batch_inpaint_mask_dir, args, to_scale=selected_scale_tab == 1, scale_by=scale_by, img2img_batch_input_dir, img2img_batch_output_dir, img2img_batch_inpaint_mask_dir)
processed = Processed(p, [], p.seed, "") processed = Processed(p, [], p.seed, "")
else: else:

View File

@ -1,6 +1,5 @@
import os import os
import sys import sys
import traceback
from collections import namedtuple from collections import namedtuple
from pathlib import Path from pathlib import Path
import re import re
@ -185,8 +184,7 @@ class InterrogateModels:
def interrogate(self, pil_image): def interrogate(self, pil_image):
res = "" res = ""
shared.state.begin() shared.state.begin(job="interrogate")
shared.state.job = 'interrogate'
try: try:
if shared.cmd_opts.lowvram or shared.cmd_opts.medvram: if shared.cmd_opts.lowvram or shared.cmd_opts.medvram:
lowvram.send_everything_to_cpu() lowvram.send_everything_to_cpu()
@ -216,8 +214,7 @@ class InterrogateModels:
res += f", {match}" res += f", {match}"
except Exception: except Exception:
print("Error interrogating", file=sys.stderr) errors.report("Error interrogating", exc_info=True)
print(traceback.format_exc(), file=sys.stderr)
res += "<error>" res += "<error>"
self.unload() self.unload()

View File

@ -7,7 +7,7 @@ import platform
import json import json
from functools import lru_cache from functools import lru_cache
from modules import cmd_args from modules import cmd_args, errors
from modules.paths_internal import script_path, extensions_dir from modules.paths_internal import script_path, extensions_dir
args, _ = cmd_args.parser.parse_known_args() args, _ = cmd_args.parser.parse_known_args()
@ -68,7 +68,13 @@ def git_tag():
try: try:
return subprocess.check_output([git, "describe", "--tags"], shell=False, encoding='utf8').strip() return subprocess.check_output([git, "describe", "--tags"], shell=False, encoding='utf8').strip()
except Exception: except Exception:
return "<none>" try:
from pathlib import Path
changelog_md = Path(__file__).parent.parent / "CHANGELOG.md"
with changelog_md.open(encoding="utf-8") as file:
return next((line.strip() for line in file if line.strip()), "<none>")
except Exception:
return "<none>"
def run(command, desc=None, errdesc=None, custom_env=None, live: bool = default_command_live) -> str: def run(command, desc=None, errdesc=None, custom_env=None, live: bool = default_command_live) -> str:
@ -136,15 +142,15 @@ def git_clone(url, dir, name, commithash=None):
if commithash is None: if commithash is None:
return return
current_hash = run(f'"{git}" -C "{dir}" rev-parse HEAD', None, f"Couldn't determine {name}'s hash: {commithash}").strip() current_hash = run(f'"{git}" -C "{dir}" rev-parse HEAD', None, f"Couldn't determine {name}'s hash: {commithash}", live=False).strip()
if current_hash == commithash: if current_hash == commithash:
return return
run(f'"{git}" -C "{dir}" fetch', f"Fetching updates for {name}...", f"Couldn't fetch {name}") run(f'"{git}" -C "{dir}" fetch', f"Fetching updates for {name}...", f"Couldn't fetch {name}")
run(f'"{git}" -C "{dir}" checkout {commithash}', f"Checking out commit for {name} with hash: {commithash}...", f"Couldn't checkout commit {commithash} for {name}") run(f'"{git}" -C "{dir}" checkout {commithash}', f"Checking out commit for {name} with hash: {commithash}...", f"Couldn't checkout commit {commithash} for {name}", live=True)
return return
run(f'"{git}" clone "{url}" "{dir}"', f"Cloning {name} into {dir}...", f"Couldn't clone {name}") run(f'"{git}" clone "{url}" "{dir}"', f"Cloning {name} into {dir}...", f"Couldn't clone {name}", live=True)
if commithash is not None: if commithash is not None:
run(f'"{git}" -C "{dir}" checkout {commithash}', None, "Couldn't checkout {name}'s hash: {commithash}") run(f'"{git}" -C "{dir}" checkout {commithash}', None, "Couldn't checkout {name}'s hash: {commithash}")
@ -188,7 +194,7 @@ def run_extension_installer(extension_dir):
print(run(f'"{python}" "{path_installer}"', errdesc=f"Error running install.py for extension {extension_dir}", custom_env=env)) print(run(f'"{python}" "{path_installer}"', errdesc=f"Error running install.py for extension {extension_dir}", custom_env=env))
except Exception as e: except Exception as e:
print(e, file=sys.stderr) errors.report(str(e))
def list_extensions(settings_file): def list_extensions(settings_file):
@ -198,8 +204,8 @@ def list_extensions(settings_file):
if os.path.isfile(settings_file): if os.path.isfile(settings_file):
with open(settings_file, "r", encoding="utf8") as file: with open(settings_file, "r", encoding="utf8") as file:
settings = json.load(file) settings = json.load(file)
except Exception as e: except Exception:
print(e, file=sys.stderr) errors.report("Could not load settings", exc_info=True)
disabled_extensions = set(settings.get('disabled_extensions', [])) disabled_extensions = set(settings.get('disabled_extensions', []))
disable_all_extensions = settings.get('disable_all_extensions', 'none') disable_all_extensions = settings.get('disable_all_extensions', 'none')
@ -223,23 +229,28 @@ def prepare_environment():
torch_command = os.environ.get('TORCH_COMMAND', f"pip install torch==2.0.1 torchvision==0.15.2 --extra-index-url {torch_index_url}") torch_command = os.environ.get('TORCH_COMMAND', f"pip install torch==2.0.1 torchvision==0.15.2 --extra-index-url {torch_index_url}")
requirements_file = os.environ.get('REQS_FILE', "requirements_versions.txt") requirements_file = os.environ.get('REQS_FILE', "requirements_versions.txt")
xformers_package = os.environ.get('XFORMERS_PACKAGE', 'xformers==0.0.17') xformers_package = os.environ.get('XFORMERS_PACKAGE', 'xformers==0.0.20')
gfpgan_package = os.environ.get('GFPGAN_PACKAGE', "https://github.com/TencentARC/GFPGAN/archive/8d2447a2d918f8eba5a4a01463fd48e45126a379.zip") gfpgan_package = os.environ.get('GFPGAN_PACKAGE', "https://github.com/TencentARC/GFPGAN/archive/8d2447a2d918f8eba5a4a01463fd48e45126a379.zip")
clip_package = os.environ.get('CLIP_PACKAGE', "https://github.com/openai/CLIP/archive/d50d76daa670286dd6cacf3bcd80b5e4823fc8e1.zip") clip_package = os.environ.get('CLIP_PACKAGE', "https://github.com/openai/CLIP/archive/d50d76daa670286dd6cacf3bcd80b5e4823fc8e1.zip")
openclip_package = os.environ.get('OPENCLIP_PACKAGE', "https://github.com/mlfoundations/open_clip/archive/bb6e834e9c70d9c27d0dc3ecedeebeaeb1ffad6b.zip") openclip_package = os.environ.get('OPENCLIP_PACKAGE', "https://github.com/mlfoundations/open_clip/archive/bb6e834e9c70d9c27d0dc3ecedeebeaeb1ffad6b.zip")
stable_diffusion_repo = os.environ.get('STABLE_DIFFUSION_REPO', "https://github.com/Stability-AI/stablediffusion.git") stable_diffusion_repo = os.environ.get('STABLE_DIFFUSION_REPO', "https://github.com/Stability-AI/stablediffusion.git")
taming_transformers_repo = os.environ.get('TAMING_TRANSFORMERS_REPO', "https://github.com/CompVis/taming-transformers.git")
k_diffusion_repo = os.environ.get('K_DIFFUSION_REPO', 'https://github.com/crowsonkb/k-diffusion.git') k_diffusion_repo = os.environ.get('K_DIFFUSION_REPO', 'https://github.com/crowsonkb/k-diffusion.git')
codeformer_repo = os.environ.get('CODEFORMER_REPO', 'https://github.com/sczhou/CodeFormer.git') codeformer_repo = os.environ.get('CODEFORMER_REPO', 'https://github.com/sczhou/CodeFormer.git')
blip_repo = os.environ.get('BLIP_REPO', 'https://github.com/salesforce/BLIP.git') blip_repo = os.environ.get('BLIP_REPO', 'https://github.com/salesforce/BLIP.git')
stable_diffusion_commit_hash = os.environ.get('STABLE_DIFFUSION_COMMIT_HASH', "cf1d67a6fd5ea1aa600c4df58e5b47da45f6bdbf") stable_diffusion_commit_hash = os.environ.get('STABLE_DIFFUSION_COMMIT_HASH', "cf1d67a6fd5ea1aa600c4df58e5b47da45f6bdbf")
taming_transformers_commit_hash = os.environ.get('TAMING_TRANSFORMERS_COMMIT_HASH', "24268930bf1dce879235a7fddd0b2355b84d7ea6")
k_diffusion_commit_hash = os.environ.get('K_DIFFUSION_COMMIT_HASH', "c9fe758757e022f05ca5a53fa8fac28889e4f1cf") k_diffusion_commit_hash = os.environ.get('K_DIFFUSION_COMMIT_HASH', "c9fe758757e022f05ca5a53fa8fac28889e4f1cf")
codeformer_commit_hash = os.environ.get('CODEFORMER_COMMIT_HASH', "c5b4593074ba6214284d6acd5f1719b6c5d739af") codeformer_commit_hash = os.environ.get('CODEFORMER_COMMIT_HASH', "c5b4593074ba6214284d6acd5f1719b6c5d739af")
blip_commit_hash = os.environ.get('BLIP_COMMIT_HASH', "48211a1594f1321b00f14c9f7a5b4813144b2fb9") blip_commit_hash = os.environ.get('BLIP_COMMIT_HASH', "48211a1594f1321b00f14c9f7a5b4813144b2fb9")
try:
# the existance of this file is a signal to webui.sh/bat that webui needs to be restarted when it stops execution
os.remove(os.path.join(script_path, "tmp", "restart"))
os.environ.setdefault('SD_WEBUI_RESTARTING ', '1')
except OSError:
pass
if not args.skip_python_version_check: if not args.skip_python_version_check:
check_python_version() check_python_version()
@ -286,7 +297,6 @@ def prepare_environment():
os.makedirs(os.path.join(script_path, dir_repos), exist_ok=True) os.makedirs(os.path.join(script_path, dir_repos), exist_ok=True)
git_clone(stable_diffusion_repo, repo_dir('stable-diffusion-stability-ai'), "Stable Diffusion", stable_diffusion_commit_hash) git_clone(stable_diffusion_repo, repo_dir('stable-diffusion-stability-ai'), "Stable Diffusion", stable_diffusion_commit_hash)
git_clone(taming_transformers_repo, repo_dir('taming-transformers'), "Taming Transformers", taming_transformers_commit_hash)
git_clone(k_diffusion_repo, repo_dir('k-diffusion'), "K-diffusion", k_diffusion_commit_hash) git_clone(k_diffusion_repo, repo_dir('k-diffusion'), "K-diffusion", k_diffusion_commit_hash)
git_clone(codeformer_repo, repo_dir('CodeFormer'), "CodeFormer", codeformer_commit_hash) git_clone(codeformer_repo, repo_dir('CodeFormer'), "CodeFormer", codeformer_commit_hash)
git_clone(blip_repo, repo_dir('BLIP'), "BLIP", blip_commit_hash) git_clone(blip_repo, repo_dir('BLIP'), "BLIP", blip_commit_hash)

View File

@ -1,8 +1,7 @@
import json import json
import os import os
import sys
import traceback
from modules import errors
localizations = {} localizations = {}
@ -31,7 +30,6 @@ def localization_js(current_localization_name: str) -> str:
with open(fn, "r", encoding="utf8") as file: with open(fn, "r", encoding="utf8") as file:
data = json.load(file) data = json.load(file)
except Exception: except Exception:
print(f"Error loading localization from {fn}:", file=sys.stderr) errors.report(f"Error loading localization from {fn}", exc_info=True)
print(traceback.format_exc(), file=sys.stderr)
return f"window.localization = {json.dumps(data)}" return f"window.localization = {json.dumps(data)}"

View File

@ -15,6 +15,8 @@ def send_everything_to_cpu():
def setup_for_low_vram(sd_model, use_medvram): def setup_for_low_vram(sd_model, use_medvram):
sd_model.lowvram = True
parents = {} parents = {}
def send_me_to_gpu(module, _): def send_me_to_gpu(module, _):
@ -96,3 +98,7 @@ def setup_for_low_vram(sd_model, use_medvram):
diff_model.middle_block.register_forward_pre_hook(send_me_to_gpu) diff_model.middle_block.register_forward_pre_hook(send_me_to_gpu)
for block in diff_model.output_blocks: for block in diff_model.output_blocks:
block.register_forward_pre_hook(send_me_to_gpu) block.register_forward_pre_hook(send_me_to_gpu)
def is_enabled(sd_model):
return getattr(sd_model, 'lowvram', False)

View File

@ -4,16 +4,21 @@ from modules.sd_hijack_utils import CondFunc
from packaging import version from packaging import version
# has_mps is only available in nightly pytorch (for now) and macOS 12.3+. # before torch version 1.13, has_mps is only available in nightly pytorch and macOS 12.3+,
# check `getattr` and try it for compatibility # use check `getattr` and try it for compatibility.
# in torch version 1.13, backends.mps.is_available() and backends.mps.is_built() are introduced in to check mps availabilty,
# since torch 2.0.1+ nightly build, getattr(torch, 'has_mps', False) was deprecated, see https://github.com/pytorch/pytorch/pull/103279
def check_for_mps() -> bool: def check_for_mps() -> bool:
if not getattr(torch, 'has_mps', False): if version.parse(torch.__version__) <= version.parse("2.0.1"):
return False if not getattr(torch, 'has_mps', False):
try: return False
torch.zeros(1).to(torch.device("mps")) try:
return True torch.zeros(1).to(torch.device("mps"))
except Exception: return True
return False except Exception:
return False
else:
return torch.backends.mps.is_available() and torch.backends.mps.is_built()
has_mps = check_for_mps() has_mps = check_for_mps()

View File

@ -1,3 +1,5 @@
from __future__ import annotations
import os import os
import shutil import shutil
import importlib import importlib
@ -8,6 +10,29 @@ from modules.upscaler import Upscaler, UpscalerLanczos, UpscalerNearest, Upscale
from modules.paths import script_path, models_path from modules.paths import script_path, models_path
def load_file_from_url(
url: str,
*,
model_dir: str,
progress: bool = True,
file_name: str | None = None,
) -> str:
"""Download a file from `url` into `model_dir`, using the file present if possible.
Returns the path to the downloaded file.
"""
os.makedirs(model_dir, exist_ok=True)
if not file_name:
parts = urlparse(url)
file_name = os.path.basename(parts.path)
cached_file = os.path.abspath(os.path.join(model_dir, file_name))
if not os.path.exists(cached_file):
print(f'Downloading: "{url}" to {cached_file}\n')
from torch.hub import download_url_to_file
download_url_to_file(url, cached_file, progress=progress)
return cached_file
def load_models(model_path: str, model_url: str = None, command_path: str = None, ext_filter=None, download_name=None, ext_blacklist=None) -> list: def load_models(model_path: str, model_url: str = None, command_path: str = None, ext_filter=None, download_name=None, ext_blacklist=None) -> list:
""" """
A one-and done loader to try finding the desired models in specified directories. A one-and done loader to try finding the desired models in specified directories.
@ -46,9 +71,7 @@ def load_models(model_path: str, model_url: str = None, command_path: str = None
if model_url is not None and len(output) == 0: if model_url is not None and len(output) == 0:
if download_name is not None: if download_name is not None:
from basicsr.utils.download_util import load_file_from_url output.append(load_file_from_url(model_url, model_dir=places[0], file_name=download_name))
dl = load_file_from_url(model_url, places[0], True, download_name)
output.append(dl)
else: else:
output.append(model_url) output.append(model_url)
@ -59,7 +82,7 @@ def load_models(model_path: str, model_url: str = None, command_path: str = None
def friendly_name(file: str): def friendly_name(file: str):
if "http" in file: if file.startswith("http"):
file = urlparse(file).path file = urlparse(file).path
file = os.path.basename(file) file = os.path.basename(file)
@ -95,8 +118,7 @@ def cleanup_models():
def move_files(src_path: str, dest_path: str, ext_filter: str = None): def move_files(src_path: str, dest_path: str, ext_filter: str = None):
try: try:
if not os.path.exists(dest_path): os.makedirs(dest_path, exist_ok=True)
os.makedirs(dest_path)
if os.path.exists(src_path): if os.path.exists(src_path):
for file in os.listdir(src_path): for file in os.listdir(src_path):
fullpath = os.path.join(src_path, file) fullpath = os.path.join(src_path, file)

View File

@ -230,9 +230,9 @@ class DDPM(pl.LightningModule):
missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict( missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict(
sd, strict=False) sd, strict=False)
print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys") print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
if len(missing) > 0: if missing:
print(f"Missing Keys: {missing}") print(f"Missing Keys: {missing}")
if len(unexpected) > 0: if unexpected:
print(f"Unexpected Keys: {unexpected}") print(f"Unexpected Keys: {unexpected}")
def q_mean_variance(self, x_start, t): def q_mean_variance(self, x_start, t):

View File

@ -20,7 +20,6 @@ assert sd_path is not None, f"Couldn't find Stable Diffusion in any of: {possibl
path_dirs = [ path_dirs = [
(sd_path, 'ldm', 'Stable Diffusion', []), (sd_path, 'ldm', 'Stable Diffusion', []),
(os.path.join(sd_path, '../taming-transformers'), 'taming', 'Taming Transformers', []),
(os.path.join(sd_path, '../CodeFormer'), 'inference_codeformer.py', 'CodeFormer', []), (os.path.join(sd_path, '../CodeFormer'), 'inference_codeformer.py', 'CodeFormer', []),
(os.path.join(sd_path, '../BLIP'), 'models/blip.py', 'BLIP', []), (os.path.join(sd_path, '../BLIP'), 'models/blip.py', 'BLIP', []),
(os.path.join(sd_path, '../k-diffusion'), 'k_diffusion/sampling.py', 'k_diffusion', ["atstart"]), (os.path.join(sd_path, '../k-diffusion'), 'k_diffusion/sampling.py', 'k_diffusion', ["atstart"]),
@ -39,17 +38,3 @@ for d, must_exist, what, options in path_dirs:
else: else:
sys.path.append(d) sys.path.append(d)
paths[what] = d paths[what] = d
class Prioritize:
def __init__(self, name):
self.name = name
self.path = None
def __enter__(self):
self.path = sys.path.copy()
sys.path = [paths[self.name]] + sys.path
def __exit__(self, exc_type, exc_val, exc_tb):
sys.path = self.path
self.path = None

View File

@ -9,8 +9,7 @@ from modules.shared import opts
def run_postprocessing(extras_mode, image, image_folder, input_dir, output_dir, show_extras_results, *args, save_output: bool = True): def run_postprocessing(extras_mode, image, image_folder, input_dir, output_dir, show_extras_results, *args, save_output: bool = True):
devices.torch_gc() devices.torch_gc()
shared.state.begin() shared.state.begin(job="extras")
shared.state.job = 'extras'
image_data = [] image_data = []
image_names = [] image_names = []
@ -54,7 +53,9 @@ def run_postprocessing(extras_mode, image, image_folder, input_dir, output_dir,
for image, name in zip(image_data, image_names): for image, name in zip(image_data, image_names):
shared.state.textinfo = name shared.state.textinfo = name
existing_pnginfo = image.info or {} parameters, existing_pnginfo = images.read_info_from_image(image)
if parameters:
existing_pnginfo["parameters"] = parameters
pp = scripts_postprocessing.PostprocessedImage(image.convert("RGB")) pp = scripts_postprocessing.PostprocessedImage(image.convert("RGB"))

