标准库标头 <linalg> (C++26)
来自cppreference.com
此头文件是数值库的一部分。
类 | |
在命名空间
std::linalg 定义 | |
(C++26) |
std::mdspan 布局映射策略,表示仅存储一个三角形中的各项的方阵,以打包连续格式存储 (类模板) |
(C++26) |
std::mdspan 访问器策略,其引用表示一个固定缩放因数和其嵌套 std::mdspan 访问器的引用的乘积 (类模板) |
(C++26) |
std::mdspan 访问器策略,其引用代表的是其嵌套 std::mdspan 访问器的引用的复共轭 (类模板) |
(C++26) |
std::mdspan 布局映射策略,交换任意唯一布局映射策略的最右侧两套索引、尺度和步长 (类模板) |
标签 | |
在命名空间
std::linalg 定义 | |
描述具有 linalg::layout_blas_packed 布局的 std::mdspan 的元素顺序 (标签) | |
指定算法和矩阵的其他使用方应当访问矩阵的上三角还是下三角 (标签) | |
指定算法是否应当访问矩阵的对角线项 (标签) | |
函数 | |
在命名空间
std::linalg 定义 | |
原位变换 | |
(C++26) |
返回新的只读 std::mdspan,逐元素计算缩放因子和给定 std::mdspan 的相应元素的乘积 (函数模板) |
(C++26) |
返回新的只读 std::mdspan,其各元素为给定 std::mdspan 对象的对应元素的复共轭 (函数模板) |
(C++26) |
返回表示给定 std::mdspan 的输入矩阵的转置的新 std::mdspan (函数模板) |
(C++26) |
返回对象的共轭转置视图 (函数模板) |
BLAS 1 函数 | |
(C++26) |
产生平面旋转 (函数模板) |
(C++26) |
将平面旋转应用于向量 (函数模板) |
(C++26) |
交换矩阵或向量的全部对应元素 (函数模板) |
(C++26) |
以计算矩阵或向量和一个标量的逐元素相乘的结果对它覆写 (函数模板) |
(C++26) |
将一个矩阵或向量的各元素复制给另一个 (函数模板) |
(C++26) |
按元素添加向量或矩阵 (函数模板) |
(C++26) |
返回两个向量的非共轭点积 (函数模板) |
(C++26) |
返回两个向量的共轭点积 (函数模板) |
(C++26) |
返回缩放的向量各元素平方和 (函数模板) |
(C++26) |
返回向量的欧氏范数 (函数模板) |
(C++26) |
返回向量各元素绝对值的和 (函数模板) |
(C++26) |
返回向量各元素最大绝对值的索引 (函数模板) |
(C++26) |
返回矩阵的弗罗贝尼乌斯范数 (函数模板) |
(C++26) |
返回矩阵的 1-范数 (函数模板) |
(C++26) |
返回矩阵的 ∞-范数 (函数模板) |
BLAS 2 函数 | |
(C++26) |
计算矩阵-向量乘积 (函数模板) |
计算对称矩阵-向量乘积 (函数模板) | |
计算厄米特矩阵-向量乘积 (函数模板) | |
计算三角矩阵-向量乘积 (函数模板) | |
求解三角线性系统 (函数模板) | |
(C++26) |
实施矩阵的非对称非共轭秩-1 更新 (函数模板) |
(C++26) |
实施矩阵的非对称共轭秩-1 更新 (函数模板) |
实施对称矩阵的秩-1 更新 (函数模板) | |
实施厄米特矩阵的秩-1 更新 (函数模板) | |
实施对称矩阵的秩-2 更新 (函数模板) | |
实施厄米特矩阵的秩-2 更新 (函数模板) | |
BLAS 3 函数 | |
(C++26) |
计算矩阵-矩阵乘积 (函数模板) |
(C++26) |
计算对称矩阵-矩阵乘积 (函数模板) |
(C++26) |
计算厄米特矩阵-矩阵乘积 (函数模板) |
计算三角矩阵-矩阵乘积 (函数模板) | |
实施对称矩阵的秩-k 更新 (函数模板) | |
实施厄米特矩阵的秩-k 更新 (函数模板) | |
实施对称矩阵的秩-2k 更新 (函数模板) | |
实施厄米特矩阵的秩-2k 更新 (函数模板) | |
求解多重三角线性系统 (函数模板) |
概要
namespace std::linalg { // 存储顺序标签 struct column_major_t; inline constexpr column_major_t column_major; struct row_major_t; inline constexpr row_major_t row_major; // 三角形标签 struct upper_triangle_t; inline constexpr upper_triangle_t upper_triangle; struct lower_triangle_t; inline constexpr lower_triangle_t lower_triangle; // 对角线标签 struct implicit_unit_diagonal_t; inline constexpr implicit_unit_diagonal_t implicit_unit_diagonal; struct explicit_diagonal_t; inline constexpr explicit_diagonal_t explicit_diagonal; // 类模板 layout_blas_packed template<class Triangle, class StorageOrder> class layout_blas_packed; // 仅用于阐释的概念和特征 template<class T> struct __is_mdspan; // 仅用于阐释 template<class T> concept __in_vector = /* 见描述 */; // 仅用于阐释 template<class T> concept __out_vector = /* 见描述 */; // 仅用于阐释 template<class T> concept __inout_vector = /* 见描述 */; // 仅用于阐释 template<class T> concept __in_matrix = /* 见描述 */; // 仅用于阐释 template<class T> concept __out_matrix = /* 见描述 */; // 仅用于阐释 template<class T> concept __inout_matrix = /* 见描述 */; // 仅用于阐释 template<class T> concept __possibly_packed_inout_matrix = /* 见描述 */; // 仅用于阐释 template<class T> concept __in_object = /* 见描述 */; // 仅用于阐释 template<class T> concept __out_object = /* 见描述 */; // 仅用于阐释 template<class T> concept __inout_object = /* 见描述 */; // 仅用于阐释 // 缩放原位变换 template<class ScalingFactor, class Accessor> class scaled_accessor; template<class ScalingFactor, class ElementType, class Extents, class Layout, class Accessor> constexpr auto scaled(ScalingFactor scaling_factor, mdspan<ElementType, Extents, Layout, Accessor> x); // 共轭原位变换 template<class Accessor> class conjugated_accessor; template<class ElementType, class Extents, class Layout, class Accessor> constexpr auto conjugated(mdspan<ElementType, Extents, Layout, Accessor> a); // 转置原位变换 template<class Layout> class layout_transpose; template<class ElementType, class Extents, class Layout, class Accessor> constexpr auto transposed(mdspan<ElementType, Extents, Layout, Accessor> a); // 共轭转置原位变换 template<class ElementType, class Extents, class Layout, class Accessor> constexpr auto conjugate_transposed(mdspan<ElementType, Extents, Layout, Accessor> a); // 算法 // 计算 Givens 旋转 template<class Real> struct setup_givens_rotation_result { Real c; Real s; Real r; }; template<class Real> struct setup_givens_rotation_result<complex<Real>> { Real c; complex<Real> s; complex<Real> r; }; template<class Real> setup_givens_rotation_result<Real> setup_givens_rotation(Real a, Real b) noexcept; template<class Real> setup_givens_rotation_result<complex<Real>> setup_givens_rotation(complex<Real> a, complex<Real> b) noexcept; // 运用计算的 Givens 旋转 template<__inout_vector InOutVec1, __inout_vector InOutVec2, class Real> void apply_givens_rotation(InOutVec1 x, InOutVec2 y, Real c, Real s); template<class ExecutionPolicy, __inout_vector InOutVec1, __inout_vector InOutVec2, class Real> void apply_givens_rotation(ExecutionPolicy&& exec, InOutVec1 x, InOutVec2 y, Real c, Real s); template<__inout_vector InOutVec1, __inout_vector InOutVec2, class Real> void apply_givens_rotation(InOutVec1 x, InOutVec2 y, Real c, complex<Real> s); template<class ExecutionPolicy, __inout_vector InOutVec1, __inout_vector InOutVec2, class Real> void