linux-next/kernel/bpf/stackmap.c

763 lines
20 KiB
C
Raw Permalink Normal View History

// SPDX-License-Identifier: GPL-2.0-only
/* Copyright (c) 2016 Facebook
*/
#include <linux/bpf.h>
#include <linux/jhash.h>
#include <linux/filter.h>
#include <linux/kernel.h>
#include <linux/stacktrace.h>
#include <linux/perf_event.h>
#include <linux/btf_ids.h>
#include <linux/buildid.h>
bpf: convert stackmap to pre-allocation It was observed that calling bpf_get_stackid() from a kprobe inside slub or from spin_unlock causes similar deadlock as with hashmap, therefore convert stackmap to use pre-allocated memory. The call_rcu is no longer feasible mechanism, since delayed freeing causes bpf_get_stackid() to fail unpredictably when number of actual stacks is significantly less than user requested max_entries. Since elements are no longer freed into slub, we can push elements into freelist immediately and let them be recycled. However the very unlikley race between user space map_lookup() and program-side recycling is possible: cpu0 cpu1 ---- ---- user does lookup(stackidX) starts copying ips into buffer delete(stackidX) calls bpf_get_stackid() which recyles the element and overwrites with new stack trace To avoid user space seeing a partial stack trace consisting of two merged stack traces, do bucket = xchg(, NULL); copy; xchg(,bucket); to preserve consistent stack trace delivery to user space. Now we can move memset(,0) of left-over element value from critical path of bpf_get_stackid() into slow-path of user space lookup. Also disallow lookup() from bpf program, since it's useless and program shouldn't be messing with collected stack trace. Note that similar race between user space lookup and kernel side updates is also present in hashmap, but it's not a new race. bpf programs were always allowed to modify hash and array map elements while user space is copying them. Fixes: d5a3b1f69186 ("bpf: introduce BPF_MAP_TYPE_STACK_TRACE") Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-03-07 21:57:17 -08:00
#include "percpu_freelist.h"
#include "mmap_unlock_work.h"
bpf: extend stackmap to save binary_build_id+offset instead of address Currently, bpf stackmap store address for each entry in the call trace. To map these addresses to user space files, it is necessary to maintain the mapping from these virtual address to symbols in the binary. Usually, the user space profiler (such as perf) has to scan /proc/pid/maps at the beginning of profiling, and monitor mmap2() calls afterwards. Given the cost of maintaining the address map, this solution is not practical for system wide profiling that is always on. This patch tries to solve this problem with a variation of stackmap. This variation is enabled by flag BPF_F_STACK_BUILD_ID. Instead of storing addresses, the variation stores ELF file build_id + offset. Build ID is a 20-byte unique identifier for ELF files. The following command shows the Build ID of /bin/bash: [user@]$ readelf -n /bin/bash ... Build ID: XXXXXXXXXX ... With BPF_F_STACK_BUILD_ID, bpf_get_stackid() tries to parse Build ID for each entry in the call trace, and translate it into the following struct: struct bpf_stack_build_id_offset { __s32 status; unsigned char build_id[BPF_BUILD_ID_SIZE]; union { __u64 offset; __u64 ip; }; }; The search of build_id is limited to the first page of the file, and this page should be in page cache. Otherwise, we fallback to store ip for this entry (ip field in struct bpf_stack_build_id_offset). This requires the build_id to be stored in the first page. A quick survey of binary and dynamic library files in a few different systems shows that almost all binary and dynamic library files have build_id in the first page. Build_id is only meaningful for user stack. If a kernel stack is added to a stackmap with BPF_F_STACK_BUILD_ID, it will automatically fallback to only store ip (status == BPF_STACK_BUILD_ID_IP). Similarly, if build_id lookup failed for some reason, it will also fallback to store ip. User space can access struct bpf_stack_build_id_offset with bpf syscall BPF_MAP_LOOKUP_ELEM. It is necessary for user space to maintain mapping from build id to binary files. This mostly static mapping is much easier to maintain than per process address maps. Note: Stackmap with build_id only works in non-nmi context at this time. This is because we need to take mm->mmap_sem for find_vma(). If this changes, we would like to allow build_id lookup in nmi context. Signed-off-by: Song Liu <songliubraving@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-03-14 10:23:21 -07:00
#define STACK_CREATE_FLAG_MASK \
(BPF_F_NUMA_NODE | BPF_F_RDONLY | BPF_F_WRONLY | \
BPF_F_STACK_BUILD_ID)
struct stack_map_bucket {
bpf: convert stackmap to pre-allocation It was observed that calling bpf_get_stackid() from a kprobe inside slub or from spin_unlock causes similar deadlock as with hashmap, therefore convert stackmap to use pre-allocated memory. The call_rcu is no longer feasible mechanism, since delayed freeing causes bpf_get_stackid() to fail unpredictably when number of actual stacks is significantly less than user requested max_entries. Since elements are no longer freed into slub, we can push elements into freelist immediately and let them be recycled. However the very unlikley race between user space map_lookup() and program-side recycling is possible: cpu0 cpu1 ---- ---- user does lookup(stackidX) starts copying ips into buffer delete(stackidX) calls bpf_get_stackid() which recyles the element and overwrites with new stack trace To avoid user space seeing a partial stack trace consisting of two merged stack traces, do bucket = xchg(, NULL); copy; xchg(,bucket); to preserve consistent stack trace delivery to user space. Now we can move memset(,0) of left-over element value from critical path of bpf_get_stackid() into slow-path of user space lookup. Also disallow lookup() from bpf program, since it's useless and program shouldn't be messing with collected stack trace. Note that similar race between user space lookup and kernel side updates is also present in hashmap, but it's not a new race. bpf programs were always allowed to modify hash and array map elements while user space is copying them. Fixes: d5a3b1f69186 ("bpf: introduce BPF_MAP_TYPE_STACK_TRACE") Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-03-07 21:57:17 -08:00
struct pcpu_freelist_node fnode;
u32 hash;
u32 nr;
bpf: extend stackmap to save binary_build_id+offset instead of address Currently, bpf stackmap store address for each entry in the call trace. To map these addresses to user space files, it is necessary to maintain the mapping from these virtual address to symbols in the binary. Usually, the user space profiler (such as perf) has to scan /proc/pid/maps at the beginning of profiling, and monitor mmap2() calls afterwards. Given the cost of maintaining the address map, this solution is not practical for system wide profiling that is always on. This patch tries to solve this problem with a variation of stackmap. This variation is enabled by flag BPF_F_STACK_BUILD_ID. Instead of storing addresses, the variation stores ELF file build_id + offset. Build ID is a 20-byte unique identifier for ELF files. The following command shows the Build ID of /bin/bash: [user@]$ readelf -n /bin/bash ... Build ID: XXXXXXXXXX ... With BPF_F_STACK_BUILD_ID, bpf_get_stackid() tries to parse Build ID for each entry in the call trace, and translate it into the following struct: struct bpf_stack_build_id_offset { __s32 status; unsigned char build_id[BPF_BUILD_ID_SIZE]; union { __u64 offset; __u64 ip; }; }; The search of build_id is limited to the first page of the file, and this page should be in page cache. Otherwise, we fallback to store ip for this entry (ip field in struct bpf_stack_build_id_offset). This requires the build_id to be stored in the first page. A quick survey of binary and dynamic library files in a few different systems shows that almost all binary and dynamic library files have build_id in the first page. Build_id is only meaningful for user stack. If a kernel stack is added to a stackmap with BPF_F_STACK_BUILD_ID, it will automatically fallback to only store ip (status == BPF_STACK_BUILD_ID_IP). Similarly, if build_id lookup failed for some reason, it will also fallback to store ip. User space can access struct bpf_stack_build_id_offset with bpf syscall BPF_MAP_LOOKUP_ELEM. It is necessary for user space to maintain mapping from build id to binary files. This mostly static mapping is much easier to maintain than per process address maps. Note: Stackmap with build_id only works in non-nmi context at this time. This is because we need to take mm->mmap_sem for find_vma(). If this changes, we would like to allow build_id lookup in nmi context. Signed-off-by: Song Liu <songliubraving@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-03-14 10:23:21 -07:00
u64 data[];
};
struct bpf_stack_map {
struct bpf_map map;
bpf: convert stackmap to pre-allocation It was observed that calling bpf_get_stackid() from a kprobe inside slub or from spin_unlock causes similar deadlock as with hashmap, therefore convert stackmap to use pre-allocated memory. The call_rcu is no longer feasible mechanism, since delayed freeing causes bpf_get_stackid() to fail unpredictably when number of actual stacks is significantly less than user requested max_entries. Since elements are no longer freed into slub, we can push elements into freelist immediately and let them be recycled. However the very unlikley race between user space map_lookup() and program-side recycling is possible: cpu0 cpu1 ---- ---- user does lookup(stackidX) starts copying ips into buffer delete(stackidX) calls bpf_get_stackid() which recyles the element and overwrites with new stack trace To avoid user space seeing a partial stack trace consisting of two merged stack traces, do bucket = xchg(, NULL); copy; xchg(,bucket); to preserve consistent stack trace delivery to user space. Now we can move memset(,0) of left-over element value from critical path of bpf_get_stackid() into slow-path of user space lookup. Also disallow lookup() from bpf program, since it's useless and program shouldn't be messing with collected stack trace. Note that similar race between user space lookup and kernel side updates is also present in hashmap, but it's not a new race. bpf programs were always allowed to modify hash and array map elements while user space is copying them. Fixes: d5a3b1f69186 ("bpf: introduce BPF_MAP_TYPE_STACK_TRACE") Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-03-07 21:57:17 -08:00
void *elems;
struct pcpu_freelist freelist;
u32 n_buckets;
struct stack_map_bucket *buckets[] __counted_by(n_buckets);
};
bpf: extend stackmap to save binary_build_id+offset instead of address Currently, bpf stackmap store address for each entry in the call trace. To map these addresses to user space files, it is necessary to maintain the mapping from these virtual address to symbols in the binary. Usually, the user space profiler (such as perf) has to scan /proc/pid/maps at the beginning of profiling, and monitor mmap2() calls afterwards. Given the cost of maintaining the address map, this solution is not practical for system wide profiling that is always on. This patch tries to solve this problem with a variation of stackmap. This variation is enabled by flag BPF_F_STACK_BUILD_ID. Instead of storing addresses, the variation stores ELF file build_id + offset. Build ID is a 20-byte unique identifier for ELF files. The following command shows the Build ID of /bin/bash: [user@]$ readelf -n /bin/bash ... Build ID: XXXXXXXXXX ... With BPF_F_STACK_BUILD_ID, bpf_get_stackid() tries to parse Build ID for each entry in the call trace, and translate it into the following struct: struct bpf_stack_build_id_offset { __s32 status; unsigned char build_id[BPF_BUILD_ID_SIZE]; union { __u64 offset; __u64 ip; }; }; The search of build_id is limited to the first page of the file, and this page should be in page cache. Otherwise, we fallback to store ip for this entry (ip field in struct bpf_stack_build_id_offset). This requires the build_id to be stored in the first page. A quick survey of binary and dynamic library files in a few different systems shows that almost all binary and dynamic library files have build_id in the first page. Build_id is only meaningful for user stack. If a kernel stack is added to a stackmap with BPF_F_STACK_BUILD_ID, it will automatically fallback to only store ip (status == BPF_STACK_BUILD_ID_IP). Similarly, if build_id lookup failed for some reason, it will also fallback to store ip. User space can access struct bpf_stack_build_id_offset with bpf syscall BPF_MAP_LOOKUP_ELEM. It is necessary for user space to maintain mapping from build id to binary files. This mostly static mapping is much easier to maintain than per process address maps. Note: Stackmap with build_id only works in non-nmi context at this time. This is because we need to take mm->mmap_sem for find_vma(). If this changes, we would like to allow build_id lookup in nmi context. Signed-off-by: Song Liu <songliubraving@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-03-14 10:23:21 -07:00
static inline bool stack_map_use_build_id(struct bpf_map *map)
{
return (map->map_flags & BPF_F_STACK_BUILD_ID);
}
static inline int stack_map_data_size(struct bpf_map *map)
{
return stack_map_use_build_id(map) ?
