WebUI/scripts/img2imgalt.py

219 lines
9.0 KiB
Python

from collections import namedtuple
import numpy as np
from tqdm import trange
import modules.scripts as scripts
import gradio as gr
from modules import processing, shared, sd_samplers, sd_samplers_common
import torch
import k_diffusion as K
def find_noise_for_image(p, cond, uncond, cfg_scale, steps):
x = p.init_latent
s_in = x.new_ones([x.shape[0]])
if shared.sd_model.parameterization == "v":
dnw = K.external.CompVisVDenoiser(shared.sd_model)
skip = 1
else:
dnw = K.external.CompVisDenoiser(shared.sd_model)
skip = 0
sigmas = dnw.get_sigmas(steps).flip(0)
shared.state.sampling_steps = steps
for i in trange(1, len(sigmas)):
shared.state.sampling_step += 1
x_in = torch.cat([x] * 2)
sigma_in = torch.cat([sigmas[i] * s_in] * 2)
cond_in = torch.cat([uncond, cond])
image_conditioning = torch.cat([p.image_conditioning] * 2)
cond_in = {"c_concat": [image_conditioning], "c_crossattn": [cond_in]}
c_out, c_in = [K.utils.append_dims(k, x_in.ndim) for k in dnw.get_scalings(sigma_in)[skip:]]
t = dnw.sigma_to_t(sigma_in)
eps = shared.sd_model.apply_model(x_in * c_in, t, cond=cond_in)
denoised_uncond, denoised_cond = (x_in + eps * c_out).chunk(2)
denoised = denoised_uncond + (denoised_cond - denoised_uncond) * cfg_scale
d = (x - denoised) / sigmas[i]
dt = sigmas[i] - sigmas[i - 1]
x = x + d * dt
sd_samplers_common.store_latent(x)
# This shouldn't be necessary, but solved some VRAM issues
del x_in, sigma_in, cond_in, c_out, c_in, t,
del eps, denoised_uncond, denoised_cond, denoised, d, dt
shared.state.nextjob()
return x / x.std()
Cached = namedtuple("Cached", ["noise", "cfg_scale", "steps", "latent", "original_prompt", "original_negative_prompt", "sigma_adjustment"])
# Based on changes suggested by briansemrau in https://ghproxy.com/https://github.com/AUTOMATIC1111/stable-diffusion-webui/issues/736
def find_noise_for_image_sigma_adjustment(p, cond, uncond, cfg_scale, steps):
x = p.init_latent
s_in = x.new_ones([x.shape[0]])
if shared.sd_model.parameterization == "v":
dnw = K.external.CompVisVDenoiser(shared.sd_model)
skip = 1
else:
dnw = K.external.CompVisDenoiser(shared.sd_model)
skip = 0
sigmas = dnw.get_sigmas(steps).flip(0)
shared.state.sampling_steps = steps
for i in trange(1, len(sigmas)):
shared.state.sampling_step += 1
x_in = torch.cat([x] * 2)
sigma_in = torch.cat([sigmas[i - 1] * s_in] * 2)
cond_in = torch.cat([uncond, cond])
image_conditioning = torch.cat([p.image_conditioning] * 2)
cond_in = {"c_concat": [image_conditioning], "c_crossattn": [cond_in]}
c_out, c_in = [K.utils.append_dims(k, x_in.ndim) for k in dnw.get_scalings(sigma_in)[skip:]]
if i == 1:
t = dnw.sigma_to_t(torch.cat([sigmas[i] * s_in] * 2))
else:
t = dnw.sigma_to_t(sigma_in)
eps = shared.sd_model.apply_model(x_in * c_in, t, cond=cond_in)
denoised_uncond, denoised_cond = (x_in + eps * c_out).chunk(2)
denoised = denoised_uncond + (denoised_cond - denoised_uncond) * cfg_scale
if i == 1:
d = (x - denoised) / (2 * sigmas[i])
else:
d = (x - denoised) / sigmas[i - 1]
dt = sigmas[i] - sigmas[i - 1]
x = x + d * dt
sd_samplers_common.store_latent(x)
# This shouldn't be necessary, but solved some VRAM issues
del x_in, sigma_in, cond_in, c_out, c_in, t,
del eps, denoised_uncond, denoised_cond, denoised, d, dt
shared.state.nextjob()
return x / sigmas[-1]
class Script(scripts.Script):
def __init__(self):
self.cache = None
def title(self):
return "img2img alternative test"
def show(self, is_img2img):
return is_img2img
def ui(self, is_img2img):
info = gr.Markdown('''
* `CFG Scale` should be 2 or lower.