View File

@ -1,4 +1,5 @@
import json import json
import logging
import math import math
import os import os
import sys import sys
@ -6,14 +7,14 @@ import hashlib
import torch import torch
import numpy as np import numpy as np
from PIL import Image, ImageFilter, ImageOps from PIL import Image, ImageOps
import random import random
import cv2 import cv2
from skimage import exposure from skimage import exposure
from typing import Any, Dict, List from typing import Any, Dict, List
import modules.sd_hijack import modules.sd_hijack
from modules import devices, prompt_parser, masking, sd_samplers, lowvram, generation_parameters_copypaste, extra_networks, sd_vae_approx, scripts, sd_samplers_common from modules import devices, prompt_parser, masking, sd_samplers, lowvram, generation_parameters_copypaste, extra_networks, sd_vae_approx, scripts, sd_samplers_common, sd_unet
from modules.sd_hijack import model_hijack from modules.sd_hijack import model_hijack
from modules.shared import opts, cmd_opts, state from modules.shared import opts, cmd_opts, state
import modules.shared as shared import modules.shared as shared
@ -23,7 +24,6 @@ import modules.images as images
import modules.styles import modules.styles
import modules.sd_models as sd_models import modules.sd_models as sd_models
import modules.sd_vae as sd_vae import modules.sd_vae as sd_vae
import logging
from ldm.data.util import AddMiDaS from ldm.data.util import AddMiDaS
from ldm.models.diffusion.ddpm import LatentDepth2ImageDiffusion from ldm.models.diffusion.ddpm import LatentDepth2ImageDiffusion
@ -106,6 +106,9 @@ class StableDiffusionProcessing:
""" """
The first set of paramaters: sd_models -> do_not_reload_embeddings represent the minimum required to create a StableDiffusionProcessing The first set of paramaters: sd_models -> do_not_reload_embeddings represent the minimum required to create a StableDiffusionProcessing
""" """
cached_uc = [None, None]
cached_c = [None, None]
def __init__(self, sd_model=None, outpath_samples=None, outpath_grids=None, prompt: str = "", styles: List[str] = None, seed: int = -1, subseed: int = -1, subseed_strength: float = 0, seed_resize_from_h: int = -1, seed_resize_from_w: int = -1, seed_enable_extras: bool = True, sampler_name: str = None, batch_size: int = 1, n_iter: int = 1, steps: int = 50, cfg_scale: float = 7.0, width: int = 512, height: int = 512, restore_faces: bool = False, tiling: bool = False, do_not_save_samples: bool = False, do_not_save_grid: bool = False, extra_generation_params: Dict[Any, Any] = None, overlay_images: Any = None, negative_prompt: str = None, eta: float = None, do_not_reload_embeddings: bool = False, denoising_strength: float = 0, ddim_discretize: str = None, s_min_uncond: float = 0.0, s_churn: float = 0.0, s_tmax: float = None, s_tmin: float = 0.0, s_noise: float = 1.0, override_settings: Dict[str, Any] = None, override_settings_restore_afterwards: bool = True, sampler_index: int = None, script_args: list = None): def __init__(self, sd_model=None, outpath_samples=None, outpath_grids=None, prompt: str = "", styles: List[str] = None, seed: int = -1, subseed: int = -1, subseed_strength: float = 0, seed_resize_from_h: int = -1, seed_resize_from_w: int = -1, seed_enable_extras: bool = True, sampler_name: str = None, batch_size: int = 1, n_iter: int = 1, steps: int = 50, cfg_scale: float = 7.0, width: int = 512, height: int = 512, restore_faces: bool = False, tiling: bool = False, do_not_save_samples: bool = False, do_not_save_grid: bool = False, extra_generation_params: Dict[Any, Any] = None, overlay_images: Any = None, negative_prompt: str = None, eta: float = None, do_not_reload_embeddings: bool = False, denoising_strength: float = 0, ddim_discretize: str = None, s_min_uncond: float = 0.0, s_churn: float = 0.0, s_tmax: float = None, s_tmin: float = 0.0, s_noise: float = 1.0, override_settings: Dict[str, Any] = None, override_settings_restore_afterwards: bool = True, sampler_index: int = None, script_args: list = None):
if sampler_index is not None: if sampler_index is not None:
print("sampler_index argument for StableDiffusionProcessing does not do anything; use sampler_name", file=sys.stderr) print("sampler_index argument for StableDiffusionProcessing does not do anything; use sampler_name", file=sys.stderr)
@ -171,15 +174,18 @@ class StableDiffusionProcessing:
self.prompts = None self.prompts = None
self.negative_prompts = None self.negative_prompts = None
self.extra_network_data = None
self.seeds = None self.seeds = None
self.subseeds = None self.subseeds = None
self.step_multiplier = 1 self.step_multiplier = 1
self.cached_uc = [None, None] self.cached_uc = StableDiffusionProcessing.cached_uc
self.cached_c = [None, None] self.cached_c = StableDiffusionProcessing.cached_c
self.uc = None self.uc = None
self.c = None self.c = None
self.user = None
@property @property
def sd_model(self): def sd_model(self):
return shared.sd_model return shared.sd_model
@ -288,8 +294,9 @@ class StableDiffusionProcessing:
self.sampler = None self.sampler = None
self.c = None self.c = None
self.uc = None self.uc = None
self.cached_c = [None, None] if not opts.experimental_persistent_cond_cache:
self.cached_uc = [None, None] StableDiffusionProcessing.cached_c = [None, None]
StableDiffusionProcessing.cached_uc = [None, None]
def get_token_merging_ratio(self, for_hr=False): def get_token_merging_ratio(self, for_hr=False):
if for_hr: if for_hr:
@ -311,7 +318,7 @@ class StableDiffusionProcessing:
self.all_prompts = [shared.prompt_styles.apply_styles_to_prompt(x, self.styles) for x in self.all_prompts] self.all_prompts = [shared.prompt_styles.apply_styles_to_prompt(x, self.styles) for x in self.all_prompts]
self.all_negative_prompts = [shared.prompt_styles.apply_negative_styles_to_prompt(x, self.styles) for x in self.all_negative_prompts] self.all_negative_prompts = [shared.prompt_styles.apply_negative_styles_to_prompt(x, self.styles) for x in self.all_negative_prompts]
def get_conds_with_caching(self, function, required_prompts, steps, cache): def get_conds_with_caching(self, function, required_prompts, steps, caches, extra_network_data):
""" """
Returns the result of calling function(shared.sd_model, required_prompts, steps) Returns the result of calling function(shared.sd_model, required_prompts, steps)
using a cache to store the result if the same arguments have been used before. using a cache to store the result if the same arguments have been used before.
@ -320,27 +327,29 @@ class StableDiffusionProcessing:
representing the previously used arguments, or None if no arguments representing the previously used arguments, or None if no arguments
have been used before. The second element is where the previously have been used before. The second element is where the previously
computed result is stored. computed result is stored.
caches is a list with items described above.
""" """
if cache[0] is not None and (required_prompts, steps, opts.CLIP_stop_at_last_layers, shared.sd_model.sd_checkpoint_info) == cache[0]: for cache in caches:
return cache[1] if cache[0] is not None and (required_prompts, steps, opts.CLIP_stop_at_last_layers, shared.sd_model.sd_checkpoint_info, extra_network_data) == cache[0]:
return cache[1]
cache = caches[0]
with devices.autocast(): with devices.autocast():
cache[1] = function(shared.sd_model, required_prompts, steps) cache[1] = function(shared.sd_model, required_prompts, steps)
cache[0] = (required_prompts, steps, opts.CLIP_stop_at_last_layers, shared.sd_model.sd_checkpoint_info) cache[0] = (required_prompts, steps, opts.CLIP_stop_at_last_layers, shared.sd_model.sd_checkpoint_info, extra_network_data)
return cache[1] return cache[1]
def setup_conds(self): def setup_conds(self):
sampler_config = sd_samplers.find_sampler_config(self.sampler_name) sampler_config = sd_samplers.find_sampler_config(self.sampler_name)
self.step_multiplier = 2 if sampler_config and sampler_config.options.get("second_order", False) else 1 self.step_multiplier = 2 if sampler_config and sampler_config.options.get("second_order", False) else 1
self.uc = self.get_conds_with_caching(prompt_parser.get_learned_conditioning, self.negative_prompts, self.steps * self.step_multiplier, [self.cached_uc], self.extra_network_data)
self.uc = self.get_conds_with_caching(prompt_parser.get_learned_conditioning, self.negative_prompts, self.steps * self.step_multiplier, self.cached_uc) self.c = self.get_conds_with_caching(prompt_parser.get_multicond_learned_conditioning, self.prompts, self.steps * self.step_multiplier, [self.cached_c], self.extra_network_data)
self.c = self.get_conds_with_caching(prompt_parser.get_multicond_learned_conditioning, self.prompts, self.steps * self.step_multiplier, self.cached_c)
def parse_extra_network_prompts(self): def parse_extra_network_prompts(self):
self.prompts, extra_network_data = extra_networks.parse_prompts(self.prompts) self.prompts, self.extra_network_data = extra_networks.parse_prompts(self.prompts)
return extra_network_data
class Processed: class Processed:
@ -542,7 +551,7 @@ def program_version():
return res return res
def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments=None, iteration=0, position_in_batch=0): def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments=None, iteration=0, position_in_batch=0, use_main_prompt=False):
index = position_in_batch + iteration * p.batch_size index = position_in_batch + iteration * p.batch_size
clip_skip = getattr(p, 'clip_skip', opts.CLIP_stop_at_last_layers) clip_skip = getattr(p, 'clip_skip', opts.CLIP_stop_at_last_layers)
@ -566,7 +575,7 @@ def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments=None, iter
"Model": (None if not opts.add_model_name_to_info or not shared.sd_model.sd_checkpoint_info.model_name else shared.sd_model.sd_checkpoint_info.model_name.replace(',', '').replace(':', '')), "Model": (None if not opts.add_model_name_to_info or not shared.sd_model.sd_checkpoint_info.model_name else shared.sd_model.sd_checkpoint_info.model_name.replace(',', '').replace(':', '')),
"Variation seed": (None if p.subseed_strength == 0 else all_subseeds[index]), "Variation seed": (None if p.subseed_strength == 0 else all_subseeds[index]),
"Variation seed strength": (None if p.subseed_strength == 0 else p.subseed_strength), "Variation seed strength": (None if p.subseed_strength == 0 else p.subseed_strength),
"Seed resize from": (None if p.seed_resize_from_w == 0 or p.seed_resize_from_h == 0 else f"{p.seed_resize_from_w}x{p.seed_resize_from_h}"), "Seed resize from": (None if p.seed_resize_from_w <= 0 or p.seed_resize_from_h <= 0 else f"{p.seed_resize_from_w}x{p.seed_resize_from_h}"),
"Denoising strength": getattr(p, 'denoising_strength', None), "Denoising strength": getattr(p, 'denoising_strength', None),
"Conditional mask weight": getattr(p, "inpainting_mask_weight", shared.opts.inpainting_mask_weight) if p.is_using_inpainting_conditioning else None, "Conditional mask weight": getattr(p, "inpainting_mask_weight", shared.opts.inpainting_mask_weight) if p.is_using_inpainting_conditioning else None,
"Clip skip": None if clip_skip <= 1 else clip_skip, "Clip skip": None if clip_skip <= 1 else clip_skip,
@ -578,16 +587,21 @@ def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments=None, iter
"NGMS": None if p.s_min_uncond == 0 else p.s_min_uncond, "NGMS": None if p.s_min_uncond == 0 else p.s_min_uncond,
**p.extra_generation_params, **p.extra_generation_params,
"Version": program_version() if opts.add_version_to_infotext else None, "Version": program_version() if opts.add_version_to_infotext else None,
"User": p.user if opts.add_user_name_to_info else None,
} }
generation_params_text = ", ".join([k if k == v else f'{k}: {generation_parameters_copypaste.quote(v)}' for k, v in generation_params.items() if v is not None]) generation_params_text = ", ".join([k if k == v else f'{k}: {generation_parameters_copypaste.quote(v)}' for k, v in generation_params.items() if v is not None])
prompt_text = p.prompt if use_main_prompt else all_prompts[index]
negative_prompt_text = f"\nNegative prompt: {p.all_negative_prompts[index]}" if p.all_negative_prompts[index] else "" negative_prompt_text = f"\nNegative prompt: {p.all_negative_prompts[index]}" if p.all_negative_prompts[index] else ""
return f"{all_prompts[index]}{negative_prompt_text}\n{generation_params_text}".strip() return f"{prompt_text}{negative_prompt_text}\n{generation_params_text}".strip()
def process_images(p: StableDiffusionProcessing) -> Processed: def process_images(p: StableDiffusionProcessing) -> Processed:
if p.scripts is not None:
p.scripts.before_process(p)
stored_opts = {k: opts.data[k] for k in p.override_settings.keys()} stored_opts = {k: opts.data[k] for k in p.override_settings.keys()}
try: try:
@ -653,8 +667,8 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
else: else:
p.all_subseeds = [int(subseed) + x for x in range(len(p.all_prompts))] p.all_subseeds = [int(subseed) + x for x in range(len(p.all_prompts))]
def infotext(iteration=0, position_in_batch=0): def infotext(iteration=0, position_in_batch=0, use_main_prompt=False):
return create_infotext(p, p.all_prompts, p.all_seeds, p.all_subseeds, comments, iteration, position_in_batch) return create_infotext(p, p.all_prompts, p.all_seeds, p.all_subseeds, comments, iteration, position_in_batch, use_main_prompt)
if os.path.exists(cmd_opts.embeddings_dir) and not p.do_not_reload_embeddings: if os.path.exists(cmd_opts.embeddings_dir) and not p.do_not_reload_embeddings:
model_hijack.embedding_db.load_textual_inversion_embeddings() model_hijack.embedding_db.load_textual_inversion_embeddings()
@ -673,10 +687,11 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
if shared.opts.live_previews_enable and opts.show_progress_type == "Approx NN": if shared.opts.live_previews_enable and opts.show_progress_type == "Approx NN":
sd_vae_approx.model() sd_vae_approx.model()
sd_unet.apply_unet()
if state.job_count == -1: if state.job_count == -1:
state.job_count = p.n_iter state.job_count = p.n_iter
extra_network_data = None
for n in range(p.n_iter): for n in range(p.n_iter):
p.iteration = n p.iteration = n
@ -697,11 +712,11 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
if len(p.prompts) == 0: if len(p.prompts) == 0:
break break
extra_network_data = p.parse_extra_network_prompts() p.parse_extra_network_prompts()
if not p.disable_extra_networks: if not p.disable_extra_networks:
with devices.autocast(): with devices.autocast():
extra_networks.activate(p, extra_network_data) extra_networks.activate(p, p.extra_network_data)
if p.scripts is not None: if p.scripts is not None:
p.scripts.process_batch(p, batch_number=n, prompts=p.prompts, seeds=p.seeds, subseeds=p.subseeds) p.scripts.process_batch(p, batch_number=n, prompts=p.prompts, seeds=p.seeds, subseeds=p.subseeds)
@ -736,7 +751,7 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
del samples_ddim del samples_ddim
if shared.cmd_opts.lowvram or shared.cmd_opts.medvram: if lowvram.is_enabled(shared.sd_model):
lowvram.send_everything_to_cpu() lowvram.send_everything_to_cpu()
devices.torch_gc() devices.torch_gc()
@ -813,7 +828,7 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
grid = images.image_grid(output_images, p.batch_size) grid = images.image_grid(output_images, p.batch_size)
if opts.return_grid: if opts.return_grid:
text = infotext() text = infotext(use_main_prompt=True)
infotexts.insert(0, text) infotexts.insert(0, text)
if opts.enable_pnginfo: if opts.enable_pnginfo:
grid.info["parameters"] = text grid.info["parameters"] = text
@ -821,10 +836,10 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
index_of_first_image = 1 index_of_first_image = 1
if opts.grid_save: if opts.grid_save:
images.save_image(grid, p.outpath_grids, "grid", p.all_seeds[0], p.all_prompts[0], opts.grid_format, info=infotext(), short_filename=not opts.grid_extended_filename, p=p, grid=True) images.save_image(grid, p.outpath_grids, "grid", p.all_seeds[0], p.all_prompts[0], opts.grid_format, info=infotext(use_main_prompt=True), short_filename=not opts.grid_extended_filename, p=p, grid=True)
if not p.disable_extra_networks and extra_network_data: if not p.disable_extra_networks and p.extra_network_data:
extra_networks.deactivate(p, extra_network_data) extra_networks.deactivate(p, p.extra_network_data)
devices.torch_gc() devices.torch_gc()
@ -859,6 +874,8 @@ def old_hires_fix_first_pass_dimensions(width, height):
class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
sampler = None sampler = None
cached_hr_uc = [None, None]
cached_hr_c = [None, None]
def __init__(self, enable_hr: bool = False, denoising_strength: float = 0.75, firstphase_width: int = 0, firstphase_height: int = 0, hr_scale: float = 2.0, hr_upscaler: str = None, hr_second_pass_steps: int = 0, hr_resize_x: int = 0, hr_resize_y: int = 0, hr_sampler_name: str = None, hr_prompt: str = '', hr_negative_prompt: str = '', **kwargs): def __init__(self, enable_hr: bool = False, denoising_strength: float = 0.75, firstphase_width: int = 0, firstphase_height: int = 0, hr_scale: float = 2.0, hr_upscaler: str = None, hr_second_pass_steps: int = 0, hr_resize_x: int = 0, hr_resize_y: int = 0, hr_sampler_name: str = None, hr_prompt: str = '', hr_negative_prompt: str = '', **kwargs):
super().__init__(**kwargs) super().__init__(**kwargs)
@ -891,6 +908,8 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
self.hr_negative_prompts = None self.hr_negative_prompts = None
self.hr_extra_network_data = None self.hr_extra_network_data = None
self.cached_hr_uc = StableDiffusionProcessingTxt2Img.cached_hr_uc
self.cached_hr_c = StableDiffusionProcessingTxt2Img.cached_hr_c
self.hr_c = None self.hr_c = None
self.hr_uc = None self.hr_uc = None
@ -970,7 +989,8 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
latent_scale_mode = shared.latent_upscale_modes.get(self.hr_upscaler, None) if self.hr_upscaler is not None else shared.latent_upscale_modes.get(shared.latent_upscale_default_mode, "nearest") latent_scale_mode = shared.latent_upscale_modes.get(self.hr_upscaler, None) if self.hr_upscaler is not None else shared.latent_upscale_modes.get(shared.latent_upscale_default_mode, "nearest")
if self.enable_hr and latent_scale_mode is None: if self.enable_hr and latent_scale_mode is None:
assert len([x for x in shared.sd_upscalers if x.name == self.hr_upscaler]) > 0, f"could not find upscaler named {self.hr_upscaler}" if not any(x.name == self.hr_upscaler for x in shared.sd_upscalers):
raise Exception(f"could not find upscaler named {self.hr_upscaler}")
x = create_random_tensors([opt_C, self.height // opt_f, self.width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self) x = create_random_tensors([opt_C, self.height // opt_f, self.width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self)
samples = self.sampler.sample(self, x, conditioning, unconditional_conditioning, image_conditioning=self.txt2img_image_conditioning(x)) samples = self.sampler.sample(self, x, conditioning, unconditional_conditioning, image_conditioning=self.txt2img_image_conditioning(x))
@ -1053,8 +1073,14 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
with devices.autocast(): with devices.autocast():
extra_networks.activate(self, self.hr_extra_network_data) extra_networks.activate(self, self.hr_extra_network_data)
with devices.autocast():
self.calculate_hr_conds()
sd_models.apply_token_merging(self.sd_model, self.get_token_merging_ratio(for_hr=True)) sd_models.apply_token_merging(self.sd_model, self.get_token_merging_ratio(for_hr=True))
if self.scripts is not None:
self.scripts.before_hr(self)
samples = self.sampler.sample_img2img(self, samples, noise, self.hr_c, self.hr_uc, steps=self.hr_second_pass_steps or self.steps, image_conditioning=image_conditioning) samples = self.sampler.sample_img2img(self, samples, noise, self.hr_c, self.hr_uc, steps=self.hr_second_pass_steps or self.steps, image_conditioning=image_conditioning)
sd_models.apply_token_merging(self.sd_model, self.get_token_merging_ratio()) sd_models.apply_token_merging(self.sd_model, self.get_token_merging_ratio())
@ -1064,8 +1090,12 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
return samples return samples
def close(self): def close(self):
super().close()
self.hr_c = None self.hr_c = None
self.hr_uc = None self.hr_uc = None
if not opts.experimental_persistent_cond_cache:
StableDiffusionProcessingTxt2Img.cached_hr_uc = [None, None]
StableDiffusionProcessingTxt2Img.cached_hr_c = [None, None]
def setup_prompts(self): def setup_prompts(self):
super().setup_prompts() super().setup_prompts()
@ -1092,12 +1122,31 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
self.all_hr_prompts = [shared.prompt_styles.apply_styles_to_prompt(x, self.styles) for x in self.all_hr_prompts] self.all_hr_prompts = [shared.prompt_styles.apply_styles_to_prompt(x, self.styles) for x in self.all_hr_prompts]
self.all_hr_negative_prompts = [shared.prompt_styles.apply_negative_styles_to_prompt(x, self.styles) for x in self.all_hr_negative_prompts] self.all_hr_negative_prompts = [shared.prompt_styles.apply_negative_styles_to_prompt(x, self.styles) for x in self.all_hr_negative_prompts]
def calculate_hr_conds(self):
if self.hr_c is not None:
return
self.hr_uc = self.get_conds_with_caching(prompt_parser.get_learned_conditioning, self.hr_negative_prompts, self.steps * self.step_multiplier, [self.cached_hr_uc, self.cached_uc], self.hr_extra_network_data)
self.hr_c = self.get_conds_with_caching(prompt_parser.get_multicond_learned_conditioning, self.hr_prompts, self.steps * self.step_multiplier, [self.cached_hr_c, self.cached_c], self.hr_extra_network_data)
def setup_conds(self): def setup_conds(self):
super().setup_conds() super().setup_conds()
self.hr_uc = None
self.hr_c = None
if self.enable_hr: if self.enable_hr:
self.hr_uc = self.get_conds_with_caching(prompt_parser.get_learned_conditioning, self.hr_negative_prompts, self.steps * self.step_multiplier, self.cached_uc) if shared.opts.hires_fix_use_firstpass_conds:
self.hr_c = self.get_conds_with_caching(prompt_parser.get_multicond_learned_conditioning, self.hr_prompts, self.steps * self.step_multiplier, self.cached_c) self.calculate_hr_conds()
elif lowvram.is_enabled(shared.sd_model): # if in lowvram mode, we need to calculate conds right away, before the cond NN is unloaded
with devices.autocast():
extra_networks.activate(self, self.hr_extra_network_data)
self.calculate_hr_conds()
with devices.autocast():
extra_networks.activate(self, self.extra_network_data)
def parse_extra_network_prompts(self): def parse_extra_network_prompts(self):
res = super().parse_extra_network_prompts() res = super().parse_extra_network_prompts()
@ -1114,7 +1163,7 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
class StableDiffusionProcessingImg2Img(StableDiffusionProcessing): class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
sampler = None sampler = None
def __init__(self, init_images: list = None, resize_mode: int = 0, denoising_strength: float = 0.75, image_cfg_scale: float = None, mask: Any = None, mask_blur: int = 4, inpainting_fill: int = 0, inpaint_full_res: bool = True, inpaint_full_res_padding: int = 0, inpainting_mask_invert: int = 0, initial_noise_multiplier: float = None, **kwargs): def __init__(self, init_images: list = None, resize_mode: int = 0, denoising_strength: float = 0.75, image_cfg_scale: float = None, mask: Any = None, mask_blur: int = None, mask_blur_x: int = 4, mask_blur_y: int = 4, inpainting_fill: int = 0, inpaint_full_res: bool = True, inpaint_full_res_padding: int = 0, inpainting_mask_invert: int = 0, initial_noise_multiplier: float = None, **kwargs):
super().__init__(**kwargs) super().__init__(**kwargs)
self.init_images = init_images self.init_images = init_images
@ -1125,7 +1174,11 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
self.image_mask = mask self.image_mask = mask
self.latent_mask = None self.latent_mask = None
self.mask_for_overlay = None self.mask_for_overlay = None
self.mask_blur = mask_blur if mask_blur is not None:
mask_blur_x = mask_blur
mask_blur_y = mask_blur
self.mask_blur_x = mask_blur_x
self.mask_blur_y = mask_blur_y
self.inpainting_fill = inpainting_fill self.inpainting_fill = inpainting_fill
self.inpaint_full_res = inpaint_full_res self.inpaint_full_res = inpaint_full_res
self.inpaint_full_res_padding = inpaint_full_res_padding self.inpaint_full_res_padding = inpaint_full_res_padding
@ -1147,8 +1200,17 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
if self.inpainting_mask_invert: if self.inpainting_mask_invert:
image_mask = ImageOps.invert(image_mask) image_mask = ImageOps.invert(image_mask)
if self.mask_blur > 0: if self.mask_blur_x > 0:
image_mask = image_mask.filter(ImageFilter.GaussianBlur(self.mask_blur)) np_mask = np.array(image_mask)
kernel_size = 2 * int(4 * self.mask_blur_x + 0.5) + 1
np_mask = cv2.GaussianBlur(np_mask, (kernel_size, 1), self.mask_blur_x)
image_mask = Image.fromarray(np_mask)
if self.mask_blur_y > 0:
np_mask = np.array(image_mask)
kernel_size = 2 * int(4 * self.mask_blur_y + 0.5) + 1
np_mask = cv2.GaussianBlur(np_mask, (1, kernel_size), self.mask_blur_y)
image_mask = Image.fromarray(np_mask)
if self.inpaint_full_res: if self.inpaint_full_res:
self.mask_for_overlay = image_mask self.mask_for_overlay = image_mask

View File

@ -336,11 +336,11 @@ def parse_prompt_attention(text):
round_brackets.append(len(res)) round_brackets.append(len(res))
elif text == '[': elif text == '[':
square_brackets.append(len(res)) square_brackets.append(len(res))
elif weight is not None and len(round_brackets) > 0: elif weight is not None and round_brackets:
multiply_range(round_brackets.pop(), float(weight)) multiply_range(round_brackets.pop(), float(weight))
elif text == ')' and len(round_brackets) > 0: elif text == ')' and round_brackets:
multiply_range(round_brackets.pop(), round_bracket_multiplier) multiply_range(round_brackets.pop(), round_bracket_multiplier)
elif text == ']' and len(square_brackets) > 0: elif text == ']' and square_brackets:
multiply_range(square_brackets.pop(), square_bracket_multiplier) multiply_range(square_brackets.pop(), square_bracket_multiplier)
else: else:
parts = re.split(re_break, text) parts = re.split(re_break, text)

View File

@ -1,15 +1,13 @@
import os import os
import sys
import traceback
import numpy as np import numpy as np
from PIL import Image from PIL import Image
from basicsr.utils.download_util import load_file_from_url
from realesrgan import RealESRGANer from realesrgan import RealESRGANer
from modules.upscaler import Upscaler, UpscalerData from modules.upscaler import Upscaler, UpscalerData
from modules.shared import cmd_opts, opts from modules.shared import cmd_opts, opts
from modules import modelloader from modules import modelloader, errors
class UpscalerRealESRGAN(Upscaler): class UpscalerRealESRGAN(Upscaler):
def __init__(self, path): def __init__(self, path):
@ -36,8 +34,7 @@ class UpscalerRealESRGAN(Upscaler):
self.scalers.append(scaler) self.scalers.append(scaler)
except Exception: except Exception:
print("Error importing Real-ESRGAN:", file=sys.stderr) errors.report("Error importing Real-ESRGAN", exc_info=True)
print(traceback.format_exc(), file=sys.stderr)
self.enable = False self.enable = False
self.scalers = [] self.scalers = []
@ -45,9 +42,10 @@ class UpscalerRealESRGAN(Upscaler):
if not self.enable: if not self.enable:
return img return img
info = self.load_model(path) try:
if not os.path.exists(info.local_data_path): info = self.load_model(path)
print(f"Unable to load RealESRGAN model: {info.name}") except Exception:
errors.report(f"Unable to load RealESRGAN model {path}", exc_info=True)
return img return img
upsampler = RealESRGANer( upsampler = RealESRGANer(
@ -65,21 +63,17 @@ class UpscalerRealESRGAN(Upscaler):
return image return image
def load_model(self, path): def load_model(self, path):
try: for scaler in self.scalers:
info = next(iter([scaler for scaler in self.scalers if scaler.data_path == path]), None) if scaler.data_path == path:
if scaler.local_data_path.startswith("http"):
if info is None: scaler.local_data_path = modelloader.load_file_from_url(
print(f"Unable to find model info: {path}") scaler.data_path,
return None model_dir=self.model_download_path,
)
if info.local_data_path.startswith("http"): if not os.path.exists(scaler.local_data_path):
info.local_data_path = load_file_from_url(url=info.data_path, model_dir=self.model_download_path, progress=True) raise FileNotFoundError(f"RealESRGAN data missing: {scaler.local_data_path}")
return scaler
return info raise ValueError(f"Unable to find model info: {path}")
except Exception as e:
print(f"Error making Real-ESRGAN models list: {e}", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
return None
def load_models(self, _): def load_models(self, _):
return get_realesrgan_models(self) return get_realesrgan_models(self)
@ -135,5 +129,4 @@ def get_realesrgan_models(scaler):
] ]
return models return models
except Exception: except Exception:
print("Error making Real-ESRGAN models list:", file=sys.stderr) errors.report("Error making Real-ESRGAN models list", exc_info=True)
print(traceback.format_exc(), file=sys.stderr)

23
modules/restart.py Normal file
View File

@ -0,0 +1,23 @@
import os
from pathlib import Path
from modules.paths_internal import script_path
def is_restartable() -> bool:
"""
Return True if the webui is restartable (i.e. there is something watching to restart it with)
"""
return bool(os.environ.get('SD_WEBUI_RESTART'))
def restart_program() -> None:
"""creates file tmp/restart and immediately stops the process, which webui.bat/webui.sh interpret as a command to start webui again"""
(Path(script_path) / "tmp" / "restart").touch()
stop_program()
def stop_program() -> None:
os._exit(0)