sizeof(struct bpf_stack_build_id) : sizeof(u64);
}
bpf: convert stackmap to pre-allocation It was observed that calling bpf_get_stackid() from a kprobe inside slub or from spin_unlock causes similar deadlock as with hashmap, therefore convert stackmap to use pre-allocated memory. The call_rcu is no longer feasible mechanism, since delayed freeing causes bpf_get_stackid() to fail unpredictably when number of actual stacks is significantly less than user requested max_entries. Since elements are no longer freed into slub, we can push elements into freelist immediately and let them be recycled. However the very unlikley race between user space map_lookup() and program-side recycling is possible: cpu0 cpu1 ---- ---- user does lookup(stackidX) starts copying ips into buffer delete(stackidX) calls bpf_get_stackid() which recyles the element and overwrites with new stack trace To avoid user space seeing a partial stack trace consisting of two merged stack traces, do bucket = xchg(, NULL); copy; xchg(,bucket); to preserve consistent stack trace delivery to user space. Now we can move memset(,0) of left-over element value from critical path of bpf_get_stackid() into slow-path of user space lookup. Also disallow lookup() from bpf program, since it's useless and program shouldn't be messing with collected stack trace. Note that similar race between user space lookup and kernel side updates is also present in hashmap, but it's not a new race. bpf programs were always allowed to modify hash and array map elements while user space is copying them. Fixes: d5a3b1f69186 ("bpf: introduce BPF_MAP_TYPE_STACK_TRACE") Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-03-07 21:57:17 -08:00
static int prealloc_elems_and_freelist(struct bpf_stack_map *smap)
{
bpf: Fix integer overflow in prealloc_elems_and_freelist() In prealloc_elems_and_freelist(), the multiplication to calculate the size passed to bpf_map_area_alloc() could lead to an integer overflow. As a result, out-of-bounds write could occur in pcpu_freelist_populate() as reported by KASAN: [...] [ 16.968613] BUG: KASAN: slab-out-of-bounds in pcpu_freelist_populate+0xd9/0x100 [ 16.969408] Write of size 8 at addr ffff888104fc6ea0 by task crash/78 [ 16.970038] [ 16.970195] CPU: 0 PID: 78 Comm: crash Not tainted 5.15.0-rc2+ #1 [ 16.970878] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-1ubuntu1.1 04/01/2014 [ 16.972026] Call Trace: [ 16.972306] dump_stack_lvl+0x34/0x44 [ 16.972687] print_address_description.constprop.0+0x21/0x140 [ 16.973297] ? pcpu_freelist_populate+0xd9/0x100 [ 16.973777] ? pcpu_freelist_populate+0xd9/0x100 [ 16.974257] kasan_report.cold+0x7f/0x11b [ 16.974681] ? pcpu_freelist_populate+0xd9/0x100 [ 16.975190] pcpu_freelist_populate+0xd9/0x100 [ 16.975669] stack_map_alloc+0x209/0x2a0 [ 16.976106] __sys_bpf+0xd83/0x2ce0 [...] The possibility of this overflow was originally discussed in [0], but was overlooked. Fix the integer overflow by changing elem_size to u64 from u32. [0] https://lore.kernel.org/bpf/728b238e-a481-eb50-98e9-b0f430ab01e7@gmail.com/ Fixes: 557c0c6e7df8 ("bpf: convert stackmap to pre-allocation") Signed-off-by: Tatsuhiko Yasumatsu <th.yasumatsu@gmail.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Link: https://lore.kernel.org/bpf/20210930135545.173698-1-th.yasumatsu@gmail.com
2021-09-30 22:55:45 +09:00
u64 elem_size = sizeof(struct stack_map_bucket) +
(u64)smap->map.value_size;
bpf: convert stackmap to pre-allocation It was observed that calling bpf_get_stackid() from a kprobe inside slub or from spin_unlock causes similar deadlock as with hashmap, therefore convert stackmap to use pre-allocated memory. The call_rcu is no longer feasible mechanism, since delayed freeing causes bpf_get_stackid() to fail unpredictably when number of actual stacks is significantly less than user requested max_entries. Since elements are no longer freed into slub, we can push elements into freelist immediately and let them be recycled. However the very unlikley race between user space map_lookup() and program-side recycling is possible: cpu0 cpu1 ---- ---- user does lookup(stackidX) starts copying ips into buffer delete(stackidX) calls bpf_get_stackid() which recyles the element and overwrites with new stack trace To avoid user space seeing a partial stack trace consisting of two merged stack traces, do bucket = xchg(, NULL); copy; xchg(,bucket); to preserve consistent stack trace delivery to user space. Now we can move memset(,0) of left-over element value from critical path of bpf_get_stackid() into slow-path of user space lookup. Also disallow lookup() from bpf program, since it's useless and program shouldn't be messing with collected stack trace. Note that similar race between user space lookup and kernel side updates is also present in hashmap, but it's not a new race. bpf programs were always allowed to modify hash and array map elements while user space is copying them. Fixes: d5a3b1f69186 ("bpf: introduce BPF_MAP_TYPE_STACK_TRACE") Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-03-07 21:57:17 -08:00
int err;
bpf: Allow selecting numa node during map creation The current map creation API does not allow to provide the numa-node preference. The memory usually comes from where the map-creation-process is running. The performance is not ideal if the bpf_prog is known to always run in a numa node different from the map-creation-process. One of the use case is sharding on CPU to different LRU maps (i.e. an array of LRU maps). Here is the test result of map_perf_test on the INNER_LRU_HASH_PREALLOC test if we force the lru map used by CPU0 to be allocated from a remote numa node: [ The machine has 20 cores. CPU0-9 at node 0. CPU10-19 at node 1 ] ># taskset -c 10 ./map_perf_test 512 8 1260000 8000000 5:inner_lru_hash_map_perf pre-alloc 1628380 events per sec 4:inner_lru_hash_map_perf pre-alloc 1626396 events per sec 3:inner_lru_hash_map_perf pre-alloc 1626144 events per sec 6:inner_lru_hash_map_perf pre-alloc 1621657 events per sec 2:inner_lru_hash_map_perf pre-alloc 1621534 events per sec 1:inner_lru_hash_map_perf pre-alloc 1620292 events per sec 7:inner_lru_hash_map_perf pre-alloc 1613305 events per sec 0:inner_lru_hash_map_perf pre-alloc 1239150 events per sec #<<< After specifying numa node: ># taskset -c 10 ./map_perf_test 512 8 1260000 8000000 5:inner_lru_hash_map_perf pre-alloc 1629627 events per sec 3:inner_lru_hash_map_perf pre-alloc 1628057 events per sec 1:inner_lru_hash_map_perf pre-alloc 1623054 events per sec 6:inner_lru_hash_map_perf pre-alloc 1616033 events per sec 2:inner_lru_hash_map_perf pre-alloc 1614630 events per sec 4:inner_lru_hash_map_perf pre-alloc 1612651 events per sec 7:inner_lru_hash_map_perf pre-alloc 1609337 events per sec 0:inner_lru_hash_map_perf pre-alloc 1619340 events per sec #<<< This patch adds one field, numa_node, to the bpf_attr. Since numa node 0 is a valid node, a new flag BPF_F_NUMA_NODE is also added. The numa_node field is honored if and only if the BPF_F_NUMA_NODE flag is set. Numa node selection is not supported for percpu map. This patch does not change all the kmalloc. F.e. 'htab = kzalloc()' is not changed since the object is small enough to stay in the cache. Signed-off-by: Martin KaFai Lau <kafai@fb.com> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@fb.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-08-18 11:28:00 -07:00
smap->elems = bpf_map_area_alloc(elem_size * smap->map.max_entries,
smap->map.numa_node);
bpf: convert stackmap to pre-allocation It was observed that calling bpf_get_stackid() from a kprobe inside slub or from spin_unlock causes similar deadlock as with hashmap, therefore convert stackmap to use pre-allocated memory. The call_rcu is no longer feasible mechanism, since delayed freeing causes bpf_get_stackid() to fail unpredictably when number of actual stacks is significantly less than user requested max_entries. Since elements are no longer freed into slub, we can push elements into freelist immediately and let them be recycled. However the very unlikley race between user space map_lookup() and program-side recycling is possible: cpu0 cpu1 ---- ---- user does lookup(stackidX) starts copying ips into buffer delete(stackidX) calls bpf_get_stackid() which recyles the element and overwrites with new stack trace To avoid user space seeing a partial stack trace consisting of two merged stack traces, do bucket = xchg(, NULL); copy; xchg(,bucket); to preserve consistent stack trace delivery to user space. Now we can move memset(,0) of left-over element value from critical path of bpf_get_stackid() into slow-path of user space lookup. Also disallow lookup() from bpf program, since it's useless and program shouldn't be messing with collected stack trace. Note that similar race between user space lookup and kernel side updates is also present in hashmap, but it's not a new race. bpf programs were always allowed to modify hash and array map elements while user space is copying them. Fixes: d5a3b1f69186 ("bpf: introduce BPF_MAP_TYPE_STACK_TRACE") Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-03-07 21:57:17 -08:00
if (!smap->elems)
return -ENOMEM;
err = pcpu_freelist_init(&smap->freelist);
if (err)
goto free_elems;
pcpu_freelist_populate(&smap->freelist, smap->elems, elem_size,
smap->map.max_entries);
return 0;
free_elems:
bpf_map_area_free(smap->elems);
bpf: convert stackmap to pre-allocation It was observed that calling bpf_get_stackid() from a kprobe inside slub or from spin_unlock causes similar deadlock as with hashmap, therefore convert stackmap to use pre-allocated memory. The call_rcu is no longer feasible mechanism, since delayed freeing causes bpf_get_stackid() to fail unpredictably when number of actual stacks is significantly less than user requested max_entries. Since elements are no longer freed into slub, we can push elements into freelist immediately and let them be recycled. However the very unlikley race between user space map_lookup() and program-side recycling is possible: cpu0 cpu1 ---- ---- user does lookup(stackidX) starts copying ips into buffer delete(stackidX) calls bpf_get_stackid() which recyles the element and overwrites with new stack trace To avoid user space seeing a partial stack trace consisting of two merged stack traces, do bucket = xchg(, NULL); copy; xchg(,bucket); to preserve consistent stack trace delivery to user space. Now we can move memset(,0) of left-over element value from critical path of bpf_get_stackid() into slow-path of user space lookup. Also disallow lookup() from bpf program, since it's useless and program shouldn't be messing with collected stack trace. Note that similar race between user space lookup and kernel side updates is also present in hashmap, but it's not a new race. bpf programs were always allowed to modify hash and array map elements while user space is copying them. Fixes: d5a3b1f69186 ("bpf: introduce BPF_MAP_TYPE_STACK_TRACE") Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-03-07 21:57:17 -08:00
return err;
}
/* Called from syscall */
static struct bpf_map *stack_map_alloc(union bpf_attr *attr)
{
u32 value_size = attr->value_size;
struct bpf_stack_map *smap;
u64 cost, n_buckets;
int err;
if (attr->map_flags & ~STACK_CREATE_FLAG_MASK)
return ERR_PTR(-EINVAL);
/* check sanity of attributes */
if (attr->max_entries == 0 || attr->key_size != 4 ||
