744 lines
45 KiB
Python
744 lines
45 KiB
Python
import argparse
|
|
import datetime
|
|
import json
|
|
import os
|
|
import sys
|
|
import time
|
|
|
|
from PIL import Image
|
|
import gradio as gr
|
|
import tqdm
|
|
|
|
import modules.interrogate
|
|
import modules.memmon
|
|
import modules.styles
|
|
import modules.devices as devices
|
|
from modules import localization, extensions, script_loading, errors, ui_components, shared_items
|
|
from modules.paths import models_path, script_path, data_path
|
|
|
|
|
|
demo = None
|
|
|
|
sd_configs_path = os.path.join(script_path, "configs")
|
|
sd_default_config = os.path.join(sd_configs_path, "v1-inference.yaml")
|
|
sd_model_file = os.path.join(script_path, 'model.ckpt')
|
|
default_sd_model_file = sd_model_file
|
|
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--data-dir", type=str, default=os.path.dirname(os.path.dirname(os.path.realpath(__file__))), help="base path where all user data is stored",)
|
|
parser.add_argument("--config", type=str, default=sd_default_config, help="path to config which constructs model",)
|
|
parser.add_argument("--ckpt", type=str, default=sd_model_file, help="path to checkpoint of stable diffusion model; if specified, this checkpoint will be added to the list of checkpoints and loaded",)
|
|
parser.add_argument("--ckpt-dir", type=str, default=None, help="Path to directory with stable diffusion checkpoints")
|
|
parser.add_argument("--vae-dir", type=str, default=None, help="Path to directory with VAE files")
|
|
parser.add_argument("--gfpgan-dir", type=str, help="GFPGAN directory", default=('./src/gfpgan' if os.path.exists('./src/gfpgan') else './GFPGAN'))
|
|
parser.add_argument("--gfpgan-model", type=str, help="GFPGAN model file name", default=None)
|
|
parser.add_argument("--no-half", action='store_true', help="do not switch the model to 16-bit floats")
|
|
parser.add_argument("--no-half-vae", action='store_true', help="do not switch the VAE model to 16-bit floats")
|
|
parser.add_argument("--no-progressbar-hiding", action='store_true', help="do not hide progressbar in gradio UI (we hide it because it slows down ML if you have hardware acceleration in browser)")
|
|
parser.add_argument("--max-batch-count", type=int, default=16, help="maximum batch count value for the UI")
|
|
parser.add_argument("--embeddings-dir", type=str, default=os.path.join(data_path, 'embeddings'), help="embeddings directory for textual inversion (default: embeddings)")
|
|
parser.add_argument("--textual-inversion-templates-dir", type=str, default=os.path.join(script_path, 'textual_inversion_templates'), help="directory with textual inversion templates")
|
|
parser.add_argument("--hypernetwork-dir", type=str, default=os.path.join(models_path, 'hypernetworks'), help="hypernetwork directory")
|
|
parser.add_argument("--localizations-dir", type=str, default=os.path.join(script_path, 'localizations'), help="localizations directory")
|
|
parser.add_argument("--allow-code", action='store_true', help="allow custom script execution from webui")
|
|
parser.add_argument("--medvram", action='store_true', help="enable stable diffusion model optimizations for sacrificing a little speed for low VRM usage")
|
|
parser.add_argument("--lowvram", action='store_true', help="enable stable diffusion model optimizations for sacrificing a lot of speed for very low VRM usage")
|
|
parser.add_argument("--lowram", action='store_true', help="load stable diffusion checkpoint weights to VRAM instead of RAM")
|
|
parser.add_argument("--always-batch-cond-uncond", action='store_true', help="disables cond/uncond batching that is enabled to save memory with --medvram or --lowvram")
|
|
parser.add_argument("--unload-gfpgan", action='store_true', help="does not do anything.")
|
|
parser.add_argument("--precision", type=str, help="evaluate at this precision", choices=["full", "autocast"], default="autocast")
|
|
parser.add_argument("--upcast-sampling", action='store_true', help="upcast sampling. No effect with --no-half. Usually produces similar results to --no-half with better performance while using less memory.")
|
|
parser.add_argument("--share", action='store_true', help="use share=True for gradio and make the UI accessible through their site")
|
|
parser.add_argument("--ngrok", type=str, help="ngrok authtoken, alternative to gradio --share", default=None)
|
|
parser.add_argument("--ngrok-region", type=str, help="The region in which ngrok should start.", default="us")
|
|
parser.add_argument("--enable-insecure-extension-access", action='store_true', help="enable extensions tab regardless of other options")
|
|
parser.add_argument("--codeformer-models-path", type=str, help="Path to directory with codeformer model file(s).", default=os.path.join(models_path, 'Codeformer'))
|
|
parser.add_argument("--gfpgan-models-path", type=str, help="Path to directory with GFPGAN model file(s).", default=os.path.join(models_path, 'GFPGAN'))
|
|
parser.add_argument("--esrgan-models-path", type=str, help="Path to directory with ESRGAN model file(s).", default=os.path.join(models_path, 'ESRGAN'))
|
|
parser.add_argument("--bsrgan-models-path", type=str, help="Path to directory with BSRGAN model file(s).", default=os.path.join(models_path, 'BSRGAN'))
|
|
parser.add_argument("--realesrgan-models-path", type=str, help="Path to directory with RealESRGAN model file(s).", default=os.path.join(models_path, 'RealESRGAN'))
|
|
parser.add_argument("--clip-models-path", type=str, help="Path to directory with CLIP model file(s).", default=None)
|
|
parser.add_argument("--xformers", action='store_true', help="enable xformers for cross attention layers")
|
|
parser.add_argument("--force-enable-xformers", action='store_true', help="enable xformers for cross attention layers regardless of whether the checking code thinks you can run it; do not make bug reports if this fails to work")
|
|
parser.add_argument("--xformers-flash-attention", action='store_true', help="enable xformers with Flash Attention to improve reproducibility (supported for SD2.x or variant only)")
|
|
parser.add_argument("--deepdanbooru", action='store_true', help="does not do anything")
|
|
parser.add_argument("--opt-split-attention", action='store_true', help="force-enables Doggettx's cross-attention layer optimization. By default, it's on for torch cuda.")
