bpf: Introduce bpf_arena.
Introduce bpf_arena, which is a sparse shared memory region between the bpf
program and user space.
Use cases:
1. User space mmap-s bpf_arena and uses it as a traditional mmap-ed
anonymous region, like memcached or any key/value storage. The bpf
program implements an in-kernel accelerator. XDP prog can search for
a key in bpf_arena and return a value without going to user space.
2. The bpf program builds arbitrary data structures in bpf_arena (hash
tables, rb-trees, sparse arrays), while user space consumes it.
3. bpf_arena is a "heap" of memory from the bpf program's point of view.
The user space may mmap it, but bpf program will not convert pointers
to user base at run-time to improve bpf program speed.
Initially, the kernel vm_area and user vma are not populated. User space
can fault in pages within the range. While servicing a page fault,
bpf_arena logic will insert a new page into the kernel and user vmas. The
bpf program can allocate pages from that region via
bpf_arena_alloc_pages(). This kernel function will insert pages into the
kernel vm_area. The subsequent fault-in from user space will populate that
page into the user vma. The BPF_F_SEGV_ON_FAULT flag at arena creation time
can be used to prevent fault-in from user space. In such a case, if a page
is not allocated by the bpf program and not present in the kernel vm_area,
the user process will segfault. This is useful for use cases 2 and 3 above.
bpf_arena_alloc_pages() is similar to user space mmap(). It allocates pages
either at a specific address within the arena or allocates a range with the
maple tree. bpf_arena_free_pages() is analogous to munmap(), which frees
pages and removes the range from the kernel vm_area and from user process
vmas.
bpf_arena can be used as a bpf program "heap" of up to 4GB. The speed of
bpf program is more important than ease of sharing with user space. This is
use case 3. In such a case, the BPF_F_NO_USER_CONV flag is recommended.
It will tell the verifier to treat the rX = bpf_arena_cast_user(rY)
instruction as a 32-bit move wX = wY, which will improve bpf prog
performance. Otherwise, bpf_arena_cast_user is translated by JIT to
conditionally add the upper 32 bits of user vm_start (if the pointer is not
NULL) to arena pointers before they are stored into memory. This way, user
space sees them as valid 64-bit pointers.
Diff https://github.com/llvm/llvm-project/pull/84410 enables LLVM BPF
backend generate the bpf_addr_space_cast() instruction to cast pointers
between address_space(1) which is reserved for bpf_arena pointers and
default address space zero. All arena pointers in a bpf program written in
C language are tagged as __attribute__((address_space(1))). Hence, clang
provides helpful diagnostics when pointers cross address space. Libbpf and
the kernel support only address_space == 1. All other address space
identifiers are reserved.
rX = bpf_addr_space_cast(rY, /* dst_as */ 1, /* src_as */ 0) tells the
verifier that rX->type = PTR_TO_ARENA. Any further operations on
PTR_TO_ARENA register have to be in the 32-bit domain. The verifier will
mark load/store through PTR_TO_ARENA with PROBE_MEM32. JIT will generate
them as kern_vm_start + 32bit_addr memory accesses. The behavior is similar
to copy_from_kernel_nofault() except that no address checks are necessary.
The address is guaranteed to be in the 4GB range. If the page is not
present, the destination register is zeroed on read, and the operation is
ignored on write.
rX = bpf_addr_space_cast(rY, 0, 1) tells the verifier that rX->type =
unknown scalar. If arena->map_flags has BPF_F_NO_USER_CONV set, then the
verifier converts such cast instructions to mov32. Otherwise, JIT will emit
native code equivalent to:
rX = (u32)rY;
if (rY)
rX |= clear_lo32_bits(arena->user_vm_start); /* replace hi32 bits in rX */
After such conversion, the pointer becomes a valid user pointer within
bpf_arena range. The user process can access data structures created in
bpf_arena without any additional computations. For example, a linked list
built by a bpf program can be walked natively by user space.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Reviewed-by: Barret Rhoden <brho@google.com>
Link: https://lore.kernel.org/bpf/20240308010812.89848-2-alexei.starovoitov@gmail.com
2024-03-07 17:07:59 -08:00
|
|
|
// SPDX-License-Identifier: GPL-2.0-only
|
|
|
|
/* Copyright (c) 2024 Meta Platforms, Inc. and affiliates. */
|
|
|
|
#include <linux/bpf.h>
|
|
|
|
#include <linux/btf.h>
|
|
|
|
#include <linux/err.h>
|
2024-11-15 09:25:48 +01:00
|
|
|
#include "linux/filter.h"
|
bpf: Introduce bpf_arena.
Introduce bpf_arena, which is a sparse shared memory region between the bpf
program and user space.
Use cases:
1. User space mmap-s bpf_arena and uses it as a traditional mmap-ed
anonymous region, like memcached or any key/value storage. The bpf
program implements an in-kernel accelerator. XDP prog can search for
a key in bpf_arena and return a value without going to user space.
2. The bpf program builds arbitrary data structures in bpf_arena (hash
tables, rb-trees, sparse arrays), while user space consumes it.
3. bpf_arena is a "heap" of memory from the bpf program's point of view.
The user space may mmap it, but bpf program will not convert pointers
to user base at run-time to improve bpf program speed.
Initially, the kernel vm_area and user vma are not populated. User space
can fault in pages within the range. While servicing a page fault,
bpf_arena logic will insert a new page into the kernel and user vmas. The
bpf program can allocate pages from that region via
bpf_arena_alloc_pages(). This kernel function will insert pages into the
kernel vm_area. The subsequent fault-in from user space will populate that
page into the user vma. The BPF_F_SEGV_ON_FAULT flag at arena creation time
can be used to prevent fault-in from user space. In such a case, if a page
is not allocated by the bpf program and not present in the kernel vm_area,
the user process will segfault. This is useful for use cases 2 and 3 above.
bpf_arena_alloc_pages() is similar to user space mmap(). It allocates pages
either at a specific address within the arena or allocates a range with the
maple tree. bpf_arena_free_pages() is analogous to munmap(), which frees
pages and removes the range from the kernel vm_area and from user process
vmas.
bpf_arena can be used as a bpf program "heap" of up to 4GB. The speed of
bpf program is more important than ease of sharing with user space. This is
use case 3. In such a case, the BPF_F_NO_USER_CONV flag is recommended.
It will tell the verifier to treat the rX = bpf_arena_cast_user(rY)
instruction as a 32-bit move wX = wY, which will improve bpf prog
performance. Otherwise, bpf_arena_cast_user is translated by JIT to
conditionally add the upper 32 bits of user vm_start (if the pointer is not
NULL) to arena pointers before they are stored into memory. This way, user
space sees them as valid 64-bit pointers.
Diff https://github.com/llvm/llvm-project/pull/84410 enables LLVM BPF
backend generate the bpf_addr_space_cast() instruction to cast pointers
between address_space(1) which is reserved for bpf_arena pointers and
default address space zero. All arena pointers in a bpf program written in
C language are tagged as __attribute__((address_space(1))). Hence, clang
provides helpful diagnostics when pointers cross address space. Libbpf and
the kernel support only address_space == 1. All other address space
identifiers are reserved.
rX = bpf_addr_space_cast(rY, /* dst_as */ 1, /* src_as */ 0) tells the
verifier that rX->type = PTR_TO_ARENA. Any further operations on
PTR_TO_ARENA register have to be in the 32-bit domain. The verifier will
mark load/store through PTR_TO_ARENA with PROBE_MEM32. JIT will generate
them as kern_vm_start + 32bit_addr memory accesses. The behavior is similar
to copy_from_kernel_nofault() except that no address checks are necessary.
The address is guaranteed to be in the 4GB range. If the page is not
present, the destination register is zeroed on read, and the operation is
ignored on write.
rX = bpf_addr_space_cast(rY, 0, 1) tells the verifier that rX->type =
unknown scalar. If arena->map_flags has BPF_F_NO_USER_CONV set, then the
verifier converts such cast instructions to mov32. Otherwise, JIT will emit
native code equivalent to:
rX = (u32)rY;
if (rY)
rX |= clear_lo32_bits(arena->user_vm_start); /* replace hi32 bits in rX */
After such conversion, the pointer becomes a valid user pointer within
bpf_arena range. The user process can access data structures created in
bpf_arena without any additional computations. For example, a linked list
built by a bpf program can be walked natively by user space.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Reviewed-by: Barret Rhoden <brho@google.com>
Link: https://lore.kernel.org/bpf/20240308010812.89848-2-alexei.starovoitov@gmail.com
2024-03-07 17:07:59 -08:00
|
|
|
#include <linux/btf_ids.h>
|
|
|
|
#include <linux/vmalloc.h>
|
|
|
|
#include <linux/pagemap.h>
|
2024-11-07 18:56:15 -08:00
|
|
|
#include "range_tree.h"
|
bpf: Introduce bpf_arena.
Introduce bpf_arena, which is a sparse shared memory region between the bpf
program and user space.
Use cases:
1. User space mmap-s bpf_arena and uses it as a traditional mmap-ed
anonymous region, like memcached or any key/value storage. The bpf
program implements an in-kernel accelerator. XDP prog can search for
a key in bpf_arena and return a value without going to user space.
2. The bpf program builds arbitrary data structures in bpf_arena (hash
tables, rb-trees, sparse arrays), while user space consumes it.
3. bpf_arena is a "heap" of memory from the bpf program's point of view.
The user space may mmap it, but bpf program will not convert pointers
to user base at run-time to improve bpf program speed.
Initially, the kernel vm_area and user vma are not populated. User space
can fault in pages within the range. While servicing a page fault,
bpf_arena logic will insert a new page into the kernel and user vmas. The
bpf program can allocate pages from that region via
bpf_arena_alloc_pages(). This kernel function will insert pages into the
kernel vm_area. The subsequent fault-in from user space will populate that
page into the user vma. The BPF_F_SEGV_ON_FAULT flag at arena creation time
can be used to prevent fault-in from user space. In such a case, if a page
is not allocated by the bpf program and not present in the kernel vm_area,
the user process will segfault. This is useful for use cases 2 and 3 above.
bpf_arena_alloc_pages() is similar to user space mmap(). It allocates pages
either at a specific address within the arena or allocates a range with the
maple tree. bpf_arena_free_pages() is analogous to munmap(), which frees
pages and removes the range from the kernel vm_area and from user process
vmas.
bpf_arena can be used as a bpf program "heap" of up to 4GB. The speed of
bpf program is more important than ease of sharing with user space. This is
use case 3. In such a case, the BPF_F_NO_USER_CONV flag is recommended.
It will tell the verifier to treat the rX = bpf_arena_cast_user(rY)
instruction as a 32-bit move wX = wY, which will improve bpf prog
performance. Otherwise, bpf_arena_cast_user is translated by JIT to
conditionally add the upper 32 bits of user vm_start (if the pointer is not
NULL) to arena pointers before they are stored into memory. This way, user
space sees them as valid 64-bit pointers.
Diff https://github.com/llvm/llvm-project/pull/84410 enables LLVM BPF
backend generate the bpf_addr_space_cast() instruction to cast pointers
between address_space(1) which is reserved for bpf_arena pointers and
default address space zero. All arena pointers in a bpf program written in
C language are tagged as __attribute__((address_space(1))). Hence, clang
provides helpful diagnostics when pointers cross address space. Libbpf and
the kernel support only address_space == 1. All other address space
identifiers are reserved.
rX = bpf_addr_space_cast(rY, /* dst_as */ 1, /* src_as */ 0) tells the
verifier that rX->type = PTR_TO_ARENA. Any further operations on
PTR_TO_ARENA register have to be in the 32-bit domain. The verifier will
mark load/store through PTR_TO_ARENA with PROBE_MEM32. JIT will generate
them as kern_vm_start + 32bit_addr memory accesses. The behavior is similar
to copy_from_kernel_nofault() except that no address checks are necessary.
The address is guaranteed to be in the 4GB range. If the page is not
present, the destination register is zeroed on read, and the operation is
ignored on write.
rX = bpf_addr_space_cast(rY, 0, 1) tells the verifier that rX->type =
unknown scalar. If arena->map_flags has BPF_F_NO_USER_CONV set, then the
verifier converts such cast instructions to mov32. Otherwise, JIT will emit
native code equivalent to:
rX = (u32)rY;
if (rY)
rX |= clear_lo32_bits(arena->user_vm_start); /* replace hi32 bits in rX */
After such conversion, the pointer becomes a valid user pointer within
bpf_arena range. The user process can access data structures created in
bpf_arena without any additional computations. For example, a linked list
built by a bpf program can be walked natively by user space.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Reviewed-by: Barret Rhoden <brho@google.com>
Link: https://lore.kernel.org/bpf/20240308010812.89848-2-alexei.starovoitov@gmail.com
2024-03-07 17:07:59 -08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* bpf_arena is a sparsely populated shared memory region between bpf program and
|
|
|
|
* user space process.
|
|
|
|
*
|
|
|
|
* For example on x86-64 the values could be:
|
|
|
|
* user_vm_start 7f7d26200000 // picked by mmap()
|
|
|
|
* kern_vm_start ffffc90001e69000 // picked by get_vm_area()
|
|
|
|
* For user space all pointers within the arena are normal 8-byte addresses.
|
|
|
|
* In this example 7f7d26200000 is the address of the first page (pgoff=0).
|
|
|
|
* The bpf program will access it as: kern_vm_start + lower_32bit_of_user_ptr
|
|
|
|
* (u32)7f7d26200000 -> 26200000
|
|
|
|
* hence
|
|
|
|
* ffffc90001e69000 + 26200000 == ffffc90028069000 is "pgoff=0" within 4Gb
|
|
|
|
* kernel memory region.
|
|
|
|
*
|
|
|
|
* BPF JITs generate the following code to access arena:
|
|
|
|
* mov eax, eax // eax has lower 32-bit of user pointer
|
|
|
|
* mov word ptr [rax + r12 + off], bx
|
|
|
|
* where r12 == kern_vm_start and off is s16.
|
|
|
|
* Hence allocate 4Gb + GUARD_SZ/2 on each side.
|
|
|
|
*
|
|
|
|
* Initially kernel vm_area and user vma are not populated.
|
|
|
|
* User space can fault-in any address which will insert the page
|
|
|
|
* into kernel and user vma.
|
|
|
|
* bpf program can allocate a page via bpf_arena_alloc_pages() kfunc
|
|
|
|
* which will insert it into kernel vm_area.
|
|
|
|
* The later fault-in from user space will populate that page into user vma.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/* number of bytes addressable by LDX/STX insn with 16-bit 'off' field */
|
2024-03-27 14:53:29 +08:00
|
|
|
#define GUARD_SZ (1ull << sizeof_field(struct bpf_insn, off) * 8)
|
2024-03-14 19:18:31 -07:00
|
|
|
#define KERN_VM_SZ (SZ_4G + GUARD_SZ)
|
bpf: Introduce bpf_arena.
Introduce bpf_arena, which is a sparse shared memory region between the bpf
program and user space.
Use cases:
1. User space mmap-s bpf_arena and uses it as a traditional mmap-ed
anonymous region, like memcached or any key/value storage. The bpf
program implements an in-kernel accelerator. XDP prog can search for
a key in bpf_arena and return a value without going to user space.
2. The bpf program builds arbitrary data structures in bpf_arena (hash
tables, rb-trees, sparse arrays), while user space consumes it.
3. bpf_arena is a "heap" of memory from the bpf program's point of view.
The user space may mmap it, but bpf program will not convert pointers
to user base at run-time to improve bpf program speed.
Initially, the kernel vm_area and user vma are not populated. User space
can fault in pages within the range. While servicing a page fault,
bpf_arena logic will insert a new page into the kernel and user vmas. The
bpf program can allocate pages from that region via
bpf_arena_alloc_pages(). This kernel function will insert pages into the
kernel vm_area. The subsequent fault-in from user space will populate that
page into the user vma. The BPF_F_SEGV_ON_FAULT flag at arena creation time
can be used to prevent fault-in from user space. In such a case, if a page
is not allocated by the bpf program and not present in the kernel vm_area,
the user process will segfault. This is useful for use cases 2 and 3 above.
bpf_arena_alloc_pages() is similar to user space mmap(). It allocates pages
either at a specific address within the arena or allocates a range with the
maple tree. bpf_arena_free_pages() is analogous to munmap(), which frees
pages and removes the range from the kernel vm_area and from user process
vmas.
bpf_arena can be used as a bpf program "heap" of up to 4GB. The speed of
bpf program is more important than ease of sharing with user space. This is
use case 3. In such a case, the BPF_F_NO_USER_CONV flag is recommended.
It will tell the verifier to treat the rX = bpf_arena_cast_user(rY)
instruction as a 32-bit move wX = wY, which will improve bpf prog
performance. Otherwise, bpf_arena_cast_user is translated by JIT to
conditionally add the upper 32 bits of user vm_start (if the pointer is not
NULL) to arena pointers before they are stored into memory. This way, user
space sees them as valid 64-bit pointers.
Diff https://github.com/llvm/llvm-project/pull/84410 enables LLVM BPF
backend generate the bpf_addr_space_cast() instruction to cast pointers
between address_space(1) which is reserved for bpf_arena pointers and
default address space zero. All arena pointers in a bpf program written in
C language are tagged as __attribute__((address_space(1))). Hence, clang
provides helpful diagnostics when pointers cross address space. Libbpf and
the kernel support only address_space == 1. All other address space
identifiers are reserved.
rX = bpf_addr_space_cast(rY, /* dst_as */ 1, /* src_as */ 0) tells the
verifier that rX->type = PTR_TO_ARENA. Any further operations on
PTR_TO_ARENA register have to be in the 32-bit domain. The verifier will
mark load/store through PTR_TO_ARENA with PROBE_MEM32. JIT will generate
them as kern_vm_start + 32bit_addr memory accesses. The behavior is similar
to copy_from_kernel_nofault() except that no address checks are necessary.
The address is guaranteed to be in the 4GB range. If the page is not
present, the destination register is zeroed on read, and the operation is
ignored on write.
rX = bpf_addr_space_cast(rY, 0, 1) tells the verifier that rX->type =
unknown scalar. If arena->map_flags has BPF_F_NO_USER_CONV set, then the
verifier converts such cast instructions to mov32. Otherwise, JIT will emit
native code equivalent to:
rX = (u32)rY;
if (rY)
rX |= clear_lo32_bits(arena->user_vm_start); /* replace hi32 bits in rX */
After such conversion, the pointer becomes a valid user pointer within
bpf_arena range. The user process can access data structures created in
bpf_arena without any additional computations. For example, a linked list
built by a bpf program can be walked natively by user space.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Reviewed-by: Barret Rhoden <brho@google.com>
Link: https://lore.kernel.org/bpf/20240308010812.89848-2-alexei.starovoitov@gmail.com
2024-03-07 17:07:59 -08:00
|
|
|
|
|
|
|
struct bpf_arena {
|
|
|
|
struct bpf_map map;
|
|
|
|
u64 user_vm_start;
|
|
|
|
u64 user_vm_end;
|
|
|
|
struct vm_struct *kern_vm;
|
2024-11-07 18:56:15 -08:00
|
|
|
struct range_tree rt;
|
bpf: Introduce bpf_arena.
Introduce bpf_arena, which is a sparse shared memory region between the bpf
program and user space.
Use cases:
1. User space mmap-s bpf_arena and uses it as a traditional mmap-ed
anonymous region, like memcached or any key/value storage. The bpf
program implements an in-kernel accelerator. XDP prog can search for
a key in bpf_arena and return a value without going to user space.
2. The bpf program builds arbitrary data structures in bpf_arena (hash
tables, rb-trees, sparse arrays), while user space consumes it.
3. bpf_arena is a "heap" of memory from the bpf program's point of view.
The user space may mmap it, but bpf program will not convert pointers
to user base at run-time to improve bpf program speed.