View File

@ -2,8 +2,6 @@
import pickle import pickle
import collections import collections
import sys
import traceback
import torch import torch
import numpy import numpy
@ -11,7 +9,10 @@ import _codecs
import zipfile import zipfile
import re import re
# PyTorch 1.13 and later have _TypedStorage renamed to TypedStorage # PyTorch 1.13 and later have _TypedStorage renamed to TypedStorage
from modules import errors
TypedStorage = torch.storage.TypedStorage if hasattr(torch.storage, 'TypedStorage') else torch.storage._TypedStorage TypedStorage = torch.storage.TypedStorage if hasattr(torch.storage, 'TypedStorage') else torch.storage._TypedStorage
def encode(*args): def encode(*args):
@ -136,17 +137,20 @@ def load_with_extra(filename, extra_handler=None, *args, **kwargs):
check_pt(filename, extra_handler) check_pt(filename, extra_handler)
except pickle.UnpicklingError: except pickle.UnpicklingError:
print(f"Error verifying pickled file from {filename}:", file=sys.stderr) errors.report(
print(traceback.format_exc(), file=sys.stderr) f"Error verifying pickled file from {filename}\n"
print("-----> !!!! The file is most likely corrupted !!!! <-----", file=sys.stderr) "-----> !!!! The file is most likely corrupted !!!! <-----\n"
print("You can skip this check with --disable-safe-unpickle commandline argument, but that is not going to help you.\n\n", file=sys.stderr) "You can skip this check with --disable-safe-unpickle commandline argument, but that is not going to help you.\n\n",
exc_info=True,
)
return None return None
except Exception: except Exception:
print(f"Error verifying pickled file from {filename}:", file=sys.stderr) errors.report(
print(traceback.format_exc(), file=sys.stderr) f"Error verifying pickled file from {filename}\n"
print("\nThe file may be malicious, so the program is not going to read it.", file=sys.stderr) f"The file may be malicious, so the program is not going to read it.\n"
print("You can skip this check with --disable-safe-unpickle commandline argument.\n\n", file=sys.stderr) f"You can skip this check with --disable-safe-unpickle commandline argument.\n\n",
exc_info=True,
)
return None return None
return unsafe_torch_load(filename, *args, **kwargs) return unsafe_torch_load(filename, *args, **kwargs)
@ -190,4 +194,3 @@ with safe.Extra(handler):
unsafe_torch_load = torch.load unsafe_torch_load = torch.load
torch.load = load torch.load = load
global_extra_handler = None global_extra_handler = None

View File

@ -1,16 +1,16 @@
import sys
import traceback
from collections import namedtuple
import inspect import inspect
import os
from collections import namedtuple
from typing import Optional, Dict, Any from typing import Optional, Dict, Any
from fastapi import FastAPI from fastapi import FastAPI
from gradio import Blocks from gradio import Blocks
from modules import errors, timer
def report_exception(c, job): def report_exception(c, job):
print(f"Error executing callback {job} for {c.script}", file=sys.stderr) errors.report(f"Error executing callback {job} for {c.script}", exc_info=True)
print(traceback.format_exc(), file=sys.stderr)
class ImageSaveParams: class ImageSaveParams:
@ -111,6 +111,7 @@ callback_map = dict(
callbacks_before_ui=[], callbacks_before_ui=[],
callbacks_on_reload=[], callbacks_on_reload=[],
callbacks_list_optimizers=[], callbacks_list_optimizers=[],
callbacks_list_unets=[],
) )
@ -123,6 +124,7 @@ def app_started_callback(demo: Optional[Blocks], app: FastAPI):
for c in callback_map['callbacks_app_started']: for c in callback_map['callbacks_app_started']:
try: try:
c.callback(demo, app) c.callback(demo, app)
timer.startup_timer.record(os.path.basename(c.script))
except Exception: except Exception:
report_exception(c, 'app_started_callback') report_exception(c, 'app_started_callback')
@ -271,16 +273,28 @@ def list_optimizers_callback():
return res return res
def list_unets_callback():
res = []
for c in callback_map['callbacks_list_unets']:
try:
c.callback(res)
except Exception:
report_exception(c, 'list_unets')
return res
def add_callback(callbacks, fun): def add_callback(callbacks, fun):
stack = [x for x in inspect.stack() if x.filename != __file__] stack = [x for x in inspect.stack() if x.filename != __file__]
filename = stack[0].filename if len(stack) > 0 else 'unknown file' filename = stack[0].filename if stack else 'unknown file'
callbacks.append(ScriptCallback(filename, fun)) callbacks.append(ScriptCallback(filename, fun))
def remove_current_script_callbacks(): def remove_current_script_callbacks():
stack = [x for x in inspect.stack() if x.filename != __file__] stack = [x for x in inspect.stack() if x.filename != __file__]
filename = stack[0].filename if len(stack) > 0 else 'unknown file' filename = stack[0].filename if stack else 'unknown file'
if filename == 'unknown file': if filename == 'unknown file':
return return
for callback_list in callback_map.values(): for callback_list in callback_map.values():
@ -430,3 +444,10 @@ def on_list_optimizers(callback):
to it.""" to it."""
add_callback(callback_map['callbacks_list_optimizers'], callback) add_callback(callback_map['callbacks_list_optimizers'], callback)
def on_list_unets(callback):
"""register a function to be called when UI is making a list of alternative options for unet.
The function will be called with one argument, a list, and shall add objects of type modules.sd_unet.SdUnetOption to it."""
add_callback(callback_map['callbacks_list_unets'], callback)

View File

@ -1,8 +1,8 @@
import os import os
import sys
import traceback
import importlib.util import importlib.util
from modules import errors
def load_module(path): def load_module(path):
module_spec = importlib.util.spec_from_file_location(os.path.basename(path), path) module_spec = importlib.util.spec_from_file_location(os.path.basename(path), path)
@ -27,5 +27,4 @@ def preload_extensions(extensions_dir, parser):
module.preload(parser) module.preload(parser)
except Exception: except Exception:
print(f"Error running preload() for {preload_script}", file=sys.stderr) errors.report(f"Error running preload() for {preload_script}", exc_info=True)
print(traceback.format_exc(), file=sys.stderr)

View File

@ -1,12 +1,12 @@
import os import os
import re import re
import sys import sys
import traceback import inspect
from collections import namedtuple from collections import namedtuple
import gradio as gr import gradio as gr
from modules import shared, paths, script_callbacks, extensions, script_loading, scripts_postprocessing from modules import shared, paths, script_callbacks, extensions, script_loading, scripts_postprocessing, errors, timer
AlwaysVisible = object() AlwaysVisible = object()
@ -20,6 +20,9 @@ class Script:
name = None name = None
"""script's internal name derived from title""" """script's internal name derived from title"""
section = None
"""name of UI section that the script's controls will be placed into"""
filename = None filename = None
args_from = None args_from = None
args_to = None args_to = None
@ -82,6 +85,15 @@ class Script:
pass pass
def before_process(self, p, *args):
"""
This function is called very early before processing begins for AlwaysVisible scripts.
You can modify the processing object (p) here, inject hooks, etc.
args contains all values returned by components from ui()
"""
pass
def process(self, p, *args): def process(self, p, *args):
""" """
This function is called before processing begins for AlwaysVisible scripts. This function is called before processing begins for AlwaysVisible scripts.
@ -105,6 +117,21 @@ class Script:
pass pass
def after_extra_networks_activate(self, p, *args, **kwargs):
"""
Calledafter extra networks activation, before conds calculation
allow modification of the network after extra networks activation been applied
won't be call if p.disable_extra_networks
**kwargs will have those items:
- batch_number - index of current batch, from 0 to number of batches-1
- prompts - list of prompts for current batch; you can change contents of this list but changing the number of entries will likely break things
- seeds - list of seeds for current batch
- subseeds - list of subseeds for current batch
- extra_network_data - list of ExtraNetworkParams for current stage
"""
pass
def process_batch(self, p, *args, **kwargs): def process_batch(self, p, *args, **kwargs):
""" """
Same as process(), but called for every batch. Same as process(), but called for every batch.
@ -175,6 +202,11 @@ class Script:
return f'script_{tabname}{title}_{item_id}' return f'script_{tabname}{title}_{item_id}'
def before_hr(self, p, *args):
"""
This function is called before hires fix start.
"""
pass
current_basedir = paths.script_path current_basedir = paths.script_path
@ -238,7 +270,7 @@ def load_scripts():
def register_scripts_from_module(module): def register_scripts_from_module(module):
for script_class in module.__dict__.values(): for script_class in module.__dict__.values():
if type(script_class) != type: if not inspect.isclass(script_class):
continue continue
if issubclass(script_class, Script): if issubclass(script_class, Script):
@ -264,12 +296,12 @@ def load_scripts():
register_scripts_from_module(script_module) register_scripts_from_module(script_module)
except Exception: except Exception:
print(f"Error loading script: {scriptfile.filename}", file=sys.stderr) errors.report(f"Error loading script: {scriptfile.filename}", exc_info=True)
print(traceback.format_exc(), file=sys.stderr)
finally: finally:
sys.path = syspath sys.path = syspath
current_basedir = paths.script_path current_basedir = paths.script_path
timer.startup_timer.record(scriptfile.filename)
global scripts_txt2img, scripts_img2img, scripts_postproc global scripts_txt2img, scripts_img2img, scripts_postproc
@ -280,11 +312,9 @@ def load_scripts():
def wrap_call(func, filename, funcname, *args, default=None, **kwargs): def wrap_call(func, filename, funcname, *args, default=None, **kwargs):
try: try:
res = func(*args, **kwargs) return func(*args, **kwargs)
return res
except Exception: except Exception:
print(f"Error calling: {filename}/{funcname}", file=sys.stderr) errors.report(f"Error calling: {filename}/{funcname}", exc_info=True)
print(traceback.format_exc(), file=sys.stderr)
return default return default
@ -297,6 +327,7 @@ class ScriptRunner:
self.titles = [] self.titles = []
self.infotext_fields = [] self.infotext_fields = []
self.paste_field_names = [] self.paste_field_names = []
self.inputs = [None]
def initialize_scripts(self, is_img2img): def initialize_scripts(self, is_img2img):
from modules import scripts_auto_postprocessing from modules import scripts_auto_postprocessing
@ -324,69 +355,73 @@ class ScriptRunner:
self.scripts.append(script) self.scripts.append(script)
self.selectable_scripts.append(script) self.selectable_scripts.append(script)
def setup_ui(self): def create_script_ui(self, script):
import modules.api.models as api_models import modules.api.models as api_models
script.args_from = len(self.inputs)
script.args_to = len(self.inputs)
controls = wrap_call(script.ui, script.filename, "ui", script.is_img2img)
if controls is None:
return
script.name = wrap_call(script.title, script.filename, "title", default=script.filename).lower()
api_args = []
for control in controls:
control.custom_script_source = os.path.basename(script.filename)
arg_info = api_models.ScriptArg(label=control.label or "")
for field in ("value", "minimum", "maximum", "step", "choices"):
v = getattr(control, field, None)
if v is not None:
setattr(arg_info, field, v)
api_args.append(arg_info)
script.api_info = api_models.ScriptInfo(
name=script.name,
is_img2img=script.is_img2img,
is_alwayson=script.alwayson,
args=api_args,
)
if script.infotext_fields is not None:
self.infotext_fields += script.infotext_fields
if script.paste_field_names is not None:
self.paste_field_names += script.paste_field_names
self.inputs += controls
script.args_to = len(self.inputs)
def setup_ui_for_section(self, section, scriptlist=None):
if scriptlist is None:
scriptlist = self.alwayson_scripts
for script in scriptlist:
if script.alwayson and script.section != section:
continue
with gr.Group(visible=script.alwayson) as group:
self.create_script_ui(script)
script.group = group
def prepare_ui(self):
self.inputs = [None]
def setup_ui(self):
self.titles = [wrap_call(script.title, script.filename, "title") or f"{script.filename} [error]" for script in self.selectable_scripts] self.titles = [wrap_call(script.title, script.filename, "title") or f"{script.filename} [error]" for script in self.selectable_scripts]
inputs = [None] self.setup_ui_for_section(None)
inputs_alwayson = [True]
def create_script_ui(script, inputs, inputs_alwayson):
script.args_from = len(inputs)
script.args_to = len(inputs)
controls = wrap_call(script.ui, script.filename, "ui", script.is_img2img)
if controls is None:
return
script.name = wrap_call(script.title, script.filename, "title", default=script.filename).lower()
api_args = []
for control in controls:
control.custom_script_source = os.path.basename(script.filename)
arg_info = api_models.ScriptArg(label=control.label or "")
for field in ("value", "minimum", "maximum", "step", "choices"):
v = getattr(control, field, None)
if v is not None:
setattr(arg_info, field, v)
api_args.append(arg_info)
script.api_info = api_models.ScriptInfo(
name=script.name,
is_img2img=script.is_img2img,
is_alwayson=script.alwayson,
args=api_args,
)
if script.infotext_fields is not None:
self.infotext_fields += script.infotext_fields
if script.paste_field_names is not None:
self.paste_field_names += script.paste_field_names
inputs += controls
inputs_alwayson += [script.alwayson for _ in controls]
script.args_to = len(inputs)
for script in self.alwayson_scripts:
with gr.Group() as group:
create_script_ui(script, inputs, inputs_alwayson)
script.group = group
dropdown = gr.Dropdown(label="Script", elem_id="script_list", choices=["None"] + self.titles, value="None", type="index") dropdown = gr.Dropdown(label="Script", elem_id="script_list", choices=["None"] + self.titles, value="None", type="index")
inputs[0] = dropdown self.inputs[0] = dropdown
for script in self.selectable_scripts: self.setup_ui_for_section(None, self.selectable_scripts)
with gr.Group(visible=False) as group:
create_script_ui(script, inputs, inputs_alwayson)
script.group = group
def select_script(script_index): def select_script(script_index):
selected_script = self.selectable_scripts[script_index - 1] if script_index>0 else None selected_script = self.selectable_scripts[script_index - 1] if script_index>0 else None
@ -411,6 +446,7 @@ class ScriptRunner:
) )
self.script_load_ctr = 0 self.script_load_ctr = 0
def onload_script_visibility(params): def onload_script_visibility(params):
title = params.get('Script', None) title = params.get('Script', None)
if title: if title:
@ -421,10 +457,10 @@ class ScriptRunner:
else: else:
return gr.update(visible=False) return gr.update(visible=False)
self.infotext_fields.append( (dropdown, lambda x: gr.update(value=x.get('Script', 'None'))) ) self.infotext_fields.append((dropdown, lambda x: gr.update(value=x.get('Script', 'None'))))
self.infotext_fields.extend( [(script.group, onload_script_visibility) for script in self.selectable_scripts] ) self.infotext_fields.extend([(script.group, onload_script_visibility) for script in self.selectable_scripts])
return inputs return self.inputs
def run(self, p, *args): def run(self, p, *args):
script_index = args[0] script_index = args[0]
@ -444,14 +480,21 @@ class ScriptRunner:
return processed return processed
def before_process(self, p):
for script in self.alwayson_scripts:
try:
script_args = p.script_args[script.args_from:script.args_to]
script.before_process(p, *script_args)
except Exception:
errors.report(f"Error running before_process: {script.filename}", exc_info=True)
def process(self, p): def process(self, p):
for script in self.alwayson_scripts: for script in self.alwayson_scripts:
try: try:
script_args = p.script_args[script.args_from:script.args_to] script_args = p.script_args[script.args_from:script.args_to]
script.process(p, *script_args) script.process(p, *script_args)
except Exception: except Exception:
print(f"Error running process: {script.filename}", file=sys.stderr) errors.report(f"Error running process: {script.filename}", exc_info=True)
print(traceback.format_exc(), file=sys.stderr)
def before_process_batch(self, p, **kwargs): def before_process_batch(self, p, **kwargs):
for script in self.alwayson_scripts: for script in self.alwayson_scripts:
@ -459,8 +502,15 @@ class ScriptRunner:
script_args = p.script_args[script.args_from:script.args_to] script_args = p.script_args[script.args_from:script.args_to]
script.before_process_batch(p, *script_args, **kwargs) script.before_process_batch(p, *script_args, **kwargs)
except Exception: except Exception:
print(f"Error running before_process_batch: {script.filename}", file=sys.stderr) errors.report(f"Error running before_process_batch: {script.filename}", exc_info=True)
print(traceback.format_exc(), file=sys.stderr)
def after_extra_networks_activate(self, p, **kwargs):
for script in self.alwayson_scripts:
try:
script_args = p.script_args[script.args_from:script.args_to]
script.after_extra_networks_activate(p, *script_args, **kwargs)
except Exception:
errors.report(f"Error running after_extra_networks_activate: {script.filename}", exc_info=True)
def process_batch(self, p, **kwargs): def process_batch(self, p, **kwargs):
for script in self.alwayson_scripts: for script in self.alwayson_scripts:
@ -468,8 +518,7 @@ class ScriptRunner:
script_args = p.script_args[script.args_from:script.args_to] script_args = p.script_args[script.args_from:script.args_to]
script.process_batch(p, *script_args, **kwargs) script.process_batch(p, *script_args, **kwargs)
except Exception: except Exception:
print(f"Error running process_batch: {script.filename}", file=sys.stderr) errors.report(f"Error running process_batch: {script.filename}", exc_info=True)
print(traceback.format_exc(), file=sys.stderr)
def postprocess(self, p, processed): def postprocess(self, p, processed):
for script in self.alwayson_scripts: for script in self.alwayson_scripts:
@ -477,8 +526,7 @@ class ScriptRunner:
script_args = p.script_args[script.args_from:script.args_to] script_args = p.script_args[script.args_from:script.args_to]
script.postprocess(p, processed, *script_args) script.postprocess(p, processed, *script_args)
except Exception: except Exception:
print(f"Error running postprocess: {script.filename}", file=sys.stderr) errors.report(f"Error running postprocess: {script.filename}", exc_info=True)
print(traceback.format_exc(), file=sys.stderr)
def postprocess_batch(self, p, images, **kwargs): def postprocess_batch(self, p, images, **kwargs):
for script in self.alwayson_scripts: for script in self.alwayson_scripts:
@ -486,8 +534,7 @@ class ScriptRunner:
script_args = p.script_args[script.args_from:script.args_to] script_args = p.script_args[script.args_from:script.args_to]
script.postprocess_batch(p, *script_args, images=images, **kwargs) script.postprocess_batch(p, *script_args, images=images, **kwargs)
except Exception: except Exception:
print(f"Error running postprocess_batch: {script.filename}", file=sys.stderr) errors.report(f"Error running postprocess_batch: {script.filename}", exc_info=True)
print(traceback.format_exc(), file=sys.stderr)
def postprocess_image(self, p, pp: PostprocessImageArgs): def postprocess_image(self, p, pp: PostprocessImageArgs):
for script in self.alwayson_scripts: for script in self.alwayson_scripts:
@ -495,24 +542,21 @@ class ScriptRunner:
script_args = p.script_args[script.args_from:script.args_to] script_args = p.script_args[script.args_from:script.args_to]
script.postprocess_image(p, pp, *script_args) script.postprocess_image(p, pp, *script_args)
except Exception: except Exception:
print(f"Error running postprocess_batch: {script.filename}", file=sys.stderr) errors.report(f"Error running postprocess_image: {script.filename}", exc_info=True)
print(traceback.format_exc(), file=sys.stderr)
def before_component(self, component, **kwargs): def before_component(self, component, **kwargs):
for script in self.scripts: for script in self.scripts:
try: try:
script.before_component(component, **kwargs) script.before_component(component, **kwargs)
except Exception: except Exception:
print(f"Error running before_component: {script.filename}", file=sys.stderr) errors.report(f"Error running before_component: {script.filename}", exc_info=True)
print(traceback.format_exc(), file=sys.stderr)
def after_component(self, component, **kwargs): def after_component(self, component, **kwargs):
for script in self.scripts: for script in self.scripts:
try: try:
script.after_component(component, **kwargs) script.after_component(component, **kwargs)
except Exception: except Exception:
print(f"Error running after_component: {script.filename}", file=sys.stderr) errors.report(f"Error running after_component: {script.filename}", exc_info=True)
print(traceback.format_exc(), file=sys.stderr)
def reload_sources(self, cache): def reload_sources(self, cache):
for si, script in list(enumerate(self.scripts)): for si, script in list(enumerate(self.scripts)):
@ -533,6 +577,15 @@ class ScriptRunner:
self.scripts[si].args_to = args_to self.scripts[si].args_to = args_to
def before_hr(self, p):
for script in self.alwayson_scripts:
try:
script_args = p.script_args[script.args_from:script.args_to]
script.before_hr(p, *script_args)
except Exception:
errors.report(f"Error running before_hr: {script.filename}", exc_info=True)
scripts_txt2img: ScriptRunner = None scripts_txt2img: ScriptRunner = None
scripts_img2img: ScriptRunner = None scripts_img2img: ScriptRunner = None
scripts_postproc: scripts_postprocessing.ScriptPostprocessingRunner = None scripts_postproc: scripts_postprocessing.ScriptPostprocessingRunner = None

View File

@ -3,7 +3,7 @@ from torch.nn.functional import silu
from types import MethodType from types import MethodType
import modules.textual_inversion.textual_inversion import modules.textual_inversion.textual_inversion
from modules import devices, sd_hijack_optimizations, shared, script_callbacks, errors from modules import devices, sd_hijack_optimizations, shared, script_callbacks, errors, sd_unet
from modules.hypernetworks import hypernetwork from modules.hypernetworks import hypernetwork
from modules.shared import cmd_opts from modules.shared import cmd_opts
from modules import sd_hijack_clip, sd_hijack_open_clip, sd_hijack_unet, sd_hijack_xlmr, xlmr from modules import sd_hijack_clip, sd_hijack_open_clip, sd_hijack_unet, sd_hijack_xlmr, xlmr
@ -43,7 +43,7 @@ def list_optimizers():
optimizers.extend(new_optimizers) optimizers.extend(new_optimizers)
def apply_optimizations(): def apply_optimizations(option=None):
global current_optimizer global current_optimizer
undo_optimizations() undo_optimizations()
@ -60,7 +60,7 @@ def apply_optimizations():
current_optimizer.undo() current_optimizer.undo()
current_optimizer = None current_optimizer = None
selection = shared.opts.cross_attention_optimization selection = option or shared.opts.cross_attention_optimization
if selection == "Automatic" and len(optimizers) > 0: if selection == "Automatic" and len(optimizers) > 0:
matching_optimizer = next(iter([x for x in optimizers if x.cmd_opt and getattr(shared.cmd_opts, x.cmd_opt, False)]), optimizers[0]) matching_optimizer = next(iter([x for x in optimizers if x.cmd_opt and getattr(shared.cmd_opts, x.cmd_opt, False)]), optimizers[0])
else: else:
@ -74,12 +74,13 @@ def apply_optimizations():
matching_optimizer = optimizers[0] matching_optimizer = optimizers[0]
if matching_optimizer is not None: if matching_optimizer is not None:
print(f"Applying optimization: {matching_optimizer.name}... ", end='') print(f"Applying attention optimization: {matching_optimizer.name}... ", end='')
matching_optimizer.apply() matching_optimizer.apply()
print("done.") print("done.")
current_optimizer = matching_optimizer current_optimizer = matching_optimizer
return current_optimizer.name return current_optimizer.name
else: else:
print("Disabling attention optimization")
return '' return ''
@ -157,9 +158,9 @@ class StableDiffusionModelHijack:
def __init__(self): def __init__(self):
self.embedding_db.add_embedding_dir(cmd_opts.embeddings_dir) self.embedding_db.add_embedding_dir(cmd_opts.embeddings_dir)
def apply_optimizations(self): def apply_optimizations(self, option=None):
try: try:
self.optimization_method = apply_optimizations() self.optimization_method = apply_optimizations(option)
except Exception as e: except Exception as e:
errors.display(e, "applying cross attention optimization") errors.display(e, "applying cross attention optimization")
undo_optimizations() undo_optimizations()
@ -196,6 +197,11 @@ class StableDiffusionModelHijack:
self.layers = flatten(m) self.layers = flatten(m)
if not hasattr(ldm.modules.diffusionmodules.openaimodel, 'copy_of_UNetModel_forward_for_webui'):
ldm.modules.diffusionmodules.openaimodel.copy_of_UNetModel_forward_for_webui = ldm.modules.diffusionmodules.openaimodel.UNetModel.forward
ldm.modules.diffusionmodules.openaimodel.UNetModel.forward = sd_unet.UNetModel_forward
def undo_hijack(self, m): def undo_hijack(self, m):
if type(m.cond_stage_model) == xlmr.BertSeriesModelWithTransformation: if type(m.cond_stage_model) == xlmr.BertSeriesModelWithTransformation:
m.cond_stage_model = m.cond_stage_model.wrapped m.cond_stage_model = m.cond_stage_model.wrapped
@ -217,6 +223,8 @@ class StableDiffusionModelHijack:
self.layers = None self.layers = None
self.clip = None self.clip = None
ldm.modules.diffusionmodules.openaimodel.UNetModel.forward = ldm.modules.diffusionmodules.openaimodel.copy_of_UNetModel_forward_for_webui
def apply_circular(self, enable): def apply_circular(self, enable):
if self.circular_enabled == enable: if self.circular_enabled == enable:
return return

View File

@ -167,7 +167,7 @@ class FrozenCLIPEmbedderWithCustomWordsBase(torch.nn.Module):
chunk.multipliers += [weight] * emb_len chunk.multipliers += [weight] * emb_len
position += embedding_length_in_tokens position += embedding_length_in_tokens
if len(chunk.tokens) > 0 or len(chunks) == 0: if chunk.tokens or not chunks:
next_chunk(is_last=True) next_chunk(is_last=True)
return chunks, token_count return chunks, token_count

View File

@ -74,7 +74,7 @@ def forward_old(self: sd_hijack_clip.FrozenCLIPEmbedderWithCustomWordsBase, text
self.hijack.comments += hijack_comments self.hijack.comments += hijack_comments
if len(used_custom_terms) > 0: if used_custom_terms:
embedding_names = ", ".join(f"{word} [{checksum}]" for word, checksum in used_custom_terms) embedding_names = ", ".join(f"{word} [{checksum}]" for word, checksum in used_custom_terms)
self.hijack.comments.append(f"Used embeddings: {embedding_names}") self.hijack.comments.append(f"Used embeddings: {embedding_names}")