|
|
parser.add_argument("--opt-sub-quad-attention", action='store_true', help="enable memory efficient sub-quadratic cross-attention layer optimization")
|
|
parser.add_argument("--sub-quad-q-chunk-size", type=int, help="query chunk size for the sub-quadratic cross-attention layer optimization to use", default=1024)
|
|
parser.add_argument("--sub-quad-kv-chunk-size", type=int, help="kv chunk size for the sub-quadratic cross-attention layer optimization to use", default=None)
|
|
parser.add_argument("--sub-quad-chunk-threshold", type=int, help="the percentage of VRAM threshold for the sub-quadratic cross-attention layer optimization to use chunking", default=None)
|
|
parser.add_argument("--opt-split-attention-invokeai", action='store_true', help="force-enables InvokeAI's cross-attention layer optimization. By default, it's on when cuda is unavailable.")
|
|
parser.add_argument("--opt-split-attention-v1", action='store_true', help="enable older version of split attention optimization that does not consume all the VRAM it can find")
|
|
parser.add_argument("--opt-sdp-attention", action='store_true', help="enable scaled dot product cross-attention layer optimization; requires PyTorch 2.*")
|
|
parser.add_argument("--opt-sdp-no-mem-attention", action='store_true', help="enable scaled dot product cross-attention layer optimization without memory efficient attention, makes image generation deterministic; requires PyTorch 2.*")
|
|
parser.add_argument("--disable-opt-split-attention", action='store_true', help="force-disables cross-attention layer optimization")
|
|
parser.add_argument("--disable-nan-check", action='store_true', help="do not check if produced images/latent spaces have nans; useful for running without a checkpoint in CI")
|
|
parser.add_argument("--use-cpu", nargs='+', help="use CPU as torch device for specified modules", default=[], type=str.lower)
|
|
parser.add_argument("--listen", action='store_true', help="launch gradio with 0.0.0.0 as server name, allowing to respond to network requests")
|
|
parser.add_argument("--port", type=int, help="launch gradio with given server port, you need root/admin rights for ports < 1024, defaults to 7860 if available", default=None)
|
|
parser.add_argument("--show-negative-prompt", action='store_true', help="does not do anything", default=False)
|
|
parser.add_argument("--ui-config-file", type=str, help="filename to use for ui configuration", default=os.path.join(data_path, 'ui-config.json'))
|
|
parser.add_argument("--hide-ui-dir-config", action='store_true', help="hide directory configuration from webui", default=False)
|
|
parser.add_argument("--freeze-settings", action='store_true', help="disable editing settings", default=False)
|
|
parser.add_argument("--ui-settings-file", type=str, help="filename to use for ui settings", default=os.path.join(data_path, 'config.json'))
|
|
parser.add_argument("--gradio-debug", action='store_true', help="launch gradio with --debug option")
|
|
parser.add_argument("--gradio-auth", type=str, help='set gradio authentication like "username:password"; or comma-delimit multiple like "u1:p1,u2:p2,u3:p3"', default=None)
|
|
parser.add_argument("--gradio-auth-path", type=str, help='set gradio authentication file path ex. "/path/to/auth/file" same auth format as --gradio-auth', default=None)
|
|
parser.add_argument("--gradio-img2img-tool", type=str, help='does not do anything')
|
|
parser.add_argument("--gradio-inpaint-tool", type=str, help="does not do anything")
|
|
parser.add_argument("--opt-channelslast", action='store_true', help="change memory type for stable diffusion to channels last")
|
|
parser.add_argument("--styles-file", type=str, help="filename to use for styles", default=os.path.join(data_path, 'styles.csv'))
|
|
parser.add_argument("--autolaunch", action='store_true', help="open the webui URL in the system's default browser upon launch", default=False)
|
|
parser.add_argument("--theme", type=str, help="launches the UI with light or dark theme", default=None)
|
|
parser.add_argument("--use-textbox-seed", action='store_true', help="use textbox for seeds in UI (no up/down, but possible to input long seeds)", default=False)
|
|
parser.add_argument("--disable-console-progressbars", action='store_true', help="do not output progressbars to console", default=False)
|
|
parser.add_argument("--enable-console-prompts", action='store_true', help="print prompts to console when generating with txt2img and img2img", default=False)
|
|
parser.add_argument('--vae-path', type=str, help='Checkpoint to use as VAE; setting this argument disables all settings related to VAE', default=None)
|
|
parser.add_argument("--disable-safe-unpickle", action='store_true', help="disable checking pytorch models for malicious code", default=False)
|
|
parser.add_argument("--api", action='store_true', help="use api=True to launch the API together with the webui (use --nowebui instead for only the API)")
|
|
parser.add_argument("--api-auth", type=str, help='Set authentication for API like "username:password"; or comma-delimit multiple like "u1:p1,u2:p2,u3:p3"', default=None)
|
|
parser.add_argument("--api-log", action='store_true', help="use api-log=True to enable logging of all API requests")
|
|
parser.add_argument("--nowebui", action='store_true', help="use api=True to launch the API instead of the webui")
|
|
parser.add_argument("--ui-debug-mode", action='store_true', help="Don't load model to quickly launch UI")
|
|