Initially, the kernel vm_area and user vma are not populated. User space
can fault in pages within the range. While servicing a page fault,
bpf_arena logic will insert a new page into the kernel and user vmas. The
bpf program can allocate pages from that region via
bpf_arena_alloc_pages(). This kernel function will insert pages into the
kernel vm_area. The subsequent fault-in from user space will populate that
page into the user vma. The BPF_F_SEGV_ON_FAULT flag at arena creation time
can be used to prevent fault-in from user space. In such a case, if a page
is not allocated by the bpf program and not present in the kernel vm_area,
the user process will segfault. This is useful for use cases 2 and 3 above.
bpf_arena_alloc_pages() is similar to user space mmap(). It allocates pages
either at a specific address within the arena or allocates a range with the
maple tree. bpf_arena_free_pages() is analogous to munmap(), which frees
pages and removes the range from the kernel vm_area and from user process
vmas.
bpf_arena can be used as a bpf program "heap" of up to 4GB. The speed of
bpf program is more important than ease of sharing with user space. This is
use case 3. In such a case, the BPF_F_NO_USER_CONV flag is recommended.
It will tell the verifier to treat the rX = bpf_arena_cast_user(rY)
instruction as a 32-bit move wX = wY, which will improve bpf prog
performance. Otherwise, bpf_arena_cast_user is translated by JIT to
conditionally add the upper 32 bits of user vm_start (if the pointer is not
NULL) to arena pointers before they are stored into memory. This way, user
space sees them as valid 64-bit pointers.
Diff https://github.com/llvm/llvm-project/pull/84410 enables LLVM BPF
backend generate the bpf_addr_space_cast() instruction to cast pointers
between address_space(1) which is reserved for bpf_arena pointers and
default address space zero. All arena pointers in a bpf program written in
C language are tagged as __attribute__((address_space(1))). Hence, clang
provides helpful diagnostics when pointers cross address space. Libbpf and
the kernel support only address_space == 1. All other address space
identifiers are reserved.
rX = bpf_addr_space_cast(rY, /* dst_as */ 1, /* src_as */ 0) tells the
verifier that rX->type = PTR_TO_ARENA. Any further operations on
PTR_TO_ARENA register have to be in the 32-bit domain. The verifier will
mark load/store through PTR_TO_ARENA with PROBE_MEM32. JIT will generate
them as kern_vm_start + 32bit_addr memory accesses. The behavior is similar
to copy_from_kernel_nofault() except that no address checks are necessary.
The address is guaranteed to be in the 4GB range. If the page is not
present, the destination register is zeroed on read, and the operation is
ignored on write.
rX = bpf_addr_space_cast(rY, 0, 1) tells the verifier that rX->type =
unknown scalar. If arena->map_flags has BPF_F_NO_USER_CONV set, then the
verifier converts such cast instructions to mov32. Otherwise, JIT will emit
native code equivalent to:
rX = (u32)rY;
if (rY)
rX |= clear_lo32_bits(arena->user_vm_start); /* replace hi32 bits in rX */
After such conversion, the pointer becomes a valid user pointer within
bpf_arena range. The user process can access data structures created in
bpf_arena without any additional computations. For example, a linked list
built by a bpf program can be walked natively by user space.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Reviewed-by: Barret Rhoden <brho@google.com>
Link: https://lore.kernel.org/bpf/20240308010812.89848-2-alexei.starovoitov@gmail.com
2024-03-07 17:07:59 -08:00
|
|
|
struct list_head vma_list;
|
|
|
|
struct mutex lock;
|
|
|
|
};
|
|
|
|
|
|
|
|
u64 bpf_arena_get_kern_vm_start(struct bpf_arena *arena)
|
|
|
|
{
|
|
|
|
return arena ? (u64) (long) arena->kern_vm->addr + GUARD_SZ / 2 : 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
u64 bpf_arena_get_user_vm_start(struct bpf_arena *arena)
|
|
|
|
{
|
|
|
|
return arena ? arena->user_vm_start : 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static long arena_map_peek_elem(struct bpf_map *map, void *value)
|
|
|
|
{
|
|
|
|
return -EOPNOTSUPP;
|
|
|
|
}
|
|
|
|
|
|
|
|
static long arena_map_push_elem(struct bpf_map *map, void *value, u64 flags)
|
|
|
|
{
|
|
|
|
return -EOPNOTSUPP;
|
|
|
|
}
|
|
|
|
|
|
|
|
static long arena_map_pop_elem(struct bpf_map *map, void *value)
|
|
|
|
{
|
|
|
|
return -EOPNOTSUPP;
|
|
|
|
}
|
|
|
|
|
|
|
|
static long arena_map_delete_elem(struct bpf_map *map, void *value)
|
|
|
|
{
|
|
|
|
return -EOPNOTSUPP;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int arena_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
|
|
|
|
{
|
|
|
|
return -EOPNOTSUPP;
|
|
|
|
}
|
|
|
|
|
|
|
|
static long compute_pgoff(struct bpf_arena *arena, long uaddr)
|
|
|
|
{
|
|
|
|
return (u32)(uaddr - (u32)arena->user_vm_start) >> PAGE_SHIFT;
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct bpf_map *arena_map_alloc(union bpf_attr *attr)
|
|
|
|
{
|
|
|
|
struct vm_struct *kern_vm;
|
|
|
|
int numa_node = bpf_map_attr_numa_node(attr);
|
|
|
|
struct bpf_arena *arena;
|
|
|
|
u64 vm_range;
|
|
|
|
int err = -ENOMEM;
|
|
|
|
|
2024-11-15 09:25:48 +01:00
|
|
|
if (!bpf_jit_supports_arena())
|
|
|
|
return ERR_PTR(-EOPNOTSUPP);
|
|
|
|
|
bpf: Introduce bpf_arena.
Introduce bpf_arena, which is a sparse shared memory region between the bpf
program and user space.
Use cases:
1. User space mmap-s bpf_arena and uses it as a traditional mmap-ed
anonymous region, like memcached or any key/value storage. The bpf
program implements an in-kernel accelerator. XDP prog can search for
a key in bpf_arena and return a value without going to user space.
2. The bpf program builds arbitrary data structures in bpf_arena (hash
tables, rb-trees, sparse arrays), while user space consumes it.
3. bpf_arena is a "heap" of memory from the bpf program's point of view.
The user space may mmap it, but bpf program will not convert pointers
to user base at run-time to improve bpf program speed.
Initially, the kernel vm_area and user vma are not populated. User space
can fault in pages within the range. While servicing a page fault,
bpf_arena logic will insert a new page into the kernel and user vmas. The
bpf program can allocate pages from that region via
bpf_arena_alloc_pages(). This kernel function will insert pages into the
kernel vm_area. The subsequent fault-in from user space will populate that
page into the user vma. The BPF_F_SEGV_ON_FAULT flag at arena creation time
can be used to prevent fault-in from user space. In such a case, if a page
is not allocated by the bpf program and not present in the kernel vm_area,
the user process will segfault. This is useful for use cases 2 and 3 above.
bpf_arena_alloc_pages() is similar to user space mmap(). It allocates pages
either at a specific address within the arena or allocates a range with the
maple tree. bpf_arena_free_pages() is analogous to munmap(), which frees
pages and removes the range from the kernel vm_area and from user process
vmas.
bpf_arena can be used as a bpf program "heap" of up to 4GB. The speed of
bpf program is more important than ease of sharing with user space. This is
use case 3. In such a case, the BPF_F_NO_USER_CONV flag is recommended.
It will tell the verifier to treat the rX = bpf_arena_cast_user(rY)
instruction as a 32-bit move wX = wY, which will improve bpf prog
performance. Otherwise, bpf_arena_cast_user is translated by JIT to
conditionally add the upper 32 bits of user vm_start (if the pointer is not
NULL) to arena pointers before they are stored into memory. This way, user
space sees them as valid 64-bit pointers.
Diff https://github.com/llvm/llvm-project/pull/84410 enables LLVM BPF
backend generate the bpf_addr_space_cast() instruction to cast pointers
between address_space(1) which is reserved for bpf_arena pointers and
default address space zero. All arena pointers in a bpf program written in
C language are tagged as __attribute__((address_space(1))). Hence, clang
provides helpful diagnostics when pointers cross address space. Libbpf and
the kernel support only address_space == 1. All other address space
identifiers are reserved.
rX = bpf_addr_space_cast(rY, /* dst_as */ 1, /* src_as */ 0) tells the
verifier that rX->type = PTR_TO_ARENA. Any further operations on
PTR_TO_ARENA register have to be in the 32-bit domain. The verifier will
mark load/store through PTR_TO_ARENA with PROBE_MEM32. JIT will generate
them as kern_vm_start + 32bit_addr memory accesses. The behavior is similar
to copy_from_kernel_nofault() except that no address checks are necessary.
The address is guaranteed to be in the 4GB range. If the page is not
present, the destination register is zeroed on read, and the operation is
ignored on write.
rX = bpf_addr_space_cast(rY, 0, 1) tells the verifier that rX->type =
unknown scalar. If arena->map_flags has BPF_F_NO_USER_CONV set, then the
verifier converts such cast instructions to mov32. Otherwise, JIT will emit
native code equivalent to:
rX = (u32)rY;
if (rY)
rX |= clear_lo32_bits(arena->user_vm_start); /* replace hi32 bits in rX */
After such conversion, the pointer becomes a valid user pointer within
bpf_arena range. The user process can access data structures created in
bpf_arena without any additional computations. For example, a linked list
built by a bpf program can be walked natively by user space.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Reviewed-by: Barret Rhoden <brho@google.com>
Link: https://lore.kernel.org/bpf/20240308010812.89848-2-alexei.starovoitov@gmail.com
2024-03-07 17:07:59 -08:00
|
|
|
if (attr->key_size || attr->value_size || attr->max_entries == 0 ||
|
|
|
|
/* BPF_F_MMAPABLE must be set */
|
|
|
|
!(attr->map_flags & BPF_F_MMAPABLE) ||
|
|
|
|
/* No unsupported flags present */
|
|
|
|
(attr->map_flags & ~(BPF_F_SEGV_ON_FAULT | BPF_F_MMAPABLE | BPF_F_NO_USER_CONV)))
|
|
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
|
|
|
|
if (attr->map_extra & ~PAGE_MASK)
|
|
|
|
/* If non-zero the map_extra is an expected user VMA start address */
|
|
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
|
|
|
|
vm_range = (u64)attr->max_entries * PAGE_SIZE;
|
2024-03-14 19:18:31 -07:00
|
|
|
if (vm_range > SZ_4G)
|
bpf: Introduce bpf_arena.
Introduce bpf_arena, which is a sparse shared memory region between the bpf
program and user space.
Use cases:
1. User space mmap-s bpf_arena and uses it as a traditional mmap-ed
anonymous region, like memcached or any key/value storage. The bpf
program implements an in-kernel accelerator. XDP prog can search for
a key in bpf_arena and return a value without going to user space.
2. The bpf program builds arbitrary data structures in bpf_arena (hash
tables, rb-trees, sparse arrays), while user space consumes it.
3. bpf_arena is a "heap" of memory from the bpf program's point of view.
The user space may mmap it, but bpf program will not convert pointers
to user base at run-time to improve bpf program speed.
Initially, the kernel vm_area and user vma are not populated. User space
can fault in pages within the range. While servicing a page fault,
bpf_arena logic will insert a new page into the kernel and user vmas. The
bpf program can allocate pages from that region via
bpf_arena_alloc_pages(). This kernel function will insert pages into the
kernel vm_area. The subsequent fault-in from user space will populate that
page into the user vma. The BPF_F_SEGV_ON_FAULT flag at arena creation time
can be used to prevent fault-in from user space. In such a case, if a page
is not allocated by the bpf program and not present in the kernel vm_area,
the user process will segfault. This is useful for use cases 2 and 3 above.
bpf_arena_alloc_pages() is similar to user space mmap(). It allocates pages
either at a specific address within the arena or allocates a range with the
maple tree. bpf_arena_free_pages() is analogous to munmap(), which frees
pages and removes the range from the kernel vm_area and from user process
vmas.
bpf_arena can be used as a bpf program "heap" of up to 4GB. The speed of
bpf program is more important than ease of sharing with user space. This is
use case 3. In such a case, the BPF_F_NO_USER_CONV flag is recommended.
It will tell the verifier to treat the rX = bpf_arena_cast_user(rY)
instruction as a 32-bit move wX = wY, which will improve bpf prog
performance. Otherwise, bpf_arena_cast_user is translated by JIT to
conditionally add the upper 32 bits of user vm_start (if the pointer is not
NULL) to arena pointers before they are stored into memory. This way, user
space sees them as valid 64-bit pointers.
Diff https://github.com/llvm/llvm-project/pull/84410 enables LLVM BPF
backend generate the bpf_addr_space_cast() instruction to cast pointers
between address_space(1) which is reserved for bpf_arena pointers and
default address space zero. All arena pointers in a bpf program written in
C language are tagged as __attribute__((address_space(1))). Hence, clang
provides helpful diagnostics when pointers cross address space. Libbpf and
the kernel support only address_space == 1. All other address space
identifiers are reserved.
rX = bpf_addr_space_cast(rY, /* dst_as */ 1, /* src_as */ 0) tells the
verifier that rX->type = PTR_TO_ARENA. Any further operations on
PTR_TO_ARENA register have to be in the 32-bit domain. The verifier will
mark load/store through PTR_TO_ARENA with PROBE_MEM32. JIT will generate
them as kern_vm_start + 32bit_addr memory accesses. The behavior is similar
to copy_from_kernel_nofault() except that no address checks are necessary.
The address is guaranteed to be in the 4GB range. If the page is not
present, the destination register is zeroed on read, and the operation is
ignored on write.
rX = bpf_addr_space_cast(rY, 0, 1) tells the verifier that rX->type =
unknown scalar. If arena->map_flags has BPF_F_NO_USER_CONV set, then the
verifier converts such cast instructions to mov32. Otherwise, JIT will emit
native code equivalent to:
rX = (u32)rY;
if (rY)
rX |= clear_lo32_bits(arena->user_vm_start); /* replace hi32 bits in rX */
After such conversion, the pointer becomes a valid user pointer within
bpf_arena range. The user process can access data structures created in
bpf_arena without any additional computations. For example, a linked list
built by a bpf program can be walked natively by user space.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Reviewed-by: Barret Rhoden <brho@google.com>
Link: https://lore.kernel.org/bpf/20240308010812.89848-2-alexei.starovoitov@gmail.com
2024-03-07 17:07:59 -08:00
|
|
|
return ERR_PTR(-E2BIG);
|
|
|
|
|
|
|
|
if ((attr->map_extra >> 32) != ((attr->map_extra + vm_range - 1) >> 32))
|
|
|
|
/* user vma must not cross 32-bit boundary */
|
|
|
|
return ERR_PTR(-ERANGE);
|
|
|
|
|
|
|
|
kern_vm = get_vm_area(KERN_VM_SZ, VM_SPARSE | VM_USERMAP);
|
|
|
|
if (!kern_vm)
|
|
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
|
|
|
|
arena = bpf_map_area_alloc(sizeof(*arena), numa_node);
|
|
|
|
if (!arena)
|
|
|
|
goto err;
|
|
|
|
|
|
|
|
arena->kern_vm = kern_vm;
|
|
|
|
arena->user_vm_start = attr->map_extra;
|
|
|
|
if (arena->user_vm_start)
|
|
|
|
arena->user_vm_end = arena->user_vm_start + vm_range;
|
|
|
|
|
|
|
|
INIT_LIST_HEAD(&arena->vma_list);
|
|
|
|
bpf_map_init_from_attr(&arena->map, attr);
|
2024-11-07 18:56:15 -08:00
|
|
|
range_tree_init(&arena->rt);
|
2025-01-07 08:15:35 +09:00
|
|
|
err = range_tree_set(&arena->rt, 0, attr->max_entries);
|
|
|
|
if (err) {
|
|
|
|
bpf_map_area_free(arena);
|
|
|
|
goto err;
|
|
|
|
}
|
bpf: Introduce bpf_arena.
Introduce bpf_arena, which is a sparse shared memory region between the bpf
program and user space.
Use cases:
1. User space mmap-s bpf_arena and uses it as a traditional mmap-ed
anonymous region, like memcached or any key/value storage. The bpf
program implements an in-kernel accelerator. XDP prog can search for
a key in bpf_arena and return a value without going to user space.
2. The bpf program builds arbitrary data structures in bpf_arena (hash
tables, rb-trees, sparse arrays), while user space consumes it.
3. bpf_arena is a "heap" of memory from the bpf program's point of view.
The user space may mmap it, but bpf program will not convert pointers
to user base at run-time to improve bpf program speed.
Initially, the kernel vm_area and user vma are not populated. User space
can fault in pages within the range. While servicing a page fault,
bpf_arena logic will insert a new page into the kernel and user vmas. The
bpf program can allocate pages from that region via
bpf_arena_alloc_pages(). This kernel function will insert pages into the
kernel vm_area. The subsequent fault-in from user space will populate that
page into the user vma. The BPF_F_SEGV_ON_FAULT flag at arena creation time
can be used to prevent fault-in from user space. In such a case, if a page
is not allocated by the bpf program and not present in the kernel vm_area,
the user process will segfault. This is useful for use cases 2 and 3 above.
bpf_arena_alloc_pages() is similar to user space mmap(). It allocates pages
either at a specific address within the arena or allocates a range with the
maple tree. bpf_arena_free_pages() is analogous to munmap(), which frees
pages and removes the range from the kernel vm_area and from user process
vmas.
bpf_arena can be used as a bpf program "heap" of up to 4GB. The speed of
bpf program is more important than ease of sharing with user space. This is
use case 3. In such a case, the BPF_F_NO_USER_CONV flag is recommended.
It will tell the verifier to treat the rX = bpf_arena_cast_user(rY)
instruction as a 32-bit move wX = wY, which will improve bpf prog
performance. Otherwise, bpf_arena_cast_user is translated by JIT to
conditionally add the upper 32 bits of user vm_start (if the pointer is not
NULL) to arena pointers before they are stored into memory. This way, user
space sees them as valid 64-bit pointers.
Diff https://github.com/llvm/llvm-project/pull/84410 enables LLVM BPF
backend generate the bpf_addr_space_cast() instruction to cast pointers
between address_space(1) which is reserved for bpf_arena pointers and
default address space zero. All arena pointers in a bpf program written in
C language are tagged as __attribute__((address_space(1))). Hence, clang
provides helpful diagnostics when pointers cross address space. Libbpf and
the kernel support only address_space == 1. All other address space
identifiers are reserved.
rX = bpf_addr_space_cast(rY, /* dst_as */ 1, /* src_as */ 0) tells the
verifier that rX->type = PTR_TO_ARENA. Any further operations on
PTR_TO_ARENA register have to be in the 32-bit domain. The verifier will
mark load/store through PTR_TO_ARENA with PROBE_MEM32. JIT will generate
them as kern_vm_start + 32bit_addr memory accesses. The behavior is similar
to copy_from_kernel_nofault() except that no address checks are necessary.