apply_givens_rotation(ExecutionPolicy&& exec, InOutVec1 x, InOutVec2 y, Real c, complex<Real> s); // 交换元素 template<__inout_object InOutObj1, __inout_object InOutObj2> void swap_elements(InOutObj1 x, InOutObj2 y); template<class ExecutionPolicy, __inout_object InOutObj1, __inout_object InOutObj2> void swap_elements(ExecutionPolicy&& exec, InOutObj1 x, InOutObj2 y); // 各元素乘以缩放比例 template<class Scalar, __inout_object InOutObj> void scale(Scalar alpha, InOutObj x); template<class ExecutionPolicy, class Scalar, __inout_object InOutObj> void scale(ExecutionPolicy&& exec, Scalar alpha, InOutObj x); // 复制元素 template<__in_object InObj, __out_object OutObj> void copy(InObj x, OutObj y); template<class ExecutionPolicy, __in_object InObj, __out_object OutObj> void copy(ExecutionPolicy&& exec, InObj x, OutObj y); // 逐元素加 template<__in_object InObj1, __in_object InObj2, __out_object OutObj> void add(InObj1 x, InObj2 y, OutObj z); template<class ExecutionPolicy, __in_object InObj1, __in_object InObj2, __out_object OutObj> void add(ExecutionPolicy&& exec, InObj1 x, InObj2 y, OutObj z); // 两个向量的非共轭点积 template<__in_vector InVec1, __in_vector InVec2, class Scalar> Scalar dot(InVec1 v1, InVec2 v2, Scalar init); template<class ExecutionPolicy, __in_vector InVec1, __in_vector InVec2, class Scalar> Scalar dot(ExecutionPolicy&& exec, InVec1 v1, InVec2 v2, Scalar init); template<__in_vector InVec1, __in_vector InVec2> auto dot(InVec1 v1, InVec2 v2) -> /* 见描述 */; template<class ExecutionPolicy, __in_vector InVec1, __in_vector InVec2> auto dot(ExecutionPolicy&& exec, InVec1 v1, InVec2 v2) -> /* 见描述 */; // 两个向量的共轭点积 template<__in_vector InVec1, __in_vector InVec2, class Scalar> Scalar dotc(InVec1 v1, InVec2 v2, Scalar init); template<class ExecutionPolicy, __in_vector InVec1, __in_vector InVec2, class Scalar> Scalar dotc(ExecutionPolicy&& exec, InVec1 v1, InVec2 v2, Scalar init); template<__in_vector InVec1, __in_vector InVec2> auto dotc(InVec1 v1, InVec2 v2) -> /* 见描述 */; template<class ExecutionPolicy, __in_vector InVec1, __in_vector InVec2> auto dotc(ExecutionPolicy&& exec, InVec1 v1, InVec2 v2) -> /* 见描述 */; // 向量各元素的缩放平方和 template<class Scalar> struct sum_of_squares_result { Scalar scaling_factor; Scalar scaled_sum_of_squares; }; template<__in_vector InVec, class Scalar> sum_of_squares_result<Scalar> vector_sum_of_squares(InVec v, sum_of_squares_result<Scalar> init); template<class ExecutionPolicy, __in_vector InVec, class Scalar> sum_of_squares_result<Scalar> vector_sum_of_squares(ExecutionPolicy&& exec, InVec v, sum_of_squares_result<Scalar> init); // 向量的欧式范数 template<__in_vector InVec, class Scalar> Scalar vector_two_norm(InVec v, Scalar init); template<class ExecutionPolicy, __in_vector InVec, class Scalar> Scalar vector_two_norm(ExecutionPolicy&& exec, InVec v, Scalar init); template<__in_vector InVec> auto vector_two_norm(InVec v) -> /* 见描述 */; template<class ExecutionPolicy, __in_vector InVec> auto vector_two_norm(ExecutionPolicy&& exec, InVec v) -> /* 见描述 */; // 向量各元素的绝对值和 template<__in_vector InVec, class Scalar> Scalar vector_abs_sum(InVec v, Scalar init); template<class ExecutionPolicy, __in_vector InVec, class Scalar> Scalar vector_abs_sum(ExecutionPolicy&& exec, InVec v, Scalar init); template<__in_vector InVec> auto vector_abs_sum(InVec v) -> /* 见描述 */; template<class ExecutionPolicy, __in_vector InVec> auto vector_abs_sum(ExecutionPolicy&& exec, InVec v) -> /* 见描述 */; // 向量各元素最大绝对值的索引 template<__in_vector InVec> typename InVec::extents_type idx_abs_max(InVec v); template<class ExecutionPolicy, __in_vector InVec> typename InVec::extents_type idx_abs_max(ExecutionPolicy&& exec, InVec v); // 矩阵的弗罗贝尼乌斯范数 template<__in_matrix InMat, class Scalar> Scalar matrix_frob_norm(InMat A, Scalar init); template<class ExecutionPolicy, __in_matrix InMat, class Scalar> Scalar matrix_frob_norm(ExecutionPolicy&& exec, InMat A, Scalar init); template<__in_matrix InMat> auto matrix_frob_norm(InMat A) -> /* 见描述 */; template<class ExecutionPolicy, __in_matrix InMat> auto matrix_frob_norm(ExecutionPolicy&& exec, InMat A) -> /* 见描述 */; // 矩阵的 1-范数 template<__in_matrix InMat, class Scalar> Scalar matrix_one_norm(InMat A, Scalar init); template<class ExecutionPolicy, __in_matrix InMat, class Scalar> Scalar matrix_one_norm(ExecutionPolicy&& exec, InMat A, Scalar init); template<__in_matrix InMat> auto matrix_one_norm(InMat A) -> /* 见描述 */; template<class ExecutionPolicy, __in_matrix InMat> auto matrix_one_norm(ExecutionPolicy&& exec, InMat A) -> /* 见描述 */; // 矩阵的 ∞-范数 template<__in_matrix InMat, class Scalar> Scalar matrix_inf_norm(InMat A, Scalar init); template<class ExecutionPolicy, __in_matrix InMat, class Scalar> Scalar matrix_inf_norm(ExecutionPolicy&& exec, InMat A, Scalar init); template<__in_matrix InMat> auto matrix_inf_norm(InMat A) -> /* 见描述 */; template<class ExecutionPolicy, __in_matrix InMat> auto matrix_inf_norm(ExecutionPolicy&& exec, InMat A) -> /* 见描述 */; // 通用矩阵与向量乘积 template<__in_matrix InMat, __in_vector InVec, __out_vector OutVec> void matrix_vector_product(InMat A, InVec x, OutVec y); template<class