bpf: extend stackmap to save binary_build_id+offset instead of address Currently, bpf stackmap store address for each entry in the call trace. To map these addresses to user space files, it is necessary to maintain the mapping from these virtual address to symbols in the binary. Usually, the user space profiler (such as perf) has to scan /proc/pid/maps at the beginning of profiling, and monitor mmap2() calls afterwards. Given the cost of maintaining the address map, this solution is not practical for system wide profiling that is always on. This patch tries to solve this problem with a variation of stackmap. This variation is enabled by flag BPF_F_STACK_BUILD_ID. Instead of storing addresses, the variation stores ELF file build_id + offset. Build ID is a 20-byte unique identifier for ELF files. The following command shows the Build ID of /bin/bash: [user@]$ readelf -n /bin/bash ... Build ID: XXXXXXXXXX ... With BPF_F_STACK_BUILD_ID, bpf_get_stackid() tries to parse Build ID for each entry in the call trace, and translate it into the following struct: struct bpf_stack_build_id_offset { __s32 status; unsigned char build_id[BPF_BUILD_ID_SIZE]; union { __u64 offset; __u64 ip; }; }; The search of build_id is limited to the first page of the file, and this page should be in page cache. Otherwise, we fallback to store ip for this entry (ip field in struct bpf_stack_build_id_offset). This requires the build_id to be stored in the first page. A quick survey of binary and dynamic library files in a few different systems shows that almost all binary and dynamic library files have build_id in the first page. Build_id is only meaningful for user stack. If a kernel stack is added to a stackmap with BPF_F_STACK_BUILD_ID, it will automatically fallback to only store ip (status == BPF_STACK_BUILD_ID_IP). Similarly, if build_id lookup failed for some reason, it will also fallback to store ip. User space can access struct bpf_stack_build_id_offset with bpf syscall BPF_MAP_LOOKUP_ELEM. It is necessary for user space to maintain mapping from build id to binary files. This mostly static mapping is much easier to maintain than per process address maps. Note: Stackmap with build_id only works in non-nmi context at this time. This is because we need to take mm->mmap_sem for find_vma(). If this changes, we would like to allow build_id lookup in nmi context. Signed-off-by: Song Liu <songliubraving@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-03-14 10:23:21 -07:00
value_size < 8 || value_size % 8)
return ERR_PTR(-EINVAL);
BUILD_BUG_ON(sizeof(struct bpf_stack_build_id) % sizeof(u64));
if (attr->map_flags & BPF_F_STACK_BUILD_ID) {
if (value_size % sizeof(struct bpf_stack_build_id) ||
value_size / sizeof(struct bpf_stack_build_id)
> sysctl_perf_event_max_stack)
return ERR_PTR(-EINVAL);
} else if (value_size / 8 > sysctl_perf_event_max_stack)
return ERR_PTR(-EINVAL);
/* hash table size must be power of 2; roundup_pow_of_two() can overflow
* into UB on 32-bit arches, so check that first
*/
if (attr->max_entries > 1UL << 31)
return ERR_PTR(-E2BIG);
n_buckets = roundup_pow_of_two(attr->max_entries);
cost = n_buckets * sizeof(struct stack_map_bucket *) + sizeof(*smap);
bpf: Allow selecting numa node during map creation The current map creation API does not allow to provide the numa-node preference. The memory usually comes from where the map-creation-process is running. The performance is not ideal if the bpf_prog is known to always run in a numa node different from the map-creation-process. One of the use case is sharding on CPU to different LRU maps (i.e. an array of LRU maps). Here is the test result of map_perf_test on the INNER_LRU_HASH_PREALLOC test if we force the lru map used by CPU0 to be allocated from a remote numa node: [ The machine has 20 cores. CPU0-9 at node 0. CPU10-19 at node 1 ] ># taskset -c 10 ./map_perf_test 512 8 1260000 8000000 5:inner_lru_hash_map_perf pre-alloc 1628380 events per sec 4:inner_lru_hash_map_perf pre-alloc 1626396 events per sec 3:inner_lru_hash_map_perf pre-alloc 1626144 events per sec 6:inner_lru_hash_map_perf pre-alloc 1621657 events per sec 2:inner_lru_hash_map_perf pre-alloc 1621534 events per sec 1:inner_lru_hash_map_perf pre-alloc 1620292 events per sec 7:inner_lru_hash_map_perf pre-alloc 1613305 events per sec 0:inner_lru_hash_map_perf pre-alloc 1239150 events per sec #<<< After specifying numa node: ># taskset -c 10 ./map_perf_test 512 8 1260000 8000000 5:inner_lru_hash_map_perf pre-alloc 1629627 events per sec 3:inner_lru_hash_map_perf pre-alloc 1628057 events per sec 1:inner_lru_hash_map_perf pre-alloc 1623054 events per sec 6:inner_lru_hash_map_perf pre-alloc 1616033 events per sec 2:inner_lru_hash_map_perf pre-alloc 1614630 events per sec 4:inner_lru_hash_map_perf pre-alloc 1612651 events per sec 7:inner_lru_hash_map_perf pre-alloc 1609337 events per sec 0:inner_lru_hash_map_perf pre-alloc 1619340 events per sec #<<< This patch adds one field, numa_node, to the bpf_attr. Since numa node 0 is a valid node, a new flag BPF_F_NUMA_NODE is also added. The numa_node field is honored if and only if the BPF_F_NUMA_NODE flag is set. Numa node selection is not supported for percpu map. This patch does not change all the kmalloc. F.e. 'htab = kzalloc()' is not changed since the object is small enough to stay in the cache. Signed-off-by: Martin KaFai Lau <kafai@fb.com> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@fb.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-08-18 11:28:00 -07:00
smap = bpf_map_area_alloc(cost, bpf_map_attr_numa_node(attr));
if (!smap)
return ERR_PTR(-ENOMEM);
bpf_map_init_from_attr(&smap->map, attr);
smap->n_buckets = n_buckets;
bpf: convert stackmap to pre-allocation It was observed that calling bpf_get_stackid() from a kprobe inside slub or from spin_unlock causes similar deadlock as with hashmap, therefore convert stackmap to use pre-allocated memory. The call_rcu is no longer feasible mechanism, since delayed freeing causes bpf_get_stackid() to fail unpredictably when number of actual stacks is significantly less than user requested max_entries. Since elements are no longer freed into slub, we can push elements into freelist immediately and let them be recycled. However the very unlikley race between user space map_lookup() and program-side recycling is possible: cpu0 cpu1 ---- ---- user does lookup(stackidX) starts copying ips into buffer delete(stackidX) calls bpf_get_stackid() which recyles the element and overwrites with new stack trace To avoid user space seeing a partial stack trace consisting of two merged stack traces, do bucket = xchg(, NULL); copy; xchg(,bucket); to preserve consistent stack trace delivery to user space. Now we can move memset(,0) of left-over element value from critical path of bpf_get_stackid() into slow-path of user space lookup. Also disallow lookup() from bpf program, since it's useless and program shouldn't be messing with collected stack trace. Note that similar race between user space lookup and kernel side updates is also present in hashmap, but it's not a new race. bpf programs were always allowed to modify hash and array map elements while user space is copying them. Fixes: d5a3b1f69186 ("bpf: introduce BPF_MAP_TYPE_STACK_TRACE") Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-03-07 21:57:17 -08:00
err = get_callchain_buffers(sysctl_perf_event_max_stack);
if (err)
goto free_smap;
bpf: convert stackmap to pre-allocation It was observed that calling bpf_get_stackid() from a kprobe inside slub or from spin_unlock causes similar deadlock as with hashmap, therefore convert stackmap to use pre-allocated memory. The call_rcu is no longer feasible mechanism, since delayed freeing causes bpf_get_stackid() to fail unpredictably when number of actual stacks is significantly less than user requested max_entries. Since elements are no longer freed into slub, we can push elements into freelist immediately and let them be recycled. However the very unlikley race between user space map_lookup() and program-side recycling is possible: cpu0 cpu1 ---- ---- user does lookup(stackidX) starts copying ips into buffer delete(stackidX) calls bpf_get_stackid() which recyles the element and overwrites with new stack trace To avoid user space seeing a partial stack trace consisting of two merged stack traces, do bucket = xchg(, NULL); copy; xchg(,bucket); to preserve consistent stack trace delivery to user space. Now we can move memset(,0) of left-over element value from critical path of bpf_get_stackid() into slow-path of user space lookup. Also disallow lookup() from bpf program, since it's useless and program shouldn't be messing with collected stack trace. Note that similar race between user space lookup and kernel side updates is also present in hashmap, but it's not a new race. bpf programs were always allowed to modify hash and array map elements while user space is copying them. Fixes: d5a3b1f69186 ("bpf: introduce BPF_MAP_TYPE_STACK_TRACE") Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-03-07 21:57:17 -08:00
err = prealloc_elems_and_freelist(smap);
if (err)
goto put_buffers;
return &smap->map;
bpf: convert stackmap to pre-allocation It was observed that calling bpf_get_stackid() from a kprobe inside slub or from spin_unlock causes similar deadlock as with hashmap, therefore convert stackmap to use pre-allocated memory. The call_rcu is no longer feasible mechanism, since delayed freeing causes bpf_get_stackid() to fail unpredictably when number of actual stacks is significantly less than user requested max_entries. Since elements are no longer freed into slub, we can push elements into freelist immediately and let them be recycled. However the very unlikley race between user space map_lookup() and program-side recycling is possible: cpu0 cpu1 ---- ---- user does lookup(stackidX) starts copying ips into buffer delete(stackidX) calls bpf_get_stackid() which recyles the element and overwrites with new stack trace To avoid user space seeing a partial stack trace consisting of two merged stack traces, do bucket = xchg(, NULL); copy; xchg(,bucket); to preserve consistent stack trace delivery to user space. Now we can move memset(,0) of left-over element value from critical path of bpf_get_stackid() into slow-path of user space lookup. Also disallow lookup() from bpf program, since it's useless and program shouldn't be messing with collected stack trace. Note that similar race between user space lookup and kernel side updates is also present in hashmap, but it's not a new race. bpf programs were always allowed to modify hash and array map elements while user space is copying them. Fixes: d5a3b1f69186 ("bpf: introduce BPF_MAP_TYPE_STACK_TRACE") Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-03-07 21:57:17 -08:00
put_buffers:
put_callchain_buffers();
free_smap:
bpf_map_area_free(smap);
return ERR_PTR(err);
}
bpf: wire up sleepable bpf_get_stack() and bpf_get_task_stack() helpers Add sleepable implementations of bpf_get_stack() and bpf_get_task_stack() helpers and allow them to be used from sleepable BPF program (e.g., sleepable uprobes). Note, the stack trace IPs capturing itself is not sleepable (that would need to be a separate project), only build ID fetching is sleepable and thus more reliable, as it will wait for data to be paged in, if necessary. For that we make use of sleepable build_id_parse() implementation. Now that build ID related internals in kernel/bpf/stackmap.c can be used both in sleepable and non-sleepable contexts, we need to add additional rcu_read_lock()/rcu_read_unlock() protection around fetching perf_callchain_entry, but with the refactoring in previous commit it's now pretty straightforward. We make sure to do rcu_read_unlock (in sleepable mode only) right before stack_map_get_build_id_offset() call which can sleep. By that time we don't have any more use of perf_callchain_entry. Note, bpf_get_task_stack() will fail for user mode if task != current. And for kernel mode build ID are irrelevant. So in that sense adding sleepable bpf_get_task_stack() implementation is a no-op. It feel right to wire this up for symmetry and completeness, but I'm open to just dropping it until we support `user && crosstask` condition. Reviewed-by: Eduard Zingerman <eddyz87@gmail.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/r/20240829174232.3133883-10-andrii@kernel.org Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-08-29 10:42:31 -07:00
static int fetch_build_id(struct vm_area_struct *vma, unsigned char *build_id, bool may_fault)
{
return may_fault ? build_id_parse(vma, build_id, NULL)
: build_id_parse_nofault(vma, build_id, NULL);
}
/*
* Expects all id_offs[i].ip values to be set to correct initial IPs.
* They will be subsequently:
* - either adjusted in place to a file offset, if build ID fetching
* succeeds; in this case id_offs[i].build_id is set to correct build ID,
* and id_offs[i].status is set to BPF_STACK_BUILD_ID_VALID;
* - or IP will be kept intact, if build ID fetching failed; in this case
* id_offs[i].build_id is zeroed out and id_offs[i].status is set to
* BPF_STACK_BUILD_ID_IP.