The address is guaranteed to be in the 4GB range. If the page is not
present, the destination register is zeroed on read, and the operation is
ignored on write.
rX = bpf_addr_space_cast(rY, 0, 1) tells the verifier that rX->type =
unknown scalar. If arena->map_flags has BPF_F_NO_USER_CONV set, then the
verifier converts such cast instructions to mov32. Otherwise, JIT will emit
native code equivalent to:
rX = (u32)rY;
if (rY)
rX |= clear_lo32_bits(arena->user_vm_start); /* replace hi32 bits in rX */
After such conversion, the pointer becomes a valid user pointer within
bpf_arena range. The user process can access data structures created in
bpf_arena without any additional computations. For example, a linked list
built by a bpf program can be walked natively by user space.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Reviewed-by: Barret Rhoden <brho@google.com>
Link: https://lore.kernel.org/bpf/20240308010812.89848-2-alexei.starovoitov@gmail.com
2024-03-07 17:07:59 -08:00
|
|
|
mutex_init(&arena->lock);
|
|
|
|
|
|
|
|
return &arena->map;
|
|
|
|
err:
|
|
|
|
free_vm_area(kern_vm);
|
|
|
|
return ERR_PTR(err);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int existing_page_cb(pte_t *ptep, unsigned long addr, void *data)
|
|
|
|
{
|
|
|
|
struct page *page;
|
|
|
|
pte_t pte;
|
|
|
|
|
|
|
|
pte = ptep_get(ptep);
|
|
|
|
if (!pte_present(pte)) /* sanity check */
|
|
|
|
return 0;
|
|
|
|
page = pte_page(pte);
|
|
|
|
/*
|
|
|
|
* We do not update pte here:
|
|
|
|
* 1. Nobody should be accessing bpf_arena's range outside of a kernel bug
|
|
|
|
* 2. TLB flushing is batched or deferred. Even if we clear pte,
|
|
|
|
* the TLB entries can stick around and continue to permit access to
|
|
|
|
* the freed page. So it all relies on 1.
|
|
|
|
*/
|
|
|
|
__free_page(page);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void arena_map_free(struct bpf_map *map)
|
|
|
|
{
|
|
|
|
struct bpf_arena *arena = container_of(map, struct bpf_arena, map);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Check that user vma-s are not around when bpf map is freed.
|
|
|
|
* mmap() holds vm_file which holds bpf_map refcnt.
|
|
|
|
* munmap() must have happened on vma followed by arena_vm_close()
|
|
|
|
* which would clear arena->vma_list.
|
|
|
|
*/
|
|
|
|
if (WARN_ON_ONCE(!list_empty(&arena->vma_list)))
|
|
|
|
return;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* free_vm_area() calls remove_vm_area() that calls free_unmap_vmap_area().
|
|
|
|
* It unmaps everything from vmalloc area and clears pgtables.
|
|
|
|
* Call apply_to_existing_page_range() first to find populated ptes and
|
|
|
|
* free those pages.
|
|
|
|
*/
|
|
|
|
apply_to_existing_page_range(&init_mm, bpf_arena_get_kern_vm_start(arena),
|
|
|
|
KERN_VM_SZ - GUARD_SZ, existing_page_cb, NULL);
|
|
|
|
free_vm_area(arena->kern_vm);
|
2024-11-07 18:56:15 -08:00
|
|
|
range_tree_destroy(&arena->rt);
|
bpf: Introduce bpf_arena.
Introduce bpf_arena, which is a sparse shared memory region between the bpf
program and user space.
Use cases:
1. User space mmap-s bpf_arena and uses it as a traditional mmap-ed
anonymous region, like memcached or any key/value storage. The bpf
program implements an in-kernel accelerator. XDP prog can search for
a key in bpf_arena and return a value without going to user space.
2. The bpf program builds arbitrary data structures in bpf_arena (hash
tables, rb-trees, sparse arrays), while user space consumes it.
3. bpf_arena is a "heap" of memory from the bpf program's point of view.
The user space may mmap it, but bpf program will not convert pointers
to user base at run-time to improve bpf program speed.
Initially, the kernel vm_area and user vma are not populated. User space
can fault in pages within the range. While servicing a page fault,
bpf_arena logic will insert a new page into the kernel and user vmas. The
bpf program can allocate pages from that region via
bpf_arena_alloc_pages(). This kernel function will insert pages into the
kernel vm_area. The subsequent fault-in from user space will populate that
page into the user vma. The BPF_F_SEGV_ON_FAULT flag at arena creation time
can be used to prevent fault-in from user space. In such a case, if a page
is not allocated by the bpf program and not present in the kernel vm_area,
the user process will segfault. This is useful for use cases 2 and 3 above.
bpf_arena_alloc_pages() is similar to user space mmap(). It allocates pages
either at a specific address within the arena or allocates a range with the
maple tree. bpf_arena_free_pages() is analogous to munmap(), which frees
pages and removes the range from the kernel vm_area and from user process
vmas.
bpf_arena can be used as a bpf program "heap" of up to 4GB. The speed of
bpf program is more important than ease of sharing with user space. This is
use case 3. In such a case, the BPF_F_NO_USER_CONV flag is recommended.
It will tell the verifier to treat the rX = bpf_arena_cast_user(rY)
instruction as a 32-bit move wX = wY, which will improve bpf prog
performance. Otherwise, bpf_arena_cast_user is translated by JIT to
conditionally add the upper 32 bits of user vm_start (if the pointer is not
NULL) to arena pointers before they are stored into memory. This way, user
space sees them as valid 64-bit pointers.
Diff https://github.com/llvm/llvm-project/pull/84410 enables LLVM BPF
backend generate the bpf_addr_space_cast() instruction to cast pointers
between address_space(1) which is reserved for bpf_arena pointers and
default address space zero. All arena pointers in a bpf program written in
C language are tagged as __attribute__((address_space(1))). Hence, clang
provides helpful diagnostics when pointers cross address space. Libbpf and
the kernel support only address_space == 1. All other address space
identifiers are reserved.
rX = bpf_addr_space_cast(rY, /* dst_as */ 1, /* src_as */ 0) tells the
verifier that rX->type = PTR_TO_ARENA. Any further operations on
PTR_TO_ARENA register have to be in the 32-bit domain. The verifier will
mark load/store through PTR_TO_ARENA with PROBE_MEM32. JIT will generate
them as kern_vm_start + 32bit_addr memory accesses. The behavior is similar
to copy_from_kernel_nofault() except that no address checks are necessary.
The address is guaranteed to be in the 4GB range. If the page is not
present, the destination register is zeroed on read, and the operation is
ignored on write.
rX = bpf_addr_space_cast(rY, 0, 1) tells the verifier that rX->type =
unknown scalar. If arena->map_flags has BPF_F_NO_USER_CONV set, then the
verifier converts such cast instructions to mov32. Otherwise, JIT will emit
native code equivalent to:
rX = (u32)rY;
if (rY)
rX |= clear_lo32_bits(arena->user_vm_start); /* replace hi32 bits in rX */
After such conversion, the pointer becomes a valid user pointer within
bpf_arena range. The user process can access data structures created in
bpf_arena without any additional computations. For example, a linked list
built by a bpf program can be walked natively by user space.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Reviewed-by: Barret Rhoden <brho@google.com>
Link: https://lore.kernel.org/bpf/20240308010812.89848-2-alexei.starovoitov@gmail.com
2024-03-07 17:07:59 -08:00
|
|
|
bpf_map_area_free(arena);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void *arena_map_lookup_elem(struct bpf_map *map, void *key)
|
|
|
|
{
|
|
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
}
|
|
|
|
|
|
|
|
static long arena_map_update_elem(struct bpf_map *map, void *key,
|
|
|
|
void *value, u64 flags)
|
|
|
|
{
|
|
|
|
return -EOPNOTSUPP;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int arena_map_check_btf(const struct bpf_map *map, const struct btf *btf,
|
|
|
|
const struct btf_type *key_type, const struct btf_type *value_type)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static u64 arena_map_mem_usage(const struct bpf_map *map)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
struct vma_list {
|
|
|
|
struct vm_area_struct *vma;
|
|
|
|
struct list_head head;
|
2024-12-30 15:16:55 +08:00
|
|
|
refcount_t mmap_count;
|
bpf: Introduce bpf_arena.
Introduce bpf_arena, which is a sparse shared memory region between the bpf
program and user space.
Use cases:
1. User space mmap-s bpf_arena and uses it as a traditional mmap-ed
anonymous region, like memcached or any key/value storage. The bpf
program implements an in-kernel accelerator. XDP prog can search for
a key in bpf_arena and return a value without going to user space.
2. The bpf program builds arbitrary data structures in bpf_arena (hash
tables, rb-trees, sparse arrays), while user space consumes it.
3. bpf_arena is a "heap" of memory from the bpf program's point of view.
The user space may mmap it, but bpf program will not convert pointers
to user base at run-time to improve bpf program speed.
Initially, the kernel vm_area and user vma are not populated. User space
can fault in pages within the range. While servicing a page fault,
bpf_arena logic will insert a new page into the kernel and user vmas. The
bpf program can allocate pages from that region via
bpf_arena_alloc_pages(). This kernel function will insert pages into the
kernel vm_area. The subsequent fault-in from user space will populate that
page into the user vma. The BPF_F_SEGV_ON_FAULT flag at arena creation time
can be used to prevent fault-in from user space. In such a case, if a page
is not allocated by the bpf program and not present in the kernel vm_area,
the user process will segfault. This is useful for use cases 2 and 3 above.
bpf_arena_alloc_pages() is similar to user space mmap(). It allocates pages
either at a specific address within the arena or allocates a range with the
maple tree. bpf_arena_free_pages() is analogous to munmap(), which frees
pages and removes the range from the kernel vm_area and from user process
vmas.
bpf_arena can be used as a bpf program "heap" of up to 4GB. The speed of
bpf program is more important than ease of sharing with user space. This is
use case 3. In such a case, the BPF_F_NO_USER_CONV flag is recommended.
It will tell the verifier to treat the rX = bpf_arena_cast_user(rY)
instruction as a 32-bit move wX = wY, which will improve bpf prog
performance. Otherwise, bpf_arena_cast_user is translated by JIT to
conditionally add the upper 32 bits of user vm_start (if the pointer is not
NULL) to arena pointers before they are stored into memory. This way, user
space sees them as valid 64-bit pointers.
Diff https://github.com/llvm/llvm-project/pull/84410 enables LLVM BPF
backend generate the bpf_addr_space_cast() instruction to cast pointers
between address_space(1) which is reserved for bpf_arena pointers and
default address space zero. All arena pointers in a bpf program written in
C language are tagged as __attribute__((address_space(1))). Hence, clang
provides helpful diagnostics when pointers cross address space. Libbpf and
the kernel support only address_space == 1. All other address space
identifiers are reserved.
rX = bpf_addr_space_cast(rY, /* dst_as */ 1, /* src_as */ 0) tells the
verifier that rX->type = PTR_TO_ARENA. Any further operations on
PTR_TO_ARENA register have to be in the 32-bit domain. The verifier will
mark load/store through PTR_TO_ARENA with PROBE_MEM32. JIT will generate
them as kern_vm_start + 32bit_addr memory accesses. The behavior is similar
to copy_from_kernel_nofault() except that no address checks are necessary.
The address is guaranteed to be in the 4GB range. If the page is not
present, the destination register is zeroed on read, and the operation is
ignored on write.
rX = bpf_addr_space_cast(rY, 0, 1) tells the verifier that rX->type =
unknown scalar. If arena->map_flags has BPF_F_NO_USER_CONV set, then the
verifier converts such cast instructions to mov32. Otherwise, JIT will emit
native code equivalent to:
rX = (u32)rY;
if (rY)
rX |= clear_lo32_bits(arena->user_vm_start); /* replace hi32 bits in rX */
After such conversion, the pointer becomes a valid user pointer within
bpf_arena range. The user process can access data structures created in
bpf_arena without any additional computations. For example, a linked list
built by a bpf program can be walked natively by user space.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Reviewed-by: Barret Rhoden <brho@google.com>
Link: https://lore.kernel.org/bpf/20240308010812.89848-2-alexei.starovoitov@gmail.com
2024-03-07 17:07:59 -08:00
|
|
|
};
|
|
|
|
|
|
|
|
static int remember_vma(struct bpf_arena *arena, struct vm_area_struct *vma)
|
|
|
|
{
|
|
|
|
struct vma_list *vml;
|
|
|
|
|
|
|
|
vml = kmalloc(sizeof(*vml), GFP_KERNEL);
|
|
|
|
if (!vml)
|
|
|
|
return -ENOMEM;
|
2024-12-30 15:16:55 +08:00
|
|
|
refcount_set(&vml->mmap_count, 1);
|
bpf: Introduce bpf_arena.
Introduce bpf_arena, which is a sparse shared memory region between the bpf
program and user space.
Use cases:
1. User space mmap-s bpf_arena and uses it as a traditional mmap-ed
anonymous region, like memcached or any key/value storage. The bpf
program implements an in-kernel accelerator. XDP prog can search for
a key in bpf_arena and return a value without going to user space.
2. The bpf program builds arbitrary data structures in bpf_arena (hash
tables, rb-trees, sparse arrays), while user space consumes it.
3. bpf_arena is a "heap" of memory from the bpf program's point of view.
The user space may mmap it, but bpf program will not convert pointers
to user base at run-time to improve bpf program speed.
Initially, the kernel vm_area and user vma are not populated. User space
can fault in pages within the range. While servicing a page fault,
bpf_arena logic will insert a new page into the kernel and user vmas. The
bpf program can allocate pages from that region via
bpf_arena_alloc_pages(). This kernel function will insert pages into the
kernel vm_area. The subsequent fault-in from user space will populate that
page into the user vma. The BPF_F_SEGV_ON_FAULT flag at arena creation time
can be used to prevent fault-in from user space. In such a case, if a page
is not allocated by the bpf program and not present in the kernel vm_area,
the user process will segfault. This is useful for use cases 2 and 3 above.
bpf_arena_alloc_pages() is similar to user space mmap(). It allocates pages
either at a specific address within the arena or allocates a range with the
maple tree. bpf_arena_free_pages() is analogous to munmap(), which frees
pages and removes the range from the kernel vm_area and from user process
vmas.
bpf_arena can be used as a bpf program "heap" of up to 4GB. The speed of
bpf program is more important than ease of sharing with user space. This is
use case 3. In such a case, the BPF_F_NO_USER_CONV flag is recommended.
It will tell the verifier to treat the rX = bpf_arena_cast_user(rY)
instruction as a 32-bit move wX = wY, which will improve bpf prog
performance. Otherwise, bpf_arena_cast_user is translated by JIT to
conditionally add the upper 32 bits of user vm_start (if the pointer is not
NULL) to arena pointers before they are stored into memory. This way, user
space sees them as valid 64-bit pointers.
Diff https://github.com/llvm/llvm-project/pull/84410 enables LLVM BPF
backend generate the bpf_addr_space_cast() instruction to cast pointers
between address_space(1) which is reserved for bpf_arena pointers and
default address space zero. All arena pointers in a bpf program written in
C language are tagged as __attribute__((address_space(1))). Hence, clang
provides helpful diagnostics when pointers cross address space. Libbpf and
the kernel support only address_space == 1. All other address space
identifiers are reserved.
rX = bpf_addr_space_cast(rY, /* dst_as */ 1, /* src_as */ 0) tells the
verifier that rX->type = PTR_TO_ARENA. Any further operations on
PTR_TO_ARENA register have to be in the 32-bit domain. The verifier will
mark load/store through PTR_TO_ARENA with PROBE_MEM32. JIT will generate
them as kern_vm_start + 32bit_addr memory accesses. The behavior is similar
to copy_from_kernel_nofault() except that no address checks are necessary.
The address is guaranteed to be in the 4GB range. If the page is not
present, the destination register is zeroed on read, and the operation is
ignored on write.
rX = bpf_addr_space_cast(rY, 0, 1) tells the verifier that rX->type =
unknown scalar. If arena->map_flags has BPF_F_NO_USER_CONV set, then the
verifier converts such cast instructions to mov32. Otherwise, JIT will emit
native code equivalent to:
rX = (u32)rY;
if (rY)
rX |= clear_lo32_bits(arena->user_vm_start); /* replace hi32 bits in rX */
After such conversion, the pointer becomes a valid user pointer within
bpf_arena range. The user process can access data structures created in
bpf_arena without any additional computations. For example, a linked list
built by a bpf program can be walked natively by user space.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Reviewed-by: Barret Rhoden <brho@google.com>
Link: https://lore.kernel.org/bpf/20240308010812.89848-2-alexei.starovoitov@gmail.com
2024-03-07 17:07:59 -08:00
|
|
|
vma->vm_private_data = vml;
|
|
|
|
vml->vma = vma;
|
|
|
|
list_add(&vml->head, &arena->vma_list);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2024-06-17 10:18:12 -07:00
|
|
|
static void arena_vm_open(struct vm_area_struct *vma)
|
|
|
|
{
|
|
|
|
struct vma_list *vml = vma->vm_private_data;
|
|
|
|
|
2024-12-30 15:16:55 +08:00
|
|
|
refcount_inc(&vml->mmap_count);
|
2024-06-17 10:18:12 -07:00
|
|
|
}
|
|
|
|
|
bpf: Introduce bpf_arena.
Introduce bpf_arena, which is a sparse shared memory region between the bpf
program and user space.
Use cases:
1. User space mmap-s bpf_arena and uses it as a traditional mmap-ed
anonymous region, like memcached or any key/value storage. The bpf
program implements an in-kernel accelerator. XDP prog can search for
a key in bpf_arena and return a value without going to user space.
2. The bpf program builds arbitrary data structures in bpf_arena (hash
tables, rb-trees, sparse arrays), while user space consumes it.
3. bpf_arena is a "heap" of memory from the bpf program's point of view.
The user space may mmap it, but bpf program will not convert pointers
to user base at run-time to improve bpf program speed.
Initially, the kernel vm_area and user vma are not populated. User space
can fault in pages within the range. While servicing a page fault,
bpf_arena logic will insert a new page into the kernel and user vmas. The
bpf program can allocate pages from that region via
bpf_arena_alloc_pages(). This kernel function will insert pages into the
kernel vm_area. The subsequent fault-in from user space will populate that
page into the user vma. The BPF_F_SEGV_ON_FAULT flag at arena creation time
can be used to prevent fault-in from user space. In such a case, if a page
is not allocated by the bpf program and not present in the kernel vm_area,
the user process will segfault. This is useful for use cases 2 and 3 above.
bpf_arena_alloc_pages() is similar to user space mmap(). It allocates pages
either at a specific address within the arena or allocates a range with the
maple tree. bpf_arena_free_pages() is analogous to munmap(), which frees
pages and removes the range from the kernel vm_area and from user process
vmas.
bpf_arena can be used as a bpf program "heap" of up to 4GB. The speed of
bpf program is more important than ease of sharing with user space. This is
use case 3. In such a case, the BPF_F_NO_USER_CONV flag is recommended.
It will tell the verifier to treat the rX = bpf_arena_cast_user(rY)
instruction as a 32-bit move wX = wY, which will improve bpf prog
performance. Otherwise, bpf_arena_cast_user is translated by JIT to
conditionally add the upper 32 bits of user vm_start (if the pointer is not
NULL) to arena pointers before they are stored into memory. This way, user
space sees them as valid 64-bit pointers.
Diff https://github.com/llvm/llvm-project/pull/84410 enables LLVM BPF
backend generate the bpf_addr_space_cast() instruction to cast pointers
between address_space(1) which is reserved for bpf_arena pointers and
default address space zero. All arena pointers in a bpf program written in
C language are tagged as __attribute__((address_space(1))). Hence, clang
provides helpful diagnostics when pointers cross address space. Libbpf and
the kernel support only address_space == 1. All other address space
identifiers are reserved.
rX = bpf_addr_space_cast(rY, /* dst_as */ 1, /* src_as */ 0) tells the
verifier that rX->type = PTR_TO_ARENA. Any further operations on
PTR_TO_ARENA register have to be in the 32-bit domain. The verifier will
mark load/store through PTR_TO_ARENA with PROBE_MEM32. JIT will generate
them as kern_vm_start + 32bit_addr memory accesses. The behavior is similar
to copy_from_kernel_nofault() except that no address checks are necessary.