ExecutionPolicy, __in_matrix InMat, __in_vector InVec, __out_vector OutVec> void matrix_vector_product(ExecutionPolicy&& exec, InMat A, InVec x, OutVec y); template<__in_matrix InMat, __in_vector InVec1, __in_vector InVec2, __out_vector OutVec> void matrix_vector_product(InMat A, InVec1 x, InVec2 y, OutVec z); template<class ExecutionPolicy, __in_matrix InMat, __in_vector InVec1, __in_vector InVec2, __out_vector OutVec> void matrix_vector_product(ExecutionPolicy&& exec, InMat A, InVec1 x, InVec2 y, OutVec z); // 对称矩阵与向量乘积 template<__in_matrix InMat, class Triangle, __in_vector InVec, __out_vector OutVec> void symmetric_matrix_vector_product(InMat A, Triangle t, InVec x, OutVec y); template<class ExecutionPolicy, __in_matrix InMat, class Triangle, __in_vector InVec, __out_vector OutVec> void symmetric_matrix_vector_product(ExecutionPolicy&& exec, InMat A, Triangle t, InVec x, OutVec y); template<__in_matrix InMat, class Triangle, __in_vector InVec1, __in_vector InVec2, __out_vector OutVec> void symmetric_matrix_vector_product(InMat A, Triangle t, InVec1 x, InVec2 y, OutVec z); template<class ExecutionPolicy, __in_matrix InMat, class Triangle, __in_vector InVec1, __in_vector InVec2, __out_vector OutVec> void symmetric_matrix_vector_product(ExecutionPolicy&& exec, InMat A, Triangle t, InVec1 x, InVec2 y, OutVec z); // 厄米特矩阵与向量乘积 template<__in_matrix InMat, class Triangle, __in_vector InVec, __out_vector OutVec> void hermitian_matrix_vector_product(InMat A, Triangle t, InVec x, OutVec y); template<class ExecutionPolicy, __in_matrix InMat, class Triangle, __in_vector InVec, __out_vector OutVec> void hermitian_matrix_vector_product(ExecutionPolicy&& exec, InMat A, Triangle t, InVec x, OutVec y); template<__in_matrix InMat, class Triangle, __in_vector InVec1, __in_vector InVec2, __out_vector OutVec> void hermitian_matrix_vector_product(InMat A, Triangle t, InVec1 x, InVec2 y, OutVec z); template<class ExecutionPolicy, __in_matrix InMat, class Triangle, __in_vector InVec1, __in_vector InVec2, __out_vector OutVec> void hermitian_matrix_vector_product(ExecutionPolicy&& exec, InMat A, Triangle t, InVec1 x, InVec2 y, OutVec z); // 三角形矩阵与向量乘积 // 覆写三角形矩阵与向量乘积 template<__in_matrix InMat, class Triangle, class DiagonalStorage, __in_vector InVec, __out_vector OutVec> void triangular_matrix_vector_product(InMat A, Triangle t, DiagonalStorage d, InVec x, OutVec y); template<class ExecutionPolicy, __in_matrix InMat, class Triangle, class DiagonalStorage, __in_vector InVec, __out_vector OutVec> void triangular_matrix_vector_product(ExecutionPolicy&& exec, InMat A, Triangle t, DiagonalStorage d, InVec x, OutVec y); // 原位三角形矩阵与向量乘积 template<__in_matrix InMat, class Triangle, class DiagonalStorage, __inout_vector InOutVec> void triangular_matrix_vector_product(InMat A, Triangle t, DiagonalStorage d, InOutVec y); template<class ExecutionPolicy, __in_matrix InMat, class Triangle, class DiagonalStorage, __inout_vector InOutVec> void triangular_matrix_vector_product(ExecutionPolicy&& exec, InMat A, Triangle t, DiagonalStorage d, InOutVec y); // 更新三角形矩阵与向量乘积 template<__in_matrix InMat, class Triangle, class DiagonalStorage, __in_vector InVec1, __in_vector InVec2, __out_vector OutVec> void triangular_matrix_vector_product(InMat A, Triangle t, DiagonalStorage d, InVec1 x, InVec2 y, OutVec z); template<class ExecutionPolicy, __in_matrix InMat, class Triangle, class DiagonalStorage, __in_vector InVec1, __in_vector InVec2, __out_vector OutVec> void triangular_matrix_vector_product(ExecutionPolicy&& exec, InMat A, Triangle t, DiagonalStorage d, InVec1 x, InVec2 y, OutVec z); // 非原位,求解三角形线性系统 template<__in_matrix InMat, class Triangle, class DiagonalStorage, __in_vector InVec, __out_vector OutVec, class BinaryDivideOp> void triangular_matrix_vector_solve(InMat A, Triangle t, DiagonalStorage d, InVec b, OutVec x, BinaryDivideOp divide); template<class ExecutionPolicy, __in_matrix InMat, class Triangle, class DiagonalStorage, __in_vector InVec, __out_vector OutVec, class BinaryDivideOp> void triangular_matrix_vector_solve(ExecutionPolicy&& exec, InMat A, Triangle t, DiagonalStorage d, InVec b, OutVec x, BinaryDivideOp divide); template<__in_matrix InMat, class Triangle, class DiagonalStorage, __in_vector InVec, __out_vector OutVec> void triangular_matrix_vector_solve(InMat A, Triangle t, DiagonalStorage d, InVec b, OutVec x); template<class ExecutionPolicy, __in_matrix InMat, class Triangle, class DiagonalStorage, __in_vector InVec, __out_vector OutVec> void triangular_matrix_vector_solve(ExecutionPolicy&& exec, InMat A, Triangle t, DiagonalStorage d, InVec b, OutVec x); // 原位,求解三角形线性系统 template<__in_matrix InMat, class Triangle, class DiagonalStorage, __inout_vector InOutVec, class BinaryDivideOp> void triangular_matrix_vector_solve(InMat A, Triangle t, DiagonalStorage d, InOutVec b, BinaryDivideOp divide); template<class ExecutionPolicy, __in_matrix InMat, class Triangle, class DiagonalStorage, __inout_vector InOutVec, class BinaryDivideOp> void triangular_matrix_vector_solve(ExecutionPolicy&& exec, InMat A, Triangle t, DiagonalStorage d, InOutVec