*/
static void stack_map_get_build_id_offset(struct bpf_stack_build_id *id_offs,
bpf: wire up sleepable bpf_get_stack() and bpf_get_task_stack() helpers Add sleepable implementations of bpf_get_stack() and bpf_get_task_stack() helpers and allow them to be used from sleepable BPF program (e.g., sleepable uprobes). Note, the stack trace IPs capturing itself is not sleepable (that would need to be a separate project), only build ID fetching is sleepable and thus more reliable, as it will wait for data to be paged in, if necessary. For that we make use of sleepable build_id_parse() implementation. Now that build ID related internals in kernel/bpf/stackmap.c can be used both in sleepable and non-sleepable contexts, we need to add additional rcu_read_lock()/rcu_read_unlock() protection around fetching perf_callchain_entry, but with the refactoring in previous commit it's now pretty straightforward. We make sure to do rcu_read_unlock (in sleepable mode only) right before stack_map_get_build_id_offset() call which can sleep. By that time we don't have any more use of perf_callchain_entry. Note, bpf_get_task_stack() will fail for user mode if task != current. And for kernel mode build ID are irrelevant. So in that sense adding sleepable bpf_get_task_stack() implementation is a no-op. It feel right to wire this up for symmetry and completeness, but I'm open to just dropping it until we support `user && crosstask` condition. Reviewed-by: Eduard Zingerman <eddyz87@gmail.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/r/20240829174232.3133883-10-andrii@kernel.org Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-08-29 10:42:31 -07:00
u32 trace_nr, bool user, bool may_fault)
bpf: extend stackmap to save binary_build_id+offset instead of address Currently, bpf stackmap store address for each entry in the call trace. To map these addresses to user space files, it is necessary to maintain the mapping from these virtual address to symbols in the binary. Usually, the user space profiler (such as perf) has to scan /proc/pid/maps at the beginning of profiling, and monitor mmap2() calls afterwards. Given the cost of maintaining the address map, this solution is not practical for system wide profiling that is always on. This patch tries to solve this problem with a variation of stackmap. This variation is enabled by flag BPF_F_STACK_BUILD_ID. Instead of storing addresses, the variation stores ELF file build_id + offset. Build ID is a 20-byte unique identifier for ELF files. The following command shows the Build ID of /bin/bash: [user@]$ readelf -n /bin/bash ... Build ID: XXXXXXXXXX ... With BPF_F_STACK_BUILD_ID, bpf_get_stackid() tries to parse Build ID for each entry in the call trace, and translate it into the following struct: struct bpf_stack_build_id_offset { __s32 status; unsigned char build_id[BPF_BUILD_ID_SIZE]; union { __u64 offset; __u64 ip; }; }; The search of build_id is limited to the first page of the file, and this page should be in page cache. Otherwise, we fallback to store ip for this entry (ip field in struct bpf_stack_build_id_offset). This requires the build_id to be stored in the first page. A quick survey of binary and dynamic library files in a few different systems shows that almost all binary and dynamic library files have build_id in the first page. Build_id is only meaningful for user stack. If a kernel stack is added to a stackmap with BPF_F_STACK_BUILD_ID, it will automatically fallback to only store ip (status == BPF_STACK_BUILD_ID_IP). Similarly, if build_id lookup failed for some reason, it will also fallback to store ip. User space can access struct bpf_stack_build_id_offset with bpf syscall BPF_MAP_LOOKUP_ELEM. It is necessary for user space to maintain mapping from build id to binary files. This mostly static mapping is much easier to maintain than per process address maps. Note: Stackmap with build_id only works in non-nmi context at this time. This is because we need to take mm->mmap_sem for find_vma(). If this changes, we would like to allow build_id lookup in nmi context. Signed-off-by: Song Liu <songliubraving@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-03-14 10:23:21 -07:00
{
int i;
struct mmap_unlock_irq_work *work = NULL;
bool irq_work_busy = bpf_mmap_unlock_get_irq_work(&work);
struct vm_area_struct *vma, *prev_vma = NULL;
const char *prev_build_id;
bpf: extend stackmap to save binary_build_id+offset instead of address Currently, bpf stackmap store address for each entry in the call trace. To map these addresses to user space files, it is necessary to maintain the mapping from these virtual address to symbols in the binary. Usually, the user space profiler (such as perf) has to scan /proc/pid/maps at the beginning of profiling, and monitor mmap2() calls afterwards. Given the cost of maintaining the address map, this solution is not practical for system wide profiling that is always on. This patch tries to solve this problem with a variation of stackmap. This variation is enabled by flag BPF_F_STACK_BUILD_ID. Instead of storing addresses, the variation stores ELF file build_id + offset. Build ID is a 20-byte unique identifier for ELF files. The following command shows the Build ID of /bin/bash: [user@]$ readelf -n /bin/bash ... Build ID: XXXXXXXXXX ... With BPF_F_STACK_BUILD_ID, bpf_get_stackid() tries to parse Build ID for each entry in the call trace, and translate it into the following struct: struct bpf_stack_build_id_offset { __s32 status; unsigned char build_id[BPF_BUILD_ID_SIZE]; union { __u64 offset; __u64 ip; }; }; The search of build_id is limited to the first page of the file, and this page should be in page cache. Otherwise, we fallback to store ip for this entry (ip field in struct bpf_stack_build_id_offset). This requires the build_id to be stored in the first page. A quick survey of binary and dynamic library files in a few different systems shows that almost all binary and dynamic library files have build_id in the first page. Build_id is only meaningful for user stack. If a kernel stack is added to a stackmap with BPF_F_STACK_BUILD_ID, it will automatically fallback to only store ip (status == BPF_STACK_BUILD_ID_IP). Similarly, if build_id lookup failed for some reason, it will also fallback to store ip. User space can access struct bpf_stack_build_id_offset with bpf syscall BPF_MAP_LOOKUP_ELEM. It is necessary for user space to maintain mapping from build id to binary files. This mostly static mapping is much easier to maintain than per process address maps. Note: Stackmap with build_id only works in non-nmi context at this time. This is because we need to take mm->mmap_sem for find_vma(). If this changes, we would like to allow build_id lookup in nmi context. Signed-off-by: Song Liu <songliubraving@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-03-14 10:23:21 -07:00
/* If the irq_work is in use, fall back to report ips. Same
* fallback is used for kernel stack (!user) on a stackmap with
* build_id.
bpf: extend stackmap to save binary_build_id+offset instead of address Currently, bpf stackmap store address for each entry in the call trace. To map these addresses to user space files, it is necessary to maintain the mapping from these virtual address to symbols in the binary. Usually, the user space profiler (such as perf) has to scan /proc/pid/maps at the beginning of profiling, and monitor mmap2() calls afterwards. Given the cost of maintaining the address map, this solution is not practical for system wide profiling that is always on. This patch tries to solve this problem with a variation of stackmap. This variation is enabled by flag BPF_F_STACK_BUILD_ID. Instead of storing addresses, the variation stores ELF file build_id + offset. Build ID is a 20-byte unique identifier for ELF files. The following command shows the Build ID of /bin/bash: [user@]$ readelf -n /bin/bash ... Build ID: XXXXXXXXXX ... With BPF_F_STACK_BUILD_ID, bpf_get_stackid() tries to parse Build ID for each entry in the call trace, and translate it into the following struct: struct bpf_stack_build_id_offset { __s32 status; unsigned char build_id[BPF_BUILD_ID_SIZE]; union { __u64 offset; __u64 ip; }; }; The search of build_id is limited to the first page of the file, and this page should be in page cache. Otherwise, we fallback to store ip for this entry (ip field in struct bpf_stack_build_id_offset). This requires the build_id to be stored in the first page. A quick survey of binary and dynamic library files in a few different systems shows that almost all binary and dynamic library files have build_id in the first page. Build_id is only meaningful for user stack. If a kernel stack is added to a stackmap with BPF_F_STACK_BUILD_ID, it will automatically fallback to only store ip (status == BPF_STACK_BUILD_ID_IP). Similarly, if build_id lookup failed for some reason, it will also fallback to store ip. User space can access struct bpf_stack_build_id_offset with bpf syscall BPF_MAP_LOOKUP_ELEM. It is necessary for user space to maintain mapping from build id to binary files. This mostly static mapping is much easier to maintain than per process address maps. Note: Stackmap with build_id only works in non-nmi context at this time. This is because we need to take mm->mmap_sem for find_vma(). If this changes, we would like to allow build_id lookup in nmi context. Signed-off-by: Song Liu <songliubraving@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-03-14 10:23:21 -07:00
*/
if (!user || !current || !current->mm || irq_work_busy ||
bpf, mm: Fix lockdep warning triggered by stack_map_get_build_id_offset() Currently the bpf selftest "get_stack_raw_tp" triggered the warning: [ 1411.304463] WARNING: CPU: 3 PID: 140 at include/linux/mmap_lock.h:164 find_vma+0x47/0xa0 [ 1411.304469] Modules linked in: bpf_testmod(O) [last unloaded: bpf_testmod] [ 1411.304476] CPU: 3 PID: 140 Comm: systemd-journal Tainted: G W O 5.14.0+ #53 [ 1411.304479] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014 [ 1411.304481] RIP: 0010:find_vma+0x47/0xa0 [ 1411.304484] Code: de 48 89 ef e8 ba f5 fe ff 48 85 c0 74 2e 48 83 c4 08 5b 5d c3 48 8d bf 28 01 00 00 be ff ff ff ff e8 2d 9f d8 00 85 c0 75 d4 <0f> 0b 48 89 de 48 8 [ 1411.304487] RSP: 0018:ffffabd440403db8 EFLAGS: 00010246 [ 1411.304490] RAX: 0000000000000000 RBX: 00007f00ad80a0e0 RCX: 0000000000000000 [ 1411.304492] RDX: 0000000000000001 RSI: ffffffff9776b144 RDI: ffffffff977e1b0e [ 1411.304494] RBP: ffff9cf5c2f50000 R08: ffff9cf5c3eb25d8 R09: 00000000fffffffe [ 1411.304496] R10: 0000000000000001 R11: 00000000ef974e19 R12: ffff9cf5c39ae0e0 [ 1411.304498] R13: 0000000000000000 R14: 0000000000000000 R15: ffff9cf5c39ae0e0 [ 1411.304501] FS: 00007f00ae754780(0000) GS:ffff9cf5fba00000(0000) knlGS:0000000000000000 [ 1411.304504] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 1411.304506] CR2: 000000003e34343c CR3: 0000000103a98005 CR4: 0000000000370ee0 [ 1411.304508] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 1411.304510] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ 1411.304512] Call Trace: [ 1411.304517] stack_map_get_build_id_offset+0x17c/0x260 [ 1411.304528] __bpf_get_stack+0x18f/0x230 [ 1411.304541] bpf_get_stack_raw_tp+0x5a/0x70 [ 1411.305752] RAX: 0000000000000000 RBX: 5541f689495641d7 RCX: 0000000000000000 [ 1411.305756] RDX: 0000000000000001 RSI: ffffffff9776b144 RDI: ffffffff977e1b0e [ 1411.305758] RBP: ffff9cf5c02b2f40 R08: ffff9cf5ca7606c0 R09: ffffcbd43ee02c04 [ 1411.306978] bpf_prog_32007c34f7726d29_bpf_prog1+0xaf/0xd9c [ 1411.307861] R10: 0000000000000001 R11: 0000000000000044 R12: ffff9cf5c2ef60e0 [ 1411.307865] R13: 0000000000000005 R14: 0000000000000000 R15: ffff9cf5c2ef6108 [ 1411.309074] bpf_trace_run2+0x8f/0x1a0 [ 1411.309891] FS: 00007ff485141700(0000) GS:ffff9cf5fae00000(0000) knlGS:0000000000000000 [ 1411.309896] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 1411.311221] syscall_trace_enter.isra.20+0x161/0x1f0 [ 1411.311600] CR2: 00007ff48514d90e CR3: 0000000107114001 CR4: 0000000000370ef0 [ 1411.312291] do_syscall_64+0x15/0x80 [ 1411.312941] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 1411.313803] entry_SYSCALL_64_after_hwframe+0x44/0xae [ 1411.314223] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ 1411.315082] RIP: 0033:0x7f00ad80a0e0 [ 1411.315626] Call Trace: [ 1411.315632] stack_map_get_build_id_offset+0x17c/0x260 To reproduce, first build `test_progs` binary: make -C tools/testing/selftests/bpf -j60 and then run the binary at tools/testing/selftests/bpf directory: ./test_progs -t get_stack_raw_tp The warning is due to commit 5b78ed24e8ec ("mm/pagemap: add mmap_assert_locked() annotations to find_vma*()") which added mmap_assert_locked() in find_vma() function. The mmap_assert_locked() function asserts that mm->mmap_lock needs to be held. But this is not the case for bpf_get_stack() or bpf_get_stackid() helper (kernel/bpf/stackmap.c), which uses mmap_read_trylock_non_owner() instead. Since mm->mmap_lock is not held in bpf_get_stack[id]() use case, the above warning is emitted during test run. This patch fixed the issue by (1). using mmap_read_trylock() instead of mmap_read_trylock_non_owner() to satisfy lockdep checking in find_vma(), and (2). droping lockdep for mmap_lock right before the irq_work_queue(). The function mmap_read_trylock_non_owner() is also removed since after this patch nobody calls it any more. Fixes: 5b78ed24e8ec ("mm/pagemap: add mmap_assert_locked() annotations to find_vma*()") Suggested-by: Jason Gunthorpe <jgg@ziepe.ca> Signed-off-by: Yonghong Song <yhs@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Reviewed-by: Liam R. Howlett <Liam.Howlett@oracle.com> Cc: Luigi Rizzo <lrizzo@google.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: linux-mm@kvack.org Link: https://lore.kernel.org/bpf/20210909155000.1610299-1-yhs@fb.com