The address is guaranteed to be in the 4GB range. If the page is not
present, the destination register is zeroed on read, and the operation is
ignored on write.
rX = bpf_addr_space_cast(rY, 0, 1) tells the verifier that rX->type =
unknown scalar. If arena->map_flags has BPF_F_NO_USER_CONV set, then the
verifier converts such cast instructions to mov32. Otherwise, JIT will emit
native code equivalent to:
rX = (u32)rY;
if (rY)
rX |= clear_lo32_bits(arena->user_vm_start); /* replace hi32 bits in rX */
After such conversion, the pointer becomes a valid user pointer within
bpf_arena range. The user process can access data structures created in
bpf_arena without any additional computations. For example, a linked list
built by a bpf program can be walked natively by user space.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Reviewed-by: Barret Rhoden <brho@google.com>
Link: https://lore.kernel.org/bpf/20240308010812.89848-2-alexei.starovoitov@gmail.com
2024-03-07 17:07:59 -08:00
|
|
|
static void arena_vm_close(struct vm_area_struct *vma)
|
|
|
|
{
|
|
|
|
struct bpf_map *map = vma->vm_file->private_data;
|
|
|
|
struct bpf_arena *arena = container_of(map, struct bpf_arena, map);
|
2024-06-17 10:18:12 -07:00
|
|
|
struct vma_list *vml = vma->vm_private_data;
|
bpf: Introduce bpf_arena.
Introduce bpf_arena, which is a sparse shared memory region between the bpf
program and user space.
Use cases:
1. User space mmap-s bpf_arena and uses it as a traditional mmap-ed
anonymous region, like memcached or any key/value storage. The bpf
program implements an in-kernel accelerator. XDP prog can search for
a key in bpf_arena and return a value without going to user space.
2. The bpf program builds arbitrary data structures in bpf_arena (hash
tables, rb-trees, sparse arrays), while user space consumes it.
3. bpf_arena is a "heap" of memory from the bpf program's point of view.
The user space may mmap it, but bpf program will not convert pointers
to user base at run-time to improve bpf program speed.
Initially, the kernel vm_area and user vma are not populated. User space
can fault in pages within the range. While servicing a page fault,
bpf_arena logic will insert a new page into the kernel and user vmas. The
bpf program can allocate pages from that region via
bpf_arena_alloc_pages(). This kernel function will insert pages into the
kernel vm_area. The subsequent fault-in from user space will populate that
page into the user vma. The BPF_F_SEGV_ON_FAULT flag at arena creation time
can be used to prevent fault-in from user space. In such a case, if a page
is not allocated by the bpf program and not present in the kernel vm_area,
the user process will segfault. This is useful for use cases 2 and 3 above.
bpf_arena_alloc_pages() is similar to user space mmap(). It allocates pages
either at a specific address within the arena or allocates a range with the
maple tree. bpf_arena_free_pages() is analogous to munmap(), which frees
pages and removes the range from the kernel vm_area and from user process
vmas.
bpf_arena can be used as a bpf program "heap" of up to 4GB. The speed of
bpf program is more important than ease of sharing with user space. This is
use case 3. In such a case, the BPF_F_NO_USER_CONV flag is recommended.
It will tell the verifier to treat the rX = bpf_arena_cast_user(rY)
instruction as a 32-bit move wX = wY, which will improve bpf prog
performance. Otherwise, bpf_arena_cast_user is translated by JIT to
conditionally add the upper 32 bits of user vm_start (if the pointer is not
NULL) to arena pointers before they are stored into memory. This way, user
space sees them as valid 64-bit pointers.
Diff https://github.com/llvm/llvm-project/pull/84410 enables LLVM BPF
backend generate the bpf_addr_space_cast() instruction to cast pointers
between address_space(1) which is reserved for bpf_arena pointers and
default address space zero. All arena pointers in a bpf program written in
C language are tagged as __attribute__((address_space(1))). Hence, clang
provides helpful diagnostics when pointers cross address space. Libbpf and
the kernel support only address_space == 1. All other address space
identifiers are reserved.
rX = bpf_addr_space_cast(rY, /* dst_as */ 1, /* src_as */ 0) tells the
verifier that rX->type = PTR_TO_ARENA. Any further operations on
PTR_TO_ARENA register have to be in the 32-bit domain. The verifier will
mark load/store through PTR_TO_ARENA with PROBE_MEM32. JIT will generate
them as kern_vm_start + 32bit_addr memory accesses. The behavior is similar
to copy_from_kernel_nofault() except that no address checks are necessary.
The address is guaranteed to be in the 4GB range. If the page is not
present, the destination register is zeroed on read, and the operation is
ignored on write.
rX = bpf_addr_space_cast(rY, 0, 1) tells the verifier that rX->type =
unknown scalar. If arena->map_flags has BPF_F_NO_USER_CONV set, then the
verifier converts such cast instructions to mov32. Otherwise, JIT will emit
native code equivalent to:
rX = (u32)rY;
if (rY)
rX |= clear_lo32_bits(arena->user_vm_start); /* replace hi32 bits in rX */
After such conversion, the pointer becomes a valid user pointer within
bpf_arena range. The user process can access data structures created in
bpf_arena without any additional computations. For example, a linked list
built by a bpf program can be walked natively by user space.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Reviewed-by: Barret Rhoden <brho@google.com>
Link: https://lore.kernel.org/bpf/20240308010812.89848-2-alexei.starovoitov@gmail.com
2024-03-07 17:07:59 -08:00
|
|
|
|
2024-12-30 15:16:55 +08:00
|
|
|
if (!refcount_dec_and_test(&vml->mmap_count))
|
2024-06-17 10:18:12 -07:00
|
|
|
return;
|
bpf: Introduce bpf_arena.
Introduce bpf_arena, which is a sparse shared memory region between the bpf
program and user space.
Use cases:
1. User space mmap-s bpf_arena and uses it as a traditional mmap-ed
anonymous region, like memcached or any key/value storage. The bpf
program implements an in-kernel accelerator. XDP prog can search for
a key in bpf_arena and return a value without going to user space.
2. The bpf program builds arbitrary data structures in bpf_arena (hash
tables, rb-trees, sparse arrays), while user space consumes it.
3. bpf_arena is a "heap" of memory from the bpf program's point of view.
The user space may mmap it, but bpf program will not convert pointers
to user base at run-time to improve bpf program speed.
Initially, the kernel vm_area and user vma are not populated. User space
can fault in pages within the range. While servicing a page fault,
bpf_arena logic will insert a new page into the kernel and user vmas. The
bpf program can allocate pages from that region via
bpf_arena_alloc_pages(). This kernel function will insert pages into the
kernel vm_area. The subsequent fault-in from user space will populate that
page into the user vma. The BPF_F_SEGV_ON_FAULT flag at arena creation time
can be used to prevent fault-in from user space. In such a case, if a page
is not allocated by the bpf program and not present in the kernel vm_area,
the user process will segfault. This is useful for use cases 2 and 3 above.
bpf_arena_alloc_pages() is similar to user space mmap(). It allocates pages
either at a specific address within the arena or allocates a range with the
maple tree. bpf_arena_free_pages() is analogous to munmap(), which frees
pages and removes the range from the kernel vm_area and from user process
vmas.
bpf_arena can be used as a bpf program "heap" of up to 4GB. The speed of
bpf program is more important than ease of sharing with user space. This is
use case 3. In such a case, the BPF_F_NO_USER_CONV flag is recommended.
It will tell the verifier to treat the rX = bpf_arena_cast_user(rY)
instruction as a 32-bit move wX = wY, which will improve bpf prog
performance. Otherwise, bpf_arena_cast_user is translated by JIT to
conditionally add the upper 32 bits of user vm_start (if the pointer is not
NULL) to arena pointers before they are stored into memory. This way, user
space sees them as valid 64-bit pointers.
Diff https://github.com/llvm/llvm-project/pull/84410 enables LLVM BPF
backend generate the bpf_addr_space_cast() instruction to cast pointers
between address_space(1) which is reserved for bpf_arena pointers and
default address space zero. All arena pointers in a bpf program written in
C language are tagged as __attribute__((address_space(1))). Hence, clang
provides helpful diagnostics when pointers cross address space. Libbpf and
the kernel support only address_space == 1. All other address space
identifiers are reserved.
rX = bpf_addr_space_cast(rY, /* dst_as */ 1, /* src_as */ 0) tells the
verifier that rX->type = PTR_TO_ARENA. Any further operations on
PTR_TO_ARENA register have to be in the 32-bit domain. The verifier will
mark load/store through PTR_TO_ARENA with PROBE_MEM32. JIT will generate
them as kern_vm_start + 32bit_addr memory accesses. The behavior is similar
to copy_from_kernel_nofault() except that no address checks are necessary.
The address is guaranteed to be in the 4GB range. If the page is not
present, the destination register is zeroed on read, and the operation is
ignored on write.
rX = bpf_addr_space_cast(rY, 0, 1) tells the verifier that rX->type =
unknown scalar. If arena->map_flags has BPF_F_NO_USER_CONV set, then the
verifier converts such cast instructions to mov32. Otherwise, JIT will emit
native code equivalent to:
rX = (u32)rY;
if (rY)
rX |= clear_lo32_bits(arena->user_vm_start); /* replace hi32 bits in rX */
After such conversion, the pointer becomes a valid user pointer within
bpf_arena range. The user process can access data structures created in
bpf_arena without any additional computations. For example, a linked list
built by a bpf program can be walked natively by user space.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Reviewed-by: Barret Rhoden <brho@google.com>
Link: https://lore.kernel.org/bpf/20240308010812.89848-2-alexei.starovoitov@gmail.com
2024-03-07 17:07:59 -08:00
|
|
|
guard(mutex)(&arena->lock);
|
2024-06-17 10:18:12 -07:00
|
|
|
/* update link list under lock */
|
bpf: Introduce bpf_arena.
Introduce bpf_arena, which is a sparse shared memory region between the bpf
program and user space.
Use cases:
1. User space mmap-s bpf_arena and uses it as a traditional mmap-ed
anonymous region, like memcached or any key/value storage. The bpf
program implements an in-kernel accelerator. XDP prog can search for
a key in bpf_arena and return a value without going to user space.
2. The bpf program builds arbitrary data structures in bpf_arena (hash
tables, rb-trees, sparse arrays), while user space consumes it.
3. bpf_arena is a "heap" of memory from the bpf program's point of view.
The user space may mmap it, but bpf program will not convert pointers
to user base at run-time to improve bpf program speed.
Initially, the kernel vm_area and user vma are not populated. User space
can fault in pages within the range. While servicing a page fault,
bpf_arena logic will insert a new page into the kernel and user vmas. The
bpf program can allocate pages from that region via
bpf_arena_alloc_pages(). This kernel function will insert pages into the
kernel vm_area. The subsequent fault-in from user space will populate that
page into the user vma. The BPF_F_SEGV_ON_FAULT flag at arena creation time
can be used to prevent fault-in from user space. In such a case, if a page
is not allocated by the bpf program and not present in the kernel vm_area,
the user process will segfault. This is useful for use cases 2 and 3 above.
bpf_arena_alloc_pages() is similar to user space mmap(). It allocates pages
either at a specific address within the arena or allocates a range with the
maple tree. bpf_arena_free_pages() is analogous to munmap(), which frees
pages and removes the range from the kernel vm_area and from user process
vmas.
bpf_arena can be used as a bpf program "heap" of up to 4GB. The speed of
bpf program is more important than ease of sharing with user space. This is
use case 3. In such a case, the BPF_F_NO_USER_CONV flag is recommended.
It will tell the verifier to treat the rX = bpf_arena_cast_user(rY)
instruction as a 32-bit move wX = wY, which will improve bpf prog
performance. Otherwise, bpf_arena_cast_user is translated by JIT to
conditionally add the upper 32 bits of user vm_start (if the pointer is not
NULL) to arena pointers before they are stored into memory. This way, user
space sees them as valid 64-bit pointers.
Diff https://github.com/llvm/llvm-project/pull/84410 enables LLVM BPF
backend generate the bpf_addr_space_cast() instruction to cast pointers
between address_space(1) which is reserved for bpf_arena pointers and
default address space zero. All arena pointers in a bpf program written in
C language are tagged as __attribute__((address_space(1))). Hence, clang
provides helpful diagnostics when pointers cross address space. Libbpf and
the kernel support only address_space == 1. All other address space
identifiers are reserved.
rX = bpf_addr_space_cast(rY, /* dst_as */ 1, /* src_as */ 0) tells the
verifier that rX->type = PTR_TO_ARENA. Any further operations on
PTR_TO_ARENA register have to be in the 32-bit domain. The verifier will
mark load/store through PTR_TO_ARENA with PROBE_MEM32. JIT will generate
them as kern_vm_start + 32bit_addr memory accesses. The behavior is similar
to copy_from_kernel_nofault() except that no address checks are necessary.
The address is guaranteed to be in the 4GB range. If the page is not
present, the destination register is zeroed on read, and the operation is
ignored on write.
rX = bpf_addr_space_cast(rY, 0, 1) tells the verifier that rX->type =
unknown scalar. If arena->map_flags has BPF_F_NO_USER_CONV set, then the
verifier converts such cast instructions to mov32. Otherwise, JIT will emit
native code equivalent to:
rX = (u32)rY;
if (rY)
rX |= clear_lo32_bits(arena->user_vm_start); /* replace hi32 bits in rX */
After such conversion, the pointer becomes a valid user pointer within
bpf_arena range. The user process can access data structures created in
bpf_arena without any additional computations. For example, a linked list
built by a bpf program can be walked natively by user space.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Reviewed-by: Barret Rhoden <brho@google.com>
Link: https://lore.kernel.org/bpf/20240308010812.89848-2-alexei.starovoitov@gmail.com
2024-03-07 17:07:59 -08:00
|
|
|
list_del(&vml->head);
|
|
|
|
vma->vm_private_data = NULL;
|
|
|
|
kfree(vml);
|
|
|
|
}
|
|
|
|
|
|
|
|
static vm_fault_t arena_vm_fault(struct vm_fault *vmf)
|
|
|
|
{
|
|
|
|
struct bpf_map *map = vmf->vma->vm_file->private_data;
|
|
|
|
struct bpf_arena *arena = container_of(map, struct bpf_arena, map);
|
|
|
|
struct page *page;
|
|
|
|
long kbase, kaddr;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
kbase = bpf_arena_get_kern_vm_start(arena);
|
bpf: Remove redundant page mask of vmf->address
As the comment described in "struct vm_fault":
".address" : 'Faulting virtual address - masked'
".real_address" : 'Faulting virtual address - unmasked'
The link [1] said: "Whatever the routes, all architectures end up to the
invocation of handle_mm_fault() which, in turn, (likely) ends up calling
__handle_mm_fault() to carry out the actual work of allocating the page
tables."
__handle_mm_fault() does address assignment:
.address = address & PAGE_MASK,
.real_address = address,
This is debug dump by running `./test_progs -a "*arena*"`:
[ 69.767494] arena fault: vmf->address = 10000001d000, vmf->real_address = 10000001d008
[ 69.767496] arena fault: vmf->address = 10000001c000, vmf->real_address = 10000001c008
[ 69.767499] arena fault: vmf->address = 10000001b000, vmf->real_address = 10000001b008
[ 69.767501] arena fault: vmf->address = 10000001a000, vmf->real_address = 10000001a008
[ 69.767504] arena fault: vmf->address = 100000019000, vmf->real_address = 100000019008
[ 69.769388] arena fault: vmf->address = 10000001e000, vmf->real_address = 10000001e1e8
So we can use the value of 'vmf->address' to do BPF arena kernel address
space cast directly.
[1] https://docs.kernel.org/mm/page_tables.html
Signed-off-by: Haiyue Wang <haiyue.wang@intel.com>
Link: https://lore.kernel.org/r/20240507063358.8048-1-haiyue.wang@intel.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-05-07 14:33:39 +08:00
|
|
|
kaddr = kbase + (u32)(vmf->address);
|
bpf: Introduce bpf_arena.
Introduce bpf_arena, which is a sparse shared memory region between the bpf
program and user space.
Use cases:
1. User space mmap-s bpf_arena and uses it as a traditional mmap-ed
anonymous region, like memcached or any key/value storage. The bpf
program implements an in-kernel accelerator. XDP prog can search for
a key in bpf_arena and return a value without going to user space.
2. The bpf program builds arbitrary data structures in bpf_arena (hash
tables, rb-trees, sparse arrays), while user space consumes it.
3. bpf_arena is a "heap" of memory from the bpf program's point of view.
The user space may mmap it, but bpf program will not convert pointers
to user base at run-time to improve bpf program speed.
Initially, the kernel vm_area and user vma are not populated. User space
can fault in pages within the range. While servicing a page fault,
bpf_arena logic will insert a new page into the kernel and user vmas. The
bpf program can allocate pages from that region via
bpf_arena_alloc_pages(). This kernel function will insert pages into the
kernel vm_area. The subsequent fault-in from user space will populate that
page into the user vma. The BPF_F_SEGV_ON_FAULT flag at arena creation time
can be used to prevent fault-in from user space. In such a case, if a page
is not allocated by the bpf program and not present in the kernel vm_area,
the user process will segfault. This is useful for use cases 2 and 3 above.
bpf_arena_alloc_pages() is similar to user space mmap(). It allocates pages
either at a specific address within the arena or allocates a range with the
maple tree. bpf_arena_free_pages() is analogous to munmap(), which frees
pages and removes the range from the kernel vm_area and from user process
vmas.
bpf_arena can be used as a bpf program "heap" of up to 4GB. The speed of
bpf program is more important than ease of sharing with user space. This is
use case 3. In such a case, the BPF_F_NO_USER_CONV flag is recommended.
It will tell the verifier to treat the rX = bpf_arena_cast_user(rY)
instruction as a 32-bit move wX = wY, which will improve bpf prog
performance. Otherwise, bpf_arena_cast_user is translated by JIT to
conditionally add the upper 32 bits of user vm_start (if the pointer is not
NULL) to arena pointers before they are stored into memory. This way, user
space sees them as valid 64-bit pointers.
Diff https://github.com/llvm/llvm-project/pull/84410 enables LLVM BPF
backend generate the bpf_addr_space_cast() instruction to cast pointers
between address_space(1) which is reserved for bpf_arena pointers and
default address space zero. All arena pointers in a bpf program written in
C language are tagged as __attribute__((address_space(1))). Hence, clang
provides helpful diagnostics when pointers cross address space. Libbpf and
the kernel support only address_space == 1. All other address space
identifiers are reserved.
rX = bpf_addr_space_cast(rY, /* dst_as */ 1, /* src_as */ 0) tells the
verifier that rX->type = PTR_TO_ARENA. Any further operations on
PTR_TO_ARENA register have to be in the 32-bit domain. The verifier will
mark load/store through PTR_TO_ARENA with PROBE_MEM32. JIT will generate
them as kern_vm_start + 32bit_addr memory accesses. The behavior is similar
to copy_from_kernel_nofault() except that no address checks are necessary.
The address is guaranteed to be in the 4GB range. If the page is not
present, the destination register is zeroed on read, and the operation is
ignored on write.
rX = bpf_addr_space_cast(rY, 0, 1) tells the verifier that rX->type =
unknown scalar. If arena->map_flags has BPF_F_NO_USER_CONV set, then the
verifier converts such cast instructions to mov32. Otherwise, JIT will emit
native code equivalent to:
rX = (u32)rY;
if (rY)
rX |= clear_lo32_bits(arena->user_vm_start); /* replace hi32 bits in rX */
After such conversion, the pointer becomes a valid user pointer within
bpf_arena range. The user process can access data structures created in
bpf_arena without any additional computations. For example, a linked list
built by a bpf program can be walked natively by user space.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Reviewed-by: Barret Rhoden <brho@google.com>
Link: https://lore.kernel.org/bpf/20240308010812.89848-2-alexei.starovoitov@gmail.com
2024-03-07 17:07:59 -08:00
|
|
|
|
|
|
|
guard(mutex)(&arena->lock);
|
|
|
|
page = vmalloc_to_page((void *)kaddr);
|
|
|
|
if (page)
|
|
|
|
/* already have a page vmap-ed */
|
|
|
|
goto out;
|
|
|
|
|
|
|
|
if (arena->map.map_flags & BPF_F_SEGV_ON_FAULT)
|
|
|
|
/* User space requested to segfault when page is not allocated by bpf prog */
|
|
|
|
return VM_FAULT_SIGSEGV;
|
|
|
|
|
2024-11-07 18:56:15 -08:00
|
|
|
ret = range_tree_clear(&arena->rt, vmf->pgoff, 1);
|
bpf: Introduce bpf_arena.