View File

@ -1,7 +1,5 @@
from __future__ import annotations from __future__ import annotations
import math import math
import sys
import traceback
import psutil import psutil
import torch import torch
@ -48,7 +46,7 @@ class SdOptimizationXformers(SdOptimization):
priority = 100 priority = 100
def is_available(self): def is_available(self):
return shared.cmd_opts.force_enable_xformers or (shared.xformers_available and torch.version.cuda and (6, 0) <= torch.cuda.get_device_capability(shared.device) <= (9, 0)) return shared.cmd_opts.force_enable_xformers or (shared.xformers_available and torch.cuda.is_available() and (6, 0) <= torch.cuda.get_device_capability(shared.device) <= (9, 0))
def apply(self): def apply(self):
ldm.modules.attention.CrossAttention.forward = xformers_attention_forward ldm.modules.attention.CrossAttention.forward = xformers_attention_forward
@ -140,8 +138,7 @@ if shared.cmd_opts.xformers or shared.cmd_opts.force_enable_xformers:
import xformers.ops import xformers.ops
shared.xformers_available = True shared.xformers_available = True
except Exception: except Exception:
print("Cannot import xformers", file=sys.stderr) errors.report("Cannot import xformers", exc_info=True)
print(traceback.format_exc(), file=sys.stderr)
def get_available_vram(): def get_available_vram():
@ -605,7 +602,7 @@ def sdp_attnblock_forward(self, x):
q, k, v = (rearrange(t, 'b c h w -> b (h w) c') for t in (q, k, v)) q, k, v = (rearrange(t, 'b c h w -> b (h w) c') for t in (q, k, v))
dtype = q.dtype dtype = q.dtype
if shared.opts.upcast_attn: if shared.opts.upcast_attn:
q, k = q.float(), k.float() q, k, v = q.float(), k.float(), v.float()
q = q.contiguous() q = q.contiguous()
k = k.contiguous() k = k.contiguous()
v = v.contiguous() v = v.contiguous()

View File

@ -14,7 +14,7 @@ import ldm.modules.midas as midas
from ldm.util import instantiate_from_config from ldm.util import instantiate_from_config
from modules import paths, shared, modelloader, devices, script_callbacks, sd_vae, sd_disable_initialization, errors, hashes, sd_models_config from modules import paths, shared, modelloader, devices, script_callbacks, sd_vae, sd_disable_initialization, errors, hashes, sd_models_config, sd_unet
from modules.sd_hijack_inpainting import do_inpainting_hijack from modules.sd_hijack_inpainting import do_inpainting_hijack
from modules.timer import Timer from modules.timer import Timer
import tomesd import tomesd
@ -95,8 +95,7 @@ except Exception:
def setup_model(): def setup_model():
if not os.path.exists(model_path): os.makedirs(model_path, exist_ok=True)
os.makedirs(model_path)
enable_midas_autodownload() enable_midas_autodownload()
@ -164,6 +163,7 @@ def model_hash(filename):
def select_checkpoint(): def select_checkpoint():
"""Raises `FileNotFoundError` if no checkpoints are found."""
model_checkpoint = shared.opts.sd_model_checkpoint model_checkpoint = shared.opts.sd_model_checkpoint
checkpoint_info = checkpoint_alisases.get(model_checkpoint, None) checkpoint_info = checkpoint_alisases.get(model_checkpoint, None)
@ -171,14 +171,14 @@ def select_checkpoint():
return checkpoint_info return checkpoint_info
if len(checkpoints_list) == 0: if len(checkpoints_list) == 0:
print("No checkpoints found. When searching for checkpoints, looked at:", file=sys.stderr) error_message = "No checkpoints found. When searching for checkpoints, looked at:"
if shared.cmd_opts.ckpt is not None: if shared.cmd_opts.ckpt is not None:
print(f" - file {os.path.abspath(shared.cmd_opts.ckpt)}", file=sys.stderr) error_message += f"\n - file {os.path.abspath(shared.cmd_opts.ckpt)}"
print(f" - directory {model_path}", file=sys.stderr) error_message += f"\n - directory {model_path}"
if shared.cmd_opts.ckpt_dir is not None: if shared.cmd_opts.ckpt_dir is not None:
print(f" - directory {os.path.abspath(shared.cmd_opts.ckpt_dir)}", file=sys.stderr) error_message += f"\n - directory {os.path.abspath(shared.cmd_opts.ckpt_dir)}"
print("Can't run without a checkpoint. Find and place a .ckpt or .safetensors file into any of those locations. The program will exit.", file=sys.stderr) error_message += "Can't run without a checkpoint. Find and place a .ckpt or .safetensors file into any of those locations."
exit(1) raise FileNotFoundError(error_message)
checkpoint_info = next(iter(checkpoints_list.values())) checkpoint_info = next(iter(checkpoints_list.values()))
if model_checkpoint is not None: if model_checkpoint is not None:
@ -247,7 +247,12 @@ def read_state_dict(checkpoint_file, print_global_state=False, map_location=None
_, extension = os.path.splitext(checkpoint_file) _, extension = os.path.splitext(checkpoint_file)
if extension.lower() == ".safetensors": if extension.lower() == ".safetensors":
device = map_location or shared.weight_load_location or devices.get_optimal_device_name() device = map_location or shared.weight_load_location or devices.get_optimal_device_name()
pl_sd = safetensors.torch.load_file(checkpoint_file, device=device)
if not shared.opts.disable_mmap_load_safetensors:
pl_sd = safetensors.torch.load_file(checkpoint_file, device=device)
else:
pl_sd = safetensors.torch.load(open(checkpoint_file, 'rb').read())
pl_sd = {k: v.to(device) for k, v in pl_sd.items()}
else: else:
pl_sd = torch.load(checkpoint_file, map_location=map_location or shared.weight_load_location) pl_sd = torch.load(checkpoint_file, map_location=map_location or shared.weight_load_location)
@ -421,7 +426,7 @@ class SdModelData:
try: try:
load_model() load_model()
except Exception as e: except Exception as e:
errors.display(e, "loading stable diffusion model") errors.display(e, "loading stable diffusion model", full_traceback=True)
print("", file=sys.stderr) print("", file=sys.stderr)
print("Stable diffusion model failed to load", file=sys.stderr) print("Stable diffusion model failed to load", file=sys.stderr)
self.sd_model = None self.sd_model = None
@ -506,6 +511,11 @@ def load_model(checkpoint_info=None, already_loaded_state_dict=None):
timer.record("scripts callbacks") timer.record("scripts callbacks")
with devices.autocast(), torch.no_grad():
sd_model.cond_stage_model_empty_prompt = sd_model.cond_stage_model([""])
timer.record("calculate empty prompt")
print(f"Model loaded in {timer.summary()}.") print(f"Model loaded in {timer.summary()}.")
return sd_model return sd_model
@ -525,6 +535,8 @@ def reload_model_weights(sd_model=None, info=None):
if sd_model.sd_model_checkpoint == checkpoint_info.filename: if sd_model.sd_model_checkpoint == checkpoint_info.filename:
return return
sd_unet.apply_unet("None")
if shared.cmd_opts.lowvram or shared.cmd_opts.medvram: if shared.cmd_opts.lowvram or shared.cmd_opts.medvram:
lowvram.send_everything_to_cpu() lowvram.send_everything_to_cpu()
else: else:

View File

@ -20,7 +20,7 @@ samplers_k_diffusion = [
('DPM++ 2S a', 'sample_dpmpp_2s_ancestral', ['k_dpmpp_2s_a'], {"uses_ensd": True, "second_order": True}), ('DPM++ 2S a', 'sample_dpmpp_2s_ancestral', ['k_dpmpp_2s_a'], {"uses_ensd": True, "second_order": True}),
('DPM++ 2M', 'sample_dpmpp_2m', ['k_dpmpp_2m'], {}), ('DPM++ 2M', 'sample_dpmpp_2m', ['k_dpmpp_2m'], {}),
('DPM++ SDE', 'sample_dpmpp_sde', ['k_dpmpp_sde'], {"second_order": True, "brownian_noise": True}), ('DPM++ SDE', 'sample_dpmpp_sde', ['k_dpmpp_sde'], {"second_order": True, "brownian_noise": True}),
('DPM++ 2M SDE', 'sample_dpmpp_2m_sde', ['k_dpmpp_2m_sde_ka'], {"brownian_noise": True, 'discard_next_to_last_sigma': True}), ('DPM++ 2M SDE', 'sample_dpmpp_2m_sde', ['k_dpmpp_2m_sde_ka'], {"brownian_noise": True}),
('DPM fast', 'sample_dpm_fast', ['k_dpm_fast'], {"uses_ensd": True}), ('DPM fast', 'sample_dpm_fast', ['k_dpm_fast'], {"uses_ensd": True}),
('DPM adaptive', 'sample_dpm_adaptive', ['k_dpm_ad'], {"uses_ensd": True}), ('DPM adaptive', 'sample_dpm_adaptive', ['k_dpm_ad'], {"uses_ensd": True}),
('LMS Karras', 'sample_lms', ['k_lms_ka'], {'scheduler': 'karras'}), ('LMS Karras', 'sample_lms', ['k_lms_ka'], {'scheduler': 'karras'}),
@ -29,7 +29,7 @@ samplers_k_diffusion = [
('DPM++ 2S a Karras', 'sample_dpmpp_2s_ancestral', ['k_dpmpp_2s_a_ka'], {'scheduler': 'karras', "uses_ensd": True, "second_order": True}), ('DPM++ 2S a Karras', 'sample_dpmpp_2s_ancestral', ['k_dpmpp_2s_a_ka'], {'scheduler': 'karras', "uses_ensd": True, "second_order": True}),
('DPM++ 2M Karras', 'sample_dpmpp_2m', ['k_dpmpp_2m_ka'], {'scheduler': 'karras'}), ('DPM++ 2M Karras', 'sample_dpmpp_2m', ['k_dpmpp_2m_ka'], {'scheduler': 'karras'}),
('DPM++ SDE Karras', 'sample_dpmpp_sde', ['k_dpmpp_sde_ka'], {'scheduler': 'karras', "second_order": True, "brownian_noise": True}), ('DPM++ SDE Karras', 'sample_dpmpp_sde', ['k_dpmpp_sde_ka'], {'scheduler': 'karras', "second_order": True, "brownian_noise": True}),
('DPM++ 2M SDE Karras', 'sample_dpmpp_2m_sde', ['k_dpmpp_2m_sde_ka'], {'scheduler': 'karras', "brownian_noise": True, 'discard_next_to_last_sigma': True}), ('DPM++ 2M SDE Karras', 'sample_dpmpp_2m_sde', ['k_dpmpp_2m_sde_ka'], {'scheduler': 'karras', "brownian_noise": True}),
] ]
samplers_data_k_diffusion = [ samplers_data_k_diffusion = [
@ -44,6 +44,14 @@ sampler_extra_params = {
'sample_dpm_2': ['s_churn', 's_tmin', 's_tmax', 's_noise'], 'sample_dpm_2': ['s_churn', 's_tmin', 's_tmax', 's_noise'],
} }
k_diffusion_samplers_map = {x.name: x for x in samplers_data_k_diffusion}
k_diffusion_scheduler = {
'Automatic': None,
'karras': k_diffusion.sampling.get_sigmas_karras,
'exponential': k_diffusion.sampling.get_sigmas_exponential,
'polyexponential': k_diffusion.sampling.get_sigmas_polyexponential
}
class CFGDenoiser(torch.nn.Module): class CFGDenoiser(torch.nn.Module):
""" """
@ -61,6 +69,7 @@ class CFGDenoiser(torch.nn.Module):
self.init_latent = None self.init_latent = None
self.step = 0 self.step = 0
self.image_cfg_scale = None self.image_cfg_scale = None
self.padded_cond_uncond = False
def combine_denoised(self, x_out, conds_list, uncond, cond_scale): def combine_denoised(self, x_out, conds_list, uncond, cond_scale):
denoised_uncond = x_out[-uncond.shape[0]:] denoised_uncond = x_out[-uncond.shape[0]:]
@ -125,6 +134,18 @@ class CFGDenoiser(torch.nn.Module):
x_in = x_in[:-batch_size] x_in = x_in[:-batch_size]
sigma_in = sigma_in[:-batch_size] sigma_in = sigma_in[:-batch_size]
self.padded_cond_uncond = False
if shared.opts.pad_cond_uncond and tensor.shape[1] != uncond.shape[1]:
empty = shared.sd_model.cond_stage_model_empty_prompt
num_repeats = (tensor.shape[1] - uncond.shape[1]) // empty.shape[1]
if num_repeats < 0:
tensor = torch.cat([tensor, empty.repeat((tensor.shape[0], -num_repeats, 1))], axis=1)
self.padded_cond_uncond = True
elif num_repeats > 0:
uncond = torch.cat([uncond, empty.repeat((uncond.shape[0], num_repeats, 1))], axis=1)
self.padded_cond_uncond = True
if tensor.shape[1] == uncond.shape[1] or skip_uncond: if tensor.shape[1] == uncond.shape[1] or skip_uncond:
if is_edit_model: if is_edit_model:
cond_in = torch.cat([tensor, uncond, uncond]) cond_in = torch.cat([tensor, uncond, uncond])
@ -255,6 +276,13 @@ class KDiffusionSampler:
try: try:
return func() return func()
except RecursionError:
print(
'Encountered RecursionError during sampling, returning last latent. '
'rho >5 with a polyexponential scheduler may cause this error. '
'You should try to use a smaller rho value instead.'
)
return self.last_latent
except sd_samplers_common.InterruptedException: except sd_samplers_common.InterruptedException:
return self.last_latent return self.last_latent
@ -294,6 +322,31 @@ class KDiffusionSampler:
if p.sampler_noise_scheduler_override: if p.sampler_noise_scheduler_override:
sigmas = p.sampler_noise_scheduler_override(steps) sigmas = p.sampler_noise_scheduler_override(steps)
elif opts.k_sched_type != "Automatic":
m_sigma_min, m_sigma_max = (self.model_wrap.sigmas[0].item(), self.model_wrap.sigmas[-1].item())
sigma_min, sigma_max = (0.1, 10) if opts.use_old_karras_scheduler_sigmas else (m_sigma_min, m_sigma_max)
sigmas_kwargs = {
'sigma_min': sigma_min,
'sigma_max': sigma_max,
}
sigmas_func = k_diffusion_scheduler[opts.k_sched_type]
p.extra_generation_params["Schedule type"] = opts.k_sched_type
if opts.sigma_min != m_sigma_min and opts.sigma_min != 0:
sigmas_kwargs['sigma_min'] = opts.sigma_min
p.extra_generation_params["Schedule min sigma"] = opts.sigma_min
if opts.sigma_max != m_sigma_max and opts.sigma_max != 0:
sigmas_kwargs['sigma_max'] = opts.sigma_max
p.extra_generation_params["Schedule max sigma"] = opts.sigma_max
default_rho = 1. if opts.k_sched_type == "polyexponential" else 7.
if opts.k_sched_type != 'exponential' and opts.rho != 0 and opts.rho != default_rho:
sigmas_kwargs['rho'] = opts.rho
p.extra_generation_params["Schedule rho"] = opts.rho
sigmas = sigmas_func(n=steps, **sigmas_kwargs, device=shared.device)
elif self.config is not None and self.config.options.get('scheduler', None) == 'karras': elif self.config is not None and self.config.options.get('scheduler', None) == 'karras':
sigma_min, sigma_max = (0.1, 10) if opts.use_old_karras_scheduler_sigmas else (self.model_wrap.sigmas[0].item(), self.model_wrap.sigmas[-1].item()) sigma_min, sigma_max = (0.1, 10) if opts.use_old_karras_scheduler_sigmas else (self.model_wrap.sigmas[0].item(), self.model_wrap.sigmas[-1].item())
@ -355,6 +408,9 @@ class KDiffusionSampler:
samples = self.launch_sampling(t_enc + 1, lambda: self.func(self.model_wrap_cfg, xi, extra_args=extra_args, disable=False, callback=self.callback_state, **extra_params_kwargs)) samples = self.launch_sampling(t_enc + 1, lambda: self.func(self.model_wrap_cfg, xi, extra_args=extra_args, disable=False, callback=self.callback_state, **extra_params_kwargs))
if self.model_wrap_cfg.padded_cond_uncond:
p.extra_generation_params["Pad conds"] = True
return samples return samples
def sample(self, p, x, conditioning, unconditional_conditioning, steps=None, image_conditioning=None): def sample(self, p, x, conditioning, unconditional_conditioning, steps=None, image_conditioning=None):
@ -388,5 +444,8 @@ class KDiffusionSampler:
's_min_uncond': self.s_min_uncond 's_min_uncond': self.s_min_uncond
}, disable=False, callback=self.callback_state, **extra_params_kwargs)) }, disable=False, callback=self.callback_state, **extra_params_kwargs))
if self.model_wrap_cfg.padded_cond_uncond:
p.extra_generation_params["Pad conds"] = True
return samples return samples

92
modules/sd_unet.py Normal file
View File

@ -0,0 +1,92 @@
import torch.nn
import ldm.modules.diffusionmodules.openaimodel
from modules import script_callbacks, shared, devices
unet_options = []
current_unet_option = None
current_unet = None
def list_unets():
new_unets = script_callbacks.list_unets_callback()
unet_options.clear()
unet_options.extend(new_unets)
def get_unet_option(option=None):
option = option or shared.opts.sd_unet
if option == "None":
return None
if option == "Automatic":
name = shared.sd_model.sd_checkpoint_info.model_name
options = [x for x in unet_options if x.model_name == name]
option = options[0].label if options else "None"
return next(iter([x for x in unet_options if x.label == option]), None)
def apply_unet(option=None):
global current_unet_option
global current_unet
new_option = get_unet_option(option)
if new_option == current_unet_option:
return
if current_unet is not None:
print(f"Dectivating unet: {current_unet.option.label}")
current_unet.deactivate()
current_unet_option = new_option
if current_unet_option is None:
current_unet = None
if not (shared.cmd_opts.lowvram or shared.cmd_opts.medvram):
shared.sd_model.model.diffusion_model.to(devices.device)
return
shared.sd_model.model.diffusion_model.to(devices.cpu)
devices.torch_gc()
current_unet = current_unet_option.create_unet()
current_unet.option = current_unet_option
print(f"Activating unet: {current_unet.option.label}")
current_unet.activate()
class SdUnetOption:
model_name = None
"""name of related checkpoint - this option will be selected automatically for unet if the name of checkpoint matches this"""
label = None
"""name of the unet in UI"""
def create_unet(self):
"""returns SdUnet object to be used as a Unet instead of built-in unet when making pictures"""
raise NotImplementedError()
class SdUnet(torch.nn.Module):
def forward(self, x, timesteps, context, *args, **kwargs):
raise NotImplementedError()
def activate(self):
pass
def deactivate(self):
pass
def UNetModel_forward(self, x, timesteps=None, context=None, *args, **kwargs):
if current_unet is not None:
return current_unet.forward(x, timesteps, context, *args, **kwargs)
return ldm.modules.diffusionmodules.openaimodel.copy_of_UNetModel_forward_for_webui(self, x, timesteps, context, *args, **kwargs)