parser.add_argument("--device-id", type=str, help="Select the default CUDA device to use (export CUDA_VISIBLE_DEVICES=0,1,etc might be needed before)", default=None)
|
|
parser.add_argument("--administrator", action='store_true', help="Administrator rights", default=False)
|
|
parser.add_argument("--cors-allow-origins", type=str, help="Allowed CORS origin(s) in the form of a comma-separated list (no spaces)", default=None)
|
|
parser.add_argument("--cors-allow-origins-regex", type=str, help="Allowed CORS origin(s) in the form of a single regular expression", default=None)
|
|
parser.add_argument("--tls-keyfile", type=str, help="Partially enables TLS, requires --tls-certfile to fully function", default=None)
|
|
parser.add_argument("--tls-certfile", type=str, help="Partially enables TLS, requires --tls-keyfile to fully function", default=None)
|
|
parser.add_argument("--server-name", type=str, help="Sets hostname of server", default=None)
|
|
parser.add_argument("--gradio-queue", action='store_true', help="Uses gradio queue; experimental option; breaks restart UI button")
|
|
parser.add_argument("--skip-version-check", action='store_true', help="Do not check versions of torch and xformers")
|
|
parser.add_argument("--no-hashing", action='store_true', help="disable sha256 hashing of checkpoints to help loading performance", default=False)
|
|
parser.add_argument("--no-download-sd-model", action='store_true', help="don't download SD1.5 model even if no model is found in --ckpt-dir", default=False)
|
|
|
|
|
|
script_loading.preload_extensions(extensions.extensions_dir, parser)
|
|
script_loading.preload_extensions(extensions.extensions_builtin_dir, parser)
|
|
|
|
if os.environ.get('IGNORE_CMD_ARGS_ERRORS', None) is None:
|
|
cmd_opts = parser.parse_args()
|
|
else:
|
|
cmd_opts, _ = parser.parse_known_args()
|
|
|
|
restricted_opts = {
|
|
"samples_filename_pattern",
|
|
"directories_filename_pattern",
|
|
"outdir_samples",
|
|
"outdir_txt2img_samples",
|
|
"outdir_img2img_samples",
|
|
"outdir_extras_samples",
|
|
"outdir_grids",
|
|
"outdir_txt2img_grids",
|
|
"outdir_save",
|
|
}
|
|
|
|
ui_reorder_categories = [
|
|
"inpaint",
|
|
"sampler",
|
|
"checkboxes",
|
|
"hires_fix",
|
|
"dimensions",
|
|
"cfg",
|
|
"seed",
|
|
"batch",
|
|
"override_settings",
|
|
"scripts",
|
|
]
|
|
|
|
cmd_opts.disable_extension_access = (cmd_opts.share or cmd_opts.listen or cmd_opts.server_name) and not cmd_opts.enable_insecure_extension_access
|
|
|
|
devices.device, devices.device_interrogate, devices.device_gfpgan, devices.device_esrgan, devices.device_codeformer = \
|
|
(devices.cpu if any(y in cmd_opts.use_cpu for y in [x, 'all']) else devices.get_optimal_device() for x in ['sd', 'interrogate', 'gfpgan', 'esrgan', 'codeformer'])
|
|
|
|
device = devices.device
|
|
weight_load_location = None if cmd_opts.lowram else "cpu"
|
|
|
|
batch_cond_uncond = cmd_opts.always_batch_cond_uncond or not (cmd_opts.lowvram or cmd_opts.medvram)
|
|
parallel_processing_allowed = not cmd_opts.lowvram and not cmd_opts.medvram
|
|
xformers_available = False
|
|
config_filename = cmd_opts.ui_settings_file
|
|
|
|
os.makedirs(cmd_opts.hypernetwork_dir, exist_ok=True)
|
|
hypernetworks = {}
|
|
loaded_hypernetworks = []
|
|
|
|
|
|
def reload_hypernetworks():
|
|
from modules.hypernetworks import hypernetwork
|
|
global hypernetworks
|
|
|
|
hypernetworks = hypernetwork.list_hypernetworks(cmd_opts.hypernetwork_dir)
|
|
|
|
|
|
class State:
|
|
skipped = False
|
|
interrupted = False
|
|
job = ""
|
|
job_no = 0
|
|
job_count = 0
|
|
processing_has_refined_job_count = False
|
|
job_timestamp = '0'
|
|
sampling_step = 0
|
|
sampling_steps = 0
|
|
current_latent = None
|
|
current_image = None
|
|
current_image_sampling_step = 0
|
|
id_live_preview = 0
|
|
textinfo = None
|
|
time_start = None
|
|
need_restart = False
|
|
server_start = None
|
|
|
|
def skip(self):
|
|
self.skipped = True
|
|
|
|
def interrupt(self):
|
|
self.interrupted = True
|
|
|
|
def nextjob(self):
|
|
if opts.live_previews_enable and opts.show_progress_every_n_steps == -1:
|
|
self.do_set_current_image()
|
|
|
|
self.job_no += 1
|
|
self.sampling_step = 0
|
|
self.current_image_sampling_step = 0
|
|
|
|
def dict(self):
|
|
obj = {
|
|
"skipped": self.skipped,
|
|
"interrupted": self.interrupted,
|
|
"job": self.job,
|
|
"job_count": self.job_count,
|
|
"job_timestamp": self.job_timestamp,
|
|
"job_no": self.job_no,
|
|
"sampling_step": self.sampling_step,
|
|
"sampling_steps": self.sampling_steps,
|
|
}
|
|
|
|
return obj
|
|
|
|
def begin(self):
|
|
self.sampling_step = 0
|
|
self.job_count = -1
|
|
self.processing_has_refined_job_count = False
|
|
self.job_no = 0
|
|
self.job_timestamp = datetime.datetime.now().strftime("%Y%m%d%H%M%S")
|
|
self.current_latent = None
|
|
self.current_image = None
|
|
self.current_image_sampling_step = 0
|
|
self.id_live_preview = 0
|
|
self.skipped = False
|
|
self.interrupted = False
|
|
self.textinfo = None
|
|
self.time_start = time.time()
|
|
|
|
devices.torch_gc()
|
|
|
|
def end(self):
|
|
self.job = ""
|
|
self.job_count = 0
|
|
|
|
devices.torch_gc()
|
|
|
|
def set_current_image(self):
|
|
"""sets self.current_image from self.current_latent if enough sampling steps have been made after the last call to this"""
|
|
if not parallel_processing_allowed:
|
|
return
|
|
|
|
if self.sampling_step - self.current_image_sampling_step >= opts.show_progress_every_n_steps and opts.live_previews_enable and opts.show_progress_every_n_steps != -1:
|
|
self.do_set_current_image()
|
|
|
|
def do_set_current_image(self):
|
|
if self.current_latent is None:
|
|
return
|
|
|
|