2021-09-09 08:49:59 -07:00
!mmap_read_trylock(current->mm)) {
bpf: extend stackmap to save binary_build_id+offset instead of address Currently, bpf stackmap store address for each entry in the call trace. To map these addresses to user space files, it is necessary to maintain the mapping from these virtual address to symbols in the binary. Usually, the user space profiler (such as perf) has to scan /proc/pid/maps at the beginning of profiling, and monitor mmap2() calls afterwards. Given the cost of maintaining the address map, this solution is not practical for system wide profiling that is always on. This patch tries to solve this problem with a variation of stackmap. This variation is enabled by flag BPF_F_STACK_BUILD_ID. Instead of storing addresses, the variation stores ELF file build_id + offset. Build ID is a 20-byte unique identifier for ELF files. The following command shows the Build ID of /bin/bash: [user@]$ readelf -n /bin/bash ... Build ID: XXXXXXXXXX ... With BPF_F_STACK_BUILD_ID, bpf_get_stackid() tries to parse Build ID for each entry in the call trace, and translate it into the following struct: struct bpf_stack_build_id_offset { __s32 status; unsigned char build_id[BPF_BUILD_ID_SIZE]; union { __u64 offset; __u64 ip; }; }; The search of build_id is limited to the first page of the file, and this page should be in page cache. Otherwise, we fallback to store ip for this entry (ip field in struct bpf_stack_build_id_offset). This requires the build_id to be stored in the first page. A quick survey of binary and dynamic library files in a few different systems shows that almost all binary and dynamic library files have build_id in the first page. Build_id is only meaningful for user stack. If a kernel stack is added to a stackmap with BPF_F_STACK_BUILD_ID, it will automatically fallback to only store ip (status == BPF_STACK_BUILD_ID_IP). Similarly, if build_id lookup failed for some reason, it will also fallback to store ip. User space can access struct bpf_stack_build_id_offset with bpf syscall BPF_MAP_LOOKUP_ELEM. It is necessary for user space to maintain mapping from build id to binary files. This mostly static mapping is much easier to maintain than per process address maps. Note: Stackmap with build_id only works in non-nmi context at this time. This is because we need to take mm->mmap_sem for find_vma(). If this changes, we would like to allow build_id lookup in nmi context. Signed-off-by: Song Liu <songliubraving@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-03-14 10:23:21 -07:00
/* cannot access current->mm, fall back to ips */
for (i = 0; i < trace_nr; i++) {
id_offs[i].status = BPF_STACK_BUILD_ID_IP;
memset(id_offs[i].build_id, 0, BUILD_ID_SIZE_MAX);
bpf: extend stackmap to save binary_build_id+offset instead of address Currently, bpf stackmap store address for each entry in the call trace. To map these addresses to user space files, it is necessary to maintain the mapping from these virtual address to symbols in the binary. Usually, the user space profiler (such as perf) has to scan /proc/pid/maps at the beginning of profiling, and monitor mmap2() calls afterwards. Given the cost of maintaining the address map, this solution is not practical for system wide profiling that is always on. This patch tries to solve this problem with a variation of stackmap. This variation is enabled by flag BPF_F_STACK_BUILD_ID. Instead of storing addresses, the variation stores ELF file build_id + offset. Build ID is a 20-byte unique identifier for ELF files. The following command shows the Build ID of /bin/bash: [user@]$ readelf -n /bin/bash ... Build ID: XXXXXXXXXX ... With BPF_F_STACK_BUILD_ID, bpf_get_stackid() tries to parse Build ID for each entry in the call trace, and translate it into the following struct: struct bpf_stack_build_id_offset { __s32 status; unsigned char build_id[BPF_BUILD_ID_SIZE]; union { __u64 offset; __u64 ip; }; }; The search of build_id is limited to the first page of the file, and this page should be in page cache. Otherwise, we fallback to store ip for this entry (ip field in struct bpf_stack_build_id_offset). This requires the build_id to be stored in the first page. A quick survey of binary and dynamic library files in a few different systems shows that almost all binary and dynamic library files have build_id in the first page. Build_id is only meaningful for user stack. If a kernel stack is added to a stackmap with BPF_F_STACK_BUILD_ID, it will automatically fallback to only store ip (status == BPF_STACK_BUILD_ID_IP). Similarly, if build_id lookup failed for some reason, it will also fallback to store ip. User space can access struct bpf_stack_build_id_offset with bpf syscall BPF_MAP_LOOKUP_ELEM. It is necessary for user space to maintain mapping from build id to binary files. This mostly static mapping is much easier to maintain than per process address maps. Note: Stackmap with build_id only works in non-nmi context at this time. This is because we need to take mm->mmap_sem for find_vma(). If this changes, we would like to allow build_id lookup in nmi context. Signed-off-by: Song Liu <songliubraving@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-03-14 10:23:21 -07:00
}
return;
}
for (i = 0; i < trace_nr; i++) {
u64 ip = READ_ONCE(id_offs[i].ip);
if (range_in_vma(prev_vma, ip, ip)) {
vma = prev_vma;
memcpy(id_offs[i].build_id, prev_build_id, BUILD_ID_SIZE_MAX);
goto build_id_valid;
}
vma = find_vma(current->mm, ip);
bpf: wire up sleepable bpf_get_stack() and bpf_get_task_stack() helpers Add sleepable implementations of bpf_get_stack() and bpf_get_task_stack() helpers and allow them to be used from sleepable BPF program (e.g., sleepable uprobes). Note, the stack trace IPs capturing itself is not sleepable (that would need to be a separate project), only build ID fetching is sleepable and thus more reliable, as it will wait for data to be paged in, if necessary. For that we make use of sleepable build_id_parse() implementation. Now that build ID related internals in kernel/bpf/stackmap.c can be used both in sleepable and non-sleepable contexts, we need to add additional rcu_read_lock()/rcu_read_unlock() protection around fetching perf_callchain_entry, but with the refactoring in previous commit it's now pretty straightforward. We make sure to do rcu_read_unlock (in sleepable mode only) right before stack_map_get_build_id_offset() call which can sleep. By that time we don't have any more use of perf_callchain_entry. Note, bpf_get_task_stack() will fail for user mode if task != current. And for kernel mode build ID are irrelevant. So in that sense adding sleepable bpf_get_task_stack() implementation is a no-op. It feel right to wire this up for symmetry and completeness, but I'm open to just dropping it until we support `user && crosstask` condition. Reviewed-by: Eduard Zingerman <eddyz87@gmail.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/r/20240829174232.3133883-10-andrii@kernel.org Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-08-29 10:42:31 -07:00
if (!vma || fetch_build_id(vma, id_offs[i].build_id, may_fault)) {
bpf: extend stackmap to save binary_build_id+offset instead of address Currently, bpf stackmap store address for each entry in the call trace. To map these addresses to user space files, it is necessary to maintain the mapping from these virtual address to symbols in the binary. Usually, the user space profiler (such as perf) has to scan /proc/pid/maps at the beginning of profiling, and monitor mmap2() calls afterwards. Given the cost of maintaining the address map, this solution is not practical for system wide profiling that is always on. This patch tries to solve this problem with a variation of stackmap. This variation is enabled by flag BPF_F_STACK_BUILD_ID. Instead of storing addresses, the variation stores ELF file build_id + offset. Build ID is a 20-byte unique identifier for ELF files. The following command shows the Build ID of /bin/bash: [user@]$ readelf -n /bin/bash ... Build ID: XXXXXXXXXX ... With BPF_F_STACK_BUILD_ID, bpf_get_stackid() tries to parse Build ID for each entry in the call trace, and translate it into the following struct: struct bpf_stack_build_id_offset { __s32 status; unsigned char build_id[BPF_BUILD_ID_SIZE]; union { __u64 offset; __u64 ip; }; }; The search of build_id is limited to the first page of the file, and this page should be in page cache. Otherwise, we fallback to store ip for this entry (ip field in struct bpf_stack_build_id_offset). This requires the build_id to be stored in the first page. A quick survey of binary and dynamic library files in a few different systems shows that almost all binary and dynamic library files have build_id in the first page. Build_id is only meaningful for user stack. If a kernel stack is added to a stackmap with BPF_F_STACK_BUILD_ID, it will automatically fallback to only store ip (status == BPF_STACK_BUILD_ID_IP). Similarly, if build_id lookup failed for some reason, it will also fallback to store ip. User space can access struct bpf_stack_build_id_offset with bpf syscall BPF_MAP_LOOKUP_ELEM. It is necessary for user space to maintain mapping from build id to binary files. This mostly static mapping is much easier to maintain than per process address maps. Note: Stackmap with build_id only works in non-nmi context at this time. This is because we need to take mm->mmap_sem for find_vma(). If this changes, we would like to allow build_id lookup in nmi context. Signed-off-by: Song Liu <songliubraving@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-03-14 10:23:21 -07:00
/* per entry fall back to ips */
id_offs[i].status = BPF_STACK_BUILD_ID_IP;
memset(id_offs[i].build_id, 0, BUILD_ID_SIZE_MAX);
bpf: extend stackmap to save binary_build_id+offset instead of address Currently, bpf stackmap store address for each entry in the call trace. To map these addresses to user space files, it is necessary to maintain the mapping from these virtual address to symbols in the binary. Usually, the user space profiler (such as perf) has to scan /proc/pid/maps at the beginning of profiling, and monitor mmap2() calls afterwards. Given the cost of maintaining the address map, this solution is not practical for system wide profiling that is always on. This patch tries to solve this problem with a variation of stackmap. This variation is enabled by flag BPF_F_STACK_BUILD_ID. Instead of storing addresses, the variation stores ELF file build_id + offset. Build ID is a 20-byte unique identifier for ELF files. The following command shows the Build ID of /bin/bash: [user@]$ readelf -n /bin/bash ... Build ID: XXXXXXXXXX ... With BPF_F_STACK_BUILD_ID, bpf_get_stackid() tries to parse Build ID for each entry in the call trace, and translate it into the following struct: struct bpf_stack_build_id_offset { __s32 status; unsigned char build_id[BPF_BUILD_ID_SIZE]; union { __u64 offset; __u64 ip; }; }; The search of build_id is limited to the first page of the file, and this page should be in page cache. Otherwise, we fallback to store ip for this entry (ip field in struct bpf_stack_build_id_offset). This requires the build_id to be stored in the first page. A quick survey of binary and dynamic library files in a few different systems shows that almost all binary and dynamic library files have build_id in the first page. Build_id is only meaningful for user stack. If a kernel stack is added to a stackmap with BPF_F_STACK_BUILD_ID, it will automatically fallback to only store ip (status == BPF_STACK_BUILD_ID_IP). Similarly, if build_id lookup failed for some reason, it will also fallback to store ip. User space can access struct bpf_stack_build_id_offset with bpf syscall BPF_MAP_LOOKUP_ELEM. It is necessary for user space to maintain mapping from build id to binary files. This mostly static mapping is much easier to maintain than per process address maps. Note: Stackmap with build_id only works in non-nmi context at this time. This is because we need to take mm->mmap_sem for find_vma(). If this changes, we would like to allow build_id lookup in nmi context. Signed-off-by: Song Liu <songliubraving@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-03-14 10:23:21 -07:00
continue;
}
build_id_valid:
id_offs[i].offset = (vma->vm_pgoff << PAGE_SHIFT) + ip - vma->vm_start;