View File

@ -4,6 +4,7 @@ import os
import sys import sys
import threading import threading
import time import time
import logging
import gradio as gr import gradio as gr
import torch import torch
@ -18,6 +19,8 @@ from modules.paths_internal import models_path, script_path, data_path, sd_confi
from ldm.models.diffusion.ddpm import LatentDiffusion from ldm.models.diffusion.ddpm import LatentDiffusion
from typing import Optional from typing import Optional
log = logging.getLogger(__name__)
demo = None demo = None
parser = cmd_args.parser parser = cmd_args.parser
@ -44,19 +47,6 @@ restricted_opts = {
"outdir_init_images" "outdir_init_images"
} }
ui_reorder_categories = [
"inpaint",
"sampler",
"checkboxes",
"hires_fix",
"dimensions",
"cfg",
"seed",
"batch",
"override_settings",
"scripts",
]
# https://huggingface.co/datasets/freddyaboulton/gradio-theme-subdomains/resolve/main/subdomains.json # https://huggingface.co/datasets/freddyaboulton/gradio-theme-subdomains/resolve/main/subdomains.json
gradio_hf_hub_themes = [ gradio_hf_hub_themes = [
"gradio/glass", "gradio/glass",
@ -157,12 +147,15 @@ class State:
def request_restart(self) -> None: def request_restart(self) -> None:
self.interrupt() self.interrupt()
self.server_command = "restart" self.server_command = "restart"
log.info("Received restart request")
def skip(self): def skip(self):
self.skipped = True self.skipped = True
log.info("Received skip request")
def interrupt(self): def interrupt(self):
self.interrupted = True self.interrupted = True
log.info("Received interrupt request")
def nextjob(self): def nextjob(self):
if opts.live_previews_enable and opts.show_progress_every_n_steps == -1: if opts.live_previews_enable and opts.show_progress_every_n_steps == -1:
@ -186,7 +179,7 @@ class State:
return obj return obj
def begin(self): def begin(self, job: str = "(unknown)"):
self.sampling_step = 0 self.sampling_step = 0
self.job_count = -1 self.job_count = -1
self.processing_has_refined_job_count = False self.processing_has_refined_job_count = False
@ -200,10 +193,13 @@ class State:
self.interrupted = False self.interrupted = False
self.textinfo = None self.textinfo = None
self.time_start = time.time() self.time_start = time.time()
self.job = job
devices.torch_gc() devices.torch_gc()
log.info("Starting job %s", job)
def end(self): def end(self):
duration = time.time() - self.time_start
log.info("Ending job %s (%.2f seconds)", self.job, duration)
self.job = "" self.job = ""
self.job_count = 0 self.job_count = 0
@ -273,6 +269,10 @@ class OptionInfo:
self.comment_after += f"<span class='info'>({info})</span>" self.comment_after += f"<span class='info'>({info})</span>"
return self return self
def html(self, html):
self.comment_after += html
return self
def needs_restart(self): def needs_restart(self):
self.comment_after += " <span class='info'>(requires restart)</span>" self.comment_after += " <span class='info'>(requires restart)</span>"
return self return self
@ -318,7 +318,12 @@ options_templates.update(options_section(('saving-images', "Saving images/grids"
"grid_extended_filename": OptionInfo(False, "Add extended info (seed, prompt) to filename when saving grid"), "grid_extended_filename": OptionInfo(False, "Add extended info (seed, prompt) to filename when saving grid"),
"grid_only_if_multiple": OptionInfo(True, "Do not save grids consisting of one picture"), "grid_only_if_multiple": OptionInfo(True, "Do not save grids consisting of one picture"),
"grid_prevent_empty_spots": OptionInfo(False, "Prevent empty spots in grid (when set to autodetect)"), "grid_prevent_empty_spots": OptionInfo(False, "Prevent empty spots in grid (when set to autodetect)"),
"grid_zip_filename_pattern": OptionInfo("", "Archive filename pattern", component_args=hide_dirs).link("wiki", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Custom-Images-Filename-Name-and-Subdirectory"),
"n_rows": OptionInfo(-1, "Grid row count; use -1 for autodetect and 0 for it to be same as batch size", gr.Slider, {"minimum": -1, "maximum": 16, "step": 1}), "n_rows": OptionInfo(-1, "Grid row count; use -1 for autodetect and 0 for it to be same as batch size", gr.Slider, {"minimum": -1, "maximum": 16, "step": 1}),
"font": OptionInfo("", "Font for image grids that have text"),
"grid_text_active_color": OptionInfo("#000000", "Text color for image grids", ui_components.FormColorPicker, {}),
"grid_text_inactive_color": OptionInfo("#999999", "Inactive text color for image grids", ui_components.FormColorPicker, {}),
"grid_background_color": OptionInfo("#ffffff", "Background color for image grids", ui_components.FormColorPicker, {}),
"enable_pnginfo": OptionInfo(True, "Save text information about generation parameters as chunks to png files"), "enable_pnginfo": OptionInfo(True, "Save text information about generation parameters as chunks to png files"),
"save_txt": OptionInfo(False, "Create a text file next to every image with generation parameters."), "save_txt": OptionInfo(False, "Create a text file next to every image with generation parameters."),
@ -384,6 +389,7 @@ options_templates.update(options_section(('system', "System"), {
"multiple_tqdm": OptionInfo(True, "Add a second progress bar to the console that shows progress for an entire job."), "multiple_tqdm": OptionInfo(True, "Add a second progress bar to the console that shows progress for an entire job."),
"print_hypernet_extra": OptionInfo(False, "Print extra hypernetwork information to console."), "print_hypernet_extra": OptionInfo(False, "Print extra hypernetwork information to console."),
"list_hidden_files": OptionInfo(True, "Load models/files in hidden directories").info("directory is hidden if its name starts with \".\""), "list_hidden_files": OptionInfo(True, "Load models/files in hidden directories").info("directory is hidden if its name starts with \".\""),
"disable_mmap_load_safetensors": OptionInfo(False, "Disable memmapping for loading .safetensors files.").info("fixes very slow loading speed in some cases"),
})) }))
options_templates.update(options_section(('training', "Training"), { options_templates.update(options_section(('training', "Training"), {
@ -407,6 +413,7 @@ options_templates.update(options_section(('sd', "Stable Diffusion"), {
"sd_vae_checkpoint_cache": OptionInfo(0, "VAE Checkpoints to cache in RAM", gr.Slider, {"minimum": 0, "maximum": 10, "step": 1}), "sd_vae_checkpoint_cache": OptionInfo(0, "VAE Checkpoints to cache in RAM", gr.Slider, {"minimum": 0, "maximum": 10, "step": 1}),
"sd_vae": OptionInfo("Automatic", "SD VAE", gr.Dropdown, lambda: {"choices": shared_items.sd_vae_items()}, refresh=shared_items.refresh_vae_list).info("choose VAE model: Automatic = use one with same filename as checkpoint; None = use VAE from checkpoint"), "sd_vae": OptionInfo("Automatic", "SD VAE", gr.Dropdown, lambda: {"choices": shared_items.sd_vae_items()}, refresh=shared_items.refresh_vae_list).info("choose VAE model: Automatic = use one with same filename as checkpoint; None = use VAE from checkpoint"),
"sd_vae_as_default": OptionInfo(True, "Ignore selected VAE for stable diffusion checkpoints that have their own .vae.pt next to them"), "sd_vae_as_default": OptionInfo(True, "Ignore selected VAE for stable diffusion checkpoints that have their own .vae.pt next to them"),
"sd_unet": OptionInfo("Automatic", "SD Unet", gr.Dropdown, lambda: {"choices": shared_items.sd_unet_items()}, refresh=shared_items.refresh_unet_list).info("choose Unet model: Automatic = use one with same filename as checkpoint; None = use Unet from checkpoint"),
"inpainting_mask_weight": OptionInfo(1.0, "Inpainting conditioning mask strength", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}), "inpainting_mask_weight": OptionInfo(1.0, "Inpainting conditioning mask strength", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
"initial_noise_multiplier": OptionInfo(1.0, "Noise multiplier for img2img", gr.Slider, {"minimum": 0.5, "maximum": 1.5, "step": 0.01}), "initial_noise_multiplier": OptionInfo(1.0, "Noise multiplier for img2img", gr.Slider, {"minimum": 0.5, "maximum": 1.5, "step": 0.01}),
"img2img_color_correction": OptionInfo(False, "Apply color correction to img2img results to match original colors."), "img2img_color_correction": OptionInfo(False, "Apply color correction to img2img results to match original colors."),
@ -416,17 +423,19 @@ options_templates.update(options_section(('sd', "Stable Diffusion"), {
"enable_emphasis": OptionInfo(True, "Enable emphasis").info("use (text) to make model pay more attention to text and [text] to make it pay less attention"), "enable_emphasis": OptionInfo(True, "Enable emphasis").info("use (text) to make model pay more attention to text and [text] to make it pay less attention"),
"enable_batch_seeds": OptionInfo(True, "Make K-diffusion samplers produce same images in a batch as when making a single image"), "enable_batch_seeds": OptionInfo(True, "Make K-diffusion samplers produce same images in a batch as when making a single image"),
"comma_padding_backtrack": OptionInfo(20, "Prompt word wrap length limit", gr.Slider, {"minimum": 0, "maximum": 74, "step": 1}).info("in tokens - for texts shorter than specified, if they don't fit into 75 token limit, move them to the next 75 token chunk"), "comma_padding_backtrack": OptionInfo(20, "Prompt word wrap length limit", gr.Slider, {"minimum": 0, "maximum": 74, "step": 1}).info("in tokens - for texts shorter than specified, if they don't fit into 75 token limit, move them to the next 75 token chunk"),
"CLIP_stop_at_last_layers": OptionInfo(1, "Clip skip", gr.Slider, {"minimum": 1, "maximum": 12, "step": 1}).link("wiki", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Features#clip-skip").info("ignore last layers of CLIP nrtwork; 1 ignores none, 2 ignores one layer"), "CLIP_stop_at_last_layers": OptionInfo(1, "Clip skip", gr.Slider, {"minimum": 1, "maximum": 12, "step": 1}).link("wiki", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Features#clip-skip").info("ignore last layers of CLIP network; 1 ignores none, 2 ignores one layer"),
"upcast_attn": OptionInfo(False, "Upcast cross attention layer to float32"), "upcast_attn": OptionInfo(False, "Upcast cross attention layer to float32"),
"randn_source": OptionInfo("GPU", "Random number generator source.", gr.Radio, {"choices": ["GPU", "CPU"]}).info("changes seeds drastically; use CPU to produce the same picture across different vidocard vendors"), "randn_source": OptionInfo("GPU", "Random number generator source.", gr.Radio, {"choices": ["GPU", "CPU"]}).info("changes seeds drastically; use CPU to produce the same picture across different videocard vendors"),
})) }))
options_templates.update(options_section(('optimizations', "Optimizations"), { options_templates.update(options_section(('optimizations', "Optimizations"), {
"cross_attention_optimization": OptionInfo("Automatic", "Cross attention optimization", gr.Dropdown, lambda: {"choices": shared_items.cross_attention_optimizations()}), "cross_attention_optimization": OptionInfo("Automatic", "Cross attention optimization", gr.Dropdown, lambda: {"choices": shared_items.cross_attention_optimizations()}),
"s_min_uncond": OptionInfo(0, "Negative Guidance minimum sigma", gr.Slider, {"minimum": 0.0, "maximum": 4.0, "step": 0.01}).link("PR", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/9177").info("skip negative prompt for some steps when the image is almost ready; 0=disable, higher=faster"), "s_min_uncond": OptionInfo(0.0, "Negative Guidance minimum sigma", gr.Slider, {"minimum": 0.0, "maximum": 4.0, "step": 0.01}).link("PR", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/9177").info("skip negative prompt for some steps when the image is almost ready; 0=disable, higher=faster"),
"token_merging_ratio": OptionInfo(0.0, "Token merging ratio", gr.Slider, {"minimum": 0.0, "maximum": 0.9, "step": 0.1}).link("PR", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/9256").info("0=disable, higher=faster"), "token_merging_ratio": OptionInfo(0.0, "Token merging ratio", gr.Slider, {"minimum": 0.0, "maximum": 0.9, "step": 0.1}).link("PR", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/9256").info("0=disable, higher=faster"),
"token_merging_ratio_img2img": OptionInfo(0.0, "Token merging ratio for img2img", gr.Slider, {"minimum": 0.0, "maximum": 0.9, "step": 0.1}).info("only applies if non-zero and overrides above"), "token_merging_ratio_img2img": OptionInfo(0.0, "Token merging ratio for img2img", gr.Slider, {"minimum": 0.0, "maximum": 0.9, "step": 0.1}).info("only applies if non-zero and overrides above"),
"token_merging_ratio_hr": OptionInfo(0.0, "Token merging ratio for high-res pass", gr.Slider, {"minimum": 0.0, "maximum": 0.9, "step": 0.1}).info("only applies if non-zero and overrides above"), "token_merging_ratio_hr": OptionInfo(0.0, "Token merging ratio for high-res pass", gr.Slider, {"minimum": 0.0, "maximum": 0.9, "step": 0.1}).info("only applies if non-zero and overrides above"),
"pad_cond_uncond": OptionInfo(False, "Pad prompt/negative prompt to be same length").info("improves performance when prompt and negative prompt have different lengths; changes seeds"),
"experimental_persistent_cond_cache": OptionInfo(False, "persistent cond cache").info("Experimental, keep cond caches across jobs, reduce overhead."),
})) }))
options_templates.update(options_section(('compatibility', "Compatibility"), { options_templates.update(options_section(('compatibility', "Compatibility"), {
@ -435,6 +444,7 @@ options_templates.update(options_section(('compatibility', "Compatibility"), {
"no_dpmpp_sde_batch_determinism": OptionInfo(False, "Do not make DPM++ SDE deterministic across different batch sizes."), "no_dpmpp_sde_batch_determinism": OptionInfo(False, "Do not make DPM++ SDE deterministic across different batch sizes."),
"use_old_hires_fix_width_height": OptionInfo(False, "For hires fix, use width/height sliders to set final resolution rather than first pass (disables Upscale by, Resize width/height to)."), "use_old_hires_fix_width_height": OptionInfo(False, "For hires fix, use width/height sliders to set final resolution rather than first pass (disables Upscale by, Resize width/height to)."),
"dont_fix_second_order_samplers_schedule": OptionInfo(False, "Do not fix prompt schedule for second order samplers."), "dont_fix_second_order_samplers_schedule": OptionInfo(False, "Do not fix prompt schedule for second order samplers."),
"hires_fix_use_firstpass_conds": OptionInfo(False, "For hires fix, calculate conds of second pass using extra networks of first pass."),
})) }))
options_templates.update(options_section(('interrogate', "Interrogate Options"), { options_templates.update(options_section(('interrogate', "Interrogate Options"), {
@ -474,7 +484,6 @@ options_templates.update(options_section(('ui', "User interface"), {
"do_not_show_images": OptionInfo(False, "Do not show any images in results for web"), "do_not_show_images": OptionInfo(False, "Do not show any images in results for web"),
"send_seed": OptionInfo(True, "Send seed when sending prompt or image to other interface"), "send_seed": OptionInfo(True, "Send seed when sending prompt or image to other interface"),
"send_size": OptionInfo(True, "Send size when sending prompt or image to another interface"), "send_size": OptionInfo(True, "Send size when sending prompt or image to another interface"),
"font": OptionInfo("", "Font for image grids that have text"),
"js_modal_lightbox": OptionInfo(True, "Enable full page image viewer"), "js_modal_lightbox": OptionInfo(True, "Enable full page image viewer"),
"js_modal_lightbox_initially_zoomed": OptionInfo(True, "Show images zoomed in by default in full page image viewer"), "js_modal_lightbox_initially_zoomed": OptionInfo(True, "Show images zoomed in by default in full page image viewer"),
"js_modal_lightbox_gamepad": OptionInfo(False, "Navigate image viewer with gamepad"), "js_modal_lightbox_gamepad": OptionInfo(False, "Navigate image viewer with gamepad"),
@ -488,16 +497,25 @@ options_templates.update(options_section(('ui', "User interface"), {
"quicksettings_list": OptionInfo(["sd_model_checkpoint"], "Quicksettings list", ui_components.DropdownMulti, lambda: {"choices": list(opts.data_labels.keys())}).js("info", "settingsHintsShowQuicksettings").info("setting entries that appear at the top of page rather than in settings tab").needs_restart(), "quicksettings_list": OptionInfo(["sd_model_checkpoint"], "Quicksettings list", ui_components.DropdownMulti, lambda: {"choices": list(opts.data_labels.keys())}).js("info", "settingsHintsShowQuicksettings").info("setting entries that appear at the top of page rather than in settings tab").needs_restart(),
"ui_tab_order": OptionInfo([], "UI tab order", ui_components.DropdownMulti, lambda: {"choices": list(tab_names)}).needs_restart(), "ui_tab_order": OptionInfo([], "UI tab order", ui_components.DropdownMulti, lambda: {"choices": list(tab_names)}).needs_restart(),
"hidden_tabs": OptionInfo([], "Hidden UI tabs", ui_components.DropdownMulti, lambda: {"choices": list(tab_names)}).needs_restart(), "hidden_tabs": OptionInfo([], "Hidden UI tabs", ui_components.DropdownMulti, lambda: {"choices": list(tab_names)}).needs_restart(),
"ui_reorder": OptionInfo(", ".join(ui_reorder_categories), "txt2img/img2img UI item order").needs_restart(), "ui_reorder_list": OptionInfo([], "txt2img/img2img UI item order", ui_components.DropdownMulti, lambda: {"choices": list(shared_items.ui_reorder_categories())}).info("selected items appear first").needs_restart(),
"hires_fix_show_sampler": OptionInfo(False, "Hires fix: show hires sampler selection").needs_restart(), "hires_fix_show_sampler": OptionInfo(False, "Hires fix: show hires sampler selection").needs_restart(),
"hires_fix_show_prompts": OptionInfo(False, "Hires fix: show hires prompt and negative prompt").needs_restart(), "hires_fix_show_prompts": OptionInfo(False, "Hires fix: show hires prompt and negative prompt").needs_restart(),
"disable_token_counters": OptionInfo(False, "Disable prompt token counters").needs_restart(),
})) }))
options_templates.update(options_section(('infotext', "Infotext"), { options_templates.update(options_section(('infotext', "Infotext"), {
"add_model_hash_to_info": OptionInfo(True, "Add model hash to generation information"), "add_model_hash_to_info": OptionInfo(True, "Add model hash to generation information"),
"add_model_name_to_info": OptionInfo(True, "Add model name to generation information"), "add_model_name_to_info": OptionInfo(True, "Add model name to generation information"),
"add_user_name_to_info": OptionInfo(False, "Add user name to generation information when authenticated"),
"add_version_to_infotext": OptionInfo(True, "Add program version to generation information"), "add_version_to_infotext": OptionInfo(True, "Add program version to generation information"),
"disable_weights_auto_swap": OptionInfo(True, "When reading generation parameters from text into UI (from PNG info or pasted text), do not change the selected model/checkpoint."), "disable_weights_auto_swap": OptionInfo(True, "Disregard checkpoint information from pasted infotext").info("when reading generation parameters from text into UI"),
"infotext_styles": OptionInfo("Apply if any", "Infer styles from prompts of pasted infotext", gr.Radio, {"choices": ["Ignore", "Apply", "Discard", "Apply if any"]}).info("when reading generation parameters from text into UI)").html("""<ul style='margin-left: 1.5em'>
<li>Ignore: keep prompt and styles dropdown as it is.</li>
<li>Apply: remove style text from prompt, always replace styles dropdown value with found styles (even if none are found).</li>
<li>Discard: remove style text from prompt, keep styles dropdown as it is.</li>
<li>Apply if any: remove style text from prompt; if any styles are found in prompt, put them into styles dropdown, otherwise keep it as it is.</li>
</ul>"""),
})) }))
options_templates.update(options_section(('ui', "Live previews"), { options_templates.update(options_section(('ui', "Live previews"), {
@ -519,6 +537,10 @@ options_templates.update(options_section(('sampler-params', "Sampler parameters"
's_churn': OptionInfo(0.0, "sigma churn", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}), 's_churn': OptionInfo(0.0, "sigma churn", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
's_tmin': OptionInfo(0.0, "sigma tmin", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}), 's_tmin': OptionInfo(0.0, "sigma tmin", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
's_noise': OptionInfo(1.0, "sigma noise", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}), 's_noise': OptionInfo(1.0, "sigma noise", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
'k_sched_type': OptionInfo("Automatic", "scheduler type", gr.Dropdown, {"choices": ["Automatic", "karras", "exponential", "polyexponential"]}).info("lets you override the noise schedule for k-diffusion samplers; choosing Automatic disables the three parameters below"),
'sigma_min': OptionInfo(0.0, "sigma min", gr.Number).info("0 = default (~0.03); minimum noise strength for k-diffusion noise scheduler"),
'sigma_max': OptionInfo(0.0, "sigma max", gr.Number).info("0 = default (~14.6); maximum noise strength for k-diffusion noise schedule"),
'rho': OptionInfo(0.0, "rho", gr.Number).info("0 = default (7 for karras, 1 for polyexponential); higher values result in a more steep noise schedule (decreases faster)"),
'eta_noise_seed_delta': OptionInfo(0, "Eta noise seed delta", gr.Number, {"precision": 0}).info("ENSD; does not improve anything, just produces different results for ancestral samplers - only useful for reproducing images"), 'eta_noise_seed_delta': OptionInfo(0, "Eta noise seed delta", gr.Number, {"precision": 0}).info("ENSD; does not improve anything, just produces different results for ancestral samplers - only useful for reproducing images"),
'always_discard_next_to_last_sigma': OptionInfo(False, "Always discard next-to-last sigma").link("PR", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/6044"), 'always_discard_next_to_last_sigma': OptionInfo(False, "Always discard next-to-last sigma").link("PR", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/6044"),
'uni_pc_variant': OptionInfo("bh1", "UniPC variant", gr.Radio, {"choices": ["bh1", "bh2", "vary_coeff"]}), 'uni_pc_variant': OptionInfo("bh1", "UniPC variant", gr.Radio, {"choices": ["bh1", "bh2", "vary_coeff"]}),
@ -634,6 +656,10 @@ class Options:
if self.data.get('quicksettings') is not None and self.data.get('quicksettings_list') is None: if self.data.get('quicksettings') is not None and self.data.get('quicksettings_list') is None:
self.data['quicksettings_list'] = [i.strip() for i in self.data.get('quicksettings').split(',')] self.data['quicksettings_list'] = [i.strip() for i in self.data.get('quicksettings').split(',')]
# 1.4.0 ui_reorder
if isinstance(self.data.get('ui_reorder'), str) and self.data.get('ui_reorder') and "ui_reorder_list" not in self.data:
self.data['ui_reorder_list'] = [i.strip() for i in self.data.get('ui_reorder').split(',')]
bad_settings = 0 bad_settings = 0
for k, v in self.data.items(): for k, v in self.data.items():
info = self.data_labels.get(k, None) info = self.data_labels.get(k, None)

View File

@ -29,3 +29,41 @@ def cross_attention_optimizations():
return ["Automatic"] + [x.title() for x in modules.sd_hijack.optimizers] + ["None"] return ["Automatic"] + [x.title() for x in modules.sd_hijack.optimizers] + ["None"]
def sd_unet_items():
import modules.sd_unet
return ["Automatic"] + [x.label for x in modules.sd_unet.unet_options] + ["None"]
def refresh_unet_list():
import modules.sd_unet
modules.sd_unet.list_unets()
ui_reorder_categories_builtin_items = [
"inpaint",
"sampler",
"checkboxes",
"hires_fix",
"dimensions",
"cfg",
"seed",
"batch",
"override_settings",
]
def ui_reorder_categories():
from modules import scripts
yield from ui_reorder_categories_builtin_items
sections = {}
for script in scripts.scripts_txt2img.scripts + scripts.scripts_img2img.scripts:
if isinstance(script.section, str):
sections[script.section] = 1
yield from sections
yield "scripts"

View File

@ -1,6 +1,7 @@
import csv import csv
import os import os
import os.path import os.path
import re
import typing import typing
import shutil import shutil
@ -28,6 +29,44 @@ def apply_styles_to_prompt(prompt, styles):
return prompt return prompt
re_spaces = re.compile(" +")
def extract_style_text_from_prompt(style_text, prompt):
stripped_prompt = re.sub(re_spaces, " ", prompt.strip())
stripped_style_text = re.sub(re_spaces, " ", style_text.strip())
if "{prompt}" in stripped_style_text:
left, right = stripped_style_text.split("{prompt}", 2)
if stripped_prompt.startswith(left) and stripped_prompt.endswith(right):
prompt = stripped_prompt[len(left):len(stripped_prompt)-len(right)]
return True, prompt
else:
if stripped_prompt.endswith(stripped_style_text):
prompt = stripped_prompt[:len(stripped_prompt)-len(stripped_style_text)]
if prompt.endswith(', '):
prompt = prompt[:-2]
return True, prompt
return False, prompt
def extract_style_from_prompts(style: PromptStyle, prompt, negative_prompt):
if not style.prompt and not style.negative_prompt:
return False, prompt, negative_prompt
match_positive, extracted_positive = extract_style_text_from_prompt(style.prompt, prompt)
if not match_positive:
return False, prompt, negative_prompt
match_negative, extracted_negative = extract_style_text_from_prompt(style.negative_prompt, negative_prompt)
if not match_negative:
return False, prompt, negative_prompt
return True, extracted_positive, extracted_negative
class StyleDatabase: class StyleDatabase:
def __init__(self, path: str): def __init__(self, path: str):
self.no_style = PromptStyle("None", "", "") self.no_style = PromptStyle("None", "", "")
@ -67,10 +106,34 @@ class StyleDatabase:
if os.path.exists(path): if os.path.exists(path):
shutil.copy(path, f"{path}.bak") shutil.copy(path, f"{path}.bak")
fd = os.open(path, os.O_RDWR|os.O_CREAT) fd = os.open(path, os.O_RDWR | os.O_CREAT)
with os.fdopen(fd, "w", encoding="utf-8-sig", newline='') as file: with os.fdopen(fd, "w", encoding="utf-8-sig", newline='') as file:
# _fields is actually part of the public API: typing.NamedTuple is a replacement for collections.NamedTuple, # _fields is actually part of the public API: typing.NamedTuple is a replacement for collections.NamedTuple,
# and collections.NamedTuple has explicit documentation for accessing _fields. Same goes for _asdict() # and collections.NamedTuple has explicit documentation for accessing _fields. Same goes for _asdict()
writer = csv.DictWriter(file, fieldnames=PromptStyle._fields) writer = csv.DictWriter(file, fieldnames=PromptStyle._fields)
writer.writeheader() writer.writeheader()
writer.writerows(style._asdict() for k, style in self.styles.items()) writer.writerows(style._asdict() for k, style in self.styles.items())
def extract_styles_from_prompt(self, prompt, negative_prompt):
extracted = []
applicable_styles = list(self.styles.values())
while True:
found_style = None
for style in applicable_styles:
is_match, new_prompt, new_neg_prompt = extract_style_from_prompts(style, prompt, negative_prompt)
if is_match:
found_style = style
prompt = new_prompt
negative_prompt = new_neg_prompt
break
if not found_style:
break
applicable_styles.remove(found_style)
extracted.append(found_style.name)
return list(reversed(extracted)), prompt, negative_prompt

162
modules/sysinfo.py Normal file
View File

@ -0,0 +1,162 @@
import json
import os
import sys
import traceback
import platform
import hashlib
import pkg_resources
import psutil
import re
import launch
from modules import paths_internal, timer
checksum_token = "DontStealMyGamePlz__WINNERS_DONT_USE_DRUGS__DONT_COPY_THAT_FLOPPY"
environment_whitelist = {
"GIT",
"INDEX_URL",
"WEBUI_LAUNCH_LIVE_OUTPUT",
"GRADIO_ANALYTICS_ENABLED",
"PYTHONPATH",
"TORCH_INDEX_URL",
"TORCH_COMMAND",
"REQS_FILE",
"XFORMERS_PACKAGE",
"GFPGAN_PACKAGE",
"CLIP_PACKAGE",
"OPENCLIP_PACKAGE",
"STABLE_DIFFUSION_REPO",
"K_DIFFUSION_REPO",
"CODEFORMER_REPO",
"BLIP_REPO",
"STABLE_DIFFUSION_COMMIT_HASH",
"K_DIFFUSION_COMMIT_HASH",
"CODEFORMER_COMMIT_HASH",
"BLIP_COMMIT_HASH",
"COMMANDLINE_ARGS",
"IGNORE_CMD_ARGS_ERRORS",
}
def pretty_bytes(num, suffix="B"):
for unit in ["", "K", "M", "G", "T", "P", "E", "Z", "Y"]:
if abs(num) < 1024 or unit == 'Y':
return f"{num:.0f}{unit}{suffix}"
num /= 1024
def get():
res = get_dict()
text = json.dumps(res, ensure_ascii=False, indent=4)
h = hashlib.sha256(text.encode("utf8"))
text = text.replace(checksum_token, h.hexdigest())
return text
re_checksum = re.compile(r'"Checksum": "([0-9a-fA-F]{64})"')
def check(x):
m = re.search(re_checksum, x)
if not m:
return False
replaced = re.sub(re_checksum, f'"Checksum": "{checksum_token}"', x)
h = hashlib.sha256(replaced.encode("utf8"))
return h.hexdigest() == m.group(1)
def get_dict():
ram = psutil.virtual_memory()
res = {
"Platform": platform.platform(),
"Python": platform.python_version(),
"Version": launch.git_tag(),
"Commit": launch.commit_hash(),
"Script path": paths_internal.script_path,
"Data path": paths_internal.data_path,
"Extensions dir": paths_internal.extensions_dir,
"Checksum": checksum_token,
"Commandline": sys.argv,
"Torch env info": get_torch_sysinfo(),
"Exceptions": get_exceptions(),
"CPU": {
"model": platform.processor(),
"count logical": psutil.cpu_count(logical=True),
"count physical": psutil.cpu_count(logical=False),
},
"RAM": {
x: pretty_bytes(getattr(ram, x, 0)) for x in ["total", "used", "free", "active", "inactive", "buffers", "cached", "shared"] if getattr(ram, x, 0) != 0
},
"Extensions": get_extensions(enabled=True),
"Inactive extensions": get_extensions(enabled=False),
"Environment": get_environment(),
"Config": get_config(),
"Startup": timer.startup_record,
"Packages": sorted([f"{pkg.key}=={pkg.version}" for pkg in pkg_resources.working_set]),
}
return res
def format_traceback(tb):
return [[f"{x.filename}, line {x.lineno}, {x.name}", x.line] for x in traceback.extract_tb(tb)]
def get_exceptions():
try:
from modules import errors
return [{"exception": str(e), "traceback": format_traceback(tb)} for e, tb in reversed(errors.exception_records)]
except Exception as e:
return str(e)
def get_environment():
return {k: os.environ[k] for k in sorted(os.environ) if k in environment_whitelist}
re_newline = re.compile(r"\r*\n")
def get_torch_sysinfo():
try:
import torch.utils.collect_env
info = torch.utils.collect_env.get_env_info()._asdict()
return {k: re.split(re_newline, str(v)) if "\n" in str(v) else v for k, v in info.items()}
except Exception as e:
return str(e)
def get_extensions(*, enabled):
try:
from modules import extensions
def to_json(x: extensions.Extension):
return {
"name": x.name,
"path": x.path,
"version": x.version,
"branch": x.branch,
"remote": x.remote,
}
return [to_json(x) for x in extensions.extensions if not x.is_builtin and x.enabled == enabled]
except Exception as e:
return str(e)
def get_config():
try:
from modules import shared
return shared.opts.data
except Exception as e:
return str(e)