import modules.sd_samplers
|
|
if opts.show_progress_grid:
|
|
self.assign_current_image(modules.sd_samplers.samples_to_image_grid(self.current_latent))
|
|
else:
|
|
self.assign_current_image(modules.sd_samplers.sample_to_image(self.current_latent))
|
|
|
|
self.current_image_sampling_step = self.sampling_step
|
|
|
|
def assign_current_image(self, image):
|
|
self.current_image = image
|
|
self.id_live_preview += 1
|
|
|
|
|
|
state = State()
|
|
state.server_start = time.time()
|
|
|
|
styles_filename = cmd_opts.styles_file
|
|
prompt_styles = modules.styles.StyleDatabase(styles_filename)
|
|
|
|
interrogator = modules.interrogate.InterrogateModels("interrogate")
|
|
|
|
face_restorers = []
|
|
|
|
class OptionInfo:
|
|
def __init__(self, default=None, label="", component=None, component_args=None, onchange=None, section=None, refresh=None):
|
|
self.default = default
|
|
self.label = label
|
|
self.component = component
|
|
self.component_args = component_args
|
|
self.onchange = onchange
|
|
self.section = section
|
|
self.refresh = refresh
|
|
|
|
|
|
def options_section(section_identifier, options_dict):
|
|
for k, v in options_dict.items():
|
|
v.section = section_identifier
|
|
|
|
return options_dict
|
|
|
|
|
|
def list_checkpoint_tiles():
|
|
import modules.sd_models
|
|
return modules.sd_models.checkpoint_tiles()
|
|
|
|
|
|
def refresh_checkpoints():
|
|
import modules.sd_models
|
|
return modules.sd_models.list_models()
|
|
|
|
|
|
def list_samplers():
|
|
import modules.sd_samplers
|
|
return modules.sd_samplers.all_samplers
|
|
|
|
|
|
hide_dirs = {"visible": not cmd_opts.hide_ui_dir_config}
|
|
tab_names = []
|
|
|
|
options_templates = {}
|
|
|
|
options_templates.update(options_section(('saving-images', "Saving images/grids"), {
|
|
"samples_save": OptionInfo(True, "Always save all generated images"),
|
|
"samples_format": OptionInfo('png', 'File format for images'),
|
|
"samples_filename_pattern": OptionInfo("", "Images filename pattern", component_args=hide_dirs),
|
|
"save_images_add_number": OptionInfo(True, "Add number to filename when saving", component_args=hide_dirs),
|
|
|
|
"grid_save": OptionInfo(True, "Always save all generated image grids"),
|
|
"grid_format": OptionInfo('png', 'File format for grids'),
|
|
"grid_extended_filename": OptionInfo(False, "Add extended info (seed, prompt) to filename when saving grid"),
|
|
"grid_only_if_multiple": OptionInfo(True, "Do not save grids consisting of one picture"),
|
|
"grid_prevent_empty_spots": OptionInfo(False, "Prevent empty spots in grid (when set to autodetect)"),
|
|
"n_rows": OptionInfo(-1, "Grid row count; use -1 for autodetect and 0 for it to be same as batch size", gr.Slider, {"minimum": -1, "maximum": 16, "step": 1}),
|
|
|
|
"enable_pnginfo": OptionInfo(True, "Save text information about generation parameters as chunks to png files"),
|
|
"save_txt": OptionInfo(False, "Create a text file next to every image with generation parameters."),
|
|
"save_images_before_face_restoration": OptionInfo(False, "Save a copy of image before doing face restoration."),
|
|
"save_images_before_highres_fix": OptionInfo(False, "Save a copy of image before applying highres fix."),
|
|
"save_images_before_color_correction": OptionInfo(False, "Save a copy of image before applying color correction to img2img results"),
|
|
"jpeg_quality": OptionInfo(80, "Quality for saved jpeg images", gr.Slider, {"minimum": 1, "maximum": 100, "step": 1}),
|
|
"webp_lossless": OptionInfo(False, "Use lossless compression for webp images"),
|
|
"export_for_4chan": OptionInfo(True, "If the saved image file size is above the limit, or its either width or height are above the limit, save a downscaled copy as JPG"),
|
|
"img_downscale_threshold": OptionInfo(4.0, "File size limit for the above option, MB", gr.Number),
|
|
"target_side_length": OptionInfo(4000, "Width/height limit for the above option, in pixels", gr.Number),
|
|
"img_max_size_mp": OptionInfo(200, "Maximum image size, in megapixels", gr.Number),
|
|
|
|
"use_original_name_batch": OptionInfo(True, "Use original name for output filename during batch process in extras tab"),
|
|
"use_upscaler_name_as_suffix": OptionInfo(False, "Use upscaler name as filename suffix in the extras tab"),
|
|
"save_selected_only": OptionInfo(True, "When using 'Save' button, only save a single selected image"),
|
|
|
|
"temp_dir": OptionInfo("", "Directory for temporary images; leave empty for default"),
|
|
"clean_temp_dir_at_start": OptionInfo(False, "Cleanup non-default temporary directory when starting webui"),
|
|
|
|
}))
|
|
|
|
options_templates.update(options_section(('saving-paths', "Paths for saving"), {
|
|
"outdir_samples": OptionInfo("", "Output directory for images; if empty, defaults to three directories below", component_args=hide_dirs),
|
|
"outdir_txt2img_samples": OptionInfo("outputs/txt2img-images", 'Output directory for txt2img images', component_args=hide_dirs),
|
|
"outdir_img2img_samples": OptionInfo("outputs/img2img-images", 'Output directory for img2img images', component_args=hide_dirs),
|
|
"outdir_extras_samples": OptionInfo("outputs/extras-images", 'Output directory for images from extras tab', component_args=hide_dirs),
|
|
"outdir_grids": OptionInfo("", "Output directory for grids; if empty, defaults to two directories below", component_args=hide_dirs),
|
|
"outdir_txt2img_grids": OptionInfo("outputs/txt2img-grids", 'Output directory for txt2img grids', component_args=hide_dirs),
|
|