Introduce bpf_arena, which is a sparse shared memory region between the bpf
program and user space.
Use cases:
1. User space mmap-s bpf_arena and uses it as a traditional mmap-ed
anonymous region, like memcached or any key/value storage. The bpf
program implements an in-kernel accelerator. XDP prog can search for
a key in bpf_arena and return a value without going to user space.
2. The bpf program builds arbitrary data structures in bpf_arena (hash
tables, rb-trees, sparse arrays), while user space consumes it.
3. bpf_arena is a "heap" of memory from the bpf program's point of view.
The user space may mmap it, but bpf program will not convert pointers
to user base at run-time to improve bpf program speed.
Initially, the kernel vm_area and user vma are not populated. User space
can fault in pages within the range. While servicing a page fault,
bpf_arena logic will insert a new page into the kernel and user vmas. The
bpf program can allocate pages from that region via
bpf_arena_alloc_pages(). This kernel function will insert pages into the
kernel vm_area. The subsequent fault-in from user space will populate that
page into the user vma. The BPF_F_SEGV_ON_FAULT flag at arena creation time
can be used to prevent fault-in from user space. In such a case, if a page
is not allocated by the bpf program and not present in the kernel vm_area,
the user process will segfault. This is useful for use cases 2 and 3 above.
bpf_arena_alloc_pages() is similar to user space mmap(). It allocates pages
either at a specific address within the arena or allocates a range with the
maple tree. bpf_arena_free_pages() is analogous to munmap(), which frees
pages and removes the range from the kernel vm_area and from user process
vmas.
bpf_arena can be used as a bpf program "heap" of up to 4GB. The speed of
bpf program is more important than ease of sharing with user space. This is
use case 3. In such a case, the BPF_F_NO_USER_CONV flag is recommended.
It will tell the verifier to treat the rX = bpf_arena_cast_user(rY)
instruction as a 32-bit move wX = wY, which will improve bpf prog
performance. Otherwise, bpf_arena_cast_user is translated by JIT to
conditionally add the upper 32 bits of user vm_start (if the pointer is not
NULL) to arena pointers before they are stored into memory. This way, user
space sees them as valid 64-bit pointers.
Diff https://github.com/llvm/llvm-project/pull/84410 enables LLVM BPF
backend generate the bpf_addr_space_cast() instruction to cast pointers
between address_space(1) which is reserved for bpf_arena pointers and
default address space zero. All arena pointers in a bpf program written in
C language are tagged as __attribute__((address_space(1))). Hence, clang
provides helpful diagnostics when pointers cross address space. Libbpf and
the kernel support only address_space == 1. All other address space
identifiers are reserved.
rX = bpf_addr_space_cast(rY, /* dst_as */ 1, /* src_as */ 0) tells the
verifier that rX->type = PTR_TO_ARENA. Any further operations on
PTR_TO_ARENA register have to be in the 32-bit domain. The verifier will
mark load/store through PTR_TO_ARENA with PROBE_MEM32. JIT will generate
them as kern_vm_start + 32bit_addr memory accesses. The behavior is similar
to copy_from_kernel_nofault() except that no address checks are necessary.
The address is guaranteed to be in the 4GB range. If the page is not
present, the destination register is zeroed on read, and the operation is
ignored on write.
rX = bpf_addr_space_cast(rY, 0, 1) tells the verifier that rX->type =
unknown scalar. If arena->map_flags has BPF_F_NO_USER_CONV set, then the
verifier converts such cast instructions to mov32. Otherwise, JIT will emit
native code equivalent to:
rX = (u32)rY;
if (rY)
rX |= clear_lo32_bits(arena->user_vm_start); /* replace hi32 bits in rX */
After such conversion, the pointer becomes a valid user pointer within
bpf_arena range. The user process can access data structures created in
bpf_arena without any additional computations. For example, a linked list
built by a bpf program can be walked natively by user space.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Reviewed-by: Barret Rhoden <brho@google.com>
Link: https://lore.kernel.org/bpf/20240308010812.89848-2-alexei.starovoitov@gmail.com
2024-03-07 17:07:59 -08:00
|
|
|
if (ret)
|
|
|
|
return VM_FAULT_SIGSEGV;
|
|
|
|
|
|
|
|
/* Account into memcg of the process that created bpf_arena */
|
|
|
|
ret = bpf_map_alloc_pages(map, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE, 1, &page);
|
|
|
|
if (ret) {
|
2024-11-07 18:56:15 -08:00
|
|
|
range_tree_set(&arena->rt, vmf->pgoff, 1);
|
bpf: Introduce bpf_arena.
Introduce bpf_arena, which is a sparse shared memory region between the bpf
program and user space.
Use cases:
1. User space mmap-s bpf_arena and uses it as a traditional mmap-ed
anonymous region, like memcached or any key/value storage. The bpf
program implements an in-kernel accelerator. XDP prog can search for
a key in bpf_arena and return a value without going to user space.
2. The bpf program builds arbitrary data structures in bpf_arena (hash
tables, rb-trees, sparse arrays), while user space consumes it.
3. bpf_arena is a "heap" of memory from the bpf program's point of view.
The user space may mmap it, but bpf program will not convert pointers
to user base at run-time to improve bpf program speed.
Initially, the kernel vm_area and user vma are not populated. User space
can fault in pages within the range. While servicing a page fault,
bpf_arena logic will insert a new page into the kernel and user vmas. The
bpf program can allocate pages from that region via
bpf_arena_alloc_pages(). This kernel function will insert pages into the
kernel vm_area. The subsequent fault-in from user space will populate that
page into the user vma. The BPF_F_SEGV_ON_FAULT flag at arena creation time
can be used to prevent fault-in from user space. In such a case, if a page
is not allocated by the bpf program and not present in the kernel vm_area,
the user process will segfault. This is useful for use cases 2 and 3 above.
bpf_arena_alloc_pages() is similar to user space mmap(). It allocates pages
either at a specific address within the arena or allocates a range with the
maple tree. bpf_arena_free_pages() is analogous to munmap(), which frees
pages and removes the range from the kernel vm_area and from user process
vmas.
bpf_arena can be used as a bpf program "heap" of up to 4GB. The speed of
bpf program is more important than ease of sharing with user space. This is
use case 3. In such a case, the BPF_F_NO_USER_CONV flag is recommended.
It will tell the verifier to treat the rX = bpf_arena_cast_user(rY)
instruction as a 32-bit move wX = wY, which will improve bpf prog
performance. Otherwise, bpf_arena_cast_user is translated by JIT to
conditionally add the upper 32 bits of user vm_start (if the pointer is not
NULL) to arena pointers before they are stored into memory. This way, user
space sees them as valid 64-bit pointers.
Diff https://github.com/llvm/llvm-project/pull/84410 enables LLVM BPF
backend generate the bpf_addr_space_cast() instruction to cast pointers
between address_space(1) which is reserved for bpf_arena pointers and
default address space zero. All arena pointers in a bpf program written in
C language are tagged as __attribute__((address_space(1))). Hence, clang
provides helpful diagnostics when pointers cross address space. Libbpf and
the kernel support only address_space == 1. All other address space
identifiers are reserved.
rX = bpf_addr_space_cast(rY, /* dst_as */ 1, /* src_as */ 0) tells the
verifier that rX->type = PTR_TO_ARENA. Any further operations on
PTR_TO_ARENA register have to be in the 32-bit domain. The verifier will
mark load/store through PTR_TO_ARENA with PROBE_MEM32. JIT will generate
them as kern_vm_start + 32bit_addr memory accesses. The behavior is similar
to copy_from_kernel_nofault() except that no address checks are necessary.
The address is guaranteed to be in the 4GB range. If the page is not
present, the destination register is zeroed on read, and the operation is
ignored on write.
rX = bpf_addr_space_cast(rY, 0, 1) tells the verifier that rX->type =
unknown scalar. If arena->map_flags has BPF_F_NO_USER_CONV set, then the
verifier converts such cast instructions to mov32. Otherwise, JIT will emit
native code equivalent to:
rX = (u32)rY;
if (rY)
rX |= clear_lo32_bits(arena->user_vm_start); /* replace hi32 bits in rX */
After such conversion, the pointer becomes a valid user pointer within
bpf_arena range. The user process can access data structures created in
bpf_arena without any additional computations. For example, a linked list
built by a bpf program can be walked natively by user space.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Reviewed-by: Barret Rhoden <brho@google.com>
Link: https://lore.kernel.org/bpf/20240308010812.89848-2-alexei.starovoitov@gmail.com
2024-03-07 17:07:59 -08:00
|
|
|
return VM_FAULT_SIGSEGV;
|
|
|
|
}
|
|
|
|
|
|
|
|
ret = vm_area_map_pages(arena->kern_vm, kaddr, kaddr + PAGE_SIZE, &page);
|
|
|
|
if (ret) {
|
2024-11-07 18:56:15 -08:00
|
|
|
range_tree_set(&arena->rt, vmf->pgoff, 1);
|
bpf: Introduce bpf_arena.
Introduce bpf_arena, which is a sparse shared memory region between the bpf
program and user space.
Use cases:
1. User space mmap-s bpf_arena and uses it as a traditional mmap-ed
anonymous region, like memcached or any key/value storage. The bpf
program implements an in-kernel accelerator. XDP prog can search for
a key in bpf_arena and return a value without going to user space.
2. The bpf program builds arbitrary data structures in bpf_arena (hash
tables, rb-trees, sparse arrays), while user space consumes it.
3. bpf_arena is a "heap" of memory from the bpf program's point of view.
The user space may mmap it, but bpf program will not convert pointers
to user base at run-time to improve bpf program speed.
Initially, the kernel vm_area and user vma are not populated. User space
can fault in pages within the range. While servicing a page fault,
bpf_arena logic will insert a new page into the kernel and user vmas. The
bpf program can allocate pages from that region via
bpf_arena_alloc_pages(). This kernel function will insert pages into the
kernel vm_area. The subsequent fault-in from user space will populate that
page into the user vma. The BPF_F_SEGV_ON_FAULT flag at arena creation time
can be used to prevent fault-in from user space. In such a case, if a page
is not allocated by the bpf program and not present in the kernel vm_area,
the user process will segfault. This is useful for use cases 2 and 3 above.
bpf_arena_alloc_pages() is similar to user space mmap(). It allocates pages
either at a specific address within the arena or allocates a range with the
maple tree. bpf_arena_free_pages() is analogous to munmap(), which frees
pages and removes the range from the kernel vm_area and from user process
vmas.
bpf_arena can be used as a bpf program "heap" of up to 4GB. The speed of
bpf program is more important than ease of sharing with user space. This is
use case 3. In such a case, the BPF_F_NO_USER_CONV flag is recommended.
It will tell the verifier to treat the rX = bpf_arena_cast_user(rY)
instruction as a 32-bit move wX = wY, which will improve bpf prog
performance. Otherwise, bpf_arena_cast_user is translated by JIT to
conditionally add the upper 32 bits of user vm_start (if the pointer is not
NULL) to arena pointers before they are stored into memory. This way, user
space sees them as valid 64-bit pointers.
Diff https://github.com/llvm/llvm-project/pull/84410 enables LLVM BPF
backend generate the bpf_addr_space_cast() instruction to cast pointers
between address_space(1) which is reserved for bpf_arena pointers and
default address space zero. All arena pointers in a bpf program written in
C language are tagged as __attribute__((address_space(1))). Hence, clang
provides helpful diagnostics when pointers cross address space. Libbpf and
the kernel support only address_space == 1. All other address space
identifiers are reserved.
rX = bpf_addr_space_cast(rY, /* dst_as */ 1, /* src_as */ 0) tells the
verifier that rX->type = PTR_TO_ARENA. Any further operations on
PTR_TO_ARENA register have to be in the 32-bit domain. The verifier will
mark load/store through PTR_TO_ARENA with PROBE_MEM32. JIT will generate
them as kern_vm_start + 32bit_addr memory accesses. The behavior is similar
to copy_from_kernel_nofault() except that no address checks are necessary.
The address is guaranteed to be in the 4GB range. If the page is not
present, the destination register is zeroed on read, and the operation is
ignored on write.
rX = bpf_addr_space_cast(rY, 0, 1) tells the verifier that rX->type =
unknown scalar. If arena->map_flags has BPF_F_NO_USER_CONV set, then the
verifier converts such cast instructions to mov32. Otherwise, JIT will emit
native code equivalent to:
rX = (u32)rY;
if (rY)
rX |= clear_lo32_bits(arena->user_vm_start); /* replace hi32 bits in rX */
After such conversion, the pointer becomes a valid user pointer within
bpf_arena range. The user process can access data structures created in
bpf_arena without any additional computations. For example, a linked list
built by a bpf program can be walked natively by user space.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Reviewed-by: Barret Rhoden <brho@google.com>
Link: https://lore.kernel.org/bpf/20240308010812.89848-2-alexei.starovoitov@gmail.com
2024-03-07 17:07:59 -08:00
|
|
|
__free_page(page);
|
|
|
|
return VM_FAULT_SIGSEGV;
|
|
|
|
}
|
|
|
|
out:
|
|
|
|
page_ref_add(page, 1);
|
|
|
|
vmf->page = page;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static const struct vm_operations_struct arena_vm_ops = {
|
2024-06-17 10:18:12 -07:00
|
|
|
.open = arena_vm_open,
|
bpf: Introduce bpf_arena.
Introduce bpf_arena, which is a sparse shared memory region between the bpf
program and user space.
Use cases:
1. User space mmap-s bpf_arena and uses it as a traditional mmap-ed
anonymous region, like memcached or any key/value storage. The bpf
program implements an in-kernel accelerator. XDP prog can search for
a key in bpf_arena and return a value without going to user space.
2. The bpf program builds arbitrary data structures in bpf_arena (hash
tables, rb-trees, sparse arrays), while user space consumes it.
3. bpf_arena is a "heap" of memory from the bpf program's point of view.
The user space may mmap it, but bpf program will not convert pointers
to user base at run-time to improve bpf program speed.
Initially, the kernel vm_area and user vma are not populated. User space
can fault in pages within the range. While servicing a page fault,
bpf_arena logic will insert a new page into the kernel and user vmas. The
bpf program can allocate pages from that region via
bpf_arena_alloc_pages(). This kernel function will insert pages into the
kernel vm_area. The subsequent fault-in from user space will populate that
page into the user vma. The BPF_F_SEGV_ON_FAULT flag at arena creation time
can be used to prevent fault-in from user space. In such a case, if a page
is not allocated by the bpf program and not present in the kernel vm_area,
the user process will segfault. This is useful for use cases 2 and 3 above.
bpf_arena_alloc_pages() is similar to user space mmap(). It allocates pages
either at a specific address within the arena or allocates a range with the
maple tree. bpf_arena_free_pages() is analogous to munmap(), which frees
pages and removes the range from the kernel vm_area and from user process
vmas.
bpf_arena can be used as a bpf program "heap" of up to 4GB. The speed of
bpf program is more important than ease of sharing with user space. This is
use case 3. In such a case, the BPF_F_NO_USER_CONV flag is recommended.
It will tell the verifier to treat the rX = bpf_arena_cast_user(rY)
instruction as a 32-bit move wX = wY, which will improve bpf prog
performance. Otherwise, bpf_arena_cast_user is translated by JIT to
conditionally add the upper 32 bits of user vm_start (if the pointer is not
NULL) to arena pointers before they are stored into memory. This way, user
space sees them as valid 64-bit pointers.
Diff https://github.com/llvm/llvm-project/pull/84410 enables LLVM BPF
backend generate the bpf_addr_space_cast() instruction to cast pointers
between address_space(1) which is reserved for bpf_arena pointers and
default address space zero. All arena pointers in a bpf program written in
C language are tagged as __attribute__((address_space(1))). Hence, clang
provides helpful diagnostics when pointers cross address space. Libbpf and
the kernel support only address_space == 1. All other address space
identifiers are reserved.
rX = bpf_addr_space_cast(rY, /* dst_as */ 1, /* src_as */ 0) tells the
verifier that rX->type = PTR_TO_ARENA. Any further operations on
PTR_TO_ARENA register have to be in the 32-bit domain. The verifier will
mark load/store through PTR_TO_ARENA with PROBE_MEM32. JIT will generate
them as kern_vm_start + 32bit_addr memory accesses. The behavior is similar
to copy_from_kernel_nofault() except that no address checks are necessary.
The address is guaranteed to be in the 4GB range. If the page is not
present, the destination register is zeroed on read, and the operation is
ignored on write.
rX = bpf_addr_space_cast(rY, 0, 1) tells the verifier that rX->type =
unknown scalar. If arena->map_flags has BPF_F_NO_USER_CONV set, then the
verifier converts such cast instructions to mov32. Otherwise, JIT will emit
native code equivalent to:
rX = (u32)rY;
if (rY)
rX |= clear_lo32_bits(arena->user_vm_start); /* replace hi32 bits in rX */
After such conversion, the pointer becomes a valid user pointer within
bpf_arena range. The user process can access data structures created in
bpf_arena without any additional computations. For example, a linked list
built by a bpf program can be walked natively by user space.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Reviewed-by: Barret Rhoden <brho@google.com>
Link: https://lore.kernel.org/bpf/20240308010812.89848-2-alexei.starovoitov@gmail.com
2024-03-07 17:07:59 -08:00
|
|
|
.close = arena_vm_close,
|
|
|
|
.fault = arena_vm_fault,
|
|
|
|
};
|
|
|
|
|
|
|
|
static unsigned long arena_get_unmapped_area(struct file *filp, unsigned long addr,
|
|
|
|
unsigned long len, unsigned long pgoff,
|
|
|
|
unsigned long flags)
|
|
|
|
{
|
|
|
|
struct bpf_map *map = filp->private_data;
|
|
|
|
struct bpf_arena *arena = container_of(map, struct bpf_arena, map);
|
|
|
|
long ret;
|
|
|
|
|
|
|
|
if (pgoff)
|
|
|
|
return -EINVAL;
|
2024-03-14 19:18:31 -07:00
|
|
|
if (len > SZ_4G)
|
bpf: Introduce bpf_arena.
Introduce bpf_arena, which is a sparse shared memory region between the bpf
program and user space.
Use cases:
1. User space mmap-s bpf_arena and uses it as a traditional mmap-ed
anonymous region, like memcached or any key/value storage. The bpf
program implements an in-kernel accelerator. XDP prog can search for
a key in bpf_arena and return a value without going to user space.
2. The bpf program builds arbitrary data structures in bpf_arena (hash
tables, rb-trees, sparse arrays), while user space consumes it.
3. bpf_arena is a "heap" of memory from the bpf program's point of view.
The user space may mmap it, but bpf program will not convert pointers
to user base at run-time to improve bpf program speed.
Initially, the kernel vm_area and user vma are not populated. User space
can fault in pages within the range. While servicing a page fault,
bpf_arena logic will insert a new page into the kernel and user vmas. The
bpf program can allocate pages from that region via
bpf_arena_alloc_pages(). This kernel function will insert pages into the
kernel vm_area. The subsequent fault-in from user space will populate that
page into the user vma. The BPF_F_SEGV_ON_FAULT flag at arena creation time
can be used to prevent fault-in from user space. In such a case, if a page
is not allocated by the bpf program and not present in the kernel vm_area,
the user process will segfault. This is useful for use cases 2 and 3 above.
bpf_arena_alloc_pages() is similar to user space mmap(). It allocates pages
either at a specific address within the arena or allocates a range with the
maple tree. bpf_arena_free_pages() is analogous to munmap(), which frees
pages and removes the range from the kernel vm_area and from user process
vmas.
bpf_arena can be used as a bpf program "heap" of up to 4GB. The speed of
bpf program is more important than ease of sharing with user space. This is
use case 3. In such a case, the BPF_F_NO_USER_CONV flag is recommended.