View File

@ -77,27 +77,27 @@ def focal_point(im, settings):
pois = [] pois = []
weight_pref_total = 0 weight_pref_total = 0
if len(corner_points) > 0: if corner_points:
weight_pref_total += settings.corner_points_weight weight_pref_total += settings.corner_points_weight
if len(entropy_points) > 0: if entropy_points:
weight_pref_total += settings.entropy_points_weight weight_pref_total += settings.entropy_points_weight
if len(face_points) > 0: if face_points:
weight_pref_total += settings.face_points_weight weight_pref_total += settings.face_points_weight
corner_centroid = None corner_centroid = None
if len(corner_points) > 0: if corner_points:
corner_centroid = centroid(corner_points) corner_centroid = centroid(corner_points)
corner_centroid.weight = settings.corner_points_weight / weight_pref_total corner_centroid.weight = settings.corner_points_weight / weight_pref_total
pois.append(corner_centroid) pois.append(corner_centroid)
entropy_centroid = None entropy_centroid = None
if len(entropy_points) > 0: if entropy_points:
entropy_centroid = centroid(entropy_points) entropy_centroid = centroid(entropy_points)
entropy_centroid.weight = settings.entropy_points_weight / weight_pref_total entropy_centroid.weight = settings.entropy_points_weight / weight_pref_total
pois.append(entropy_centroid) pois.append(entropy_centroid)
face_centroid = None face_centroid = None
if len(face_points) > 0: if face_points:
face_centroid = centroid(face_points) face_centroid = centroid(face_points)
face_centroid.weight = settings.face_points_weight / weight_pref_total face_centroid.weight = settings.face_points_weight / weight_pref_total
pois.append(face_centroid) pois.append(face_centroid)
@ -187,7 +187,7 @@ def image_face_points(im, settings):
except Exception: except Exception:
continue continue
if len(faces) > 0: if faces:
rects = [[f[0], f[1], f[0] + f[2], f[1] + f[3]] for f in faces] rects = [[f[0], f[1], f[0] + f[2], f[1] + f[3]] for f in faces]
return [PointOfInterest((r[0] +r[2]) // 2, (r[1] + r[3]) // 2, size=abs(r[0]-r[2]), weight=1/len(rects)) for r in rects] return [PointOfInterest((r[0] +r[2]) // 2, (r[1] + r[3]) // 2, size=abs(r[0]-r[2]), weight=1/len(rects)) for r in rects]
return [] return []
@ -298,8 +298,7 @@ def download_and_cache_models(dirname):
download_url = 'https://github.com/opencv/opencv_zoo/blob/91fb0290f50896f38a0ab1e558b74b16bc009428/models/face_detection_yunet/face_detection_yunet_2022mar.onnx?raw=true' download_url = 'https://github.com/opencv/opencv_zoo/blob/91fb0290f50896f38a0ab1e558b74b16bc009428/models/face_detection_yunet/face_detection_yunet_2022mar.onnx?raw=true'
model_file_name = 'face_detection_yunet.onnx' model_file_name = 'face_detection_yunet.onnx'
if not os.path.exists(dirname): os.makedirs(dirname, exist_ok=True)
os.makedirs(dirname)
cache_file = os.path.join(dirname, model_file_name) cache_file = os.path.join(dirname, model_file_name)
if not os.path.exists(cache_file): if not os.path.exists(cache_file):

View File

@ -32,7 +32,7 @@ class DatasetEntry:
class PersonalizedBase(Dataset): class PersonalizedBase(Dataset):
def __init__(self, data_root, width, height, repeats, flip_p=0.5, placeholder_token="*", model=None, cond_model=None, device=None, template_file=None, include_cond=False, batch_size=1, gradient_step=1, shuffle_tags=False, tag_drop_out=0, latent_sampling_method='once', varsize=False, use_weight=False): def __init__(self, data_root, width, height, repeats, flip_p=0.5, placeholder_token="*", model=None, cond_model=None, device=None, template_file=None, include_cond=False, batch_size=1, gradient_step=1, shuffle_tags=False, tag_drop_out=0, latent_sampling_method='once', varsize=False, use_weight=False):
re_word = re.compile(shared.opts.dataset_filename_word_regex) if len(shared.opts.dataset_filename_word_regex) > 0 else None re_word = re.compile(shared.opts.dataset_filename_word_regex) if shared.opts.dataset_filename_word_regex else None
self.placeholder_token = placeholder_token self.placeholder_token = placeholder_token

View File

@ -2,11 +2,51 @@ import datetime
import json import json
import os import os
saved_params_shared = {"model_name", "model_hash", "initial_step", "num_of_dataset_images", "learn_rate", "batch_size", "clip_grad_mode", "clip_grad_value", "gradient_step", "data_root", "log_directory", "training_width", "training_height", "steps", "create_image_every", "template_file", "gradient_step", "latent_sampling_method"} saved_params_shared = {
saved_params_ti = {"embedding_name", "num_vectors_per_token", "save_embedding_every", "save_image_with_stored_embedding"} "batch_size",
saved_params_hypernet = {"hypernetwork_name", "layer_structure", "activation_func", "weight_init", "add_layer_norm", "use_dropout", "save_hypernetwork_every"} "clip_grad_mode",
"clip_grad_value",
"create_image_every",
"data_root",
"gradient_step",
"initial_step",
"latent_sampling_method",
"learn_rate",
"log_directory",
"model_hash",
"model_name",
"num_of_dataset_images",
"steps",
"template_file",
"training_height",
"training_width",
}
saved_params_ti = {
"embedding_name",
"num_vectors_per_token",
"save_embedding_every",
"save_image_with_stored_embedding",
}
saved_params_hypernet = {
"activation_func",
"add_layer_norm",
"hypernetwork_name",
"layer_structure",
"save_hypernetwork_every",
"use_dropout",
"weight_init",
}
saved_params_all = saved_params_shared | saved_params_ti | saved_params_hypernet saved_params_all = saved_params_shared | saved_params_ti | saved_params_hypernet
saved_params_previews = {"preview_prompt", "preview_negative_prompt", "preview_steps", "preview_sampler_index", "preview_cfg_scale", "preview_seed", "preview_width", "preview_height"} saved_params_previews = {
"preview_cfg_scale",
"preview_height",
"preview_negative_prompt",
"preview_prompt",
"preview_sampler_index",
"preview_seed",
"preview_steps",
"preview_width",
}
def save_settings_to_file(log_directory, all_params): def save_settings_to_file(log_directory, all_params):

View File

@ -7,7 +7,7 @@ from modules import paths, shared, images, deepbooru
from modules.textual_inversion import autocrop from modules.textual_inversion import autocrop
def preprocess(id_task, process_src, process_dst, process_width, process_height, preprocess_txt_action, process_keep_original_size, process_flip, process_split, process_caption, process_caption_deepbooru=False, split_threshold=0.5, overlap_ratio=0.2, process_focal_crop=False, process_focal_crop_face_weight=0.9, process_focal_crop_entropy_weight=0.3, process_focal_crop_edges_weight=0.5, process_focal_crop_debug=False, process_multicrop=None, process_multicrop_mindim=None, process_multicrop_maxdim=None, process_multicrop_minarea=None, process_multicrop_maxarea=None, process_multicrop_objective=None, process_multicrop_threshold=None): def preprocess(id_task, process_src, process_dst, process_width, process_height, preprocess_txt_action, process_keep_original_size, process_flip, process_split, process_caption, process_caption_deepbooru=False, split_threshold=0.5, overlap_ratio=0.2, process_focal_crop=False, process_focal_crop_face_weight=0.9, process_focal_crop_entropy_weight=0.15, process_focal_crop_edges_weight=0.5, process_focal_crop_debug=False, process_multicrop=None, process_multicrop_mindim=None, process_multicrop_maxdim=None, process_multicrop_minarea=None, process_multicrop_maxarea=None, process_multicrop_objective=None, process_multicrop_threshold=None):
try: try:
if process_caption: if process_caption:
shared.interrogator.load() shared.interrogator.load()
@ -47,7 +47,7 @@ def save_pic_with_caption(image, index, params: PreprocessParams, existing_capti
caption += shared.interrogator.generate_caption(image) caption += shared.interrogator.generate_caption(image)
if params.process_caption_deepbooru: if params.process_caption_deepbooru:
if len(caption) > 0: if caption:
caption += ", " caption += ", "
caption += deepbooru.model.tag_multi(image) caption += deepbooru.model.tag_multi(image)
@ -67,7 +67,7 @@ def save_pic_with_caption(image, index, params: PreprocessParams, existing_capti
caption = caption.strip() caption = caption.strip()
if len(caption) > 0: if caption:
with open(os.path.join(params.dstdir, f"{basename}.txt"), "w", encoding="utf8") as file: with open(os.path.join(params.dstdir, f"{basename}.txt"), "w", encoding="utf8") as file:
file.write(caption) file.write(caption)

View File

@ -1,6 +1,4 @@
import os import os
import sys
import traceback
from collections import namedtuple from collections import namedtuple
import torch import torch
@ -14,7 +12,7 @@ import numpy as np
from PIL import Image, PngImagePlugin from PIL import Image, PngImagePlugin
from torch.utils.tensorboard import SummaryWriter from torch.utils.tensorboard import SummaryWriter
from modules import shared, devices, sd_hijack, processing, sd_models, images, sd_samplers, sd_hijack_checkpoint from modules import shared, devices, sd_hijack, processing, sd_models, images, sd_samplers, sd_hijack_checkpoint, errors
import modules.textual_inversion.dataset import modules.textual_inversion.dataset
from modules.textual_inversion.learn_schedule import LearnRateScheduler from modules.textual_inversion.learn_schedule import LearnRateScheduler
@ -120,16 +118,29 @@ class EmbeddingDatabase:
self.embedding_dirs.clear() self.embedding_dirs.clear()
def register_embedding(self, embedding, model): def register_embedding(self, embedding, model):
self.word_embeddings[embedding.name] = embedding return self.register_embedding_by_name(embedding, model, embedding.name)
ids = model.cond_stage_model.tokenize([embedding.name])[0]
def register_embedding_by_name(self, embedding, model, name):
ids = model.cond_stage_model.tokenize([name])[0]
first_id = ids[0] first_id = ids[0]
if first_id not in self.ids_lookup: if first_id not in self.ids_lookup:
self.ids_lookup[first_id] = [] self.ids_lookup[first_id] = []
if name in self.word_embeddings:
self.ids_lookup[first_id] = sorted(self.ids_lookup[first_id] + [(ids, embedding)], key=lambda x: len(x[0]), reverse=True) # remove old one from the lookup list
lookup = [x for x in self.ids_lookup[first_id] if x[1].name!=name]
else:
lookup = self.ids_lookup[first_id]
if embedding is not None:
lookup += [(ids, embedding)]
self.ids_lookup[first_id] = sorted(lookup, key=lambda x: len(x[0]), reverse=True)
if embedding is None:
# unregister embedding with specified name
if name in self.word_embeddings:
del self.word_embeddings[name]
if len(self.ids_lookup[first_id])==0:
del self.ids_lookup[first_id]
return None
self.word_embeddings[name] = embedding
return embedding return embedding
def get_expected_shape(self): def get_expected_shape(self):
@ -207,8 +218,7 @@ class EmbeddingDatabase:
self.load_from_file(fullfn, fn) self.load_from_file(fullfn, fn)
except Exception: except Exception:
print(f"Error loading embedding {fn}:", file=sys.stderr) errors.report(f"Error loading embedding {fn}", exc_info=True)
print(traceback.format_exc(), file=sys.stderr)
continue continue
def load_textual_inversion_embeddings(self, force_reload=False): def load_textual_inversion_embeddings(self, force_reload=False):
@ -241,7 +251,7 @@ class EmbeddingDatabase:
if self.previously_displayed_embeddings != displayed_embeddings: if self.previously_displayed_embeddings != displayed_embeddings:
self.previously_displayed_embeddings = displayed_embeddings self.previously_displayed_embeddings = displayed_embeddings
print(f"Textual inversion embeddings loaded({len(self.word_embeddings)}): {', '.join(self.word_embeddings.keys())}") print(f"Textual inversion embeddings loaded({len(self.word_embeddings)}): {', '.join(self.word_embeddings.keys())}")
if len(self.skipped_embeddings) > 0: if self.skipped_embeddings:
print(f"Textual inversion embeddings skipped({len(self.skipped_embeddings)}): {', '.join(self.skipped_embeddings.keys())}") print(f"Textual inversion embeddings skipped({len(self.skipped_embeddings)}): {', '.join(self.skipped_embeddings.keys())}")
def find_embedding_at_position(self, tokens, offset): def find_embedding_at_position(self, tokens, offset):
@ -632,8 +642,7 @@ Last saved image: {html.escape(last_saved_image)}<br/>
filename = os.path.join(shared.cmd_opts.embeddings_dir, f'{embedding_name}.pt') filename = os.path.join(shared.cmd_opts.embeddings_dir, f'{embedding_name}.pt')
save_embedding(embedding, optimizer, checkpoint, embedding_name, filename, remove_cached_checksum=True) save_embedding(embedding, optimizer, checkpoint, embedding_name, filename, remove_cached_checksum=True)
except Exception: except Exception:
print(traceback.format_exc(), file=sys.stderr) errors.report("Error training embedding", exc_info=True)
pass
finally: finally:
pbar.leave = False pbar.leave = False
pbar.close() pbar.close()

View File

@ -1,11 +1,30 @@
import time import time
class TimerSubcategory:
def __init__(self, timer, category):
self.timer = timer
self.category = category
self.start = None
self.original_base_category = timer.base_category
def __enter__(self):
self.start = time.time()
self.timer.base_category = self.original_base_category + self.category + "/"
def __exit__(self, exc_type, exc_val, exc_tb):
elapsed_for_subcategroy = time.time() - self.start
self.timer.base_category = self.original_base_category
self.timer.add_time_to_record(self.original_base_category + self.category, elapsed_for_subcategroy)
self.timer.record(self.category)
class Timer: class Timer:
def __init__(self): def __init__(self):
self.start = time.time() self.start = time.time()
self.records = {} self.records = {}
self.total = 0 self.total = 0
self.base_category = ''
def elapsed(self): def elapsed(self):
end = time.time() end = time.time()
@ -13,18 +32,29 @@ class Timer:
self.start = end self.start = end
return res return res
def record(self, category, extra_time=0): def add_time_to_record(self, category, amount):
e = self.elapsed()
if category not in self.records: if category not in self.records:
self.records[category] = 0 self.records[category] = 0
self.records[category] += e + extra_time self.records[category] += amount
def record(self, category, extra_time=0):
e = self.elapsed()
self.add_time_to_record(self.base_category + category, e + extra_time)
self.total += e + extra_time self.total += e + extra_time
def subcategory(self, name):
self.elapsed()
subcat = TimerSubcategory(self, name)
return subcat
def summary(self): def summary(self):
res = f"{self.total:.1f}s" res = f"{self.total:.1f}s"
additions = [x for x in self.records.items() if x[1] >= 0.1] additions = [(category, time_taken) for category, time_taken in self.records.items() if time_taken >= 0.1 and '/' not in category]
if not additions: if not additions:
return res return res
@ -34,5 +64,13 @@ class Timer:
return res return res
def dump(self):
return {'total': self.total, 'records': self.records}
def reset(self): def reset(self):
self.__init__() self.__init__()
startup_timer = Timer()
startup_record = None

View File

@ -4,10 +4,10 @@ from modules.generation_parameters_copypaste import create_override_settings_dic
from modules.shared import opts, cmd_opts from modules.shared import opts, cmd_opts
import modules.shared as shared import modules.shared as shared
from modules.ui import plaintext_to_html from modules.ui import plaintext_to_html
import gradio as gr
def txt2img(id_task: str, prompt: str, negative_prompt: str, prompt_styles, steps: int, sampler_index: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, height: int, width: int, enable_hr: bool, denoising_strength: float, hr_scale: float, hr_upscaler: str, hr_second_pass_steps: int, hr_resize_x: int, hr_resize_y: int, hr_sampler_index: int, hr_prompt: str, hr_negative_prompt, override_settings_texts, request: gr.Request, *args):
def txt2img(id_task: str, prompt: str, negative_prompt: str, prompt_styles, steps: int, sampler_index: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, height: int, width: int, enable_hr: bool, denoising_strength: float, hr_scale: float, hr_upscaler: str, hr_second_pass_steps: int, hr_resize_x: int, hr_resize_y: int, hr_sampler_index: int, hr_prompt: str, hr_negative_prompt, override_settings_texts, *args):
override_settings = create_override_settings_dict(override_settings_texts) override_settings = create_override_settings_dict(override_settings_texts)
p = processing.StableDiffusionProcessingTxt2Img( p = processing.StableDiffusionProcessingTxt2Img(
@ -48,6 +48,8 @@ def txt2img(id_task: str, prompt: str, negative_prompt: str, prompt_styles, step
p.scripts = modules.scripts.scripts_txt2img p.scripts = modules.scripts.scripts_txt2img
p.script_args = args p.script_args = args
p.user = request.username
if cmd_opts.enable_console_prompts: if cmd_opts.enable_console_prompts:
print(f"\ntxt2img: {prompt}", file=shared.progress_print_out) print(f"\ntxt2img: {prompt}", file=shared.progress_print_out)