"outdir_img2img_grids": OptionInfo("outputs/img2img-grids", 'Output directory for img2img grids', component_args=hide_dirs),
|
|
"outdir_save": OptionInfo("log/images", "Directory for saving images using the Save button", component_args=hide_dirs),
|
|
}))
|
|
|
|
options_templates.update(options_section(('saving-to-dirs', "Saving to a directory"), {
|
|
"save_to_dirs": OptionInfo(True, "Save images to a subdirectory"),
|
|
"grid_save_to_dirs": OptionInfo(True, "Save grids to a subdirectory"),
|
|
"use_save_to_dirs_for_ui": OptionInfo(False, "When using \"Save\" button, save images to a subdirectory"),
|
|
"directories_filename_pattern": OptionInfo("[date]", "Directory name pattern", component_args=hide_dirs),
|
|
"directories_max_prompt_words": OptionInfo(8, "Max prompt words for [prompt_words] pattern", gr.Slider, {"minimum": 1, "maximum": 20, "step": 1, **hide_dirs}),
|
|
}))
|
|
|
|
options_templates.update(options_section(('upscaling', "Upscaling"), {
|
|
"ESRGAN_tile": OptionInfo(192, "Tile size for ESRGAN upscalers. 0 = no tiling.", gr.Slider, {"minimum": 0, "maximum": 512, "step": 16}),
|
|
"ESRGAN_tile_overlap": OptionInfo(8, "Tile overlap, in pixels for ESRGAN upscalers. Low values = visible seam.", gr.Slider, {"minimum": 0, "maximum": 48, "step": 1}),
|
|
"realesrgan_enabled_models": OptionInfo(["R-ESRGAN 4x+", "R-ESRGAN 4x+ Anime6B"], "Select which Real-ESRGAN models to show in the web UI. (Requires restart)", gr.CheckboxGroup, lambda: {"choices": shared_items.realesrgan_models_names()}),
|
|
"upscaler_for_img2img": OptionInfo(None, "Upscaler for img2img", gr.Dropdown, lambda: {"choices": [x.name for x in sd_upscalers]}),
|
|
}))
|
|
|
|
options_templates.update(options_section(('face-restoration', "Face restoration"), {
|
|
"face_restoration_model": OptionInfo("CodeFormer", "Face restoration model", gr.Radio, lambda: {"choices": [x.name() for x in face_restorers]}),
|
|
"code_former_weight": OptionInfo(0.5, "CodeFormer weight parameter; 0 = maximum effect; 1 = minimum effect", gr.Slider, {"minimum": 0, "maximum": 1, "step": 0.01}),
|
|
"face_restoration_unload": OptionInfo(False, "Move face restoration model from VRAM into RAM after processing"),
|
|
}))
|
|
|
|
options_templates.update(options_section(('system', "System"), {
|
|
"show_warnings": OptionInfo(False, "Show warnings in console."),
|
|
"memmon_poll_rate": OptionInfo(8, "VRAM usage polls per second during generation. Set to 0 to disable.", gr.Slider, {"minimum": 0, "maximum": 40, "step": 1}),
|
|
"samples_log_stdout": OptionInfo(False, "Always print all generation info to standard output"),
|
|
"multiple_tqdm": OptionInfo(True, "Add a second progress bar to the console that shows progress for an entire job."),
|
|
"print_hypernet_extra": OptionInfo(False, "Print extra hypernetwork information to console."),
|
|
}))
|
|
|
|
options_templates.update(options_section(('training', "Training"), {
|
|
"unload_models_when_training": OptionInfo(False, "Move VAE and CLIP to RAM when training if possible. Saves VRAM."),
|
|
"pin_memory": OptionInfo(False, "Turn on pin_memory for DataLoader. Makes training slightly faster but can increase memory usage."),
|
|
"save_optimizer_state": OptionInfo(False, "Saves Optimizer state as separate *.optim file. Training of embedding or HN can be resumed with the matching optim file."),
|
|
"save_training_settings_to_txt": OptionInfo(True, "Save textual inversion and hypernet settings to a text file whenever training starts."),
|
|
"dataset_filename_word_regex": OptionInfo("", "Filename word regex"),
|
|
"dataset_filename_join_string": OptionInfo(" ", "Filename join string"),
|
|
"training_image_repeats_per_epoch": OptionInfo(1, "Number of repeats for a single input image per epoch; used only for displaying epoch number", gr.Number, {"precision": 0}),
|
|
"training_write_csv_every": OptionInfo(500, "Save an csv containing the loss to log directory every N steps, 0 to disable"),
|
|
"training_xattention_optimizations": OptionInfo(False, "Use cross attention optimizations while training"),
|
|
"training_enable_tensorboard": OptionInfo(False, "Enable tensorboard logging."),
|
|
"training_tensorboard_save_images": OptionInfo(False, "Save generated images within tensorboard."),
|
|
"training_tensorboard_flush_every": OptionInfo(120, "How often, in seconds, to flush the pending tensorboard events and summaries to disk."),
|
|
}))
|
|
|
|
options_templates.update(options_section(('sd', "Stable Diffusion"), {
|
|
"sd_model_checkpoint": OptionInfo(None, "Stable Diffusion checkpoint", gr.Dropdown, lambda: {"choices": list_checkpoint_tiles()}, refresh=refresh_checkpoints),
|
|
"sd_checkpoint_cache": OptionInfo(0, "Checkpoints to cache in RAM", gr.Slider, {"minimum": 0, "maximum": 10, "step": 1}),
|
|
"sd_vae_checkpoint_cache": OptionInfo(0, "VAE Checkpoints to cache in RAM", gr.Slider, {"minimum": 0, "maximum": 10, "step": 1}),
|
|
"sd_vae": OptionInfo("Automatic", "SD VAE", gr.Dropdown, lambda: {"choices": shared_items.sd_vae_items()}, refresh=shared_items.refresh_vae_list),
|
|
"sd_vae_as_default": OptionInfo(True, "Ignore selected VAE for stable diffusion checkpoints that have their own .vae.pt next to them"),
|
|
"inpainting_mask_weight": OptionInfo(1.0, "Inpainting conditioning mask strength", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
|
|
"initial_noise_multiplier": OptionInfo(1.0, "Noise multiplier for img2img", gr.Slider, {"minimum": 0.5, "maximum": 1.5, "step": 0.01}),
|
|
"img2img_color_correction": OptionInfo(False, "Apply color correction to img2img results to match original colors."),
|
|