''')
override_sampler = gr.Checkbox(label="Override `Sampling method` to Euler?(this method is built for it)", value=True, elem_id=self.elem_id("override_sampler"))
override_prompt = gr.Checkbox(label="Override `prompt` to the same value as `original prompt`?(and `negative prompt`)", value=True, elem_id=self.elem_id("override_prompt"))
original_prompt = gr.Textbox(label="Original prompt", lines=1, elem_id=self.elem_id("original_prompt"))
original_negative_prompt = gr.Textbox(label="Original negative prompt", lines=1, elem_id=self.elem_id("original_negative_prompt"))
override_steps = gr.Checkbox(label="Override `Sampling Steps` to the same value as `Decode steps`?", value=True, elem_id=self.elem_id("override_steps"))
st = gr.Slider(label="Decode steps", minimum=1, maximum=150, step=1, value=50, elem_id=self.elem_id("st"))
override_strength = gr.Checkbox(label="Override `Denoising strength` to 1?", value=True, elem_id=self.elem_id("override_strength"))
cfg = gr.Slider(label="Decode CFG scale", minimum=0.0, maximum=15.0, step=0.1, value=1.0, elem_id=self.elem_id("cfg"))
randomness = gr.Slider(label="Randomness", minimum=0.0, maximum=1.0, step=0.01, value=0.0, elem_id=self.elem_id("randomness"))
sigma_adjustment = gr.Checkbox(label="Sigma adjustment for finding noise for image", value=False, elem_id=self.elem_id("sigma_adjustment"))
return [
info,
override_sampler,
override_prompt, original_prompt, original_negative_prompt,
override_steps, st,
override_strength,
cfg, randomness, sigma_adjustment,
]
def run(self, p, _, override_sampler, override_prompt, original_prompt, original_negative_prompt, override_steps, st, override_strength, cfg, randomness, sigma_adjustment):
# Override
if override_sampler:
p.sampler_name = "Euler"
if override_prompt:
p.prompt = original_prompt
p.negative_prompt = original_negative_prompt
if override_steps:
p.steps = st
if override_strength:
p.denoising_strength = 1.0
def sample_extra(conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength, prompts):
lat = (p.init_latent.cpu().numpy() * 10).astype(int)
same_params = self.cache is not None and self.cache.cfg_scale == cfg and self.cache.steps == st \
and self.cache.original_prompt == original_prompt \
and self.cache.original_negative_prompt == original_negative_prompt \
and self.cache.sigma_adjustment == sigma_adjustment
same_everything = same_params and self.cache.latent.shape == lat.shape and np.abs(self.cache.latent-lat).sum() < 100
if same_everything:
rec_noise = self.cache.noise
else:
shared.state.job_count += 1
cond = p.sd_model.get_learned_conditioning(p.batch_size * [original_prompt])
uncond = p.sd_model.get_learned_conditioning(p.batch_size * [original_negative_prompt])
if sigma_adjustment:
rec_noise = find_noise_for_image_sigma_adjustment(p, cond, uncond, cfg, st)
else:
rec_noise = find_noise_for_image(p, cond, uncond, cfg, st)
self.cache = Cached(rec_noise, cfg, st, lat, original_prompt, original_negative_prompt, sigma_adjustment)
rand_noise = processing.create_random_tensors(p.init_latent.shape[1:], seeds=seeds, subseeds=subseeds, subseed_strength=p.subseed_strength, seed_resize_from_h=p.seed_resize_from_h, seed_resize_from_w=p.seed_resize_from_w, p=p)
combined_noise = ((1 - randomness) * rec_noise + randomness * rand_noise) / ((randomness**2 + (1-randomness)**2) ** 0.5)
sampler = sd_samplers.create_sampler(p.sampler_name, p.sd_model)
sigmas = sampler.model_wrap.get_sigmas(p.steps)
noise_dt = combined_noise - (p.init_latent / sigmas[0])
p.seed = p.seed + 1
return sampler.sample_img2img(p, p.init_latent, noise_dt, conditioning, unconditional_conditioning, image_conditioning=p.image_conditioning)
p.sample = sample_extra
p.extra_generation_params["Decode prompt"] = original_prompt
p.extra_generation_params["Decode negative prompt"] = original_negative_prompt
p.extra_generation_params["Decode CFG scale"] = cfg
p.extra_generation_params["Decode steps"] = st
p.extra_generation_params["Randomness"] = randomness
p.extra_generation_params["Sigma Adjustment"] = sigma_adjustment
processed = processing.process_images(p)
return processed