View File

@ -1,21 +1,23 @@
import datetime
import json import json
import mimetypes import mimetypes
import os import os
import sys import sys
import traceback
from functools import reduce from functools import reduce
import warnings import warnings
import gradio as gr import gradio as gr
import gradio.routes
import gradio.utils import gradio.utils
import numpy as np import numpy as np
from PIL import Image, PngImagePlugin # noqa: F401 from PIL import Image, PngImagePlugin # noqa: F401
from modules.call_queue import wrap_gradio_gpu_call, wrap_queued_call, wrap_gradio_call from modules.call_queue import wrap_gradio_gpu_call, wrap_queued_call, wrap_gradio_call
from modules import sd_hijack, sd_models, localization, script_callbacks, ui_extensions, deepbooru, sd_vae, extra_networks, ui_common, ui_postprocessing, progress, ui_loadsave from modules import sd_hijack, sd_models, script_callbacks, ui_extensions, deepbooru, sd_vae, extra_networks, ui_common, ui_postprocessing, progress, ui_loadsave, errors, shared_items, ui_settings, timer, sysinfo
from modules.ui_components import FormRow, FormGroup, ToolButton, FormHTML from modules.ui_components import FormRow, FormGroup, ToolButton, FormHTML
from modules.paths import script_path, data_path from modules.paths import script_path
from modules.ui_common import create_refresh_button
from modules.ui_gradio_extensions import reload_javascript
from modules.shared import opts, cmd_opts from modules.shared import opts, cmd_opts
@ -35,6 +37,8 @@ import modules.hypernetworks.ui
from modules.generation_parameters_copypaste import image_from_url_text from modules.generation_parameters_copypaste import image_from_url_text
import modules.extras import modules.extras
create_setting_component = ui_settings.create_setting_component
warnings.filterwarnings("default" if opts.show_warnings else "ignore", category=UserWarning) warnings.filterwarnings("default" if opts.show_warnings else "ignore", category=UserWarning)
# this is a fix for Windows users. Without it, javascript files will be served with text/html content-type and the browser will not show any UI # this is a fix for Windows users. Without it, javascript files will be served with text/html content-type and the browser will not show any UI
@ -76,6 +80,7 @@ extra_networks_symbol = '\U0001F3B4' # 🎴
switch_values_symbol = '\U000021C5' # ⇅ switch_values_symbol = '\U000021C5' # ⇅
restore_progress_symbol = '\U0001F300' # 🌀 restore_progress_symbol = '\U0001F300' # 🌀
detect_image_size_symbol = '\U0001F4D0' # 📐 detect_image_size_symbol = '\U0001F4D0' # 📐
up_down_symbol = '\u2195\ufe0f' # ↕️
def plaintext_to_html(text): def plaintext_to_html(text):
@ -150,7 +155,7 @@ def process_interrogate(interrogation_function, mode, ii_input_dir, ii_output_di
img = Image.open(image) img = Image.open(image)
filename = os.path.basename(image) filename = os.path.basename(image)
left, _ = os.path.splitext(filename) left, _ = os.path.splitext(filename)
print(interrogation_function(img), file=open(os.path.join(ii_output_dir, f"{left}.txt"), 'a')) print(interrogation_function(img), file=open(os.path.join(ii_output_dir, f"{left}.txt"), 'a', encoding='utf-8'))
return [gr.update(), None] return [gr.update(), None]
@ -231,9 +236,8 @@ def connect_reuse_seed(seed: gr.Number, reuse_seed: gr.Button, generation_info:
res = all_seeds[index if 0 <= index < len(all_seeds) else 0] res = all_seeds[index if 0 <= index < len(all_seeds) else 0]
except json.decoder.JSONDecodeError: except json.decoder.JSONDecodeError:
if gen_info_string != '': if gen_info_string:
print("Error parsing JSON generation info:", file=sys.stderr) errors.report(f"Error parsing JSON generation info: {gen_info_string}")
print(gen_info_string, file=sys.stderr)
return [res, gr_show(False)] return [res, gr_show(False)]
@ -368,25 +372,6 @@ def apply_setting(key, value):
return getattr(opts, key) return getattr(opts, key)
def create_refresh_button(refresh_component, refresh_method, refreshed_args, elem_id):
def refresh():
refresh_method()
args = refreshed_args() if callable(refreshed_args) else refreshed_args
for k, v in args.items():
setattr(refresh_component, k, v)
return gr.update(**(args or {}))
refresh_button = ToolButton(value=refresh_symbol, elem_id=elem_id)
refresh_button.click(
fn=refresh,
inputs=[],
outputs=[refresh_component]
)
return refresh_button
def create_output_panel(tabname, outdir): def create_output_panel(tabname, outdir):
return ui_common.create_output_panel(tabname, outdir) return ui_common.create_output_panel(tabname, outdir)
@ -405,27 +390,17 @@ def create_sampler_and_steps_selection(choices, tabname):
def ordered_ui_categories(): def ordered_ui_categories():
user_order = {x.strip(): i * 2 + 1 for i, x in enumerate(shared.opts.ui_reorder.split(","))} user_order = {x.strip(): i * 2 + 1 for i, x in enumerate(shared.opts.ui_reorder_list)}
for _, category in sorted(enumerate(shared.ui_reorder_categories), key=lambda x: user_order.get(x[1], x[0] * 2 + 0)): for _, category in sorted(enumerate(shared_items.ui_reorder_categories()), key=lambda x: user_order.get(x[1], x[0] * 2 + 0)):
yield category yield category
def get_value_for_setting(key):
value = getattr(opts, key)
info = opts.data_labels[key]
args = info.component_args() if callable(info.component_args) else info.component_args or {}
args = {k: v for k, v in args.items() if k not in {'precision'}}
return gr.update(value=value, **args)
def create_override_settings_dropdown(tabname, row): def create_override_settings_dropdown(tabname, row):
dropdown = gr.Dropdown([], label="Override settings", visible=False, elem_id=f"{tabname}_override_settings", multiselect=True) dropdown = gr.Dropdown([], label="Override settings", visible=False, elem_id=f"{tabname}_override_settings", multiselect=True)
dropdown.change( dropdown.change(
fn=lambda x: gr.Dropdown.update(visible=len(x) > 0), fn=lambda x: gr.Dropdown.update(visible=bool(x)),
inputs=[dropdown], inputs=[dropdown],
outputs=[dropdown], outputs=[dropdown],
) )
@ -456,6 +431,8 @@ def create_ui():
with gr.Row().style(equal_height=False): with gr.Row().style(equal_height=False):
with gr.Column(variant='compact', elem_id="txt2img_settings"): with gr.Column(variant='compact', elem_id="txt2img_settings"):
modules.scripts.scripts_txt2img.prepare_ui()
for category in ordered_ui_categories(): for category in ordered_ui_categories():
if category == "sampler": if category == "sampler":
steps, sampler_index = create_sampler_and_steps_selection(samplers, "txt2img") steps, sampler_index = create_sampler_and_steps_selection(samplers, "txt2img")
@ -524,6 +501,9 @@ def create_ui():
with FormGroup(elem_id="txt2img_script_container"): with FormGroup(elem_id="txt2img_script_container"):
custom_inputs = modules.scripts.scripts_txt2img.setup_ui() custom_inputs = modules.scripts.scripts_txt2img.setup_ui()
else:
modules.scripts.scripts_txt2img.setup_ui_for_section(category)
hr_resolution_preview_inputs = [enable_hr, width, height, hr_scale, hr_resize_x, hr_resize_y] hr_resolution_preview_inputs = [enable_hr, width, height, hr_scale, hr_resize_x, hr_resize_y]
for component in hr_resolution_preview_inputs: for component in hr_resolution_preview_inputs:
@ -616,7 +596,8 @@ def create_ui():
outputs=[ outputs=[
txt2img_prompt, txt2img_prompt,
txt_prompt_img txt_prompt_img
] ],
show_progress=False,
) )
enable_hr.change( enable_hr.change(
@ -641,6 +622,7 @@ def create_ui():
(subseed_strength, "Variation seed strength"), (subseed_strength, "Variation seed strength"),
(seed_resize_from_w, "Seed resize from-1"), (seed_resize_from_w, "Seed resize from-1"),
(seed_resize_from_h, "Seed resize from-2"), (seed_resize_from_h, "Seed resize from-2"),
(txt2img_prompt_styles, lambda d: d["Styles array"] if isinstance(d.get("Styles array"), list) else gr.update()),
(denoising_strength, "Denoising strength"), (denoising_strength, "Denoising strength"),
(enable_hr, lambda d: "Denoising strength" in d), (enable_hr, lambda d: "Denoising strength" in d),
(hr_options, lambda d: gr.Row.update(visible="Denoising strength" in d)), (hr_options, lambda d: gr.Row.update(visible="Denoising strength" in d)),
@ -783,6 +765,8 @@ def create_ui():
with FormRow(): with FormRow():
resize_mode = gr.Radio(label="Resize mode", elem_id="resize_mode", choices=["Just resize", "Crop and resize", "Resize and fill", "Just resize (latent upscale)"], type="index", value="Just resize") resize_mode = gr.Radio(label="Resize mode", elem_id="resize_mode", choices=["Just resize", "Crop and resize", "Resize and fill", "Just resize (latent upscale)"], type="index", value="Just resize")
modules.scripts.scripts_img2img.prepare_ui()
for category in ordered_ui_categories(): for category in ordered_ui_categories():
if category == "sampler": if category == "sampler":
steps, sampler_index = create_sampler_and_steps_selection(samplers_for_img2img, "img2img") steps, sampler_index = create_sampler_and_steps_selection(samplers_for_img2img, "img2img")
@ -793,7 +777,7 @@ def create_ui():
selected_scale_tab = gr.State(value=0) selected_scale_tab = gr.State(value=0)
with gr.Tabs(): with gr.Tabs():
with gr.Tab(label="Resize to") as tab_scale_to: with gr.Tab(label="Resize to", elem_id="img2img_tab_resize_to") as tab_scale_to:
with FormRow(): with FormRow():
with gr.Column(elem_id="img2img_column_size", scale=4): with gr.Column(elem_id="img2img_column_size", scale=4):
width = gr.Slider(minimum=64, maximum=2048, step=8, label="Width", value=512, elem_id="img2img_width") width = gr.Slider(minimum=64, maximum=2048, step=8, label="Width", value=512, elem_id="img2img_width")
@ -802,7 +786,7 @@ def create_ui():
res_switch_btn = ToolButton(value=switch_values_symbol, elem_id="img2img_res_switch_btn") res_switch_btn = ToolButton(value=switch_values_symbol, elem_id="img2img_res_switch_btn")
detect_image_size_btn = ToolButton(value=detect_image_size_symbol, elem_id="img2img_detect_image_size_btn") detect_image_size_btn = ToolButton(value=detect_image_size_symbol, elem_id="img2img_detect_image_size_btn")
with gr.Tab(label="Resize by") as tab_scale_by: with gr.Tab(label="Resize by", elem_id="img2img_tab_resize_by") as tab_scale_by:
scale_by = gr.Slider(minimum=0.05, maximum=4.0, step=0.05, label="Scale", value=1.0, elem_id="img2img_scale") scale_by = gr.Slider(minimum=0.05, maximum=4.0, step=0.05, label="Scale", value=1.0, elem_id="img2img_scale")
with FormRow(): with FormRow():
@ -892,6 +876,8 @@ def create_ui():
inputs=[], inputs=[],
outputs=[inpaint_controls, mask_alpha], outputs=[inpaint_controls, mask_alpha],
) )
else:
modules.scripts.scripts_img2img.setup_ui_for_section(category)
img2img_gallery, generation_info, html_info, html_log = create_output_panel("img2img", opts.outdir_img2img_samples) img2img_gallery, generation_info, html_info, html_log = create_output_panel("img2img", opts.outdir_img2img_samples)
@ -906,7 +892,8 @@ def create_ui():
outputs=[ outputs=[
img2img_prompt, img2img_prompt,
img2img_prompt_img img2img_prompt_img
] ],
show_progress=False,
) )
img2img_args = dict( img2img_args = dict(
@ -1058,6 +1045,7 @@ def create_ui():
(subseed_strength, "Variation seed strength"), (subseed_strength, "Variation seed strength"),
(seed_resize_from_w, "Seed resize from-1"), (seed_resize_from_w, "Seed resize from-1"),
(seed_resize_from_h, "Seed resize from-2"), (seed_resize_from_h, "Seed resize from-2"),
(img2img_prompt_styles, lambda d: d["Styles array"] if isinstance(d.get("Styles array"), list) else gr.update()),
(denoising_strength, "Denoising strength"), (denoising_strength, "Denoising strength"),
(mask_blur, "Mask blur"), (mask_blur, "Mask blur"),
*modules.scripts.scripts_img2img.infotext_fields *modules.scripts.scripts_img2img.infotext_fields
@ -1467,195 +1455,10 @@ def create_ui():
outputs=[], outputs=[],
) )
def create_setting_component(key, is_quicksettings=False):
def fun():
return opts.data[key] if key in opts.data else opts.data_labels[key].default
info = opts.data_labels[key]
t = type(info.default)
args = info.component_args() if callable(info.component_args) else info.component_args
if info.component is not None:
comp = info.component
elif t == str:
comp = gr.Textbox
elif t == int:
comp = gr.Number
elif t == bool:
comp = gr.Checkbox
else:
raise Exception(f'bad options item type: {t} for key {key}')
elem_id = f"setting_{key}"
if info.refresh is not None:
if is_quicksettings:
res = comp(label=info.label, value=fun(), elem_id=elem_id, **(args or {}))
create_refresh_button(res, info.refresh, info.component_args, f"refresh_{key}")
else:
with FormRow():
res = comp(label=info.label, value=fun(), elem_id=elem_id, **(args or {}))
create_refresh_button(res, info.refresh, info.component_args, f"refresh_{key}")
else:
res = comp(label=info.label, value=fun(), elem_id=elem_id, **(args or {}))
return res
loadsave = ui_loadsave.UiLoadsave(cmd_opts.ui_config_file) loadsave = ui_loadsave.UiLoadsave(cmd_opts.ui_config_file)
components = [] settings = ui_settings.UiSettings()
component_dict = {} settings.create_ui(loadsave, dummy_component)
shared.settings_components = component_dict
script_callbacks.ui_settings_callback()
opts.reorder()
def run_settings(*args):
changed = []
for key, value, comp in zip(opts.data_labels.keys(), args, components):
assert comp == dummy_component or opts.same_type(value, opts.data_labels[key].default), f"Bad value for setting {key}: {value}; expecting {type(opts.data_labels[key].default).__name__}"
for key, value, comp in zip(opts.data_labels.keys(), args, components):
if comp == dummy_component:
continue
if opts.set(key, value):
changed.append(key)
try:
opts.save(shared.config_filename)
except RuntimeError:
return opts.dumpjson(), f'{len(changed)} settings changed without save: {", ".join(changed)}.'
return opts.dumpjson(), f'{len(changed)} settings changed{": " if len(changed) > 0 else ""}{", ".join(changed)}.'
def run_settings_single(value, key):
if not opts.same_type(value, opts.data_labels[key].default):
return gr.update(visible=True), opts.dumpjson()
if not opts.set(key, value):
return gr.update(value=getattr(opts, key)), opts.dumpjson()
opts.save(shared.config_filename)
return get_value_for_setting(key), opts.dumpjson()
with gr.Blocks(analytics_enabled=False) as settings_interface:
with gr.Row():
with gr.Column(scale=6):
settings_submit = gr.Button(value="Apply settings", variant='primary', elem_id="settings_submit")
with gr.Column():
restart_gradio = gr.Button(value='Reload UI', variant='primary', elem_id="settings_restart_gradio")
result = gr.HTML(elem_id="settings_result")
quicksettings_names = opts.quicksettings_list
quicksettings_names = {x: i for i, x in enumerate(quicksettings_names) if x != 'quicksettings'}
quicksettings_list = []
previous_section = None
current_tab = None
current_row = None
with gr.Tabs(elem_id="settings"):
for i, (k, item) in enumerate(opts.data_labels.items()):
section_must_be_skipped = item.section[0] is None
if previous_section != item.section and not section_must_be_skipped:
elem_id, text = item.section
if current_tab is not None:
current_row.__exit__()
current_tab.__exit__()
gr.Group()
current_tab = gr.TabItem(elem_id=f"settings_{elem_id}", label=text)
current_tab.__enter__()
current_row = gr.Column(variant='compact')
current_row.__enter__()
previous_section = item.section
if k in quicksettings_names and not shared.cmd_opts.freeze_settings:
quicksettings_list.append((i, k, item))
components.append(dummy_component)
elif section_must_be_skipped:
components.append(dummy_component)
else:
component = create_setting_component(k)
component_dict[k] = component
components.append(component)
if current_tab is not None:
current_row.__exit__()
current_tab.__exit__()
with gr.TabItem("Defaults", id="defaults", elem_id="settings_tab_defaults"):
loadsave.create_ui()
with gr.TabItem("Actions", id="actions", elem_id="settings_tab_actions"):
request_notifications = gr.Button(value='Request browser notifications', elem_id="request_notifications")
download_localization = gr.Button(value='Download localization template', elem_id="download_localization")
reload_script_bodies = gr.Button(value='Reload custom script bodies (No ui updates, No restart)', variant='secondary', elem_id="settings_reload_script_bodies")
with gr.Row():
unload_sd_model = gr.Button(value='Unload SD checkpoint to free VRAM', elem_id="sett_unload_sd_model")
reload_sd_model = gr.Button(value='Reload the last SD checkpoint back into VRAM', elem_id="sett_reload_sd_model")
with gr.TabItem("Licenses", id="licenses", elem_id="settings_tab_licenses"):
gr.HTML(shared.html("licenses.html"), elem_id="licenses")
gr.Button(value="Show all pages", elem_id="settings_show_all_pages")
def unload_sd_weights():
modules.sd_models.unload_model_weights()
def reload_sd_weights():
modules.sd_models.reload_model_weights()
unload_sd_model.click(
fn=unload_sd_weights,
inputs=[],
outputs=[]
)
reload_sd_model.click(
fn=reload_sd_weights,
inputs=[],
outputs=[]
)
request_notifications.click(
fn=lambda: None,
inputs=[],
outputs=[],
_js='function(){}'
)
download_localization.click(
fn=lambda: None,
inputs=[],
outputs=[],
_js='download_localization'
)
def reload_scripts():
modules.scripts.reload_script_body_only()
reload_javascript() # need to refresh the html page
reload_script_bodies.click(
fn=reload_scripts,
inputs=[],
outputs=[]
)
restart_gradio.click(
fn=shared.state.request_restart,
_js='restart_reload',
inputs=[],
outputs=[],
)
interfaces = [ interfaces = [
(txt2img_interface, "txt2img", "txt2img"), (txt2img_interface, "txt2img", "txt2img"),
@ -1667,7 +1470,7 @@ def create_ui():
] ]
interfaces += script_callbacks.ui_tabs_callback() interfaces += script_callbacks.ui_tabs_callback()
interfaces += [(settings_interface, "Settings", "settings")] interfaces += [(settings.interface, "Settings", "settings")]
extensions_interface = ui_extensions.create_ui() extensions_interface = ui_extensions.create_ui()
interfaces += [(extensions_interface, "Extensions", "extensions")] interfaces += [(extensions_interface, "Extensions", "extensions")]
@ -1677,10 +1480,7 @@ def create_ui():
shared.tab_names.append(label) shared.tab_names.append(label)
with gr.Blocks(theme=shared.gradio_theme, analytics_enabled=False, title="Stable Diffusion") as demo: with gr.Blocks(theme=shared.gradio_theme, analytics_enabled=False, title="Stable Diffusion") as demo:
with gr.Row(elem_id="quicksettings", variant="compact"): settings.add_quicksettings()
for _i, k, _item in sorted(quicksettings_list, key=lambda x: quicksettings_names.get(x[1], x[0])):
component = create_setting_component(k, is_quicksettings=True)
component_dict[k] = component
parameters_copypaste.connect_paste_params_buttons() parameters_copypaste.connect_paste_params_buttons()
@ -1708,58 +1508,20 @@ def create_ui():
gr.Audio(interactive=False, value=os.path.join(script_path, "notification.mp3"), elem_id="audio_notification", visible=False) gr.Audio(interactive=False, value=os.path.join(script_path, "notification.mp3"), elem_id="audio_notification", visible=False)
footer = shared.html("footer.html") footer = shared.html("footer.html")
footer = footer.format(versions=versions_html()) footer = footer.format(versions=versions_html(), api_docs="/docs" if shared.cmd_opts.api else "https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/API")
gr.HTML(footer, elem_id="footer") gr.HTML(footer, elem_id="footer")
text_settings = gr.Textbox(elem_id="settings_json", value=lambda: opts.dumpjson(), visible=False) settings.add_functionality(demo)
settings_submit.click(
fn=wrap_gradio_call(run_settings, extra_outputs=[gr.update()]),
inputs=components,
outputs=[text_settings, result],
)
for _i, k, _item in quicksettings_list:
component = component_dict[k]
info = opts.data_labels[k]
change_handler = component.release if hasattr(component, 'release') else component.change
change_handler(
fn=lambda value, k=k: run_settings_single(value, key=k),
inputs=[component],
outputs=[component, text_settings],
show_progress=info.refresh is not None,
)
update_image_cfg_scale_visibility = lambda: gr.update(visible=shared.sd_model and shared.sd_model.cond_stage_key == "edit") update_image_cfg_scale_visibility = lambda: gr.update(visible=shared.sd_model and shared.sd_model.cond_stage_key == "edit")
text_settings.change(fn=update_image_cfg_scale_visibility, inputs=[], outputs=[image_cfg_scale]) settings.text_settings.change(fn=update_image_cfg_scale_visibility, inputs=[], outputs=[image_cfg_scale])
demo.load(fn=update_image_cfg_scale_visibility, inputs=[], outputs=[image_cfg_scale]) demo.load(fn=update_image_cfg_scale_visibility, inputs=[], outputs=[image_cfg_scale])
button_set_checkpoint = gr.Button('Change checkpoint', elem_id='change_checkpoint', visible=False)
button_set_checkpoint.click(
fn=lambda value, _: run_settings_single(value, key='sd_model_checkpoint'),
_js="function(v){ var res = desiredCheckpointName; desiredCheckpointName = ''; return [res || v, null]; }",
inputs=[component_dict['sd_model_checkpoint'], dummy_component],
outputs=[component_dict['sd_model_checkpoint'], text_settings],
)
component_keys = [k for k in opts.data_labels.keys() if k in component_dict]
def get_settings_values():
return [get_value_for_setting(key) for key in component_keys]
demo.load(
fn=get_settings_values,
inputs=[],
outputs=[component_dict[k] for k in component_keys],
queue=False,
)
def modelmerger(*args): def modelmerger(*args):
try: try:
results = modules.extras.run_modelmerger(*args) results = modules.extras.run_modelmerger(*args)
except Exception as e: except Exception as e:
print("Error loading/saving model file:", file=sys.stderr) errors.report("Error loading/saving model file", exc_info=True)
print(traceback.format_exc(), file=sys.stderr)
modules.sd_models.list_models() # to remove the potentially missing models from the list modules.sd_models.list_models() # to remove the potentially missing models from the list
return [*[gr.Dropdown.update(choices=modules.sd_models.checkpoint_tiles()) for _ in range(4)], f"Error merging checkpoints: {e}"] return [*[gr.Dropdown.update(choices=modules.sd_models.checkpoint_tiles()) for _ in range(4)], f"Error merging checkpoints: {e}"]
return results return results
@ -1787,7 +1549,7 @@ def create_ui():
primary_model_name, primary_model_name,
secondary_model_name, secondary_model_name,
tertiary_model_name, tertiary_model_name,
component_dict['sd_model_checkpoint'], settings.component_dict['sd_model_checkpoint'],
modelmerger_result, modelmerger_result,
] ]
) )
@ -1801,70 +1563,6 @@ def create_ui():
return demo return demo
def webpath(fn):
if fn.startswith(script_path):
web_path = os.path.relpath(fn, script_path).replace('\\', '/')
else:
web_path = os.path.abspath(fn)
return f'file={web_path}?{os.path.getmtime(fn)}'
def javascript_html():
# Ensure localization is in `window` before scripts
head = f'<script type="text/javascript">{localization.localization_js(shared.opts.localization)}</script>\n'
script_js = os.path.join(script_path, "script.js")
head += f'<script type="text/javascript" src="{webpath(script_js)}"></script>\n'
for script in modules.scripts.list_scripts("javascript", ".js"):
head += f'<script type="text/javascript" src="{webpath(script.path)}"></script>\n'
for script in modules.scripts.list_scripts("javascript", ".mjs"):
head += f'<script type="module" src="{webpath(script.path)}"></script>\n'
if cmd_opts.theme:
head += f'<script type="text/javascript">set_theme(\"{cmd_opts.theme}\");</script>\n'
return head
def css_html():
head = ""
def stylesheet(fn):
return f'<link rel="stylesheet" property="stylesheet" href="{webpath(fn)}">'
for cssfile in modules.scripts.list_files_with_name("style.css"):
if not os.path.isfile(cssfile):
continue
head += stylesheet(cssfile)
if os.path.exists(os.path.join(data_path, "user.css")):
head += stylesheet(os.path.join(data_path, "user.css"))
return head
def reload_javascript():
js = javascript_html()
css = css_html()
def template_response(*args, **kwargs):
res = shared.GradioTemplateResponseOriginal(*args, **kwargs)
res.body = res.body.replace(b'</head>', f'{js}</head>'.encode("utf8"))
res.body = res.body.replace(b'</body>', f'{css}</body>'.encode("utf8"))
res.init_headers()
return res
gradio.routes.templates.TemplateResponse = template_response
if not hasattr(shared, 'GradioTemplateResponseOriginal'):
shared.GradioTemplateResponseOriginal = gradio.routes.templates.TemplateResponse
def versions_html(): def versions_html():
import torch import torch
import launch import launch
@ -1908,3 +1606,17 @@ def setup_ui_api(app):
app.add_api_route("/internal/quicksettings-hint", quicksettings_hint, methods=["GET"], response_model=List[QuicksettingsHint]) app.add_api_route("/internal/quicksettings-hint", quicksettings_hint, methods=["GET"], response_model=List[QuicksettingsHint])
app.add_api_route("/internal/ping", lambda: {}, methods=["GET"]) app.add_api_route("/internal/ping", lambda: {}, methods=["GET"])
app.add_api_route("/internal/profile-startup", lambda: timer.startup_record, methods=["GET"])
def download_sysinfo(attachment=False):
from fastapi.responses import PlainTextResponse
text = sysinfo.get()
filename = f"sysinfo-{datetime.datetime.utcnow().strftime('%Y-%m-%d-%H-%M')}.txt"
return PlainTextResponse(text, headers={'Content-Disposition': f'{"attachment" if attachment else "inline"}; filename="{filename}"'})
app.add_api_route("/internal/sysinfo", download_sysinfo, methods=["GET"])
app.add_api_route("/internal/sysinfo-download", lambda: download_sysinfo(attachment=True), methods=["GET"])

View File

@ -10,8 +10,11 @@ import subprocess as sp
from modules import call_queue, shared from modules import call_queue, shared
from modules.generation_parameters_copypaste import image_from_url_text from modules.generation_parameters_copypaste import image_from_url_text
import modules.images import modules.images
from modules.ui_components import ToolButton
folder_symbol = '\U0001f4c2' # 📂 folder_symbol = '\U0001f4c2' # 📂
refresh_symbol = '\U0001f504' # 🔄
def update_generation_info(generation_info, html_info, img_index): def update_generation_info(generation_info, html_info, img_index):
@ -50,9 +53,10 @@ def save_files(js_data, images, do_make_zip, index):
save_to_dirs = shared.opts.use_save_to_dirs_for_ui save_to_dirs = shared.opts.use_save_to_dirs_for_ui
extension: str = shared.opts.samples_format extension: str = shared.opts.samples_format
start_index = 0 start_index = 0
only_one = False
if index > -1 and shared.opts.save_selected_only and (index >= data["index_of_first_image"]): # ensures we are looking at a specific non-grid picture, and we have save_selected_only if index > -1 and shared.opts.save_selected_only and (index >= data["index_of_first_image"]): # ensures we are looking at a specific non-grid picture, and we have save_selected_only
only_one = True
images = [images[index]] images = [images[index]]
start_index = index start_index = index
@ -70,6 +74,7 @@ def save_files(js_data, images, do_make_zip, index):
is_grid = image_index < p.index_of_first_image is_grid = image_index < p.index_of_first_image
i = 0 if is_grid else (image_index - p.index_of_first_image) i = 0 if is_grid else (image_index - p.index_of_first_image)
p.batch_index = image_index-1
fullfn, txt_fullfn = modules.images.save_image(image, path, "", seed=p.all_seeds[i], prompt=p.all_prompts[i], extension=extension, info=p.infotexts[image_index], grid=is_grid, p=p, save_to_dirs=save_to_dirs) fullfn, txt_fullfn = modules.images.save_image(image, path, "", seed=p.all_seeds[i], prompt=p.all_prompts[i], extension=extension, info=p.infotexts[image_index], grid=is_grid, p=p, save_to_dirs=save_to_dirs)
filename = os.path.relpath(fullfn, path) filename = os.path.relpath(fullfn, path)
@ -83,7 +88,10 @@ def save_files(js_data, images, do_make_zip, index):
# Make Zip # Make Zip
if do_make_zip: if do_make_zip:
zip_filepath = os.path.join(path, "images.zip") zip_fileseed = p.all_seeds[index-1] if only_one else p.all_seeds[0]
namegen = modules.images.FilenameGenerator(p, zip_fileseed, p.all_prompts[0], image, True)
zip_filename = namegen.apply(shared.opts.grid_zip_filename_pattern or "[datetime]_[[model_name]]_[seed]-[seed_last]")
zip_filepath = os.path.join(path, f"{zip_filename}.zip")
from zipfile import ZipFile from zipfile import ZipFile
with ZipFile(zip_filepath, "w") as zip_file: with ZipFile(zip_filepath, "w") as zip_file:
@ -211,3 +219,23 @@ Requested path was: {f}
)) ))
return result_gallery, generation_info if tabname != "extras" else html_info_x, html_info, html_log return result_gallery, generation_info if tabname != "extras" else html_info_x, html_info, html_log
def create_refresh_button(refresh_component, refresh_method, refreshed_args, elem_id):
def refresh():
refresh_method()
args = refreshed_args() if callable(refreshed_args) else refreshed_args
for k, v in args.items():
setattr(refresh_component, k, v)
return gr.update(**(args or {}))
refresh_button = ToolButton(value=refresh_symbol, elem_id=elem_id)
refresh_button.click(
fn=refresh,
inputs=[],
outputs=[refresh_component]
)
return refresh_button