"img2img_fix_steps": OptionInfo(False, "With img2img, do exactly the amount of steps the slider specifies (normally you'd do less with less denoising)."),
|
|
"img2img_background_color": OptionInfo("#ffffff", "With img2img, fill image's transparent parts with this color.", ui_components.FormColorPicker, {}),
|
|
"enable_quantization": OptionInfo(False, "Enable quantization in K samplers for sharper and cleaner results. This may change existing seeds. Requires restart to apply."),
|
|
"enable_emphasis": OptionInfo(True, "Emphasis: use (text) to make model pay more attention to text and [text] to make it pay less attention"),
|
|
"enable_batch_seeds": OptionInfo(True, "Make K-diffusion samplers produce same images in a batch as when making a single image"),
|
|
"comma_padding_backtrack": OptionInfo(20, "Increase coherency by padding from the last comma within n tokens when using more than 75 tokens", gr.Slider, {"minimum": 0, "maximum": 74, "step": 1 }),
|
|
"CLIP_stop_at_last_layers": OptionInfo(1, "Clip skip", gr.Slider, {"minimum": 1, "maximum": 12, "step": 1}),
|
|
"upcast_attn": OptionInfo(False, "Upcast cross attention layer to float32"),
|
|
}))
|
|
|
|
options_templates.update(options_section(('compatibility', "Compatibility"), {
|
|
"use_old_emphasis_implementation": OptionInfo(False, "Use old emphasis implementation. Can be useful to reproduce old seeds."),
|
|
"use_old_karras_scheduler_sigmas": OptionInfo(False, "Use old karras scheduler sigmas (0.1 to 10)."),
|
|
"no_dpmpp_sde_batch_determinism": OptionInfo(False, "Do not make DPM++ SDE deterministic across different batch sizes."),
|
|
"use_old_hires_fix_width_height": OptionInfo(False, "For hires fix, use width/height sliders to set final resolution rather than first pass (disables Upscale by, Resize width/height to)."),
|
|
}))
|
|
|
|
options_templates.update(options_section(('interrogate', "Interrogate Options"), {
|
|
"interrogate_keep_models_in_memory": OptionInfo(False, "Interrogate: keep models in VRAM"),
|
|
"interrogate_return_ranks": OptionInfo(False, "Interrogate: include ranks of model tags matches in results (Has no effect on caption-based interrogators)."),
|
|
"interrogate_clip_num_beams": OptionInfo(1, "Interrogate: num_beams for BLIP", gr.Slider, {"minimum": 1, "maximum": 16, "step": 1}),
|
|
"interrogate_clip_min_length": OptionInfo(24, "Interrogate: minimum description length (excluding artists, etc..)", gr.Slider, {"minimum": 1, "maximum": 128, "step": 1}),
|
|
"interrogate_clip_max_length": OptionInfo(48, "Interrogate: maximum description length", gr.Slider, {"minimum": 1, "maximum": 256, "step": 1}),
|
|
"interrogate_clip_dict_limit": OptionInfo(1500, "CLIP: maximum number of lines in text file (0 = No limit)"),
|
|
"interrogate_clip_skip_categories": OptionInfo([], "CLIP: skip inquire categories", gr.CheckboxGroup, lambda: {"choices": modules.interrogate.category_types()}, refresh=modules.interrogate.category_types),
|
|
"interrogate_deepbooru_score_threshold": OptionInfo(0.5, "Interrogate: deepbooru score threshold", gr.Slider, {"minimum": 0, "maximum": 1, "step": 0.01}),
|
|
"deepbooru_sort_alpha": OptionInfo(True, "Interrogate: deepbooru sort alphabetically"),
|
|
"deepbooru_use_spaces": OptionInfo(False, "use spaces for tags in deepbooru"),
|
|
"deepbooru_escape": OptionInfo(True, "escape (\\) brackets in deepbooru (so they are used as literal brackets and not for emphasis)"),
|
|
"deepbooru_filter_tags": OptionInfo("", "filter out those tags from deepbooru output (separated by comma)"),
|
|
}))
|
|
|
|
options_templates.update(options_section(('extra_networks', "Extra Networks"), {
|
|
"extra_networks_default_view": OptionInfo("cards", "Default view for Extra Networks", gr.Dropdown, {"choices": ["cards", "thumbs"]}),
|
|
"extra_networks_default_multiplier": OptionInfo(1.0, "Multiplier for extra networks", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
|
|
"extra_networks_add_text_separator": OptionInfo(" ", "Extra text to add before <...> when adding extra network to prompt"),
|
|
"sd_hypernetwork": OptionInfo("None", "Add hypernetwork to prompt", gr.Dropdown, lambda: {"choices": [""] + [x for x in hypernetworks.keys()]}, refresh=reload_hypernetworks),
|
|
}))
|
|
|
|
options_templates.update(options_section(('ui', "User interface"), {
|
|
"return_grid": OptionInfo(True, "Show grid in results for web"),
|
|
"do_not_show_images": OptionInfo(False, "Do not show any images in results for web"),
|
|
"add_model_hash_to_info": OptionInfo(True, "Add model hash to generation information"),
|
|
"add_model_name_to_info": OptionInfo(True, "Add model name to generation information"),
|
|
"disable_weights_auto_swap": OptionInfo(True, "When reading generation parameters from text into UI (from PNG info or pasted text), do not change the selected model/checkpoint."),
|
|
"send_seed": OptionInfo(True, "Send seed when sending prompt or image to other interface"),
|
|
"send_size": OptionInfo(True, "Send size when sending prompt or image to another interface"),
|
|
"font": OptionInfo("", "Font for image grids that have text"),
|
|
"js_modal_lightbox": OptionInfo(True, "Enable full page image viewer"),
|
|
"js_modal_lightbox_initially_zoomed": OptionInfo(True, "Show images zoomed in by default in full page image viewer"),
|
|
"show_progress_in_title": OptionInfo(True, "Show generation progress in window title."),
|
|
"samplers_in_dropdown": OptionInfo(True, "Use dropdown for sampler selection instead of radio group"),
|
|
"dimensions_and_batch_together": OptionInfo(True, "Show Width/Height and Batch sliders in same row"),