b, BinaryDivideOp divide); template<__in_matrix InMat, class Triangle, class DiagonalStorage, __inout_vector InOutVec> void triangular_matrix_vector_solve(InMat A, Triangle t, DiagonalStorage d, InOutVec b); template<class ExecutionPolicy, __in_matrix InMat, class Triangle, class DiagonalStorage, __inout_vector InOutVec> void triangular_matrix_vector_solve(ExecutionPolicy&& exec, InMat A, Triangle t, DiagonalStorage d, InOutVec b); // 非共轭的秩-1 矩阵更新 template<__in_vector InVec1, __in_vector InVec2, __inout_matrix InOutMat> void matrix_rank_1_update(InVec1 x, InVec2 y, InOutMat A); template<class ExecutionPolicy, __in_vector InVec1, __in_vector InVec2, __inout_matrix InOutMat> void matrix_rank_1_update(ExecutionPolicy&& exec, InVec1 x, InVec2 y, InOutMat A); // 共轭的秩-1 矩阵更新 template<__in_vector InVec1, __in_vector InVec2, __inout_matrix InOutMat> void matrix_rank_1_update_c(InVec1 x, InVec2 y, InOutMat A); template<class ExecutionPolicy, __in_vector InVec1, __in_vector InVec2, __inout_matrix InOutMat> void matrix_rank_1_update_c(ExecutionPolicy&& exec, InVec1 x, InVec2 y, InOutMat A); // 对称的秩-1 矩阵更新 template<__in_vector InVec, __possibly_packed_inout_matrix InOutMat, class Triangle> void symmetric_matrix_rank_1_update(InVec x, InOutMat A, Triangle t); template<class ExecutionPolicy, __in_vector InVec, __possibly_packed_inout_matrix InOutMat, class Triangle> void symmetric_matrix_rank_1_update(ExecutionPolicy&& exec, InVec x, InOutMat A, Triangle t); template<class Scalar, __in_vector InVec, __possibly_packed_inout_matrix InOutMat, class Triangle> void symmetric_matrix_rank_1_update(Scalar alpha, InVec x, InOutMat A, Triangle t); template<class ExecutionPolicy, class Scalar, __in_vector InVec, __possibly_packed_inout_matrix InOutMat, class Triangle> void symmetric_matrix_rank_1_update(ExecutionPolicy&& exec, Scalar alpha, InVec x, InOutMat A, Triangle t); // 厄米特秩-1 矩阵更新 template<__in_vector InVec, __possibly_packed_inout_matrix InOutMat, class Triangle> void hermitian_matrix_rank_1_update(InVec x, InOutMat A, Triangle t); template<class ExecutionPolicy, __in_vector InVec, __possibly_packed_inout_matrix InOutMat, class Triangle> void hermitian_matrix_rank_1_update(ExecutionPolicy&& exec, InVec x, InOutMat A, Triangle t); template<class Scalar, __in_vector InVec, __possibly_packed_inout_matrix InOutMat, class Triangle> void hermitian_matrix_rank_1_update(Scalar alpha, InVec x, InOutMat A, Triangle t); template<class ExecutionPolicy, class Scalar, __in_vector InVec, __possibly_packed_inout_matrix InOutMat, class Triangle> void hermitian_matrix_rank_1_update(ExecutionPolicy&& exec, Scalar alpha, InVec x, InOutMat A, Triangle t); // 对称的秩-2 矩阵更新 template<__in_vector InVec1, __in_vector InVec2, __possibly_packed_inout_matrix InOutMat, class Triangle> void symmetric_matrix_rank_2_update(InVec1 x, InVec2 y, InOutMat A, Triangle t); template<class ExecutionPolicy, __in_vector InVec1, __in_vector InVec2, __possibly_packed_inout_matrix InOutMat, class Triangle> void symmetric_matrix_rank_2_update(ExecutionPolicy&& exec, InVec1 x, InVec2 y, InOutMat A, Triangle t); // 厄米特秩-2 矩阵更新 template<__in_vector InVec1, __in_vector InVec2, __possibly_packed_inout_matrix InOutMat, class Triangle> void hermitian_matrix_rank_2_update(InVec1 x, InVec2 y, InOutMat A, Triangle t); template<class ExecutionPolicy, __in_vector InVec1, __in_vector InVec2, __possibly_packed_inout_matrix InOutMat, class Triangle> void hermitian_matrix_rank_2_update(ExecutionPolicy&& exec, InVec1 x, InVec2 y, InOutMat A, Triangle t); // 通用矩阵与矩阵乘积 template<__in_matrix InMat1, __in_matrix InMat2, __out_matrix OutMat> void matrix_product(InMat1 A, InMat2 B, OutMat C); template<class ExecutionPolicy, __in_matrix InMat1, __in_matrix InMat2, __out_matrix OutMat> void matrix_product(ExecutionPolicy&& exec, InMat1 A, InMat2 B, OutMat C); template<__in_matrix InMat1, __in_matrix InMat2, __in_matrix InMat3, __out_matrix OutMat> void matrix_product(InMat1 A, InMat2 B, InMat3 E, OutMat C); template<class ExecutionPolicy, __in_matrix InMat1, __in_matrix InMat2, __in_matrix InMat3, __out_matrix OutMat> void matrix_product(ExecutionPolicy&& exec, InMat1 A, InMat2 B, InMat3 E, OutMat C); // 对称矩阵与矩阵乘积 // 覆写对称矩阵与矩阵左乘 template<__in_matrix InMat1, class Triangle, __in_matrix InMat2, __out_matrix OutMat> void symmetric_matrix_product(InMat1 A, Triangle t, InMat2 B, OutMat C); template<class ExecutionPolicy, __in_matrix InMat1, class Triangle, __in_matrix InMat2, __out_matrix OutMat> void symmetric_matrix_product(ExecutionPolicy&& exec, InMat1 A, Triangle t, InMat2 B, OutMat C); // 覆写对称矩阵与矩阵右乘 template<__in_matrix InMat1, __in_matrix InMat2, class Triangle, __out_matrix OutMat> void symmetric_matrix_product(InMat1 B, InMat2 A, Triangle t, OutMat C); template<class ExecutionPolicy, __in_matrix InMat1, __in_matrix InMat2, class Triangle, __out_matrix OutMat> void symmetric_matrix_product(ExecutionPolicy&& exec, InMat1 B, InMat2 A, Triangle t, OutMat C); // 更新对称矩阵与矩阵左乘 template<__in_matrix InMat1, class Triangle, __in_matrix InMat2, __in_matrix InMat3, __out_matrix OutMat> void