It will tell the verifier to treat the rX = bpf_arena_cast_user(rY)
instruction as a 32-bit move wX = wY, which will improve bpf prog
performance. Otherwise, bpf_arena_cast_user is translated by JIT to
conditionally add the upper 32 bits of user vm_start (if the pointer is not
NULL) to arena pointers before they are stored into memory. This way, user
space sees them as valid 64-bit pointers.
Diff https://github.com/llvm/llvm-project/pull/84410 enables LLVM BPF
backend generate the bpf_addr_space_cast() instruction to cast pointers
between address_space(1) which is reserved for bpf_arena pointers and
default address space zero. All arena pointers in a bpf program written in
C language are tagged as __attribute__((address_space(1))). Hence, clang
provides helpful diagnostics when pointers cross address space. Libbpf and
the kernel support only address_space == 1. All other address space
identifiers are reserved.
rX = bpf_addr_space_cast(rY, /* dst_as */ 1, /* src_as */ 0) tells the
verifier that rX->type = PTR_TO_ARENA. Any further operations on
PTR_TO_ARENA register have to be in the 32-bit domain. The verifier will
mark load/store through PTR_TO_ARENA with PROBE_MEM32. JIT will generate
them as kern_vm_start + 32bit_addr memory accesses. The behavior is similar
to copy_from_kernel_nofault() except that no address checks are necessary.
The address is guaranteed to be in the 4GB range. If the page is not
present, the destination register is zeroed on read, and the operation is
ignored on write.
rX = bpf_addr_space_cast(rY, 0, 1) tells the verifier that rX->type =
unknown scalar. If arena->map_flags has BPF_F_NO_USER_CONV set, then the
verifier converts such cast instructions to mov32. Otherwise, JIT will emit
native code equivalent to:
rX = (u32)rY;
if (rY)
rX |= clear_lo32_bits(arena->user_vm_start); /* replace hi32 bits in rX */
After such conversion, the pointer becomes a valid user pointer within
bpf_arena range. The user process can access data structures created in
bpf_arena without any additional computations. For example, a linked list
built by a bpf program can be walked natively by user space.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Reviewed-by: Barret Rhoden <brho@google.com>
Link: https://lore.kernel.org/bpf/20240308010812.89848-2-alexei.starovoitov@gmail.com
2024-03-07 17:07:59 -08:00
|
|
|
return -E2BIG;
|
|
|
|
|
|
|
|
/* if user_vm_start was specified at arena creation time */
|
|
|
|
if (arena->user_vm_start) {
|
|
|
|
if (len > arena->user_vm_end - arena->user_vm_start)
|
|
|
|
return -E2BIG;
|
|
|
|
if (len != arena->user_vm_end - arena->user_vm_start)
|
|
|
|
return -EINVAL;
|
|
|
|
if (addr != arena->user_vm_start)
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
|
mm: switch mm->get_unmapped_area() to a flag
The mm_struct contains a function pointer *get_unmapped_area(), which is
set to either arch_get_unmapped_area() or arch_get_unmapped_area_topdown()
during the initialization of the mm.
Since the function pointer only ever points to two functions that are
named the same across all arch's, a function pointer is not really
required. In addition future changes will want to add versions of the
functions that take additional arguments. So to save a pointers worth of
bytes in mm_struct, and prevent adding additional function pointers to
mm_struct in future changes, remove it and keep the information about
which get_unmapped_area() to use in a flag.
Add the new flag to MMF_INIT_MASK so it doesn't get clobbered on fork by
mmf_init_flags(). Most MM flags get clobbered on fork. In the
pre-existing behavior mm->get_unmapped_area() would get copied to the new
mm in dup_mm(), so not clobbering the flag preserves the existing behavior
around inheriting the topdown-ness.
Introduce a helper, mm_get_unmapped_area(), to easily convert code that
refers to the old function pointer to instead select and call either
arch_get_unmapped_area() or arch_get_unmapped_area_topdown() based on the
flag. Then drop the mm->get_unmapped_area() function pointer. Leave the
get_unmapped_area() pointer in struct file_operations alone. The main
purpose of this change is to reorganize in preparation for future changes,
but it also converts the calls of mm->get_unmapped_area() from indirect
branches into a direct ones.
The stress-ng bigheap benchmark calls realloc a lot, which calls through
get_unmapped_area() in the kernel. On x86, the change yielded a ~1%
improvement there on a retpoline config.
In testing a few x86 configs, removing the pointer unfortunately didn't
result in any actual size reductions in the compiled layout of mm_struct.
But depending on compiler or arch alignment requirements, the change could
shrink the size of mm_struct.
Link: https://lkml.kernel.org/r/20240326021656.202649-3-rick.p.edgecombe@intel.com
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Reviewed-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Aneesh Kumar K.V <aneesh.kumar@kernel.org>
Cc: Borislav Petkov (AMD) <bp@alien8.de>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Deepak Gupta <debug@rivosinc.com>
Cc: Guo Ren <guoren@kernel.org>
Cc: Helge Deller <deller@gmx.de>
Cc: H. Peter Anvin (Intel) <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "James E.J. Bottomley" <James.Bottomley@HansenPartnership.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Mark Brown <broonie@kernel.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Naveen N. Rao <naveen.n.rao@linux.ibm.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-03-25 19:16:44 -07:00
|
|
|
ret = mm_get_unmapped_area(current->mm, filp, addr, len * 2, 0, flags);
|
bpf: Introduce bpf_arena.
Introduce bpf_arena, which is a sparse shared memory region between the bpf
program and user space.
Use cases:
1. User space mmap-s bpf_arena and uses it as a traditional mmap-ed
anonymous region, like memcached or any key/value storage. The bpf
program implements an in-kernel accelerator. XDP prog can search for
a key in bpf_arena and return a value without going to user space.
2. The bpf program builds arbitrary data structures in bpf_arena (hash
tables, rb-trees, sparse arrays), while user space consumes it.
3. bpf_arena is a "heap" of memory from the bpf program's point of view.
The user space may mmap it, but bpf program will not convert pointers
to user base at run-time to improve bpf program speed.
Initially, the kernel vm_area and user vma are not populated. User space
can fault in pages within the range. While servicing a page fault,
bpf_arena logic will insert a new page into the kernel and user vmas. The
bpf program can allocate pages from that region via
bpf_arena_alloc_pages(). This kernel function will insert pages into the
kernel vm_area. The subsequent fault-in from user space will populate that
page into the user vma. The BPF_F_SEGV_ON_FAULT flag at arena creation time
can be used to prevent fault-in from user space. In such a case, if a page
is not allocated by the bpf program and not present in the kernel vm_area,
the user process will segfault. This is useful for use cases 2 and 3 above.
bpf_arena_alloc_pages() is similar to user space mmap(). It allocates pages
either at a specific address within the arena or allocates a range with the
maple tree. bpf_arena_free_pages() is analogous to munmap(), which frees
pages and removes the range from the kernel vm_area and from user process
vmas.
bpf_arena can be used as a bpf program "heap" of up to 4GB. The speed of
bpf program is more important than ease of sharing with user space. This is
use case 3. In such a case, the BPF_F_NO_USER_CONV flag is recommended.
It will tell the verifier to treat the rX = bpf_arena_cast_user(rY)
instruction as a 32-bit move wX = wY, which will improve bpf prog
performance. Otherwise, bpf_arena_cast_user is translated by JIT to
conditionally add the upper 32 bits of user vm_start (if the pointer is not
NULL) to arena pointers before they are stored into memory. This way, user
space sees them as valid 64-bit pointers.
Diff https://github.com/llvm/llvm-project/pull/84410 enables LLVM BPF
backend generate the bpf_addr_space_cast() instruction to cast pointers
between address_space(1) which is reserved for bpf_arena pointers and
default address space zero. All arena pointers in a bpf program written in
C language are tagged as __attribute__((address_space(1))). Hence, clang
provides helpful diagnostics when pointers cross address space. Libbpf and
the kernel support only address_space == 1. All other address space
identifiers are reserved.
rX = bpf_addr_space_cast(rY, /* dst_as */ 1, /* src_as */ 0) tells the
verifier that rX->type = PTR_TO_ARENA. Any further operations on
PTR_TO_ARENA register have to be in the 32-bit domain. The verifier will
mark load/store through PTR_TO_ARENA with PROBE_MEM32. JIT will generate
them as kern_vm_start + 32bit_addr memory accesses. The behavior is similar
to copy_from_kernel_nofault() except that no address checks are necessary.
The address is guaranteed to be in the 4GB range. If the page is not
present, the destination register is zeroed on read, and the operation is
ignored on write.
rX = bpf_addr_space_cast(rY, 0, 1) tells the verifier that rX->type =
unknown scalar. If arena->map_flags has BPF_F_NO_USER_CONV set, then the
verifier converts such cast instructions to mov32. Otherwise, JIT will emit
native code equivalent to:
rX = (u32)rY;
if (rY)
rX |= clear_lo32_bits(arena->user_vm_start); /* replace hi32 bits in rX */
After such conversion, the pointer becomes a valid user pointer within
bpf_arena range. The user process can access data structures created in
bpf_arena without any additional computations. For example, a linked list
built by a bpf program can be walked natively by user space.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Reviewed-by: Barret Rhoden <brho@google.com>
Link: https://lore.kernel.org/bpf/20240308010812.89848-2-alexei.starovoitov@gmail.com
2024-03-07 17:07:59 -08:00
|
|
|
if (IS_ERR_VALUE(ret))
|
|
|
|
return ret;
|
|
|
|
if ((ret >> 32) == ((ret + len - 1) >> 32))
|
|
|
|
return ret;
|
|
|
|
if (WARN_ON_ONCE(arena->user_vm_start))
|
|
|
|
/* checks at map creation time should prevent this */
|
|
|
|
return -EFAULT;
|
2024-03-14 19:18:31 -07:00
|
|
|
return round_up(ret, SZ_4G);
|
bpf: Introduce bpf_arena.
Introduce bpf_arena, which is a sparse shared memory region between the bpf
program and user space.
Use cases:
1. User space mmap-s bpf_arena and uses it as a traditional mmap-ed
anonymous region, like memcached or any key/value storage. The bpf
program implements an in-kernel accelerator. XDP prog can search for
a key in bpf_arena and return a value without going to user space.
2. The bpf program builds arbitrary data structures in bpf_arena (hash
tables, rb-trees, sparse arrays), while user space consumes it.
3. bpf_arena is a "heap" of memory from the bpf program's point of view.
The user space may mmap it, but bpf program will not convert pointers
to user base at run-time to improve bpf program speed.
Initially, the kernel vm_area and user vma are not populated. User space
can fault in pages within the range. While servicing a page fault,
bpf_arena logic will insert a new page into the kernel and user vmas. The
bpf program can allocate pages from that region via
bpf_arena_alloc_pages(). This kernel function will insert pages into the
kernel vm_area. The subsequent fault-in from user space will populate that
page into the user vma. The BPF_F_SEGV_ON_FAULT flag at arena creation time
can be used to prevent fault-in from user space. In such a case, if a page
is not allocated by the bpf program and not present in the kernel vm_area,
the user process will segfault. This is useful for use cases 2 and 3 above.
bpf_arena_alloc_pages() is similar to user space mmap(). It allocates pages
either at a specific address within the arena or allocates a range with the
maple tree. bpf_arena_free_pages() is analogous to munmap(), which frees
pages and removes the range from the kernel vm_area and from user process
vmas.
bpf_arena can be used as a bpf program "heap" of up to 4GB. The speed of
bpf program is more important than ease of sharing with user space. This is
use case 3. In such a case, the BPF_F_NO_USER_CONV flag is recommended.
It will tell the verifier to treat the rX = bpf_arena_cast_user(rY)
instruction as a 32-bit move wX = wY, which will improve bpf prog
performance. Otherwise, bpf_arena_cast_user is translated by JIT to
conditionally add the upper 32 bits of user vm_start (if the pointer is not
NULL) to arena pointers before they are stored into memory. This way, user
space sees them as valid 64-bit pointers.
Diff https://github.com/llvm/llvm-project/pull/84410 enables LLVM BPF
backend generate the bpf_addr_space_cast() instruction to cast pointers
between address_space(1) which is reserved for bpf_arena pointers and
default address space zero. All arena pointers in a bpf program written in
C language are tagged as __attribute__((address_space(1))). Hence, clang
provides helpful diagnostics when pointers cross address space. Libbpf and
the kernel support only address_space == 1. All other address space
identifiers are reserved.
rX = bpf_addr_space_cast(rY, /* dst_as */ 1, /* src_as */ 0) tells the
verifier that rX->type = PTR_TO_ARENA. Any further operations on
PTR_TO_ARENA register have to be in the 32-bit domain. The verifier will
mark load/store through PTR_TO_ARENA with PROBE_MEM32. JIT will generate
them as kern_vm_start + 32bit_addr memory accesses. The behavior is similar
to copy_from_kernel_nofault() except that no address checks are necessary.
The address is guaranteed to be in the 4GB range. If the page is not
present, the destination register is zeroed on read, and the operation is
ignored on write.
rX = bpf_addr_space_cast(rY, 0, 1) tells the verifier that rX->type =
unknown scalar. If arena->map_flags has BPF_F_NO_USER_CONV set, then the
verifier converts such cast instructions to mov32. Otherwise, JIT will emit
native code equivalent to:
rX = (u32)rY;
if (rY)
rX |= clear_lo32_bits(arena->user_vm_start); /* replace hi32 bits in rX */
After such conversion, the pointer becomes a valid user pointer within
bpf_arena range. The user process can access data structures created in
bpf_arena without any additional computations. For example, a linked list
built by a bpf program can be walked natively by user space.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Reviewed-by: Barret Rhoden <brho@google.com>
Link: https://lore.kernel.org/bpf/20240308010812.89848-2-alexei.starovoitov@gmail.com
2024-03-07 17:07:59 -08:00
|
|
|
}
|
|
|
|
|
|
|
|
static int arena_map_mmap(struct bpf_map *map, struct vm_area_struct *vma)
|
|
|
|
{
|
|
|
|
struct bpf_arena *arena = container_of(map, struct bpf_arena, map);
|
|
|
|
|
|
|
|
guard(mutex)(&arena->lock);
|
|
|
|
if (arena->user_vm_start && arena->user_vm_start != vma->vm_start)
|
|
|
|
/*
|
|
|
|
* If map_extra was not specified at arena creation time then
|
|
|
|
* 1st user process can do mmap(NULL, ...) to pick user_vm_start
|
|
|
|
* 2nd user process must pass the same addr to mmap(addr, MAP_FIXED..);
|
|
|
|
* or
|
|
|
|
* specify addr in map_extra and
|
|
|
|
* use the same addr later with mmap(addr, MAP_FIXED..);
|
|
|
|
*/
|
|
|
|
return -EBUSY;
|
|
|
|
|
|
|
|
if (arena->user_vm_end && arena->user_vm_end != vma->vm_end)
|
|
|
|
/* all user processes must have the same size of mmap-ed region */
|
|
|
|
return -EBUSY;
|
|
|
|
|
|
|
|
/* Earlier checks should prevent this */
|
2024-03-14 19:18:31 -07:00
|
|
|
if (WARN_ON_ONCE(vma->vm_end - vma->vm_start > SZ_4G || vma->vm_pgoff))
|
bpf: Introduce bpf_arena.
Introduce bpf_arena, which is a sparse shared memory region between the bpf
program and user space.
Use cases:
1. User space mmap-s bpf_arena and uses it as a traditional mmap-ed
anonymous region, like memcached or any key/value storage. The bpf
program implements an in-kernel accelerator. XDP prog can search for
a key in bpf_arena and return a value without going to user space.
2. The bpf program builds arbitrary data structures in bpf_arena (hash
tables, rb-trees, sparse arrays), while user space consumes it.
3. bpf_arena is a "heap" of memory from the bpf program's point of view.
The user space may mmap it, but bpf program will not convert pointers
to user base at run-time to improve bpf program speed.
Initially, the kernel vm_area and user vma are not populated. User space
can fault in pages within the range. While servicing a page fault,
bpf_arena logic will insert a new page into the kernel and user vmas. The
bpf program can allocate pages from that region via
bpf_arena_alloc_pages(). This kernel function will insert pages into the
kernel vm_area. The subsequent fault-in from user space will populate that
page into the user vma. The BPF_F_SEGV_ON_FAULT flag at arena creation time
can be used to prevent fault-in from user space. In such a case, if a page
is not allocated by the bpf program and not present in the kernel vm_area,
the user process will segfault. This is useful for use cases 2 and 3 above.
bpf_arena_alloc_pages() is similar to user space mmap(). It allocates pages
either at a specific address within the arena or allocates a range with the
maple tree. bpf_arena_free_pages() is analogous to munmap(), which frees
pages and removes the range from the kernel vm_area and from user process
vmas.
bpf_arena can be used as a bpf program "heap" of up to 4GB. The speed of
bpf program is more important than ease of sharing with user space. This is
use case 3. In such a case, the BPF_F_NO_USER_CONV flag is recommended.
It will tell the verifier to treat the rX = bpf_arena_cast_user(rY)
instruction as a 32-bit move wX = wY, which will improve bpf prog
performance. Otherwise, bpf_arena_cast_user is translated by JIT to
conditionally add the upper 32 bits of user vm_start (if the pointer is not
NULL) to arena pointers before they are stored into memory. This way, user
space sees them as valid 64-bit pointers.
Diff https://github.com/llvm/llvm-project/pull/84410 enables LLVM BPF
backend generate the bpf_addr_space_cast() instruction to cast pointers
between address_space(1) which is reserved for bpf_arena pointers and
default address space zero. All arena pointers in a bpf program written in
C language are tagged as __attribute__((address_space(1))). Hence, clang
provides helpful diagnostics when pointers cross address space. Libbpf and
the kernel support only address_space == 1. All other address space
identifiers are reserved.
rX = bpf_addr_space_cast(rY, /* dst_as */ 1, /* src_as */ 0) tells the
verifier that rX->type = PTR_TO_ARENA. Any further operations on
PTR_TO_ARENA register have to be in the 32-bit domain. The verifier will
mark load/store through PTR_TO_ARENA with PROBE_MEM32. JIT will generate
them as kern_vm_start + 32bit_addr memory accesses. The behavior is similar
to copy_from_kernel_nofault() except that no address checks are necessary.