bpf: extend stackmap to save binary_build_id+offset instead of address Currently, bpf stackmap store address for each entry in the call trace. To map these addresses to user space files, it is necessary to maintain the mapping from these virtual address to symbols in the binary. Usually, the user space profiler (such as perf) has to scan /proc/pid/maps at the beginning of profiling, and monitor mmap2() calls afterwards. Given the cost of maintaining the address map, this solution is not practical for system wide profiling that is always on. This patch tries to solve this problem with a variation of stackmap. This variation is enabled by flag BPF_F_STACK_BUILD_ID. Instead of storing addresses, the variation stores ELF file build_id + offset. Build ID is a 20-byte unique identifier for ELF files. The following command shows the Build ID of /bin/bash: [user@]$ readelf -n /bin/bash ... Build ID: XXXXXXXXXX ... With BPF_F_STACK_BUILD_ID, bpf_get_stackid() tries to parse Build ID for each entry in the call trace, and translate it into the following struct: struct bpf_stack_build_id_offset { __s32 status; unsigned char build_id[BPF_BUILD_ID_SIZE]; union { __u64 offset; __u64 ip; }; }; The search of build_id is limited to the first page of the file, and this page should be in page cache. Otherwise, we fallback to store ip for this entry (ip field in struct bpf_stack_build_id_offset). This requires the build_id to be stored in the first page. A quick survey of binary and dynamic library files in a few different systems shows that almost all binary and dynamic library files have build_id in the first page. Build_id is only meaningful for user stack. If a kernel stack is added to a stackmap with BPF_F_STACK_BUILD_ID, it will automatically fallback to only store ip (status == BPF_STACK_BUILD_ID_IP). Similarly, if build_id lookup failed for some reason, it will also fallback to store ip. User space can access struct bpf_stack_build_id_offset with bpf syscall BPF_MAP_LOOKUP_ELEM. It is necessary for user space to maintain mapping from build id to binary files. This mostly static mapping is much easier to maintain than per process address maps. Note: Stackmap with build_id only works in non-nmi context at this time. This is because we need to take mm->mmap_sem for find_vma(). If this changes, we would like to allow build_id lookup in nmi context. Signed-off-by: Song Liu <songliubraving@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-03-14 10:23:21 -07:00
id_offs[i].status = BPF_STACK_BUILD_ID_VALID;
prev_vma = vma;
prev_build_id = id_offs[i].build_id;
bpf: extend stackmap to save binary_build_id+offset instead of address Currently, bpf stackmap store address for each entry in the call trace. To map these addresses to user space files, it is necessary to maintain the mapping from these virtual address to symbols in the binary. Usually, the user space profiler (such as perf) has to scan /proc/pid/maps at the beginning of profiling, and monitor mmap2() calls afterwards. Given the cost of maintaining the address map, this solution is not practical for system wide profiling that is always on. This patch tries to solve this problem with a variation of stackmap. This variation is enabled by flag BPF_F_STACK_BUILD_ID. Instead of storing addresses, the variation stores ELF file build_id + offset. Build ID is a 20-byte unique identifier for ELF files. The following command shows the Build ID of /bin/bash: [user@]$ readelf -n /bin/bash ... Build ID: XXXXXXXXXX ... With BPF_F_STACK_BUILD_ID, bpf_get_stackid() tries to parse Build ID for each entry in the call trace, and translate it into the following struct: struct bpf_stack_build_id_offset { __s32 status; unsigned char build_id[BPF_BUILD_ID_SIZE]; union { __u64 offset; __u64 ip; }; }; The search of build_id is limited to the first page of the file, and this page should be in page cache. Otherwise, we fallback to store ip for this entry (ip field in struct bpf_stack_build_id_offset). This requires the build_id to be stored in the first page. A quick survey of binary and dynamic library files in a few different systems shows that almost all binary and dynamic library files have build_id in the first page. Build_id is only meaningful for user stack. If a kernel stack is added to a stackmap with BPF_F_STACK_BUILD_ID, it will automatically fallback to only store ip (status == BPF_STACK_BUILD_ID_IP). Similarly, if build_id lookup failed for some reason, it will also fallback to store ip. User space can access struct bpf_stack_build_id_offset with bpf syscall BPF_MAP_LOOKUP_ELEM. It is necessary for user space to maintain mapping from build id to binary files. This mostly static mapping is much easier to maintain than per process address maps. Note: Stackmap with build_id only works in non-nmi context at this time. This is because we need to take mm->mmap_sem for find_vma(). If this changes, we would like to allow build_id lookup in nmi context. Signed-off-by: Song Liu <songliubraving@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-03-14 10:23:21 -07:00
}
bpf_mmap_unlock_mm(work, current->mm);
bpf: extend stackmap to save binary_build_id+offset instead of address Currently, bpf stackmap store address for each entry in the call trace. To map these addresses to user space files, it is necessary to maintain the mapping from these virtual address to symbols in the binary. Usually, the user space profiler (such as perf) has to scan /proc/pid/maps at the beginning of profiling, and monitor mmap2() calls afterwards. Given the cost of maintaining the address map, this solution is not practical for system wide profiling that is always on. This patch tries to solve this problem with a variation of stackmap. This variation is enabled by flag BPF_F_STACK_BUILD_ID. Instead of storing addresses, the variation stores ELF file build_id + offset. Build ID is a 20-byte unique identifier for ELF files. The following command shows the Build ID of /bin/bash: [user@]$ readelf -n /bin/bash ... Build ID: XXXXXXXXXX ... With BPF_F_STACK_BUILD_ID, bpf_get_stackid() tries to parse Build ID for each entry in the call trace, and translate it into the following struct: struct bpf_stack_build_id_offset { __s32 status; unsigned char build_id[BPF_BUILD_ID_SIZE]; union { __u64 offset; __u64 ip; }; }; The search of build_id is limited to the first page of the file, and this page should be in page cache. Otherwise, we fallback to store ip for this entry (ip field in struct bpf_stack_build_id_offset). This requires the build_id to be stored in the first page. A quick survey of binary and dynamic library files in a few different systems shows that almost all binary and dynamic library files have build_id in the first page. Build_id is only meaningful for user stack. If a kernel stack is added to a stackmap with BPF_F_STACK_BUILD_ID, it will automatically fallback to only store ip (status == BPF_STACK_BUILD_ID_IP). Similarly, if build_id lookup failed for some reason, it will also fallback to store ip. User space can access struct bpf_stack_build_id_offset with bpf syscall BPF_MAP_LOOKUP_ELEM. It is necessary for user space to maintain mapping from build id to binary files. This mostly static mapping is much easier to maintain than per process address maps. Note: Stackmap with build_id only works in non-nmi context at this time. This is because we need to take mm->mmap_sem for find_vma(). If this changes, we would like to allow build_id lookup in nmi context. Signed-off-by: Song Liu <songliubraving@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-03-14 10:23:21 -07:00
}
static struct perf_callchain_entry *
get_callchain_entry_for_task(struct task_struct *task, u32 max_depth)
{
#ifdef CONFIG_STACKTRACE
struct perf_callchain_entry *entry;
int rctx;
entry = get_callchain_entry(&rctx);
if (!entry)
return NULL;
entry->nr = stack_trace_save_tsk(task, (unsigned long *)entry->ip,
max_depth, 0);
/* stack_trace_save_tsk() works on unsigned long array, while
* perf_callchain_entry uses u64 array. For 32-bit systems, it is
* necessary to fix this mismatch.
*/
if (__BITS_PER_LONG != 64) {
unsigned long *from = (unsigned long *) entry->ip;
u64 *to = entry->ip;
int i;
/* copy data from the end to avoid using extra buffer */
for (i = entry->nr - 1; i >= 0; i--)
to[i] = (u64)(from[i]);
}
put_callchain_entry(rctx);
return entry;
#else /* CONFIG_STACKTRACE */
return NULL;
#endif
}
static long __bpf_get_stackid(struct bpf_map *map,
struct perf_callchain_entry *trace, u64 flags)
{
struct bpf_stack_map *smap = container_of(map, struct bpf_stack_map, map);
struct stack_map_bucket *bucket, *new_bucket, *old_bucket;
u32 skip = flags & BPF_F_SKIP_FIELD_MASK;
u32 hash, id, trace_nr, trace_len, i;
bool user = flags & BPF_F_USER_STACK;
u64 *ips;
bpf: extend stackmap to save binary_build_id+offset instead of address Currently, bpf stackmap store address for each entry in the call trace. To map these addresses to user space files, it is necessary to maintain the mapping from these virtual address to symbols in the binary. Usually, the user space profiler (such as perf) has to scan /proc/pid/maps at the beginning of profiling, and monitor mmap2() calls afterwards. Given the cost of maintaining the address map, this solution is not practical for system wide profiling that is always on. This patch tries to solve this problem with a variation of stackmap. This variation is enabled by flag BPF_F_STACK_BUILD_ID. Instead of storing addresses, the variation stores ELF file build_id + offset. Build ID is a 20-byte unique identifier for ELF files. The following command shows the Build ID of /bin/bash: [user@]$ readelf -n /bin/bash ... Build ID: XXXXXXXXXX ... With BPF_F_STACK_BUILD_ID, bpf_get_stackid() tries to parse Build ID for each entry in the call trace, and translate it into the following struct: struct bpf_stack_build_id_offset { __s32 status; unsigned char build_id[BPF_BUILD_ID_SIZE]; union { __u64 offset; __u64 ip; }; }; The search of build_id is limited to the first page of the file, and this page should be in page cache. Otherwise, we fallback to store ip for this entry (ip field in struct bpf_stack_build_id_offset). This requires the build_id to be stored in the first page. A quick survey of binary and dynamic library files in a few different systems shows that almost all binary and dynamic library files have build_id in the first page. Build_id is only meaningful for user stack. If a kernel stack is added to a stackmap with BPF_F_STACK_BUILD_ID, it will automatically fallback to only store ip (status == BPF_STACK_BUILD_ID_IP). Similarly, if build_id lookup failed for some reason, it will also fallback to store ip. User space can access struct bpf_stack_build_id_offset with bpf syscall BPF_MAP_LOOKUP_ELEM. It is necessary for user space to maintain mapping from build id to binary files. This mostly static mapping is much easier to maintain than per process address maps. Note: Stackmap with build_id only works in non-nmi context at this time. This is because we need to take mm->mmap_sem for find_vma(). If this changes, we would like to allow build_id lookup in nmi context. Signed-off-by: Song Liu <songliubraving@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-03-14 10:23:21 -07:00
bool hash_matches;
if (trace->nr <= skip)
/* skipping more than usable stack trace */
return -EFAULT;
trace_nr = trace->nr - skip;
trace_len = trace_nr * sizeof(u64);
ips = trace->ip + skip;
hash = jhash2((u32 *)ips, trace_len / sizeof(u32), 0);
id = hash & (smap->n_buckets - 1);
bpf: convert stackmap to pre-allocation It was observed that calling bpf_get_stackid() from a kprobe inside slub or from spin_unlock causes similar deadlock as with hashmap, therefore convert stackmap to use pre-allocated memory. The call_rcu is no longer feasible mechanism, since delayed freeing causes bpf_get_stackid() to fail unpredictably when number of actual stacks is significantly less than user requested max_entries. Since elements are no longer freed into slub, we can push elements into freelist immediately and let them be recycled. However the very unlikley race between user space map_lookup() and program-side recycling is possible: cpu0 cpu1 ---- ---- user does lookup(stackidX) starts copying ips into buffer delete(stackidX) calls bpf_get_stackid() which recyles the element and overwrites with new stack trace To avoid user space seeing a partial stack trace consisting of two merged stack traces, do bucket = xchg(, NULL); copy; xchg(,bucket); to preserve consistent stack trace delivery to user space. Now we can move memset(,0) of left-over element value from critical path of bpf_get_stackid() into slow-path of user space lookup. Also disallow lookup() from bpf program, since it's useless and program shouldn't be messing with collected stack trace. Note that similar race between user space lookup and kernel side updates is also present in hashmap, but it's not a new race. bpf programs were always allowed to modify hash and array map elements while user space is copying them. Fixes: d5a3b1f69186 ("bpf: introduce BPF_MAP_TYPE_STACK_TRACE") Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-03-07 21:57:17 -08:00
bucket = READ_ONCE(smap->buckets[id]);