symmetric_matrix_product(InMat1 A, Triangle t, InMat2 B, InMat3 E, OutMat C); template<class ExecutionPolicy, __in_matrix InMat1, class Triangle, __in_matrix InMat2, __in_matrix InMat3, __out_matrix OutMat> void symmetric_matrix_product(ExecutionPolicy&& exec, InMat1 A, Triangle t, InMat2 B, InMat3 E, OutMat C); // 更新对称矩阵与矩阵右乘 template<__in_matrix InMat1, __in_matrix InMat2, class Triangle, __in_matrix InMat3, __out_matrix OutMat> void symmetric_matrix_product(InMat1 B, InMat2 A, Triangle t, InMat3 E, OutMat C); template<class ExecutionPolicy, __in_matrix InMat1, __in_matrix InMat2, class Triangle, __in_matrix InMat3, __out_matrix OutMat> void symmetric_matrix_product(ExecutionPolicy&& exec, InMat1 B, InMat2 A, Triangle t, InMat3 E, OutMat C); // 厄米特矩阵与矩阵乘积 // 覆写厄米特矩阵与矩阵左乘 template<__in_matrix InMat1, class Triangle, __in_matrix InMat2, __out_matrix OutMat> void hermitian_matrix_product(InMat1 A, Triangle t, InMat2 B, OutMat C); template<class ExecutionPolicy, __in_matrix InMat1, class Triangle, __in_matrix InMat2, __out_matrix OutMat> void hermitian_matrix_product(ExecutionPolicy&& exec, InMat1 A, Triangle t, InMat2 B, OutMat C); // 覆写厄米特矩阵与矩阵右乘 template<__in_matrix InMat1, __in_matrix InMat2, class Triangle, __out_matrix OutMat> void hermitian_matrix_product(InMat1 B, InMat2 A, Triangle t, OutMat C); template<class ExecutionPolicy, __in_matrix InMat1, __in_matrix InMat2, class Triangle, __out_matrix OutMat> void hermitian_matrix_product(ExecutionPolicy&& exec, InMat1 B, InMat2 A, Triangle t, OutMat C); // 更新厄米特矩阵与矩阵左乘 template<__in_matrix InMat1, class Triangle, __in_matrix InMat2, __in_matrix InMat3, __out_matrix OutMat> void hermitian_matrix_product(InMat1 A, Triangle t, InMat2 B, InMat3 E, OutMat C); template<class ExecutionPolicy, __in_matrix InMat1, class Triangle, __in_matrix InMat2, __in_matrix InMat3, __out_matrix OutMat> void hermitian_matrix_product(ExecutionPolicy&& exec, InMat1 A, Triangle t, InMat2 B, InMat3 E, OutMat C); // 更新厄米特矩阵与矩阵右乘 template<__in_matrix InMat1, __in_matrix InMat2, class Triangle, __in_matrix InMat3, __out_matrix OutMat> void hermitian_matrix_product(InMat1 B, InMat2 A, Triangle t, InMat3 E, OutMat C); template<class ExecutionPolicy, __in_matrix InMat1, __in_matrix InMat2, class Triangle, __in_matrix InMat3, __out_matrix OutMat> void hermitian_matrix_product(ExecutionPolicy&& exec, InMat1 B, InMat2 A, Triangle t, InMat3 E, OutMat C); // 三角形矩阵与矩阵乘积 // 覆写三角形矩阵与矩阵左乘 template<__in_matrix InMat1, class Triangle, class DiagonalStorage, __in_matrix InMat2, __out_matrix OutMat> void triangular_matrix_product(InMat1 A, Triangle t, DiagonalStorage d, InMat2 B, OutMat C); template<class ExecutionPolicy, __in_matrix InMat1, class Triangle, class DiagonalStorage, __in_matrix InMat2, __out_matrix OutMat> void triangular_matrix_product(ExecutionPolicy&& exec, InMat1 A, Triangle t, DiagonalStorage d, InMat2 B, OutMat C); template<__in_matrix InMat1, class Triangle, class DiagonalStorage, __inout_matrix InOutMat> void triangular_matrix_left_product(InMat1 A, Triangle t, DiagonalStorage d, InOutMat C); template<class ExecutionPolicy, __in_matrix InMat1, class Triangle, class DiagonalStorage, __inout_matrix InOutMat> void triangular_matrix_left_product(ExecutionPolicy&& exec, InMat1 A, Triangle t, DiagonalStorage d, InOutMat C); // 覆写三角形矩阵与矩阵右乘 template<__in_matrix InMat1, __in_matrix InMat2, class Triangle, class DiagonalStorage, __out_matrix OutMat> void triangular_matrix_product(InMat1 B, InMat2 A, Triangle t, DiagonalStorage d, OutMat C); template<class ExecutionPolicy, __in_matrix InMat1, __in_matrix InMat2, class Triangle, class DiagonalStorage, __out_matrix OutMat> void triangular_matrix_product(ExecutionPolicy&& exec, InMat1 B, InMat2 A, Triangle t, DiagonalStorage d, OutMat C); template<__in_matrix InMat1, class Triangle, class DiagonalStorage, __inout_matrix InOutMat> void triangular_matrix_right_product(InMat1 A, Triangle t, DiagonalStorage d, InOutMat C); template<class ExecutionPolicy, __in_matrix InMat1, class Triangle, class DiagonalStorage, __inout_matrix InOutMat> void triangular_matrix_right_product(ExecutionPolicy&& exec, InMat1 A, Triangle t, DiagonalStorage d, InOutMat C); // 更新三角形矩阵与矩阵左乘 template<__in_matrix InMat1, class Triangle, class DiagonalStorage, __in_matrix InMat2, __in_matrix InMat3, __out_matrix OutMat> void triangular_matrix_product(InMat1 A, Triangle t, DiagonalStorage d, InMat2 B, InMat3 E, OutMat C); template<class ExecutionPolicy, __in_matrix InMat1, class Triangle, class DiagonalStorage, __in_matrix InMat2, __in_matrix InMat3, __out_matrix OutMat> void triangular_matrix_product(ExecutionPolicy&& exec, InMat1 A, Triangle t, DiagonalStorage d, InMat2 B, InMat3 E, OutMat C); // 更新三角形矩阵与矩阵右乘 template<__in_matrix InMat1, __in_matrix InMat2, class Triangle, class DiagonalStorage, __in_matrix InMat3, __out_matrix OutMat> void triangular_matrix_product(InMat1 B, InMat2 A, Triangle t, DiagonalStorage d, InMat3 E, OutMat C); template<class ExecutionPolicy, __in_matrix InMat1, __in_matrix InMat2, class Triangle, class DiagonalStorage, __in_matrix InMat3, __out_matrix