The address is guaranteed to be in the 4GB range. If the page is not
present, the destination register is zeroed on read, and the operation is
ignored on write.
rX = bpf_addr_space_cast(rY, 0, 1) tells the verifier that rX->type =
unknown scalar. If arena->map_flags has BPF_F_NO_USER_CONV set, then the
verifier converts such cast instructions to mov32. Otherwise, JIT will emit
native code equivalent to:
rX = (u32)rY;
if (rY)
rX |= clear_lo32_bits(arena->user_vm_start); /* replace hi32 bits in rX */
After such conversion, the pointer becomes a valid user pointer within
bpf_arena range. The user process can access data structures created in
bpf_arena without any additional computations. For example, a linked list
built by a bpf program can be walked natively by user space.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Reviewed-by: Barret Rhoden <brho@google.com>
Link: https://lore.kernel.org/bpf/20240308010812.89848-2-alexei.starovoitov@gmail.com
2024-03-07 17:07:59 -08:00
|
|
|
return -EFAULT;
|
|
|
|
|
|
|
|
if (remember_vma(arena, vma))
|
|
|
|
return -ENOMEM;
|
|
|
|
|
|
|
|
arena->user_vm_start = vma->vm_start;
|
|
|
|
arena->user_vm_end = vma->vm_end;
|
|
|
|
/*
|
|
|
|
* bpf_map_mmap() checks that it's being mmaped as VM_SHARED and
|
|
|
|
* clears VM_MAYEXEC. Set VM_DONTEXPAND as well to avoid
|
|
|
|
* potential change of user_vm_start.
|
|
|
|
*/
|
|
|
|
vm_flags_set(vma, VM_DONTEXPAND);
|
|
|
|
vma->vm_ops = &arena_vm_ops;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int arena_map_direct_value_addr(const struct bpf_map *map, u64 *imm, u32 off)
|
|
|
|
{
|
|
|
|
struct bpf_arena *arena = container_of(map, struct bpf_arena, map);
|
|
|
|
|
|
|
|
if ((u64)off > arena->user_vm_end - arena->user_vm_start)
|
|
|
|
return -ERANGE;
|
|
|
|
*imm = (unsigned long)arena->user_vm_start;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
BTF_ID_LIST_SINGLE(bpf_arena_map_btf_ids, struct, bpf_arena)
|
|
|
|
const struct bpf_map_ops arena_map_ops = {
|
|
|
|
.map_meta_equal = bpf_map_meta_equal,
|
|
|
|
.map_alloc = arena_map_alloc,
|
|
|
|
.map_free = arena_map_free,
|
|
|
|
.map_direct_value_addr = arena_map_direct_value_addr,
|
|
|
|
.map_mmap = arena_map_mmap,
|
|
|
|
.map_get_unmapped_area = arena_get_unmapped_area,
|
|
|
|
.map_get_next_key = arena_map_get_next_key,
|
|
|
|
.map_push_elem = arena_map_push_elem,
|
|
|
|
.map_peek_elem = arena_map_peek_elem,
|
|
|
|
.map_pop_elem = arena_map_pop_elem,
|
|
|
|
.map_lookup_elem = arena_map_lookup_elem,
|
|
|
|
.map_update_elem = arena_map_update_elem,
|
|
|
|
.map_delete_elem = arena_map_delete_elem,
|
|
|
|
.map_check_btf = arena_map_check_btf,
|
|
|
|
.map_mem_usage = arena_map_mem_usage,
|
|
|
|
.map_btf_id = &bpf_arena_map_btf_ids[0],
|
|
|
|
};
|
|
|
|
|
|
|
|
static u64 clear_lo32(u64 val)
|
|
|
|
{
|
|
|
|
return val & ~(u64)~0U;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Allocate pages and vmap them into kernel vmalloc area.
|
|
|
|
* Later the pages will be mmaped into user space vma.
|
|
|
|
*/
|
|
|
|
static long arena_alloc_pages(struct bpf_arena *arena, long uaddr, long page_cnt, int node_id)
|
|
|
|
{
|
|
|
|
/* user_vm_end/start are fixed before bpf prog runs */
|
|
|
|
long page_cnt_max = (arena->user_vm_end - arena->user_vm_start) >> PAGE_SHIFT;
|
|
|
|
u64 kern_vm_start = bpf_arena_get_kern_vm_start(arena);
|
|
|
|
struct page **pages;
|
|
|
|
long pgoff = 0;
|
|
|
|
u32 uaddr32;
|
|
|
|
int ret, i;
|
|
|
|
|
|
|
|
if (page_cnt > page_cnt_max)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
if (uaddr) {
|
|
|
|
if (uaddr & ~PAGE_MASK)
|
|
|
|
return 0;
|
|
|
|
pgoff = compute_pgoff(arena, uaddr);
|
2024-03-14 19:18:31 -07:00
|
|
|
if (pgoff > page_cnt_max - page_cnt)
|
bpf: Introduce bpf_arena.
Introduce bpf_arena, which is a sparse shared memory region between the bpf
program and user space.
Use cases:
1. User space mmap-s bpf_arena and uses it as a traditional mmap-ed
anonymous region, like memcached or any key/value storage. The bpf
program implements an in-kernel accelerator. XDP prog can search for
a key in bpf_arena and return a value without going to user space.
2. The bpf program builds arbitrary data structures in bpf_arena (hash
tables, rb-trees, sparse arrays), while user space consumes it.
3. bpf_arena is a "heap" of memory from the bpf program's point of view.
The user space may mmap it, but bpf program will not convert pointers
to user base at run-time to improve bpf program speed.
Initially, the kernel vm_area and user vma are not populated. User space
can fault in pages within the range. While servicing a page fault,
bpf_arena logic will insert a new page into the kernel and user vmas. The
bpf program can allocate pages from that region via
bpf_arena_alloc_pages(). This kernel function will insert pages into the
kernel vm_area. The subsequent fault-in from user space will populate that
page into the user vma. The BPF_F_SEGV_ON_FAULT flag at arena creation time
can be used to prevent fault-in from user space. In such a case, if a page
is not allocated by the bpf program and not present in the kernel vm_area,
the user process will segfault. This is useful for use cases 2 and 3 above.
bpf_arena_alloc_pages() is similar to user space mmap(). It allocates pages
either at a specific address within the arena or allocates a range with the
maple tree. bpf_arena_free_pages() is analogous to munmap(), which frees
pages and removes the range from the kernel vm_area and from user process
vmas.
bpf_arena can be used as a bpf program "heap" of up to 4GB. The speed of
bpf program is more important than ease of sharing with user space. This is
use case 3. In such a case, the BPF_F_NO_USER_CONV flag is recommended.
It will tell the verifier to treat the rX = bpf_arena_cast_user(rY)
instruction as a 32-bit move wX = wY, which will improve bpf prog
performance. Otherwise, bpf_arena_cast_user is translated by JIT to
conditionally add the upper 32 bits of user vm_start (if the pointer is not
NULL) to arena pointers before they are stored into memory. This way, user
space sees them as valid 64-bit pointers.
Diff https://github.com/llvm/llvm-project/pull/84410 enables LLVM BPF
backend generate the bpf_addr_space_cast() instruction to cast pointers
between address_space(1) which is reserved for bpf_arena pointers and
default address space zero. All arena pointers in a bpf program written in
C language are tagged as __attribute__((address_space(1))). Hence, clang
provides helpful diagnostics when pointers cross address space. Libbpf and
the kernel support only address_space == 1. All other address space
identifiers are reserved.
rX = bpf_addr_space_cast(rY, /* dst_as */ 1, /* src_as */ 0) tells the
verifier that rX->type = PTR_TO_ARENA. Any further operations on
PTR_TO_ARENA register have to be in the 32-bit domain. The verifier will
mark load/store through PTR_TO_ARENA with PROBE_MEM32. JIT will generate
them as kern_vm_start + 32bit_addr memory accesses. The behavior is similar
to copy_from_kernel_nofault() except that no address checks are necessary.
The address is guaranteed to be in the 4GB range. If the page is not
present, the destination register is zeroed on read, and the operation is
ignored on write.
rX = bpf_addr_space_cast(rY, 0, 1) tells the verifier that rX->type =
unknown scalar. If arena->map_flags has BPF_F_NO_USER_CONV set, then the
verifier converts such cast instructions to mov32. Otherwise, JIT will emit
native code equivalent to:
rX = (u32)rY;
if (rY)
rX |= clear_lo32_bits(arena->user_vm_start); /* replace hi32 bits in rX */
After such conversion, the pointer becomes a valid user pointer within
bpf_arena range. The user process can access data structures created in
bpf_arena without any additional computations. For example, a linked list
built by a bpf program can be walked natively by user space.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Reviewed-by: Barret Rhoden <brho@google.com>
Link: https://lore.kernel.org/bpf/20240308010812.89848-2-alexei.starovoitov@gmail.com
2024-03-07 17:07:59 -08:00
|
|
|
/* requested address will be outside of user VMA */
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2024-12-23 17:00:38 -05:00
|
|
|
/* zeroing is needed, since alloc_pages_bulk() only fills in non-zero entries */
|
bpf: Introduce bpf_arena.
Introduce bpf_arena, which is a sparse shared memory region between the bpf
program and user space.
Use cases:
1. User space mmap-s bpf_arena and uses it as a traditional mmap-ed
anonymous region, like memcached or any key/value storage. The bpf
program implements an in-kernel accelerator. XDP prog can search for
a key in bpf_arena and return a value without going to user space.
2. The bpf program builds arbitrary data structures in bpf_arena (hash
tables, rb-trees, sparse arrays), while user space consumes it.
3. bpf_arena is a "heap" of memory from the bpf program's point of view.
The user space may mmap it, but bpf program will not convert pointers
to user base at run-time to improve bpf program speed.
Initially, the kernel vm_area and user vma are not populated. User space
can fault in pages within the range. While servicing a page fault,
bpf_arena logic will insert a new page into the kernel and user vmas. The
bpf program can allocate pages from that region via
bpf_arena_alloc_pages(). This kernel function will insert pages into the
kernel vm_area. The subsequent fault-in from user space will populate that
page into the user vma. The BPF_F_SEGV_ON_FAULT flag at arena creation time
can be used to prevent fault-in from user space. In such a case, if a page
is not allocated by the bpf program and not present in the kernel vm_area,
the user process will segfault. This is useful for use cases 2 and 3 above.
bpf_arena_alloc_pages() is similar to user space mmap(). It allocates pages
either at a specific address within the arena or allocates a range with the
maple tree. bpf_arena_free_pages() is analogous to munmap(), which frees
pages and removes the range from the kernel vm_area and from user process
vmas.
bpf_arena can be used as a bpf program "heap" of up to 4GB. The speed of
bpf program is more important than ease of sharing with user space. This is
use case 3. In such a case, the BPF_F_NO_USER_CONV flag is recommended.
It will tell the verifier to treat the rX = bpf_arena_cast_user(rY)
instruction as a 32-bit move wX = wY, which will improve bpf prog
performance. Otherwise, bpf_arena_cast_user is translated by JIT to
conditionally add the upper 32 bits of user vm_start (if the pointer is not
NULL) to arena pointers before they are stored into memory. This way, user
space sees them as valid 64-bit pointers.
Diff https://github.com/llvm/llvm-project/pull/84410 enables LLVM BPF
backend generate the bpf_addr_space_cast() instruction to cast pointers
between address_space(1) which is reserved for bpf_arena pointers and
default address space zero. All arena pointers in a bpf program written in
C language are tagged as __attribute__((address_space(1))). Hence, clang
provides helpful diagnostics when pointers cross address space. Libbpf and
the kernel support only address_space == 1. All other address space
identifiers are reserved.
rX = bpf_addr_space_cast(rY, /* dst_as */ 1, /* src_as */ 0) tells the
verifier that rX->type = PTR_TO_ARENA. Any further operations on
PTR_TO_ARENA register have to be in the 32-bit domain. The verifier will
mark load/store through PTR_TO_ARENA with PROBE_MEM32. JIT will generate
them as kern_vm_start + 32bit_addr memory accesses. The behavior is similar
to copy_from_kernel_nofault() except that no address checks are necessary.
The address is guaranteed to be in the 4GB range. If the page is not
present, the destination register is zeroed on read, and the operation is
ignored on write.
rX = bpf_addr_space_cast(rY, 0, 1) tells the verifier that rX->type =
unknown scalar. If arena->map_flags has BPF_F_NO_USER_CONV set, then the
verifier converts such cast instructions to mov32. Otherwise, JIT will emit
native code equivalent to:
rX = (u32)rY;
if (rY)
rX |= clear_lo32_bits(arena->user_vm_start); /* replace hi32 bits in rX */
After such conversion, the pointer becomes a valid user pointer within
bpf_arena range. The user process can access data structures created in
bpf_arena without any additional computations. For example, a linked list
built by a bpf program can be walked natively by user space.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Reviewed-by: Barret Rhoden <brho@google.com>
Link: https://lore.kernel.org/bpf/20240308010812.89848-2-alexei.starovoitov@gmail.com
2024-03-07 17:07:59 -08:00
|
|
|
pages = kvcalloc(page_cnt, sizeof(struct page *), GFP_KERNEL);
|
|
|
|
if (!pages)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
guard(mutex)(&arena->lock);
|
|
|
|
|
2024-11-07 18:56:15 -08:00
|
|
|
if (uaddr) {
|
|
|
|
ret = is_range_tree_set(&arena->rt, pgoff, page_cnt);
|
|
|
|
if (ret)
|
|
|
|
goto out_free_pages;
|
|
|
|
ret = range_tree_clear(&arena->rt, pgoff, page_cnt);
|
|
|
|
} else {
|
|
|
|
ret = pgoff = range_tree_find(&arena->rt, page_cnt);
|
|
|
|
if (pgoff >= 0)
|
|
|
|
ret = range_tree_clear(&arena->rt, pgoff, page_cnt);
|
|
|
|
}
|
bpf: Introduce bpf_arena.
Introduce bpf_arena, which is a sparse shared memory region between the bpf
program and user space.
Use cases:
1. User space mmap-s bpf_arena and uses it as a traditional mmap-ed
anonymous region, like memcached or any key/value storage. The bpf
program implements an in-kernel accelerator. XDP prog can search for
a key in bpf_arena and return a value without going to user space.
2. The bpf program builds arbitrary data structures in bpf_arena (hash
tables, rb-trees, sparse arrays), while user space consumes it.
3. bpf_arena is a "heap" of memory from the bpf program's point of view.
The user space may mmap it, but bpf program will not convert pointers
to user base at run-time to improve bpf program speed.
Initially, the kernel vm_area and user vma are not populated. User space
can fault in pages within the range. While servicing a page fault,
bpf_arena logic will insert a new page into the kernel and user vmas. The
bpf program can allocate pages from that region via
bpf_arena_alloc_pages(). This kernel function will insert pages into the
kernel vm_area. The subsequent fault-in from user space will populate that
page into the user vma. The BPF_F_SEGV_ON_FAULT flag at arena creation time
can be used to prevent fault-in from user space. In such a case, if a page
is not allocated by the bpf program and not present in the kernel vm_area,
the user process will segfault. This is useful for use cases 2 and 3 above.
bpf_arena_alloc_pages() is similar to user space mmap(). It allocates pages
either at a specific address within the arena or allocates a range with the
maple tree. bpf_arena_free_pages() is analogous to munmap(), which frees
pages and removes the range from the kernel vm_area and from user process
vmas.
bpf_arena can be used as a bpf program "heap" of up to 4GB. The speed of
bpf program is more important than ease of sharing with user space. This is
use case 3. In such a case, the BPF_F_NO_USER_CONV flag is recommended.
It will tell the verifier to treat the rX = bpf_arena_cast_user(rY)
instruction as a 32-bit move wX = wY, which will improve bpf prog
performance. Otherwise, bpf_arena_cast_user is translated by JIT to
conditionally add the upper 32 bits of user vm_start (if the pointer is not
NULL) to arena pointers before they are stored into memory. This way, user
space sees them as valid 64-bit pointers.
Diff https://github.com/llvm/llvm-project/pull/84410 enables LLVM BPF
backend generate the bpf_addr_space_cast() instruction to cast pointers
between address_space(1) which is reserved for bpf_arena pointers and
default address space zero. All arena pointers in a bpf program written in
C language are tagged as __attribute__((address_space(1))). Hence, clang
provides helpful diagnostics when pointers cross address space. Libbpf and
the kernel support only address_space == 1. All other address space
identifiers are reserved.
rX = bpf_addr_space_cast(rY, /* dst_as */ 1, /* src_as */ 0) tells the
verifier that rX->type = PTR_TO_ARENA. Any further operations on
PTR_TO_ARENA register have to be in the 32-bit domain. The verifier will
mark load/store through PTR_TO_ARENA with PROBE_MEM32. JIT will generate
them as kern_vm_start + 32bit_addr memory accesses. The behavior is similar
to copy_from_kernel_nofault() except that no address checks are necessary.
The address is guaranteed to be in the 4GB range. If the page is not
present, the destination register is zeroed on read, and the operation is
ignored on write.
rX = bpf_addr_space_cast(rY, 0, 1) tells the verifier that rX->type =
unknown scalar. If arena->map_flags has BPF_F_NO_USER_CONV set, then the
verifier converts such cast instructions to mov32. Otherwise, JIT will emit
native code equivalent to:
rX = (u32)rY;
if (rY)
rX |= clear_lo32_bits(arena->user_vm_start); /* replace hi32 bits in rX */
After such conversion, the pointer becomes a valid user pointer within
bpf_arena range. The user process can access data structures created in
bpf_arena without any additional computations. For example, a linked list
built by a bpf program can be walked natively by user space.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Reviewed-by: Barret Rhoden <brho@google.com>
Link: https://lore.kernel.org/bpf/20240308010812.89848-2-alexei.starovoitov@gmail.com
2024-03-07 17:07:59 -08:00
|
|
|
if (ret)
|
|
|
|
goto out_free_pages;
|
|
|
|
|
|
|
|
ret = bpf_map_alloc_pages(&arena->map, GFP_KERNEL | __GFP_ZERO,
|
|
|
|
node_id, page_cnt, pages);
|
|
|
|
if (ret)
|
|
|
|
goto out;
|
|
|
|
|
|
|
|
uaddr32 = (u32)(arena->user_vm_start + pgoff * PAGE_SIZE);
|
2024-03-14 19:18:31 -07:00
|
|
|
/* Earlier checks made sure that uaddr32 + page_cnt * PAGE_SIZE - 1
|
|
|
|
* will not overflow 32-bit. Lower 32-bit need to represent
|
|
|
|
* contiguous user address range.
|
|
|
|
* Map these pages at kern_vm_start base.
|
|
|
|
* kern_vm_start + uaddr32 + page_cnt * PAGE_SIZE - 1 can overflow
|
|
|
|
* lower 32-bit and it's ok.
|
|
|
|
*/
|
bpf: Introduce bpf_arena.
Introduce bpf_arena, which is a sparse shared memory region between the bpf
program and user space.
Use cases:
1. User space mmap-s bpf_arena and uses it as a traditional mmap-ed
anonymous region, like memcached or any key/value storage. The bpf
program implements an in-kernel accelerator. XDP prog can search for
a key in bpf_arena and return a value without going to user space.
2. The bpf program builds arbitrary data structures in bpf_arena (hash
tables, rb-trees, sparse arrays), while user space consumes it.
3. bpf_arena is a "heap" of memory from the bpf program's point of view.
The user space may mmap it, but bpf program will not convert pointers
to user base at run-time to improve bpf program speed.
Initially, the kernel vm_area and user vma are not populated. User space
can fault in pages within the range. While servicing a page fault,
bpf_arena logic will insert a new page into the kernel and user vmas. The
bpf program can allocate pages from that region via
bpf_arena_alloc_pages(). This kernel function will insert pages into the
kernel vm_area. The subsequent fault-in from user space will populate that
page into the user vma. The BPF_F_SEGV_ON_FAULT flag at arena creation time
can be used to prevent fault-in from user space. In such a case, if a page
is not allocated by the bpf program and not present in the kernel vm_area,
the user process will segfault. This is useful for use cases 2 and 3 above.
bpf_arena_alloc_pages() is similar to user space mmap(). It allocates pages
either at a specific address within the arena or allocates a range with the
maple tree. bpf_arena_free_pages() is analogous to munmap(), which frees
pages and removes the range from the kernel vm_area and from user process
vmas.
bpf_arena can be used as a bpf program "heap" of up to 4GB. The speed of
bpf program is more important than ease of sharing with user space. This is
use case 3. In such a case, the BPF_F_NO_USER_CONV flag is recommended.
It will tell the verifier to treat the rX = bpf_arena_cast_user(rY)
instruction as a 32-bit move wX = wY, which will improve bpf prog
performance. Otherwise, bpf_arena_cast_user is translated by JIT to
conditionally add the upper 32 bits of user vm_start (if the pointer is not
NULL) to arena pointers before they are stored into memory. This way, user
space sees them as valid 64-bit pointers.