|
|
"keyedit_precision_attention": OptionInfo(0.1, "Ctrl+up/down precision when editing (attention:1.1)", gr.Slider, {"minimum": 0.01, "maximum": 0.2, "step": 0.001}),
|
|
"keyedit_precision_extra": OptionInfo(0.05, "Ctrl+up/down precision when editing <extra networks:0.9>", gr.Slider, {"minimum": 0.01, "maximum": 0.2, "step": 0.001}),
|
|
"quicksettings": OptionInfo("sd_model_checkpoint", "Quicksettings list"),
|
|
"hidden_tabs": OptionInfo([], "Hidden UI tabs (requires restart)", ui_components.DropdownMulti, lambda: {"choices": [x for x in tab_names]}),
|
|
"ui_reorder": OptionInfo(", ".join(ui_reorder_categories), "txt2img/img2img UI item order"),
|
|
"ui_extra_networks_tab_reorder": OptionInfo("", "Extra networks tab order"),
|
|
"localization": OptionInfo("None", "Localization (requires restart)", gr.Dropdown, lambda: {"choices": ["None"] + list(localization.localizations.keys())}, refresh=lambda: localization.list_localizations(cmd_opts.localizations_dir)),
|
|
}))
|
|
|
|
options_templates.update(options_section(('ui', "Live previews"), {
|
|
"show_progressbar": OptionInfo(True, "Show progressbar"),
|
|
"live_previews_enable": OptionInfo(True, "Show live previews of the created image"),
|
|
"show_progress_grid": OptionInfo(True, "Show previews of all images generated in a batch as a grid"),
|
|
"show_progress_every_n_steps": OptionInfo(10, "Show new live preview image every N sampling steps. Set to -1 to show after completion of batch.", gr.Slider, {"minimum": -1, "maximum": 32, "step": 1}),
|
|
"show_progress_type": OptionInfo("Approx NN", "Image creation progress preview mode", gr.Radio, {"choices": ["Full", "Approx NN", "Approx cheap"]}),
|
|
"live_preview_content": OptionInfo("Prompt", "Live preview subject", gr.Radio, {"choices": ["Combined", "Prompt", "Negative prompt"]}),
|
|
"live_preview_refresh_period": OptionInfo(1000, "Progressbar/preview update period, in milliseconds")
|
|
}))
|
|
|
|
options_templates.update(options_section(('sampler-params', "Sampler parameters"), {
|
|
"hide_samplers": OptionInfo([], "Hide samplers in user interface (requires restart)", gr.CheckboxGroup, lambda: {"choices": [x.name for x in list_samplers()]}),
|
|
"eta_ddim": OptionInfo(0.0, "eta (noise multiplier) for DDIM", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
|
|
"eta_ancestral": OptionInfo(1.0, "eta (noise multiplier) for ancestral samplers", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
|
|
"ddim_discretize": OptionInfo('uniform', "img2img DDIM discretize", gr.Radio, {"choices": ['uniform', 'quad']}),
|
|
's_churn': OptionInfo(0.0, "sigma churn", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
|
|
's_tmin': OptionInfo(0.0, "sigma tmin", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
|
|
's_noise': OptionInfo(1.0, "sigma noise", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
|
|
'eta_noise_seed_delta': OptionInfo(0, "Eta noise seed delta", gr.Number, {"precision": 0}),
|
|
'always_discard_next_to_last_sigma': OptionInfo(False, "Always discard next-to-last sigma"),
|
|
'uni_pc_variant': OptionInfo("bh1", "UniPC variant", gr.Radio, {"choices": ["bh1", "bh2", "vary_coeff"]}),
|
|
'uni_pc_skip_type': OptionInfo("time_uniform", "UniPC skip type", gr.Radio, {"choices": ["time_uniform", "time_quadratic", "logSNR"]}),
|
|
'uni_pc_order': OptionInfo(3, "UniPC order (must be < sampling steps)", gr.Slider, {"minimum": 1, "maximum": 50, "step": 1}),
|
|
'uni_pc_lower_order_final': OptionInfo(True, "UniPC lower order final"),
|
|
}))
|
|
|
|
options_templates.update(options_section(('postprocessing', "Postprocessing"), {
|
|
'postprocessing_enable_in_main_ui': OptionInfo([], "Enable postprocessing operations in txt2img and img2img tabs", ui_components.DropdownMulti, lambda: {"choices": [x.name for x in shared_items.postprocessing_scripts()]}),
|
|
'postprocessing_operation_order': OptionInfo([], "Postprocessing operation order", ui_components.DropdownMulti, lambda: {"choices": [x.name for x in shared_items.postprocessing_scripts()]}),
|
|
'upscaling_max_images_in_cache': OptionInfo(5, "Maximum number of images in upscaling cache", gr.Slider, {"minimum": 0, "maximum": 10, "step": 1}),
|
|
}))
|
|
|
|
options_templates.update(options_section((None, "Hidden options"), {
|
|
"disabled_extensions": OptionInfo([], "Disable those extensions"),
|
|
"sd_checkpoint_hash": OptionInfo("", "SHA256 hash of the current checkpoint"),
|
|
}))
|
|
|
|
options_templates.update()
|
|
|
|
|
|
class Options:
|
|
data = None
|
|
data_labels = options_templates
|
|
typemap = {int: float}
|
|
|
|
def __init__(self):
|
|
self.data = {k: v.default for k, v in self.data_labels.items()}
|
|
|
|
def __setattr__(self, key, value):
|
|
if self.data is not None:
|
|
if key in self.data or key in self.data_labels:
|
|
assert not cmd_opts.freeze_settings, "changing settings is disabled"
|
|
|
|
info = opts.data_labels.get(key, None)
|
|
comp_args = info.component_args if info else None
|
|
if isinstance(comp_args, dict) and comp_args.get('visible', True) is False:
|
|
raise RuntimeError(f"not possible to set {key} because it is restricted")
|
|
|
|
if cmd_opts.hide_ui_dir_config and key in restricted_opts:
|
|
raise RuntimeError(f"not possible to set {key} because it is restricted")
|
|
|
|
self.data[key] = value
|
|
return
|
|
|
|
return super(Options, self).__setattr__(key, value)
|
|
|
|
def __getattr__(self, item):
|
|
if self.data is not None:
|
|
if item in self.data:
|
|
return self.data[item]
|
|
|
|
if item in self.data_labels:
|
|
return self.data_labels[item].default
|
|
|
|
return super(Options, self).__getattribute__(item)
|
|
|
|
def set(self, key, value):
|
|
"""sets an option and calls its onchange callback, returning True if the option changed and False otherwise"""
|
|
|
|
oldval = self.data.get(key, None)
|
|
if oldval == value:
|
|
return False
|
|
|
|
try:
|
|
setattr(self, key, value)
|
|
except RuntimeError:
|
|
return False
|
|
|
|
if self.data_labels[key].onchange is not None:
|
|
try:
|
|
self.data_labels[key].onchange()
|
|
except Exception as e:
|
|
errors.display(e, f"changing setting {key} to {value}")
|
|
setattr(self, key, oldval)
|
|
return False
|
|
|
|
return True
|
|
|
|
def get_default(self, key):
|
|
"""returns the default value for the key"""
|
|
|
|
data_label = self.data_labels.get(key)
|
|
if data_label is None:
|
|
return None
|
|
|
|
return data_label.default
|
|
|
|
def save(self, filename):
|
|
assert not cmd_opts.freeze_settings, "saving settings is disabled"
|
|
|
|
with open(filename, "w", encoding="utf8") as file:
|
|
json.dump(self.data, file, indent=4)
|
|
|
|
def same_type(self, x, y):
|
|
if x is None or y is None:
|
|
return True
|
|
|
|
type_x = self.typemap.get(type(x), type(x))
|
|
type_y = self.typemap.get(type(y), type(y))
|
|
|
|
return type_x == type_y
|
|
|
|
def load(self, filename):
|
|
with open(filename, "r", encoding="utf8") as file:
|
|
self.data = json.load(file)
|
|
|
|
bad_settings = 0
|
|
for k, v in self.data.items():
|
|
info = self.data_labels.get(k, None)
|
|
if info is not None and not self.same_type(info.default, v):
|
|
print(f"Warning: bad setting value: {k}: {v} ({type(v).__name__}; expected {type(info.default).__name__})", file=sys.stderr)
|
|
bad_settings += 1
|
|
|
|
if bad_settings > 0:
|
|
print(f"The program is likely to not work with bad settings.\nSettings file: {filename}\nEither fix the file, or delete it and restart.", file=sys.stderr)
|
|
|
|
def onchange(self, key, func, call=True):
|
|
item = self.data_labels.get(key)
|
|
item.onchange = func
|
|
|
|
if call:
|
|
func()
|
|
|
|
def dumpjson(self):
|
|
d = {k: self.data.get(k, self.data_labels.get(k).default) for k in self.data_labels.keys()}
|
|
return json.dumps(d)
|
|
|
|
def add_option(self, key, info):
|
|
self.data_labels[key] = info
|
|
|
|
def reorder(self):
|
|
"""reorder settings so that all items related to section always go together"""
|
|
|
|
section_ids = {}
|
|
settings_items = self.data_labels.items()
|
|
for k, item in settings_items:
|
|
if item.section not in section_ids:
|
|
section_ids[item.section] = len(section_ids)
|
|
|
|
self.data_labels = {k: v for k, v in sorted(settings_items, key=lambda x: section_ids[x[1].section])}
|
|
|
|
def cast_value(self, key, value):
|
|
"""casts an arbitrary to the same type as this setting's value with key
|
|
Example: cast_value("eta_noise_seed_delta", "12") -> returns 12 (an int rather than str)
|
|
"""
|
|
|
|
if value is None:
|
|
return None
|
|
|
|
default_value = self.data_labels[key].default
|
|
if default_value is None:
|
|
default_value = getattr(self, key, None)
|
|
if default_value is None:
|
|
return None
|
|
|
|
expected_type = type(default_value)
|
|
if expected_type == bool and value == "False":
|
|
value = False
|
|
else:
|
|
value = expected_type(value)
|
|
|
|
return value
|
|
|
|
|
|
|
|
opts = Options()
|
|
if os.path.exists(config_filename):
|
|
opts.load(config_filename)
|
|
|
|
settings_components = None
|
|
"""assinged from ui.py, a mapping on setting anmes to gradio components repsponsible for those settings"""
|
|
|
|
latent_upscale_default_mode = "Latent"
|
|
latent_upscale_modes = {
|
|
"Latent": {"mode": "bilinear", "antialias": False},
|
|
"Latent (antialiased)": {"mode": "bilinear", "antialias": True},
|
|
"Latent (bicubic)": {"mode": "bicubic", "antialias": False},
|
|
"Latent (bicubic antialiased)": {"mode": "bicubic", "antialias": True},
|
|
"Latent (nearest)": {"mode": "nearest", "antialias": False},
|
|
"Latent (nearest-exact)": {"mode": "nearest-exact", "antialias": False},
|
|
}
|
|
|
|
sd_upscalers = []
|
|
|
|
sd_model = None
|
|
|
|
clip_model = None
|
|
|
|
progress_print_out = sys.stdout
|
|
|
|
|
|
class TotalTQDM:
|
|
def __init__(self):
|
|
self._tqdm = None
|
|
|
|
def reset(self):
|
|
self._tqdm = tqdm.tqdm(
|
|
desc="Total progress",
|
|
total=state.job_count * state.sampling_steps,
|
|
position=1,
|
|
file=progress_print_out
|
|
)
|
|
|
|
def update(self):
|
|
if not opts.multiple_tqdm or cmd_opts.disable_console_progressbars:
|
|
return
|
|
if self._tqdm is None:
|
|
self.reset()
|
|
self._tqdm.update()
|
|
|
|
def updateTotal(self, new_total):
|
|
if not opts.multiple_tqdm or cmd_opts.disable_console_progressbars:
|
|
return
|
|
if self._tqdm is None:
|
|
self.reset()
|
|
self._tqdm.total = new_total
|
|
|
|
def clear(self):
|
|
if self._tqdm is not None:
|
|
self._tqdm.refresh()
|
|
self._tqdm.close()
|
|
self._tqdm = None
|
|
|
|
|
|
total_tqdm = TotalTQDM()
|
|
|
|
mem_mon = modules.memmon.MemUsageMonitor("MemMon", device, opts)
|
|
mem_mon.start()
|
|
|
|
|
|
def listfiles(dirname):
|
|
filenames = [os.path.join(dirname, x) for x in sorted(os.listdir(dirname)) if not x.startswith(".")]
|
|
return [file for file in filenames if os.path.isfile(file)]
|
|
|
|
|
|
def html_path(filename):
|
|
return os.path.join(script_path, "html", filename)
|
|
|
|
|
|
def html(filename):
|
|
path = html_path(filename)
|
|
|
|
if os.path.exists(path):
|
|
with open(path, encoding="utf8") as file:
|
|
return file.read()
|
|
|
|
return ""
|