OutMat> void triangular_matrix_product(ExecutionPolicy&& exec, InMat1 B, InMat2 A, Triangle t, DiagonalStorage d, InMat3 E, OutMat C); // 秩-k 对称矩阵更新 template<class Scalar, __in_matrix InMat1, __possibly_packed_inout_matrix InOutMat, class Triangle> void symmetric_matrix_rank_k_update(Scalar alpha, InMat1 A, InOutMat C, Triangle t); template<class Scalar, class ExecutionPolicy, ___in_matrix InMat1, __possibly_packed_inout_matrix InOutMat, class Triangle> void symmetric_matrix_rank_k_update(ExecutionPolicy&& exec, Scalar alpha, InMat1 A, InOutMat C, Triangle t); template<__in_matrix InMat1, __possibly_packed_inout_matrix InOutMat, class Triangle> void symmetric_matrix_rank_k_update(InMat1 A, InOutMat C, Triangle t); template<class ExecutionPolicy, __in_matrix InMat1, __possibly_packed_inout_matrix InOutMat, class Triangle> void symmetric_matrix_rank_k_update(ExecutionPolicy&& exec, InMat1 A, InOutMat C, Triangle t); // 秩-k 厄米特矩阵更新 template<class Scalar, __in_matrix InMat1, __possibly_packed_inout_matrix InOutMat, class Triangle> void hermitian_matrix_rank_k_update(Scalar alpha, InMat1 A, InOutMat C, Triangle t); template<class ExecutionPolicy, class Scalar, __in_matrix InMat1, __possibly_packed_inout_matrix InOutMat, class Triangle void hermitian_matrix_rank_k_update(ExecutionPolicy&& exec, Scalar alpha, InMat1 A, InOutMat C, Triangle t); template<__in_matrix InMat1, __possibly_packed_inout_matrix InOutMat, class Triangle> void hermitian_matrix_rank_k_update(InMat1 A, InOutMat C, Triangle t); template<class ExecutionPolicy, __in_matrix InMat1, __possibly_packed_inout_matrix InOutMat, class Triangle> void hermitian_matrix_rank_k_update(ExecutionPolicy&& exec, InMat1 A, InOutMat C, Triangle t); // 秩-2k 对称矩阵更新 template<__in_matrix InMat1, __in_matrix InMat2, __possibly_packed_inout_matrix InOutMat, class Triangle> void symmetric_matrix_rank_2k_update(InMat1 A, InMat2 B, InOutMat C, Triangle t); template<class ExecutionPolicy, __in_matrix InMat1, __in_matrix InMat2, __possibly_packed_inout_matrix InOutMat, class Triangle> void symmetric_matrix_rank_2k_update(ExecutionPolicy&& exec, InMat1 A, InMat2 B, InOutMat C, Triangle t); // 秩-2k 厄米特矩阵更新matrix update template<__in_matrix InMat1, __in_matrix InMat2, __possibly_packed_inout_matrix InOutMat, class Triangle> void hermitian_matrix_rank_2k_update(InMat1 A, InMat2 B, InOutMat C, Triangle t); template<class ExecutionPolicy, __in_matrix InMat1, __in_matrix InMat2, __possibly_packed_inout_matrix InOutMat, class Triangle> void hermitian_matrix_rank_2k_update(ExecutionPolicy&& exec, InMat1 A, InMat2 B, InOutMat C, Triangle t); // 求解多个三角形的线性系统 // 三角形矩阵在左侧 template<__in_matrix InMat1, class Triangle, class DiagonalStorage, __in_matrix InMat2, __out_matrix OutMat, class BinaryDivideOp> void triangular_matrix_matrix_left_solve(InMat1 A, Triangle t, DiagonalStorage d, InMat2 B, OutMat X, BinaryDivideOp divide); template<class ExecutionPolicy, __in_matrix InMat1, class Triangle, class DiagonalStorage, __in_matrix InMat2, __out_matrix OutMat, class BinaryDivideOp> void triangular_matrix_matrix_left_solve(ExecutionPolicy&& exec, InMat1 A, Triangle t, DiagonalStorage d, InMat2 B, OutMat X, BinaryDivideOp divide); template<__in_matrix InMat1, class Triangle, class DiagonalStorage, __inout_matrix InOutMat, class BinaryDivideOp> void triangular_matrix_matrix_left_solve(InMat1 A, Triangle t, DiagonalStorage d, InOutMat B, BinaryDivideOp divide); template<class ExecutionPolicy, __in_matrix InMat1, class Triangle, class DiagonalStorage, __inout_matrix InOutMat, class BinaryDivideOp> void triangular_matrix_matrix_left_solve(ExecutionPolicy&& exec, InMat1 A, Triangle t, DiagonalStorage d, InOutMat B, BinaryDivideOp divide); template<__in_matrix InMat1, class Triangle, class DiagonalStorage, __in_matrix InMat2, __out_matrix OutMat> void triangular_matrix_matrix_left_solve(InMat1 A, Triangle t, DiagonalStorage d, InMat2 B, OutMat X); template<class ExecutionPolicy, __in_matrix InMat1, class Triangle, class DiagonalStorage, __in_matrix InMat2, __out_matrix OutMat> void triangular_matrix_matrix_left_solve(ExecutionPolicy&& exec, InMat1 A, Triangle t, DiagonalStorage d, InMat2 B, OutMat X); template<__in_matrix InMat1, class Triangle, class DiagonalStorage, __inout_matrix InOutMat> void triangular_matrix_matrix_left_solve(InMat1 A, Triangle t, DiagonalStorage d, InOutMat B); template<class ExecutionPolicy, __in_matrix InMat1, class Triangle, class DiagonalStorage, __inout_matrix InOutMat> void triangular_matrix_matrix_left_solve(ExecutionPolicy&& exec, InMat1 A, Triangle t, DiagonalStorage d, InOutMat B); // 求解多个三角形的线性系统 // 三角形矩阵在右侧 template<__in_matrix InMat1, class Triangle, class DiagonalStorage, __in_matrix InMat2, __out_matrix OutMat, class BinaryDivideOp> void triangular_matrix_matrix_right_solve(InMat1 A, Triangle t, DiagonalStorage d, InMat2 B, OutMat X, BinaryDivideOp divide); template<class ExecutionPolicy, __in_matrix InMat1, class Triangle, class DiagonalStorage, __in_matrix InMat2, __out_matrix OutMat, class BinaryDivideOp> void triangular_matrix_matrix_right_solve(ExecutionPolicy&& exec, InMat1 