Diff https://github.com/llvm/llvm-project/pull/84410 enables LLVM BPF
backend generate the bpf_addr_space_cast() instruction to cast pointers
between address_space(1) which is reserved for bpf_arena pointers and
default address space zero. All arena pointers in a bpf program written in
C language are tagged as __attribute__((address_space(1))). Hence, clang
provides helpful diagnostics when pointers cross address space. Libbpf and
the kernel support only address_space == 1. All other address space
identifiers are reserved.
rX = bpf_addr_space_cast(rY, /* dst_as */ 1, /* src_as */ 0) tells the
verifier that rX->type = PTR_TO_ARENA. Any further operations on
PTR_TO_ARENA register have to be in the 32-bit domain. The verifier will
mark load/store through PTR_TO_ARENA with PROBE_MEM32. JIT will generate
them as kern_vm_start + 32bit_addr memory accesses. The behavior is similar
to copy_from_kernel_nofault() except that no address checks are necessary.
The address is guaranteed to be in the 4GB range. If the page is not
present, the destination register is zeroed on read, and the operation is
ignored on write.
rX = bpf_addr_space_cast(rY, 0, 1) tells the verifier that rX->type =
unknown scalar. If arena->map_flags has BPF_F_NO_USER_CONV set, then the
verifier converts such cast instructions to mov32. Otherwise, JIT will emit
native code equivalent to:
rX = (u32)rY;
if (rY)
rX |= clear_lo32_bits(arena->user_vm_start); /* replace hi32 bits in rX */
After such conversion, the pointer becomes a valid user pointer within
bpf_arena range. The user process can access data structures created in
bpf_arena without any additional computations. For example, a linked list
built by a bpf program can be walked natively by user space.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Reviewed-by: Barret Rhoden <brho@google.com>
Link: https://lore.kernel.org/bpf/20240308010812.89848-2-alexei.starovoitov@gmail.com
2024-03-07 17:07:59 -08:00
|
|
|
ret = vm_area_map_pages(arena->kern_vm, kern_vm_start + uaddr32,
|
|
|
|
kern_vm_start + uaddr32 + page_cnt * PAGE_SIZE, pages);
|
|
|
|
if (ret) {
|
|
|
|
for (i = 0; i < page_cnt; i++)
|
|
|
|
__free_page(pages[i]);
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
kvfree(pages);
|
|
|
|
return clear_lo32(arena->user_vm_start) + uaddr32;
|
|
|
|
out:
|
2024-11-07 18:56:15 -08:00
|
|
|
range_tree_set(&arena->rt, pgoff, page_cnt);
|
bpf: Introduce bpf_arena.
Introduce bpf_arena, which is a sparse shared memory region between the bpf
program and user space.
Use cases:
1. User space mmap-s bpf_arena and uses it as a traditional mmap-ed
anonymous region, like memcached or any key/value storage. The bpf
program implements an in-kernel accelerator. XDP prog can search for
a key in bpf_arena and return a value without going to user space.
2. The bpf program builds arbitrary data structures in bpf_arena (hash
tables, rb-trees, sparse arrays), while user space consumes it.
3. bpf_arena is a "heap" of memory from the bpf program's point of view.
The user space may mmap it, but bpf program will not convert pointers
to user base at run-time to improve bpf program speed.
Initially, the kernel vm_area and user vma are not populated. User space
can fault in pages within the range. While servicing a page fault,
bpf_arena logic will insert a new page into the kernel and user vmas. The
bpf program can allocate pages from that region via
bpf_arena_alloc_pages(). This kernel function will insert pages into the
kernel vm_area. The subsequent fault-in from user space will populate that
page into the user vma. The BPF_F_SEGV_ON_FAULT flag at arena creation time
can be used to prevent fault-in from user space. In such a case, if a page
is not allocated by the bpf program and not present in the kernel vm_area,
the user process will segfault. This is useful for use cases 2 and 3 above.
bpf_arena_alloc_pages() is similar to user space mmap(). It allocates pages
either at a specific address within the arena or allocates a range with the
maple tree. bpf_arena_free_pages() is analogous to munmap(), which frees
pages and removes the range from the kernel vm_area and from user process
vmas.
bpf_arena can be used as a bpf program "heap" of up to 4GB. The speed of
bpf program is more important than ease of sharing with user space. This is
use case 3. In such a case, the BPF_F_NO_USER_CONV flag is recommended.
It will tell the verifier to treat the rX = bpf_arena_cast_user(rY)
instruction as a 32-bit move wX = wY, which will improve bpf prog
performance. Otherwise, bpf_arena_cast_user is translated by JIT to
conditionally add the upper 32 bits of user vm_start (if the pointer is not
NULL) to arena pointers before they are stored into memory. This way, user
space sees them as valid 64-bit pointers.
Diff https://github.com/llvm/llvm-project/pull/84410 enables LLVM BPF
backend generate the bpf_addr_space_cast() instruction to cast pointers
between address_space(1) which is reserved for bpf_arena pointers and
default address space zero. All arena pointers in a bpf program written in
C language are tagged as __attribute__((address_space(1))). Hence, clang
provides helpful diagnostics when pointers cross address space. Libbpf and
the kernel support only address_space == 1. All other address space
identifiers are reserved.
rX = bpf_addr_space_cast(rY, /* dst_as */ 1, /* src_as */ 0) tells the
verifier that rX->type = PTR_TO_ARENA. Any further operations on
PTR_TO_ARENA register have to be in the 32-bit domain. The verifier will
mark load/store through PTR_TO_ARENA with PROBE_MEM32. JIT will generate
them as kern_vm_start + 32bit_addr memory accesses. The behavior is similar
to copy_from_kernel_nofault() except that no address checks are necessary.
The address is guaranteed to be in the 4GB range. If the page is not
present, the destination register is zeroed on read, and the operation is
ignored on write.
rX = bpf_addr_space_cast(rY, 0, 1) tells the verifier that rX->type =
unknown scalar. If arena->map_flags has BPF_F_NO_USER_CONV set, then the
verifier converts such cast instructions to mov32. Otherwise, JIT will emit
native code equivalent to:
rX = (u32)rY;
if (rY)
rX |= clear_lo32_bits(arena->user_vm_start); /* replace hi32 bits in rX */
After such conversion, the pointer becomes a valid user pointer within
bpf_arena range. The user process can access data structures created in
bpf_arena without any additional computations. For example, a linked list
built by a bpf program can be walked natively by user space.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Reviewed-by: Barret Rhoden <brho@google.com>
Link: https://lore.kernel.org/bpf/20240308010812.89848-2-alexei.starovoitov@gmail.com
2024-03-07 17:07:59 -08:00
|
|
|
out_free_pages:
|
|
|
|
kvfree(pages);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If page is present in vmalloc area, unmap it from vmalloc area,
|
|
|
|
* unmap it from all user space vma-s,
|
|
|
|
* and free it.
|
|
|
|
*/
|
|
|
|
static void zap_pages(struct bpf_arena *arena, long uaddr, long page_cnt)
|
|
|
|
{
|
|
|
|
struct vma_list *vml;
|
|
|
|
|
|
|
|
list_for_each_entry(vml, &arena->vma_list, head)
|
|
|
|
zap_page_range_single(vml->vma, uaddr,
|
|
|
|
PAGE_SIZE * page_cnt, NULL);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void arena_free_pages(struct bpf_arena *arena, long uaddr, long page_cnt)
|
|
|
|
{
|
|
|
|
u64 full_uaddr, uaddr_end;
|
|
|
|
long kaddr, pgoff, i;
|
|
|
|
struct page *page;
|
|
|
|
|
|
|
|
/* only aligned lower 32-bit are relevant */
|
|
|
|
uaddr = (u32)uaddr;
|
|
|
|
uaddr &= PAGE_MASK;
|
|
|
|
full_uaddr = clear_lo32(arena->user_vm_start) + uaddr;
|
|
|
|
uaddr_end = min(arena->user_vm_end, full_uaddr + (page_cnt << PAGE_SHIFT));
|
|
|
|
if (full_uaddr >= uaddr_end)
|
|
|
|
return;
|
|
|
|
|
|
|
|
page_cnt = (uaddr_end - full_uaddr) >> PAGE_SHIFT;
|
|
|
|
|
|
|
|
guard(mutex)(&arena->lock);
|
|
|
|
|
|
|
|
pgoff = compute_pgoff(arena, uaddr);
|
|
|
|
/* clear range */
|
2024-11-07 18:56:15 -08:00
|
|
|
range_tree_set(&arena->rt, pgoff, page_cnt);
|
bpf: Introduce bpf_arena.
Introduce bpf_arena, which is a sparse shared memory region between the bpf
program and user space.
Use cases:
1. User space mmap-s bpf_arena and uses it as a traditional mmap-ed
anonymous region, like memcached or any key/value storage. The bpf
program implements an in-kernel accelerator. XDP prog can search for
a key in bpf_arena and return a value without going to user space.
2. The bpf program builds arbitrary data structures in bpf_arena (hash
tables, rb-trees, sparse arrays), while user space consumes it.
3. bpf_arena is a "heap" of memory from the bpf program's point of view.
The user space may mmap it, but bpf program will not convert pointers
to user base at run-time to improve bpf program speed.
Initially, the kernel vm_area and user vma are not populated. User space
can fault in pages within the range. While servicing a page fault,
bpf_arena logic will insert a new page into the kernel and user vmas. The
bpf program can allocate pages from that region via
bpf_arena_alloc_pages(). This kernel function will insert pages into the
kernel vm_area. The subsequent fault-in from user space will populate that
page into the user vma. The BPF_F_SEGV_ON_FAULT flag at arena creation time
can be used to prevent fault-in from user space. In such a case, if a page
is not allocated by the bpf program and not present in the kernel vm_area,
the user process will segfault. This is useful for use cases 2 and 3 above.
bpf_arena_alloc_pages() is similar to user space mmap(). It allocates pages
either at a specific address within the arena or allocates a range with the
maple tree. bpf_arena_free_pages() is analogous to munmap(), which frees
pages and removes the range from the kernel vm_area and from user process
vmas.
bpf_arena can be used as a bpf program "heap" of up to 4GB. The speed of
bpf program is more important than ease of sharing with user space. This is
use case 3. In such a case, the BPF_F_NO_USER_CONV flag is recommended.
It will tell the verifier to treat the rX = bpf_arena_cast_user(rY)
instruction as a 32-bit move wX = wY, which will improve bpf prog
performance. Otherwise, bpf_arena_cast_user is translated by JIT to
conditionally add the upper 32 bits of user vm_start (if the pointer is not
NULL) to arena pointers before they are stored into memory. This way, user
space sees them as valid 64-bit pointers.
Diff https://github.com/llvm/llvm-project/pull/84410 enables LLVM BPF
backend generate the bpf_addr_space_cast() instruction to cast pointers
between address_space(1) which is reserved for bpf_arena pointers and
default address space zero. All arena pointers in a bpf program written in
C language are tagged as __attribute__((address_space(1))). Hence, clang
provides helpful diagnostics when pointers cross address space. Libbpf and
the kernel support only address_space == 1. All other address space
identifiers are reserved.
rX = bpf_addr_space_cast(rY, /* dst_as */ 1, /* src_as */ 0) tells the
verifier that rX->type = PTR_TO_ARENA. Any further operations on
PTR_TO_ARENA register have to be in the 32-bit domain. The verifier will
mark load/store through PTR_TO_ARENA with PROBE_MEM32. JIT will generate
them as kern_vm_start + 32bit_addr memory accesses. The behavior is similar
to copy_from_kernel_nofault() except that no address checks are necessary.
The address is guaranteed to be in the 4GB range. If the page is not
present, the destination register is zeroed on read, and the operation is
ignored on write.
rX = bpf_addr_space_cast(rY, 0, 1) tells the verifier that rX->type =
unknown scalar. If arena->map_flags has BPF_F_NO_USER_CONV set, then the
verifier converts such cast instructions to mov32. Otherwise, JIT will emit
native code equivalent to:
rX = (u32)rY;
if (rY)
rX |= clear_lo32_bits(arena->user_vm_start); /* replace hi32 bits in rX */
After such conversion, the pointer becomes a valid user pointer within
bpf_arena range. The user process can access data structures created in
bpf_arena without any additional computations. For example, a linked list
built by a bpf program can be walked natively by user space.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Reviewed-by: Barret Rhoden <brho@google.com>
Link: https://lore.kernel.org/bpf/20240308010812.89848-2-alexei.starovoitov@gmail.com
2024-03-07 17:07:59 -08:00
|
|
|
|
|
|
|
if (page_cnt > 1)
|
|
|
|
/* bulk zap if multiple pages being freed */
|
|
|
|
zap_pages(arena, full_uaddr, page_cnt);
|
|
|
|
|
|
|
|
kaddr = bpf_arena_get_kern_vm_start(arena) + uaddr;
|
|
|
|
for (i = 0; i < page_cnt; i++, kaddr += PAGE_SIZE, full_uaddr += PAGE_SIZE) {
|
|
|
|
page = vmalloc_to_page((void *)kaddr);
|
|
|
|
if (!page)
|
|
|
|
continue;
|
|
|
|
if (page_cnt == 1 && page_mapped(page)) /* mapped by some user process */
|
2024-03-14 19:18:31 -07:00
|
|
|
/* Optimization for the common case of page_cnt==1:
|
|
|
|
* If page wasn't mapped into some user vma there
|
|
|
|
* is no need to call zap_pages which is slow. When
|
|
|
|
* page_cnt is big it's faster to do the batched zap.
|
|
|
|
*/
|
bpf: Introduce bpf_arena.
Introduce bpf_arena, which is a sparse shared memory region between the bpf
program and user space.
Use cases:
1. User space mmap-s bpf_arena and uses it as a traditional mmap-ed
anonymous region, like memcached or any key/value storage. The bpf
program implements an in-kernel accelerator. XDP prog can search for
a key in bpf_arena and return a value without going to user space.
2. The bpf program builds arbitrary data structures in bpf_arena (hash
tables, rb-trees, sparse arrays), while user space consumes it.
3. bpf_arena is a "heap" of memory from the bpf program's point of view.
The user space may mmap it, but bpf program will not convert pointers
to user base at run-time to improve bpf program speed.
Initially, the kernel vm_area and user vma are not populated. User space
can fault in pages within the range. While servicing a page fault,
bpf_arena logic will insert a new page into the kernel and user vmas. The
bpf program can allocate pages from that region via
bpf_arena_alloc_pages(). This kernel function will insert pages into the
kernel vm_area. The subsequent fault-in from user space will populate that
page into the user vma. The BPF_F_SEGV_ON_FAULT flag at arena creation time
can be used to prevent fault-in from user space. In such a case, if a page
is not allocated by the bpf program and not present in the kernel vm_area,
the user process will segfault. This is useful for use cases 2 and 3 above.
bpf_arena_alloc_pages() is similar to user space mmap(). It allocates pages
either at a specific address within the arena or allocates a range with the
maple tree. bpf_arena_free_pages() is analogous to munmap(), which frees
pages and removes the range from the kernel vm_area and from user process
vmas.
bpf_arena can be used as a bpf program "heap" of up to 4GB. The speed of
bpf program is more important than ease of sharing with user space. This is
use case 3. In such a case, the BPF_F_NO_USER_CONV flag is recommended.
It will tell the verifier to treat the rX = bpf_arena_cast_user(rY)
instruction as a 32-bit move wX = wY, which will improve bpf prog
performance. Otherwise, bpf_arena_cast_user is translated by JIT to
conditionally add the upper 32 bits of user vm_start (if the pointer is not
NULL) to arena pointers before they are stored into memory. This way, user
space sees them as valid 64-bit pointers.
Diff https://github.com/llvm/llvm-project/pull/84410 enables LLVM BPF
backend generate the bpf_addr_space_cast() instruction to cast pointers
between address_space(1) which is reserved for bpf_arena pointers and
default address space zero. All arena pointers in a bpf program written in
C language are tagged as __attribute__((address_space(1))). Hence, clang
provides helpful diagnostics when pointers cross address space. Libbpf and
the kernel support only address_space == 1. All other address space
identifiers are reserved.
rX = bpf_addr_space_cast(rY, /* dst_as */ 1, /* src_as */ 0) tells the
verifier that rX->type = PTR_TO_ARENA. Any further operations on
PTR_TO_ARENA register have to be in the 32-bit domain. The verifier will
mark load/store through PTR_TO_ARENA with PROBE_MEM32. JIT will generate
them as kern_vm_start + 32bit_addr memory accesses. The behavior is similar
to copy_from_kernel_nofault() except that no address checks are necessary.
The address is guaranteed to be in the 4GB range. If the page is not
present, the destination register is zeroed on read, and the operation is
ignored on write.
rX = bpf_addr_space_cast(rY, 0, 1) tells the verifier that rX->type =
unknown scalar. If arena->map_flags has BPF_F_NO_USER_CONV set, then the
verifier converts such cast instructions to mov32. Otherwise, JIT will emit
native code equivalent to:
rX = (u32)rY;
if (rY)
rX |= clear_lo32_bits(arena->user_vm_start); /* replace hi32 bits in rX */
After such conversion, the pointer becomes a valid user pointer within
bpf_arena range. The user process can access data structures created in
bpf_arena without any additional computations. For example, a linked list
built by a bpf program can be walked natively by user space.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Reviewed-by: Barret Rhoden <brho@google.com>
Link: https://lore.kernel.org/bpf/20240308010812.89848-2-alexei.starovoitov@gmail.com
2024-03-07 17:07:59 -08:00
|
|
|
zap_pages(arena, full_uaddr, 1);
|
|
|
|
vm_area_unmap_pages(arena->kern_vm, kaddr, kaddr + PAGE_SIZE);
|
|
|
|
__free_page(page);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
__bpf_kfunc_start_defs();
|
|
|
|
|
|
|
|
__bpf_kfunc void *bpf_arena_alloc_pages(void *p__map, void *addr__ign, u32 page_cnt,
|
|
|
|
int node_id, u64 flags)
|
|
|
|
{
|
|
|
|
struct bpf_map *map = p__map;
|
|
|
|
struct bpf_arena *arena = container_of(map, struct bpf_arena, map);
|
|
|
|
|
|
|
|
if (map->map_type != BPF_MAP_TYPE_ARENA || flags || !page_cnt)
|
|
|
|
return NULL;
|
|
|
|
|
|
|
|
return (void *)arena_alloc_pages(arena, (long)addr__ign, page_cnt, node_id);
|
|
|
|
}
|
|
|
|
|
|
|
|
__bpf_kfunc void bpf_arena_free_pages(void *p__map, void *ptr__ign, u32 page_cnt)
|
|
|
|
{
|
|
|
|
struct bpf_map *map = p__map;
|
|
|
|
struct bpf_arena *arena = container_of(map, struct bpf_arena, map);
|
|
|
|
|
|
|
|
if (map->map_type != BPF_MAP_TYPE_ARENA || !page_cnt || !ptr__ign)
|
|
|
|
return;
|
|
|
|
arena_free_pages(arena, (long)ptr__ign, page_cnt);
|
|
|
|
}
|
|
|
|
__bpf_kfunc_end_defs();
|
|
|
|
|
|
|
|
BTF_KFUNCS_START(arena_kfuncs)
|
|
|
|
BTF_ID_FLAGS(func, bpf_arena_alloc_pages, KF_TRUSTED_ARGS | KF_SLEEPABLE)
|
|
|
|
BTF_ID_FLAGS(func, bpf_arena_free_pages, KF_TRUSTED_ARGS | KF_SLEEPABLE)
|
|
|
|
BTF_KFUNCS_END(arena_kfuncs)
|
|
|
|
|
|
|
|
static const struct btf_kfunc_id_set common_kfunc_set = {
|
|
|
|
.owner = THIS_MODULE,
|
|
|
|
.set = &arena_kfuncs,
|
|
|
|
};
|
|
|
|
|
|
|
|
static int __init kfunc_init(void)
|
|
|
|
{
|
|
|
|
return register_btf_kfunc_id_set(BPF_PROG_TYPE_UNSPEC, &common_kfunc_set);
|
|
|
|
}
|
|
|
|
late_initcall(kfunc_init);
|