bpf: extend stackmap to save binary_build_id+offset instead of address Currently, bpf stackmap store address for each entry in the call trace. To map these addresses to user space files, it is necessary to maintain the mapping from these virtual address to symbols in the binary. Usually, the user space profiler (such as perf) has to scan /proc/pid/maps at the beginning of profiling, and monitor mmap2() calls afterwards. Given the cost of maintaining the address map, this solution is not practical for system wide profiling that is always on. This patch tries to solve this problem with a variation of stackmap. This variation is enabled by flag BPF_F_STACK_BUILD_ID. Instead of storing addresses, the variation stores ELF file build_id + offset. Build ID is a 20-byte unique identifier for ELF files. The following command shows the Build ID of /bin/bash: [user@]$ readelf -n /bin/bash ... Build ID: XXXXXXXXXX ... With BPF_F_STACK_BUILD_ID, bpf_get_stackid() tries to parse Build ID for each entry in the call trace, and translate it into the following struct: struct bpf_stack_build_id_offset { __s32 status; unsigned char build_id[BPF_BUILD_ID_SIZE]; union { __u64 offset; __u64 ip; }; }; The search of build_id is limited to the first page of the file, and this page should be in page cache. Otherwise, we fallback to store ip for this entry (ip field in struct bpf_stack_build_id_offset). This requires the build_id to be stored in the first page. A quick survey of binary and dynamic library files in a few different systems shows that almost all binary and dynamic library files have build_id in the first page. Build_id is only meaningful for user stack. If a kernel stack is added to a stackmap with BPF_F_STACK_BUILD_ID, it will automatically fallback to only store ip (status == BPF_STACK_BUILD_ID_IP). Similarly, if build_id lookup failed for some reason, it will also fallback to store ip. User space can access struct bpf_stack_build_id_offset with bpf syscall BPF_MAP_LOOKUP_ELEM. It is necessary for user space to maintain mapping from build id to binary files. This mostly static mapping is much easier to maintain than per process address maps. Note: Stackmap with build_id only works in non-nmi context at this time. This is because we need to take mm->mmap_sem for find_vma(). If this changes, we would like to allow build_id lookup in nmi context. Signed-off-by: Song Liu <songliubraving@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-03-14 10:23:21 -07:00
hash_matches = bucket && bucket->hash == hash;
/* fast cmp */
if (hash_matches && flags & BPF_F_FAST_STACK_CMP)
return id;
if (stack_map_use_build_id(map)) {
struct bpf_stack_build_id *id_offs;
bpf: extend stackmap to save binary_build_id+offset instead of address Currently, bpf stackmap store address for each entry in the call trace. To map these addresses to user space files, it is necessary to maintain the mapping from these virtual address to symbols in the binary. Usually, the user space profiler (such as perf) has to scan /proc/pid/maps at the beginning of profiling, and monitor mmap2() calls afterwards. Given the cost of maintaining the address map, this solution is not practical for system wide profiling that is always on. This patch tries to solve this problem with a variation of stackmap. This variation is enabled by flag BPF_F_STACK_BUILD_ID. Instead of storing addresses, the variation stores ELF file build_id + offset. Build ID is a 20-byte unique identifier for ELF files. The following command shows the Build ID of /bin/bash: [user@]$ readelf -n /bin/bash ... Build ID: XXXXXXXXXX ... With BPF_F_STACK_BUILD_ID, bpf_get_stackid() tries to parse Build ID for each entry in the call trace, and translate it into the following struct: struct bpf_stack_build_id_offset { __s32 status; unsigned char build_id[BPF_BUILD_ID_SIZE]; union { __u64 offset; __u64 ip; }; }; The search of build_id is limited to the first page of the file, and this page should be in page cache. Otherwise, we fallback to store ip for this entry (ip field in struct bpf_stack_build_id_offset). This requires the build_id to be stored in the first page. A quick survey of binary and dynamic library files in a few different systems shows that almost all binary and dynamic library files have build_id in the first page. Build_id is only meaningful for user stack. If a kernel stack is added to a stackmap with BPF_F_STACK_BUILD_ID, it will automatically fallback to only store ip (status == BPF_STACK_BUILD_ID_IP). Similarly, if build_id lookup failed for some reason, it will also fallback to store ip. User space can access struct bpf_stack_build_id_offset with bpf syscall BPF_MAP_LOOKUP_ELEM. It is necessary for user space to maintain mapping from build id to binary files. This mostly static mapping is much easier to maintain than per process address maps. Note: Stackmap with build_id only works in non-nmi context at this time. This is because we need to take mm->mmap_sem for find_vma(). If this changes, we would like to allow build_id lookup in nmi context. Signed-off-by: Song Liu <songliubraving@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-03-14 10:23:21 -07:00
/* for build_id+offset, pop a bucket before slow cmp */
new_bucket = (struct stack_map_bucket *)
pcpu_freelist_pop(&smap->freelist);
if (unlikely(!new_bucket))
return -ENOMEM;
new_bucket->nr = trace_nr;
id_offs = (struct bpf_stack_build_id *)new_bucket->data;
for (i = 0; i < trace_nr; i++)
id_offs[i].ip = ips[i];
bpf: wire up sleepable bpf_get_stack() and bpf_get_task_stack() helpers Add sleepable implementations of bpf_get_stack() and bpf_get_task_stack() helpers and allow them to be used from sleepable BPF program (e.g., sleepable uprobes). Note, the stack trace IPs capturing itself is not sleepable (that would need to be a separate project), only build ID fetching is sleepable and thus more reliable, as it will wait for data to be paged in, if necessary. For that we make use of sleepable build_id_parse() implementation. Now that build ID related internals in kernel/bpf/stackmap.c can be used both in sleepable and non-sleepable contexts, we need to add additional rcu_read_lock()/rcu_read_unlock() protection around fetching perf_callchain_entry, but with the refactoring in previous commit it's now pretty straightforward. We make sure to do rcu_read_unlock (in sleepable mode only) right before stack_map_get_build_id_offset() call which can sleep. By that time we don't have any more use of perf_callchain_entry. Note, bpf_get_task_stack() will fail for user mode if task != current. And for kernel mode build ID are irrelevant. So in that sense adding sleepable bpf_get_task_stack() implementation is a no-op. It feel right to wire this up for symmetry and completeness, but I'm open to just dropping it until we support `user && crosstask` condition. Reviewed-by: Eduard Zingerman <eddyz87@gmail.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/r/20240829174232.3133883-10-andrii@kernel.org Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-08-29 10:42:31 -07:00
stack_map_get_build_id_offset(id_offs, trace_nr, user, false /* !may_fault */);
bpf: extend stackmap to save binary_build_id+offset instead of address Currently, bpf stackmap store address for each entry in the call trace. To map these addresses to user space files, it is necessary to maintain the mapping from these virtual address to symbols in the binary. Usually, the user space profiler (such as perf) has to scan /proc/pid/maps at the beginning of profiling, and monitor mmap2() calls afterwards. Given the cost of maintaining the address map, this solution is not practical for system wide profiling that is always on. This patch tries to solve this problem with a variation of stackmap. This variation is enabled by flag BPF_F_STACK_BUILD_ID. Instead of storing addresses, the variation stores ELF file build_id + offset. Build ID is a 20-byte unique identifier for ELF files. The following command shows the Build ID of /bin/bash: [user@]$ readelf -n /bin/bash ... Build ID: XXXXXXXXXX ... With BPF_F_STACK_BUILD_ID, bpf_get_stackid() tries to parse Build ID for each entry in the call trace, and translate it into the following struct: struct bpf_stack_build_id_offset { __s32 status; unsigned char build_id[BPF_BUILD_ID_SIZE]; union { __u64 offset; __u64 ip; }; }; The search of build_id is limited to the first page of the file, and this page should be in page cache. Otherwise, we fallback to store ip for this entry (ip field in struct bpf_stack_build_id_offset). This requires the build_id to be stored in the first page. A quick survey of binary and dynamic library files in a few different systems shows that almost all binary and dynamic library files have build_id in the first page. Build_id is only meaningful for user stack. If a kernel stack is added to a stackmap with BPF_F_STACK_BUILD_ID, it will automatically fallback to only store ip (status == BPF_STACK_BUILD_ID_IP). Similarly, if build_id lookup failed for some reason, it will also fallback to store ip. User space can access struct bpf_stack_build_id_offset with bpf syscall BPF_MAP_LOOKUP_ELEM. It is necessary for user space to maintain mapping from build id to binary files. This mostly static mapping is much easier to maintain than per process address maps. Note: Stackmap with build_id only works in non-nmi context at this time. This is because we need to take mm->mmap_sem for find_vma(). If this changes, we would like to allow build_id lookup in nmi context. Signed-off-by: Song Liu <songliubraving@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-03-14 10:23:21 -07:00
trace_len = trace_nr * sizeof(struct bpf_stack_build_id);
if (hash_matches && bucket->nr == trace_nr &&
memcmp(bucket->data, new_bucket->data, trace_len) == 0) {
pcpu_freelist_push(&smap->freelist, &new_bucket->fnode);
return id;
bpf: extend stackmap to save binary_build_id+offset instead of address Currently, bpf stackmap store address for each entry in the call trace. To map these addresses to user space files, it is necessary to maintain the mapping from these virtual address to symbols in the binary. Usually, the user space profiler (such as perf) has to scan /proc/pid/maps at the beginning of profiling, and monitor mmap2() calls afterwards. Given the cost of maintaining the address map, this solution is not practical for system wide profiling that is always on. This patch tries to solve this problem with a variation of stackmap. This variation is enabled by flag BPF_F_STACK_BUILD_ID. Instead of storing addresses, the variation stores ELF file build_id + offset. Build ID is a 20-byte unique identifier for ELF files. The following command shows the Build ID of /bin/bash: [user@]$ readelf -n /bin/bash ... Build ID: XXXXXXXXXX ... With BPF_F_STACK_BUILD_ID, bpf_get_stackid() tries to parse Build ID for each entry in the call trace, and translate it into the following struct: struct bpf_stack_build_id_offset { __s32 status; unsigned char build_id[BPF_BUILD_ID_SIZE]; union { __u64 offset; __u64 ip; }; }; The search of build_id is limited to the first page of the file, and this page should be in page cache. Otherwise, we fallback to store ip for this entry (ip field in struct bpf_stack_build_id_offset). This requires the build_id to be stored in the first page. A quick survey of binary and dynamic library files in a few different systems shows that almost all binary and dynamic library files have build_id in the first page. Build_id is only meaningful for user stack. If a kernel stack is added to a stackmap with BPF_F_STACK_BUILD_ID, it will automatically fallback to only store ip (status == BPF_STACK_BUILD_ID_IP). Similarly, if build_id lookup failed for some reason, it will also fallback to store ip. User space can access struct bpf_stack_build_id_offset with bpf syscall BPF_MAP_LOOKUP_ELEM. It is necessary for user space to maintain mapping from build id to binary files. This mostly static mapping is much easier to maintain than per process address maps. Note: Stackmap with build_id only works in non-nmi context at this time. This is because we need to take mm->mmap_sem for find_vma(). If this changes, we would like to allow build_id lookup in nmi context. Signed-off-by: Song Liu <songliubraving@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-03-14 10:23:21 -07:00
}
if (bucket && !(flags & BPF_F_REUSE_STACKID)) {
pcpu_freelist_push(&smap->freelist, &new_bucket->fnode);
return -EEXIST;
}
} else {
if (hash_matches && bucket->nr == trace_nr &&
memcmp(bucket->data, ips, trace_len) == 0)
return id;
bpf: extend stackmap to save binary_build_id+offset instead of address Currently, bpf stackmap store address for each entry in the call trace. To map these addresses to user space files, it is necessary to maintain the mapping from these virtual address to symbols in the binary. Usually, the user space profiler (such as perf) has to scan /proc/pid/maps at the beginning of profiling, and monitor mmap2() calls afterwards. Given the cost of maintaining the address map, this solution is not practical for system wide profiling that is always on. This patch tries to solve this problem with a variation of stackmap. This variation is enabled by flag BPF_F_STACK_BUILD_ID. Instead of storing addresses, the variation stores ELF file build_id + offset. Build ID is a 20-byte unique identifier for ELF files. The following command shows the Build ID of /bin/bash: [user@]$ readelf -n /bin/bash ... Build ID: XXXXXXXXXX ... With BPF_F_STACK_BUILD_ID, bpf_get_stackid() tries to parse Build ID for each entry in the call trace, and translate it into the following struct: struct bpf_stack_build_id_offset { __s32 status; unsigned char build_id[BPF_BUILD_ID_SIZE]; union { __u64 offset; __u64 ip; }; }; The search of build_id is limited to the first page of the file, and this page should be in page cache. Otherwise, we fallback to store ip for this entry (ip field in struct bpf_stack_build_id_offset). This requires the build_id to be stored in the first page. A quick survey of binary and dynamic library files in a few different systems shows that almost all binary and dynamic library files have build_id in the first page. Build_id is only meaningful for user stack. If a kernel stack is added to a stackmap with BPF_F_STACK_BUILD_ID, it will automatically fallback to only store ip (status == BPF_STACK_BUILD_ID_IP). Similarly, if build_id lookup failed for some reason, it will also fallback to store ip. User space can access struct bpf_stack_build_id_offset with bpf syscall BPF_MAP_LOOKUP_ELEM. It is necessary for user space to maintain mapping from build id to binary files. This mostly static mapping is much easier to maintain than per process address maps. Note: Stackmap with build_id only works in non-nmi context at this time. This is because we need to take mm->mmap_sem for find_vma(). If this changes, we would like to allow build_id lookup in nmi context. Signed-off-by: Song Liu <songliubraving@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-03-14 10:23:21 -07:00