A, Triangle t, DiagonalStorage d, InMat2 B, OutMat X, BinaryDivideOp divide); template<__in_matrix InMat1, class Triangle, class DiagonalStorage, __inout_matrix InOutMat, class BinaryDivideOp> void triangular_matrix_matrix_right_solve(InMat1 A, Triangle t, DiagonalStorage d, InOutMat B, BinaryDivideOp divide); template<class ExecutionPolicy, __in_matrix InMat1, class Triangle, class DiagonalStorage, __inout_matrix InOutMat, class BinaryDivideOp> void triangular_matrix_matrix_right_solve(ExecutionPolicy&& exec, InMat1 A, Triangle t, DiagonalStorage d, InOutMat B, BinaryDivideOp divide)); template<__in_matrix InMat1, class Triangle, class DiagonalStorage, __in_matrix InMat2, __out_matrix OutMat> void triangular_matrix_matrix_right_solve(InMat1 A, Triangle t, DiagonalStorage d, InMat2 B, OutMat X); template<class ExecutionPolicy, __in_matrix InMat1, class Triangle, class DiagonalStorage, __in_matrix InMat2, __out_matrix OutMat> void triangular_matrix_matrix_right_solve(ExecutionPolicy&& exec, InMat1 A, Triangle t, DiagonalStorage d, InMat2 B, OutMat X); template<__in_matrix InMat1, class Triangle, class DiagonalStorage, __inout_matrix InOutMat> void triangular_matrix_matrix_right_solve(InMat1 A, Triangle t, DiagonalStorage d, InOutMat B); template<class ExecutionPolicy, __in_matrix InMat1, class Triangle, class DiagonalStorage, __inout_matrix InOutMat> void triangular_matrix_matrix_right_solve(ExecutionPolicy&& exec, InMat1 A, Triangle t, DiagonalStorage d, InOutMat B); }
标签
namespace std::linalg { struct column_major_t { explicit column_major_t() = default; }; inline constexpr column_major_t column_major = { }; struct row_major_t { explicit row_major_t() = default; }; inline constexpr row_major_t row_major = { }; struct upper_triangle_t { explicit upper_triangle_t() = default; }; inline constexpr upper_triangle_t upper_triangle = { }; struct lower_triangle_t { explicit lower_triangle_t() = default; }; inline constexpr lower_triangle_t lower_triangle = { }; struct implicit_unit_diagonal_t { explicit implicit_unit_diagonal_t() = default; }; inline constexpr implicit_unit_diagonal_t implicit_unit_diagonal = { }; struct explicit_diagonal_t { explicit explicit_diagonal_t() = default; }; inline constexpr explicit_diagonal_t explicit_diagonal = { }; }
类模板 std::linalg::layout_blas_packed
namespace std::linalg { template<class Triangle, class StorageOrder> class layout_blas_packed { public: template<class Extents> struct mapping { public: using extents_type = Extents; using index_type = typename extents_type::index_type; using size_type = typename extents_type::size_type; using rank_type = typename extents_type::rank_type; using layout_type = layout_blas_packed<Triangle, StorageOrder>; private: Extents __the_extents{}; // 仅用于阐释 public: constexpr mapping() noexcept = default; constexpr mapping(const mapping&) noexcept = default; constexpr mapping(const extents_type& e) noexcept; template<class OtherExtents> constexpr explicit(!is_convertible_v<OtherExtents, extents_type>) mapping(const mapping<OtherExtents>& other) noexcept; constexpr mapping& operator=(const mapping&) noexcept = default; constexpr extents_type extents() const noexcept { return the-extents; } constexpr size_type required_span_size() const noexcept; template<class Index0, class Index1> constexpr index_type operator() (Index0 ind0, Index1 ind1) const noexcept; static constexpr bool is_always_unique() { return (extents_type::static_extent(0) != dynamic_extent && extents_type::static_extent(0) < 2) || (extents_type::static_extent(1) != dynamic_extent && extents_type::static_extent(1) < 2); } static constexpr bool is_always_exhaustive() { return true; } static constexpr bool is_always_strided() { return is_always_unique(); } constexpr bool is_unique() const noexcept { return __the_extents.extent(0) < 2; } constexpr bool is_exhaustive() const noexcept { return true; } constexpr bool is_strided() const noexcept { return __the_extents.extent(0) < 2; } constexpr index_type stride(rank_type) const noexcept; template<class OtherExtents> friend constexpr bool operator==(const mapping&, const mapping<OtherExtents>&) noexcept; }; }; }
类模板 std::linalg::scaled_accessor
namespace std::linalg { template<class ScalingFactor, class NestedAccessor> class scaled_accessor { public: using element_type = add_const_t<decltype(declval<ScalingFactor>() * declval<NestedAccessor::element_type>())>; using reference = remove_const_t<element_type>; using data_handle_type = NestedAccessor::data_handle_type; using offset_policy = scaled_accessor<ScalingFactor, NestedAccessor::offset_policy>; constexpr scaled_accessor() = default; template<class OtherNestedAccessor> explicit(!is_convertible_v<OtherNestedAccessor, NestedAccessor>) constexpr scaled_accessor(const scaled_accessor<ScalingFactor, OtherNestedAccessor>&); constexpr scaled_accessor(const ScalingFactor& s, const Accessor& a); constexpr reference access(data_handle_type p, size_t i) const noexcept; constexpr offset_policy::data_handle_type offset(data_handle_type p, size_t i) const noexcept; constexpr const ScalingFactor& scaling_factor() const noexcept { return __scaling_factor; } constexpr const NestedAccessor& nested_accessor() const noexcept { return __nested_accessor; } private: ScalingFactor __scaling_factor; // 仅用于阐释 NestedAccessor __nested_accessor; // 仅用于阐释 }; }