View File

@ -1,10 +1,8 @@
import json import json
import os.path import os.path
import sys
import threading import threading
import time import time
from datetime import datetime from datetime import datetime
import traceback
import git import git
@ -13,7 +11,7 @@ import html
import shutil import shutil
import errno import errno
from modules import extensions, shared, paths, config_states from modules import extensions, shared, paths, config_states, errors, restart
from modules.paths_internal import config_states_dir from modules.paths_internal import config_states_dir
from modules.call_queue import wrap_gradio_gpu_call from modules.call_queue import wrap_gradio_gpu_call
@ -46,13 +44,16 @@ def apply_and_restart(disable_list, update_list, disable_all):
try: try:
ext.fetch_and_reset_hard() ext.fetch_and_reset_hard()
except Exception: except Exception:
print(f"Error getting updates for {ext.name}:", file=sys.stderr) errors.report(f"Error getting updates for {ext.name}", exc_info=True)
print(traceback.format_exc(), file=sys.stderr)
shared.opts.disabled_extensions = disabled shared.opts.disabled_extensions = disabled
shared.opts.disable_all_extensions = disable_all shared.opts.disable_all_extensions = disable_all
shared.opts.save(shared.config_filename) shared.opts.save(shared.config_filename)
shared.state.request_restart()
if restart.is_restartable():
restart.restart_program()
else:
restart.stop_program()
def save_config_state(name): def save_config_state(name):
@ -113,8 +114,7 @@ def check_updates(id_task, disable_list):
if 'FETCH_HEAD' not in str(e): if 'FETCH_HEAD' not in str(e):
raise raise
except Exception: except Exception:
print(f"Error checking updates for {ext.name}:", file=sys.stderr) errors.report(f"Error checking updates for {ext.name}", exc_info=True)
print(traceback.format_exc(), file=sys.stderr)
shared.state.nextjob() shared.state.nextjob()
@ -138,7 +138,10 @@ def extension_table():
<table id="extensions"> <table id="extensions">
<thead> <thead>
<tr> <tr>
<th><abbr title="Use checkbox to enable the extension; it will be enabled or disabled when you click apply button">Extension</abbr></th> <th>
<input class="gr-check-radio gr-checkbox all_extensions_toggle" type="checkbox" {'checked="checked"' if all(ext.enabled for ext in extensions.extensions) else ''} onchange="toggle_all_extensions(event)" />
<abbr title="Use checkbox to enable the extension; it will be enabled or disabled when you click apply button">Extension</abbr>
</th>
<th>URL</th> <th>URL</th>
<th>Branch</th> <th>Branch</th>
<th>Version</th> <th>Version</th>
@ -170,7 +173,7 @@ def extension_table():
code += f""" code += f"""
<tr> <tr>
<td><label{style}><input class="gr-check-radio gr-checkbox" name="enable_{html.escape(ext.name)}" type="checkbox" {'checked="checked"' if ext.enabled else ''}>{html.escape(ext.name)}</label></td> <td><label{style}><input class="gr-check-radio gr-checkbox extension_toggle" name="enable_{html.escape(ext.name)}" type="checkbox" {'checked="checked"' if ext.enabled else ''} onchange="toggle_extension(event)" />{html.escape(ext.name)}</label></td>
<td>{remote}</td> <td>{remote}</td>
<td>{ext.branch}</td> <td>{ext.branch}</td>
<td>{version_link}</td> <td>{version_link}</td>
@ -325,6 +328,11 @@ def normalize_git_url(url):
def install_extension_from_url(dirname, url, branch_name=None): def install_extension_from_url(dirname, url, branch_name=None):
check_access() check_access()
if isinstance(dirname, str):
dirname = dirname.strip()
if isinstance(url, str):
url = url.strip()
assert url, 'No URL specified' assert url, 'No URL specified'
if dirname is None or dirname == "": if dirname is None or dirname == "":
@ -337,7 +345,8 @@ def install_extension_from_url(dirname, url, branch_name=None):
assert not os.path.exists(target_dir), f'Extension directory already exists: {target_dir}' assert not os.path.exists(target_dir), f'Extension directory already exists: {target_dir}'
normalized_url = normalize_git_url(url) normalized_url = normalize_git_url(url)
assert len([x for x in extensions.extensions if normalize_git_url(x.remote) == normalized_url]) == 0, 'Extension with this URL is already installed' if any(x for x in extensions.extensions if normalize_git_url(x.remote) == normalized_url):
raise Exception(f'Extension with this URL is already installed: {url}')
tmpdir = os.path.join(paths.data_path, "tmp", dirname) tmpdir = os.path.join(paths.data_path, "tmp", dirname)
@ -415,9 +424,19 @@ sort_ordering = [
(False, lambda x: x.get('name', 'z')), (False, lambda x: x.get('name', 'z')),
(True, lambda x: x.get('name', 'z')), (True, lambda x: x.get('name', 'z')),
(False, lambda x: 'z'), (False, lambda x: 'z'),
(True, lambda x: x.get('commit_time', '')),
(True, lambda x: x.get('created_at', '')),
(True, lambda x: x.get('stars', 0)),
] ]
def get_date(info: dict, key):
try:
return datetime.strptime(info.get(key), "%Y-%m-%dT%H:%M:%SZ").strftime("%Y-%m-%d")
except (ValueError, TypeError):
return ''
def refresh_available_extensions_from_data(hide_tags, sort_column, filter_text=""): def refresh_available_extensions_from_data(hide_tags, sort_column, filter_text=""):
extlist = available_extensions["extensions"] extlist = available_extensions["extensions"]
installed_extension_urls = {normalize_git_url(extension.remote): extension.name for extension in extensions.extensions} installed_extension_urls = {normalize_git_url(extension.remote): extension.name for extension in extensions.extensions}
@ -442,7 +461,10 @@ def refresh_available_extensions_from_data(hide_tags, sort_column, filter_text="
for ext in sorted(extlist, key=sort_function, reverse=sort_reverse): for ext in sorted(extlist, key=sort_function, reverse=sort_reverse):
name = ext.get("name", "noname") name = ext.get("name", "noname")
stars = int(ext.get("stars", 0))
added = ext.get('added', 'unknown') added = ext.get('added', 'unknown')
update_time = get_date(ext, 'commit_time')
create_time = get_date(ext, 'created_at')
url = ext.get("url", None) url = ext.get("url", None)
description = ext.get("description", "") description = ext.get("description", "")
extension_tags = ext.get("tags", []) extension_tags = ext.get("tags", [])
@ -453,7 +475,7 @@ def refresh_available_extensions_from_data(hide_tags, sort_column, filter_text="
existing = installed_extension_urls.get(normalize_git_url(url), None) existing = installed_extension_urls.get(normalize_git_url(url), None)
extension_tags = extension_tags + ["installed"] if existing else extension_tags extension_tags = extension_tags + ["installed"] if existing else extension_tags
if len([x for x in extension_tags if x in tags_to_hide]) > 0: if any(x for x in extension_tags if x in tags_to_hide):
hidden += 1 hidden += 1
continue continue
@ -469,7 +491,8 @@ def refresh_available_extensions_from_data(hide_tags, sort_column, filter_text="
code += f""" code += f"""
<tr> <tr>
<td><a href="{html.escape(url)}" target="_blank">{html.escape(name)}</a><br />{tags_text}</td> <td><a href="{html.escape(url)}" target="_blank">{html.escape(name)}</a><br />{tags_text}</td>
<td>{html.escape(description)}<p class="info"><span class="date_added">Added: {html.escape(added)}</span></p></td> <td>{html.escape(description)}<p class="info">
<span class="date_added">Update: {html.escape(update_time)} Added: {html.escape(added)} Created: {html.escape(create_time)}</span><span class="star_count">stars: <b>{stars}</b></a></p></td>
<td>{install_code}</td> <td>{install_code}</td>
</tr> </tr>
@ -490,8 +513,14 @@ def refresh_available_extensions_from_data(hide_tags, sort_column, filter_text="
def preload_extensions_git_metadata(): def preload_extensions_git_metadata():
t0 = time.time()
for extension in extensions.extensions: for extension in extensions.extensions:
extension.read_info_from_repo() extension.read_info_from_repo()
print(
f"preload_extensions_git_metadata for "
f"{len(extensions.extensions)} extensions took "
f"{time.time() - t0:.2f}s"
)
def create_ui(): def create_ui():
@ -506,7 +535,8 @@ def create_ui():
with gr.TabItem("Installed", id="installed"): with gr.TabItem("Installed", id="installed"):
with gr.Row(elem_id="extensions_installed_top"): with gr.Row(elem_id="extensions_installed_top"):
apply = gr.Button(value="Apply and restart UI", variant="primary") apply_label = ("Apply and restart UI" if restart.is_restartable() else "Apply and quit")
apply = gr.Button(value=apply_label, variant="primary")
check = gr.Button(value="Check for updates") check = gr.Button(value="Check for updates")
extensions_disable_all = gr.Radio(label="Disable all extensions", choices=["none", "extra", "all"], value=shared.opts.disable_all_extensions, elem_id="extensions_disable_all") extensions_disable_all = gr.Radio(label="Disable all extensions", choices=["none", "extra", "all"], value=shared.opts.disable_all_extensions, elem_id="extensions_disable_all")
extensions_disabled_list = gr.Text(elem_id="extensions_disabled_list", visible=False).style(container=False) extensions_disabled_list = gr.Text(elem_id="extensions_disabled_list", visible=False).style(container=False)
@ -546,7 +576,7 @@ def create_ui():
with gr.Row(): with gr.Row():
hide_tags = gr.CheckboxGroup(value=["ads", "localization", "installed"], label="Hide extensions with tags", choices=["script", "ads", "localization", "installed"]) hide_tags = gr.CheckboxGroup(value=["ads", "localization", "installed"], label="Hide extensions with tags", choices=["script", "ads", "localization", "installed"])
sort_column = gr.Radio(value="newest first", label="Order", choices=["newest first", "oldest first", "a-z", "z-a", "internal order", ], type="index") sort_column = gr.Radio(value="newest first", label="Order", choices=["newest first", "oldest first", "a-z", "z-a", "internal order",'update time', 'create time', "stars"], type="index")
with gr.Row(): with gr.Row():
search_extensions_text = gr.Text(label="Search").style(container=False) search_extensions_text = gr.Text(label="Search").style(container=False)
@ -555,9 +585,9 @@ def create_ui():
available_extensions_table = gr.HTML() available_extensions_table = gr.HTML()
refresh_available_extensions_button.click( refresh_available_extensions_button.click(
fn=modules.ui.wrap_gradio_call(refresh_available_extensions, extra_outputs=[gr.update(), gr.update(), gr.update()]), fn=modules.ui.wrap_gradio_call(refresh_available_extensions, extra_outputs=[gr.update(), gr.update(), gr.update(), gr.update()]),
inputs=[available_extensions_index, hide_tags, sort_column], inputs=[available_extensions_index, hide_tags, sort_column],
outputs=[available_extensions_index, available_extensions_table, hide_tags, install_result, search_extensions_text], outputs=[available_extensions_index, available_extensions_table, hide_tags, search_extensions_text, install_result],
) )
install_extension_button.click( install_extension_button.click(

View File

@ -4,6 +4,7 @@ from pathlib import Path
from modules import shared from modules import shared
from modules.images import read_info_from_image, save_image_with_geninfo from modules.images import read_info_from_image, save_image_with_geninfo
from modules.ui import up_down_symbol
import gradio as gr import gradio as gr
import json import json
import html import html
@ -29,8 +30,8 @@ def fetch_file(filename: str = ""):
raise ValueError(f"File cannot be fetched: {filename}. Must be in one of directories registered by extra pages.") raise ValueError(f"File cannot be fetched: {filename}. Must be in one of directories registered by extra pages.")
ext = os.path.splitext(filename)[1].lower() ext = os.path.splitext(filename)[1].lower()
if ext not in (".png", ".jpg", ".jpeg", ".webp"): if ext not in (".png", ".jpg", ".jpeg", ".webp", ".gif"):
raise ValueError(f"File cannot be fetched: {filename}. Only png and jpg and webp.") raise ValueError(f"File cannot be fetched: {filename}. Only png, jpg, webp, and gif.")
# would profit from returning 304 # would profit from returning 304
return FileResponse(filename, headers={"Accept-Ranges": "bytes"}) return FileResponse(filename, headers={"Accept-Ranges": "bytes"})
@ -185,6 +186,8 @@ class ExtraNetworksPage:
if search_only and shared.opts.extra_networks_hidden_models == "Never": if search_only and shared.opts.extra_networks_hidden_models == "Never":
return "" return ""
sort_keys = " ".join([html.escape(f'data-sort-{k}={v}') for k, v in item.get("sort_keys", {}).items()]).strip()
args = { args = {
"background_image": background_image, "background_image": background_image,
"style": f"'display: none; {height}{width}'", "style": f"'display: none; {height}{width}'",
@ -198,10 +201,23 @@ class ExtraNetworksPage:
"search_term": item.get("search_term", ""), "search_term": item.get("search_term", ""),
"metadata_button": metadata_button, "metadata_button": metadata_button,
"search_only": " search_only" if search_only else "", "search_only": " search_only" if search_only else "",
"sort_keys": sort_keys,
} }
return self.card_page.format(**args) return self.card_page.format(**args)
def get_sort_keys(self, path):
"""
List of default keys used for sorting in the UI.
"""
pth = Path(path)
stat = pth.stat()
return {
"date_created": int(stat.st_ctime or 0),
"date_modified": int(stat.st_mtime or 0),
"name": pth.name.lower(),
}
def find_preview(self, path): def find_preview(self, path):
""" """
Find a preview PNG for a given path (without extension) and call link_preview on it. Find a preview PNG for a given path (without extension) and call link_preview on it.
@ -296,6 +312,8 @@ def create_ui(container, button, tabname):
page_elem.change(fn=lambda: None, _js='function(){applyExtraNetworkFilter(' + json.dumps(tabname) + '); return []}', inputs=[], outputs=[]) page_elem.change(fn=lambda: None, _js='function(){applyExtraNetworkFilter(' + json.dumps(tabname) + '); return []}', inputs=[], outputs=[])
gr.Textbox('', show_label=False, elem_id=tabname+"_extra_search", placeholder="Search...", visible=False) gr.Textbox('', show_label=False, elem_id=tabname+"_extra_search", placeholder="Search...", visible=False)
gr.Dropdown(choices=['Default Sort', 'Date Created', 'Date Modified', 'Name'], value='Default Sort', elem_id=tabname+"_extra_sort", multiselect=False, visible=False, show_label=False, interactive=True)
gr.Button(up_down_symbol, elem_id=tabname+"_extra_sortorder")
button_refresh = gr.Button('Refresh', elem_id=tabname+"_extra_refresh") button_refresh = gr.Button('Refresh', elem_id=tabname+"_extra_refresh")
ui.button_save_preview = gr.Button('Save preview', elem_id=tabname+"_save_preview", visible=False) ui.button_save_preview = gr.Button('Save preview', elem_id=tabname+"_save_preview", visible=False)

View File

@ -14,7 +14,7 @@ class ExtraNetworksPageCheckpoints(ui_extra_networks.ExtraNetworksPage):
def list_items(self): def list_items(self):
checkpoint: sd_models.CheckpointInfo checkpoint: sd_models.CheckpointInfo
for name, checkpoint in sd_models.checkpoints_list.items(): for index, (name, checkpoint) in enumerate(sd_models.checkpoints_list.items()):
path, ext = os.path.splitext(checkpoint.filename) path, ext = os.path.splitext(checkpoint.filename)
yield { yield {
"name": checkpoint.name_for_extra, "name": checkpoint.name_for_extra,
@ -24,6 +24,8 @@ class ExtraNetworksPageCheckpoints(ui_extra_networks.ExtraNetworksPage):
"search_term": self.search_terms_from_path(checkpoint.filename) + " " + (checkpoint.sha256 or ""), "search_term": self.search_terms_from_path(checkpoint.filename) + " " + (checkpoint.sha256 or ""),
"onclick": '"' + html.escape(f"""return selectCheckpoint({json.dumps(name)})""") + '"', "onclick": '"' + html.escape(f"""return selectCheckpoint({json.dumps(name)})""") + '"',
"local_preview": f"{path}.{shared.opts.samples_format}", "local_preview": f"{path}.{shared.opts.samples_format}",
"sort_keys": {'default': index, **self.get_sort_keys(checkpoint.filename)},
} }
def allowed_directories_for_previews(self): def allowed_directories_for_previews(self):

View File

@ -12,7 +12,7 @@ class ExtraNetworksPageHypernetworks(ui_extra_networks.ExtraNetworksPage):
shared.reload_hypernetworks() shared.reload_hypernetworks()
def list_items(self): def list_items(self):
for name, path in shared.hypernetworks.items(): for index, (name, path) in enumerate(shared.hypernetworks.items()):
path, ext = os.path.splitext(path) path, ext = os.path.splitext(path)
yield { yield {
@ -23,6 +23,8 @@ class ExtraNetworksPageHypernetworks(ui_extra_networks.ExtraNetworksPage):
"search_term": self.search_terms_from_path(path), "search_term": self.search_terms_from_path(path),
"prompt": json.dumps(f"<hypernet:{name}:") + " + opts.extra_networks_default_multiplier + " + json.dumps(">"), "prompt": json.dumps(f"<hypernet:{name}:") + " + opts.extra_networks_default_multiplier + " + json.dumps(">"),
"local_preview": f"{path}.preview.{shared.opts.samples_format}", "local_preview": f"{path}.preview.{shared.opts.samples_format}",
"sort_keys": {'default': index, **self.get_sort_keys(path + ext)},
} }
def allowed_directories_for_previews(self): def allowed_directories_for_previews(self):

View File

@ -13,7 +13,7 @@ class ExtraNetworksPageTextualInversion(ui_extra_networks.ExtraNetworksPage):
sd_hijack.model_hijack.embedding_db.load_textual_inversion_embeddings(force_reload=True) sd_hijack.model_hijack.embedding_db.load_textual_inversion_embeddings(force_reload=True)
def list_items(self): def list_items(self):
for embedding in sd_hijack.model_hijack.embedding_db.word_embeddings.values(): for index, embedding in enumerate(sd_hijack.model_hijack.embedding_db.word_embeddings.values()):
path, ext = os.path.splitext(embedding.filename) path, ext = os.path.splitext(embedding.filename)
yield { yield {
"name": embedding.name, "name": embedding.name,
@ -23,6 +23,8 @@ class ExtraNetworksPageTextualInversion(ui_extra_networks.ExtraNetworksPage):
"search_term": self.search_terms_from_path(embedding.filename), "search_term": self.search_terms_from_path(embedding.filename),
"prompt": json.dumps(embedding.name), "prompt": json.dumps(embedding.name),
"local_preview": f"{path}.preview.{shared.opts.samples_format}", "local_preview": f"{path}.preview.{shared.opts.samples_format}",
"sort_keys": {'default': index, **self.get_sort_keys(embedding.filename)},
} }
def allowed_directories_for_previews(self): def allowed_directories_for_previews(self):

View File

@ -0,0 +1,69 @@
import os
import gradio as gr
from modules import localization, shared, scripts
from modules.paths import script_path, data_path
def webpath(fn):
if fn.startswith(script_path):
web_path = os.path.relpath(fn, script_path).replace('\\', '/')
else:
web_path = os.path.abspath(fn)
return f'file={web_path}?{os.path.getmtime(fn)}'
def javascript_html():
# Ensure localization is in `window` before scripts
head = f'<script type="text/javascript">{localization.localization_js(shared.opts.localization)}</script>\n'
script_js = os.path.join(script_path, "script.js")
head += f'<script type="text/javascript" src="{webpath(script_js)}"></script>\n'
for script in scripts.list_scripts("javascript", ".js"):
head += f'<script type="text/javascript" src="{webpath(script.path)}"></script>\n'
for script in scripts.list_scripts("javascript", ".mjs"):
head += f'<script type="module" src="{webpath(script.path)}"></script>\n'
if shared.cmd_opts.theme:
head += f'<script type="text/javascript">set_theme(\"{shared.cmd_opts.theme}\");</script>\n'
return head
def css_html():
head = ""
def stylesheet(fn):
return f'<link rel="stylesheet" property="stylesheet" href="{webpath(fn)}">'
for cssfile in scripts.list_files_with_name("style.css"):
if not os.path.isfile(cssfile):
continue
head += stylesheet(cssfile)
if os.path.exists(os.path.join(data_path, "user.css")):
head += stylesheet(os.path.join(data_path, "user.css"))
return head
def reload_javascript():
js = javascript_html()
css = css_html()
def template_response(*args, **kwargs):
res = shared.GradioTemplateResponseOriginal(*args, **kwargs)
res.body = res.body.replace(b'</head>', f'{js}</head>'.encode("utf8"))
res.body = res.body.replace(b'</body>', f'{css}</body>'.encode("utf8"))
res.init_headers()
return res
gr.routes.templates.TemplateResponse = template_response
if not hasattr(shared, 'GradioTemplateResponseOriginal'):
shared.GradioTemplateResponseOriginal = gr.routes.templates.TemplateResponse

289
modules/ui_settings.py Normal file
View File

@ -0,0 +1,289 @@
import gradio as gr
from modules import ui_common, shared, script_callbacks, scripts, sd_models, sysinfo
from modules.call_queue import wrap_gradio_call
from modules.shared import opts
from modules.ui_components import FormRow
from modules.ui_gradio_extensions import reload_javascript
def get_value_for_setting(key):
value = getattr(opts, key)
info = opts.data_labels[key]
args = info.component_args() if callable(info.component_args) else info.component_args or {}
args = {k: v for k, v in args.items() if k not in {'precision'}}
return gr.update(value=value, **args)
def create_setting_component(key, is_quicksettings=False):
def fun():
return opts.data[key] if key in opts.data else opts.data_labels[key].default
info = opts.data_labels[key]
t = type(info.default)
args = info.component_args() if callable(info.component_args) else info.component_args
if info.component is not None:
comp = info.component
elif t == str:
comp = gr.Textbox
elif t == int:
comp = gr.Number
elif t == bool:
comp = gr.Checkbox
else:
raise Exception(f'bad options item type: {t} for key {key}')
elem_id = f"setting_{key}"
if info.refresh is not None:
if is_quicksettings:
res = comp(label=info.label, value=fun(), elem_id=elem_id, **(args or {}))
ui_common.create_refresh_button(res, info.refresh, info.component_args, f"refresh_{key}")
else:
with FormRow():
res = comp(label=info.label, value=fun(), elem_id=elem_id, **(args or {}))
ui_common.create_refresh_button(res, info.refresh, info.component_args, f"refresh_{key}")
else:
res = comp(label=info.label, value=fun(), elem_id=elem_id, **(args or {}))
return res
class UiSettings:
submit = None
result = None
interface = None
components = None
component_dict = None
dummy_component = None
quicksettings_list = None
quicksettings_names = None
text_settings = None
def run_settings(self, *args):
changed = []
for key, value, comp in zip(opts.data_labels.keys(), args, self.components):
assert comp == self.dummy_component or opts.same_type(value, opts.data_labels[key].default), f"Bad value for setting {key}: {value}; expecting {type(opts.data_labels[key].default).__name__}"
for key, value, comp in zip(opts.data_labels.keys(), args, self.components):
if comp == self.dummy_component:
continue
if opts.set(key, value):
changed.append(key)
try:
opts.save(shared.config_filename)
except RuntimeError:
return opts.dumpjson(), f'{len(changed)} settings changed without save: {", ".join(changed)}.'
return opts.dumpjson(), f'{len(changed)} settings changed{": " if changed else ""}{", ".join(changed)}.'
def run_settings_single(self, value, key):
if not opts.same_type(value, opts.data_labels[key].default):
return gr.update(visible=True), opts.dumpjson()
if not opts.set(key, value):
return gr.update(value=getattr(opts, key)), opts.dumpjson()
opts.save(shared.config_filename)
return get_value_for_setting(key), opts.dumpjson()
def create_ui(self, loadsave, dummy_component):
self.components = []
self.component_dict = {}
self.dummy_component = dummy_component
shared.settings_components = self.component_dict
script_callbacks.ui_settings_callback()
opts.reorder()
with gr.Blocks(analytics_enabled=False) as settings_interface:
with gr.Row():
with gr.Column(scale=6):
self.submit = gr.Button(value="Apply settings", variant='primary', elem_id="settings_submit")
with gr.Column():
restart_gradio = gr.Button(value='Reload UI', variant='primary', elem_id="settings_restart_gradio")
self.result = gr.HTML(elem_id="settings_result")
self.quicksettings_names = opts.quicksettings_list
self.quicksettings_names = {x: i for i, x in enumerate(self.quicksettings_names) if x != 'quicksettings'}
self.quicksettings_list = []
previous_section = None
current_tab = None
current_row = None
with gr.Tabs(elem_id="settings"):
for i, (k, item) in enumerate(opts.data_labels.items()):
section_must_be_skipped = item.section[0] is None
if previous_section != item.section and not section_must_be_skipped:
elem_id, text = item.section
if current_tab is not None:
current_row.__exit__()
current_tab.__exit__()
gr.Group()
current_tab = gr.TabItem(elem_id=f"settings_{elem_id}", label=text)
current_tab.__enter__()
current_row = gr.Column(variant='compact')
current_row.__enter__()
previous_section = item.section
if k in self.quicksettings_names and not shared.cmd_opts.freeze_settings:
self.quicksettings_list.append((i, k, item))
self.components.append(dummy_component)
elif section_must_be_skipped:
self.components.append(dummy_component)
else:
component = create_setting_component(k)
self.component_dict[k] = component
self.components.append(component)
if current_tab is not None:
current_row.__exit__()
current_tab.__exit__()
with gr.TabItem("Defaults", id="defaults", elem_id="settings_tab_defaults"):
loadsave.create_ui()
with gr.TabItem("Sysinfo", id="sysinfo", elem_id="settings_tab_sysinfo"):
gr.HTML('<a href="./internal/sysinfo-download" class="sysinfo_big_link" download>Download system info</a><br /><a href="./internal/sysinfo">(or open as text in a new page)</a>', elem_id="sysinfo_download")
with gr.Row():
with gr.Column(scale=1):
sysinfo_check_file = gr.File(label="Check system info for validity", type='binary')
with gr.Column(scale=1):
sysinfo_check_output = gr.HTML("", elem_id="sysinfo_validity")
with gr.Column(scale=100):
pass
with gr.TabItem("Actions", id="actions", elem_id="settings_tab_actions"):
request_notifications = gr.Button(value='Request browser notifications', elem_id="request_notifications")
download_localization = gr.Button(value='Download localization template', elem_id="download_localization")
reload_script_bodies = gr.Button(value='Reload custom script bodies (No ui updates, No restart)', variant='secondary', elem_id="settings_reload_script_bodies")
with gr.Row():
unload_sd_model = gr.Button(value='Unload SD checkpoint to free VRAM', elem_id="sett_unload_sd_model")
reload_sd_model = gr.Button(value='Reload the last SD checkpoint back into VRAM', elem_id="sett_reload_sd_model")
with gr.TabItem("Licenses", id="licenses", elem_id="settings_tab_licenses"):
gr.HTML(shared.html("licenses.html"), elem_id="licenses")
gr.Button(value="Show all pages", elem_id="settings_show_all_pages")
self.text_settings = gr.Textbox(elem_id="settings_json", value=lambda: opts.dumpjson(), visible=False)
unload_sd_model.click(
fn=sd_models.unload_model_weights,
inputs=[],
outputs=[]
)
reload_sd_model.click(
fn=sd_models.reload_model_weights,
inputs=[],
outputs=[]
)
request_notifications.click(
fn=lambda: None,
inputs=[],
outputs=[],
_js='function(){}'
)
download_localization.click(
fn=lambda: None,
inputs=[],
outputs=[],
_js='download_localization'
)
def reload_scripts():
scripts.reload_script_body_only()
reload_javascript() # need to refresh the html page
reload_script_bodies.click(
fn=reload_scripts,
inputs=[],
outputs=[]
)
restart_gradio.click(
fn=shared.state.request_restart,
_js='restart_reload',
inputs=[],
outputs=[],
)
def check_file(x):
if x is None:
return ''
if sysinfo.check(x.decode('utf8', errors='ignore')):
return 'Valid'
return 'Invalid'
sysinfo_check_file.change(
fn=check_file,
inputs=[sysinfo_check_file],
outputs=[sysinfo_check_output],
)
self.interface = settings_interface
def add_quicksettings(self):
with gr.Row(elem_id="quicksettings", variant="compact"):
for _i, k, _item in sorted(self.quicksettings_list, key=lambda x: self.quicksettings_names.get(x[1], x[0])):
component = create_setting_component(k, is_quicksettings=True)
self.component_dict[k] = component
def add_functionality(self, demo):
self.submit.click(
fn=wrap_gradio_call(lambda *args: self.run_settings(*args), extra_outputs=[gr.update()]),
inputs=self.components,
outputs=[self.text_settings, self.result],
)
for _i, k, _item in self.quicksettings_list:
component = self.component_dict[k]
info = opts.data_labels[k]
change_handler = component.release if hasattr(component, 'release') else component.change
change_handler(
fn=lambda value, k=k: self.run_settings_single(value, key=k),
inputs=[component],
outputs=[component, self.text_settings],
show_progress=info.refresh is not None,
)
button_set_checkpoint = gr.Button('Change checkpoint', elem_id='change_checkpoint', visible=False)
button_set_checkpoint.click(
fn=lambda value, _: self.run_settings_single(value, key='sd_model_checkpoint'),
_js="function(v){ var res = desiredCheckpointName; desiredCheckpointName = ''; return [res || v, null]; }",
inputs=[self.component_dict['sd_model_checkpoint'], self.dummy_component],
outputs=[self.component_dict['sd_model_checkpoint'], self.text_settings],
)
component_keys = [k for k in opts.data_labels.keys() if k in self.component_dict]
def get_settings_values():
return [get_value_for_setting(key) for key in component_keys]
demo.load(
fn=get_settings_values,
inputs=[],
outputs=[self.component_dict[k] for k in component_keys],
queue=False,
)

Some files were not shown because too many files have changed in this diff Show More