类模板 std::linalg::conjugated_accessor
namespace std::linalg { template<class NestedAccessor> class conjugated_accessor { private: NestedAccessor __nested_accessor; // 仅用于阐释 public: using element_type = add_const_t<decltype(/*conj-if-needed*/(declval<NestedAccessor::element_type>()))>; using reference = remove_const_t<element_type>; using data_handle_type = typename NestedAccessor::data_handle_type; using offset_policy = conjugated_accessor<NestedAccessor::offset_policy>; constexpr conjugated_accessor() = default; template<class OtherNestedAccessor> explicit(!is_convertible_v<OtherNestedAccessor, NestedAccessor>) constexpr conjugated_accessor(const conjugated_accessor<OtherNestedAccessor>& other); constexpr reference access(data_handle_type p, size_t i) const; constexpr typename offset_policy::data_handle_type offset(data_handle_type p, size_t i) const; constexpr const NestedAccessor& nested_accessor() const noexcept { return __nested_accessor; } }; }
类模板 std::linalg::layout_transpose
namespace std::linalg { template<class InputExtents> using __transpose_extents_t = /* 见说明 */; // 仅用于阐释 template<class Layout> class layout_transpose { public: using nested_layout_type = Layout; template<class Extents> struct mapping { private: using __nested_mapping_type = typename Layout::template mapping< __transpose_extents_t<Extents>>; // 仅用于阐释 __nested_mapping_type __nested_mapping; // 仅用于阐释 extents_type __extents; // 仅用于阐释 public: using extents_type = Extents; using index_type = typename extents_type::index_type; using size_type = typename extents_type::size_type; using rank_type = typename extents_type::rank_type; using layout_type = layout_transpose; constexpr explicit mapping(const __nested_mapping_type& map); constexpr const extents_type& extents() const noexcept { return __extents; } constexpr index_type required_span_size() const { return __nested_mapping.required_span_size(); } template<class Index0, class Index1> constexpr index_type operator()(Index0 ind0, Index1 ind1) const { return __nested_mapping(ind1, ind0); } constexpr const __nested_mapping_type& nested_mapping() const noexcept { return __nested_mapping; } static constexpr bool is_always_unique() noexcept { return __nested_mapping_type::is_always_unique(); } static constexpr bool is_always_exhaustive() noexcept { return __nested_mapping_type::is_always_exhaustive(); } static constexpr bool is_always_strided() noexcept { return __nested_mapping_type::is_always_strided(); } constexpr bool is_unique() const { return __nested_mapping.is_unique(); } constexpr bool is_exhaustive() const { return __nested_mapping.is_exhaustive(); } constexpr bool is_strided() const { return __nested_mapping.is_strided(); } constexpr index_type stride(size_t r) const; template<class OtherExtents> friend constexpr bool operator==(const mapping& x, const mapping<OtherExtents>& y); }; }; }
辅助概念和特征
namespace std::linalg { template<class T> struct __is_mdspan : false_type {}; // 仅用于阐释 template<class ElementType, class Extents, class Layout, class Accessor> struct __is_mdspan<mdspan<ElementType, Extents, Layout, Accessor>> : true_type {}; // 仅用于阐释 template<class T> concept __in_vector = // 仅用于阐释 __is_mdspan<T>::value && T::rank() == 1; template<class T> concept __out_vector = // 仅用于阐释 __is_mdspan<T>::value && T::rank() == 1 && is_assignable_v<typename T::reference, typename T::element_type> && T::is_always_unique(); template<class T> concept __inout_vector = // 仅用于阐释 __is_mdspan<T>::value && T::rank() == 1 && is_assignable_v<typename T::reference, typename T::element_type> && T::is_always_unique(); template<class T> concept __in_matrix = // 仅用于阐释 __is_mdspan<T>::value && T::rank() == 2; template<class T> concept __out_matrix = // 仅用于阐释 __is_mdspan<T>::value && T::rank() == 2 && is_assignable_v<typename T::reference, typename T::element_type> && T::is_always_unique(); template<class T> concept __inout_matrix = // 仅用于阐释 __is_mdspan<T>::value && T::rank() == 2 && is_assignable_v<typename T::reference, typename T::element_type> && T::is_always_unique(); template<class T> concept __possibly_packed_inout_matrix = // 仅用于阐释 __is_mdspan<T>::value && T::rank() == 2 && is_assignable_v<typename T::reference, typename T::element_type> && (T::is_always_unique() || is_same_v<typename T::layout_type, layout_blas_packed>); template<class T> concept __in_object = // 仅用于阐释 __is_mdspan<T>::value && (T::rank() == 1 || T::rank() == 2); template<class T> concept __out_object = // 仅用于阐释 __is_mdspan<T>::value && (T::rank() == 1 || T::rank() == 2) && is_assignable_v<typename T::reference, typename T::element_type> && T::is_always_unique(); template<class T> concept __inout_object = // 仅用于阐释 __is_mdspan<T>::value && (T::rank() == 1 || T::rank() == 2) && is_assignable_v<typename T::reference, typename T::element_type> && T::is_always_unique(); }