if (bucket && !(flags & BPF_F_REUSE_STACKID))
return -EEXIST;
new_bucket = (struct stack_map_bucket *)
pcpu_freelist_pop(&smap->freelist);
if (unlikely(!new_bucket))
return -ENOMEM;
memcpy(new_bucket->data, ips, trace_len);
}
new_bucket->hash = hash;
new_bucket->nr = trace_nr;
old_bucket = xchg(&smap->buckets[id], new_bucket);
if (old_bucket)
bpf: convert stackmap to pre-allocation It was observed that calling bpf_get_stackid() from a kprobe inside slub or from spin_unlock causes similar deadlock as with hashmap, therefore convert stackmap to use pre-allocated memory. The call_rcu is no longer feasible mechanism, since delayed freeing causes bpf_get_stackid() to fail unpredictably when number of actual stacks is significantly less than user requested max_entries. Since elements are no longer freed into slub, we can push elements into freelist immediately and let them be recycled. However the very unlikley race between user space map_lookup() and program-side recycling is possible: cpu0 cpu1 ---- ---- user does lookup(stackidX) starts copying ips into buffer delete(stackidX) calls bpf_get_stackid() which recyles the element and overwrites with new stack trace To avoid user space seeing a partial stack trace consisting of two merged stack traces, do bucket = xchg(, NULL); copy; xchg(,bucket); to preserve consistent stack trace delivery to user space. Now we can move memset(,0) of left-over element value from critical path of bpf_get_stackid() into slow-path of user space lookup. Also disallow lookup() from bpf program, since it's useless and program shouldn't be messing with collected stack trace. Note that similar race between user space lookup and kernel side updates is also present in hashmap, but it's not a new race. bpf programs were always allowed to modify hash and array map elements while user space is copying them. Fixes: d5a3b1f69186 ("bpf: introduce BPF_MAP_TYPE_STACK_TRACE") Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-03-07 21:57:17 -08:00
pcpu_freelist_push(&smap->freelist, &old_bucket->fnode);
return id;
}
BPF_CALL_3(bpf_get_stackid, struct pt_regs *, regs, struct bpf_map *, map,
u64, flags)
{
u32 max_depth = map->value_size / stack_map_data_size(map);
u32 skip = flags & BPF_F_SKIP_FIELD_MASK;
bool user = flags & BPF_F_USER_STACK;
struct perf_callchain_entry *trace;
bool kernel = !user;
if (unlikely(flags & ~(BPF_F_SKIP_FIELD_MASK | BPF_F_USER_STACK |
BPF_F_FAST_STACK_CMP | BPF_F_REUSE_STACKID)))
return -EINVAL;
max_depth += skip;
if (max_depth > sysctl_perf_event_max_stack)
max_depth = sysctl_perf_event_max_stack;
trace = get_perf_callchain(regs, 0, kernel, user, max_depth,
false, false);
if (unlikely(!trace))
/* couldn't fetch the stack trace */
return -EFAULT;
return __bpf_get_stackid(map, trace, flags);
}
const struct bpf_func_proto bpf_get_stackid_proto = {
.func = bpf_get_stackid,
.gpl_only = true,
.ret_type = RET_INTEGER,
.arg1_type = ARG_PTR_TO_CTX,
.arg2_type = ARG_CONST_MAP_PTR,
.arg3_type = ARG_ANYTHING,
};
static __u64 count_kernel_ip(struct perf_callchain_entry *trace)
{
__u64 nr_kernel = 0;
while (nr_kernel < trace->nr) {
if (trace->ip[nr_kernel] == PERF_CONTEXT_USER)
break;
nr_kernel++;
}
return nr_kernel;
}
BPF_CALL_3(bpf_get_stackid_pe, struct bpf_perf_event_data_kern *, ctx,
struct bpf_map *, map, u64, flags)
{
struct perf_event *event = ctx->event;
struct perf_callchain_entry *trace;
bool kernel, user;
__u64 nr_kernel;
int ret;
/* perf_sample_data doesn't have callchain, use bpf_get_stackid */
if (!(event->attr.sample_type & PERF_SAMPLE_CALLCHAIN))
return bpf_get_stackid((unsigned long)(ctx->regs),
(unsigned long) map, flags, 0, 0);
if (unlikely(flags & ~(BPF_F_SKIP_FIELD_MASK | BPF_F_USER_STACK |
BPF_F_FAST_STACK_CMP | BPF_F_REUSE_STACKID)))
return -EINVAL;
user = flags & BPF_F_USER_STACK;
kernel = !user;
trace = ctx->data->callchain;
if (unlikely(!trace))
return -EFAULT;
nr_kernel = count_kernel_ip(trace);
if (kernel) {
__u64 nr = trace->nr;
trace->nr = nr_kernel;
ret = __bpf_get_stackid(map, trace, flags);
/* restore nr */
trace->nr = nr;
} else { /* user */
u64 skip = flags & BPF_F_SKIP_FIELD_MASK;
skip += nr_kernel;
if (skip > BPF_F_SKIP_FIELD_MASK)
return -EFAULT;
flags = (flags & ~BPF_F_SKIP_FIELD_MASK) | skip;
ret = __bpf_get_stackid(map, trace, flags);
}
return ret;
}
const struct bpf_func_proto bpf_get_stackid_proto_pe = {
.func = bpf_get_stackid_pe,
.gpl_only = false,
.ret_type = RET_INTEGER,
.arg1_type = ARG_PTR_TO_CTX,
.arg2_type = ARG_CONST_MAP_PTR,
.arg3_type = ARG_ANYTHING,
};
static long __bpf_get_stack(struct pt_regs *regs, struct task_struct *task,
struct perf_callchain_entry *trace_in,
bpf: wire up sleepable bpf_get_stack() and bpf_get_task_stack() helpers Add sleepable implementations of bpf_get_stack() and bpf_get_task_stack() helpers and allow them to be used from sleepable BPF program (e.g., sleepable uprobes). Note, the stack trace IPs capturing itself is not sleepable (that would need to be a separate project), only build ID fetching is sleepable and thus more reliable, as it will wait for data to be paged in, if necessary. For that we make use of sleepable build_id_parse() implementation. Now that build ID related internals in kernel/bpf/stackmap.c can be used both in sleepable and non-sleepable contexts, we need to add additional rcu_read_lock()/rcu_read_unlock() protection around fetching perf_callchain_entry, but with the refactoring in previous commit it's now pretty straightforward. We make sure to do rcu_read_unlock (in sleepable mode only) right before stack_map_get_build_id_offset() call which can sleep. By that time we don't have any more use of perf_callchain_entry. Note, bpf_get_task_stack() will fail for user mode if task != current. And for kernel mode build ID are irrelevant. So in that sense adding sleepable bpf_get_task_stack() implementation is a no-op. It feel right to wire this up for symmetry and completeness, but I'm open to just dropping it until we support `user && crosstask` condition. Reviewed-by: Eduard Zingerman <eddyz87@gmail.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/r/20240829174232.3133883-10-andrii@kernel.org Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-08-29 10:42:31 -07:00
void *buf, u32 size, u64 flags, bool may_fault)
{
u32 trace_nr, copy_len, elem_size, num_elem, max_depth;
bool user_build_id = flags & BPF_F_USER_BUILD_ID;
bool crosstask = task && task != current;
u32 skip = flags & BPF_F_SKIP_FIELD_MASK;
bool user = flags & BPF_F_USER_STACK;
struct perf_callchain_entry *trace;
bool kernel = !user;
int err = -EINVAL;
u64 *ips;
if (unlikely(flags & ~(BPF_F_SKIP_FIELD_MASK | BPF_F_USER_STACK |
BPF_F_USER_BUILD_ID)))
goto clear;
if (kernel && user_build_id)
goto clear;
bpf: wire up sleepable bpf_get_stack() and bpf_get_task_stack() helpers Add sleepable implementations of bpf_get_stack() and bpf_get_task_stack() helpers and allow them to be used from sleepable BPF program (e.g., sleepable uprobes). Note, the stack trace IPs capturing itself is not sleepable (that would need to be a separate project), only build ID fetching is sleepable and thus more reliable, as it will wait for data to be paged in, if necessary. For that we make use of sleepable build_id_parse() implementation. Now that build ID related internals in kernel/bpf/stackmap.c can be used both in sleepable and non-sleepable contexts, we need to add additional rcu_read_lock()/rcu_read_unlock() protection around fetching perf_callchain_entry, but with the refactoring in previous commit it's now pretty straightforward. We make sure to do rcu_read_unlock (in sleepable mode only) right before stack_map_get_build_id_offset() call which can sleep. By that time we don't have any more use of perf_callchain_entry. Note, bpf_get_task_stack() will fail for user mode if task != current. And for kernel mode build ID are irrelevant. So in that sense adding sleepable bpf_get_task_stack() implementation is a no-op. It feel right to wire this up for symmetry and completeness, but I'm open to just dropping it until we support `user && crosstask` condition. Reviewed-by: Eduard Zingerman <eddyz87@gmail.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/r/20240829174232.3133883-10-andrii@kernel.org Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-08-29 10:42:31 -07:00
elem_size = user_build_id ? sizeof(struct bpf_stack_build_id) : sizeof(u64);
if (unlikely(size % elem_size))
goto clear;
/* cannot get valid user stack for task without user_mode regs */
if (task && user && !user_mode(regs))
goto err_fault;
/* get_perf_callchain does not support crosstask user stack walking
* but returns an empty stack instead of NULL.
*/
if (crosstask && user) {
err = -EOPNOTSUPP;
goto clear;
}
num_elem = size / elem_size;
max_depth = num_elem + skip;
if (sysctl_perf_event_max_stack < max_depth)
max_depth = sysctl_perf_event_max_stack;
bpf: wire up sleepable bpf_get_stack() and bpf_get_task_stack() helpers Add sleepable implementations of bpf_get_stack() and bpf_get_task_stack() helpers and allow them to be used from sleepable BPF program (e.g., sleepable uprobes). Note, the stack trace IPs capturing itself is not sleepable (that would need to be a separate project), only build ID fetching is sleepable and thus more reliable, as it will wait for data to be paged in, if necessary. For that we make use of sleepable build_id_parse() implementation. Now that build ID related internals in kernel/bpf/stackmap.c can be used both in sleepable and non-sleepable contexts, we need to add additional rcu_read_lock()/rcu_read_unlock() protection around fetching perf_callchain_entry, but with the refactoring in previous commit it's now pretty straightforward. We make sure to do rcu_read_unlock (in sleepable mode only) right before stack_map_get_build_id_offset() call which can sleep. By that time we don't have any more use of perf_callchain_entry. Note, bpf_get_task_stack() will fail for user mode if task != current. And for kernel mode build ID are irrelevant. So in that sense adding sleepable bpf_get_task_stack() implementation is a no-op. It feel right to wire this up for symmetry and completeness, but I'm open to just dropping it until we support `user && crosstask` condition. Reviewed-by: Eduard Zingerman <eddyz87@gmail.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/r/20240829174232.3133883-10-andrii@kernel.org Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-08-29 10:42:31 -07:00
if (may_fault)
rcu_read_lock(); /* need RCU for perf's callchain below */
if (trace_in)
trace = trace_in;
else if (kernel && task)
trace = get_callchain_entry_for_task(task, max_depth);
else
trace = get_perf_callchain(regs, 0, kernel, user, max_depth,
crosstask, false);
bpf: wire up sleepable bpf_get_stack() and bpf_get_task_stack() helpers Add sleepable implementations of bpf_get_stack() and bpf_get_task_stack() helpers and allow them to be used from sleepable BPF program (e.g., sleepable uprobes). Note, the stack trace IPs capturing itself is not sleepable (that would need to be a separate project), only build ID fetching is sleepable and thus more reliable, as it will wait for data to be paged in, if necessary. For that we make use of sleepable build_id_parse() implementation. Now that build ID related internals in kernel/bpf/stackmap.c can be used both in sleepable and non-sleepable contexts, we need to add additional rcu_read_lock()/rcu_read_unlock() protection around fetching perf_callchain_entry, but with the refactoring in previous commit it's now pretty straightforward. We make sure to do rcu_read_unlock (in sleepable mode only) right before stack_map_get_build_id_offset() call which can sleep. By that time we don't have any more use of perf_callchain_entry. Note, bpf_get_task_stack() will fail for user mode if task != current. And for kernel mode build ID are irrelevant. So in that sense adding sleepable bpf_get_task_stack() implementation is a no-op. It feel right to wire this up for symmetry and completeness, but I'm open to just dropping it until we support `user && crosstask` condition. Reviewed-by: Eduard Zingerman <eddyz87@gmail.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/r/20240829174232.3133883-10-andrii@kernel.org Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-08-29 10:42:31 -07:00
if (unlikely(!trace) || trace->nr < skip) {
if (may_fault)
rcu_read_unlock();
goto err_fault;
bpf: wire up sleepable bpf_get_stack() and bpf_get_task_stack() helpers Add sleepable implementations of bpf_get_stack() and bpf_get_task_stack() helpers and allow them to be used from sleepable BPF program (e.g., sleepable uprobes). Note, the stack trace IPs capturing itself is not sleepable (that would need to be a separate project), only build ID fetching is sleepable and thus more reliable, as it will wait for data to be paged in, if necessary. For that we make use of sleepable build_id_parse() implementation. Now that build ID related internals in kernel/bpf/stackmap.c can be used both in sleepable and non-sleepable contexts, we need to add additional rcu_read_lock()/rcu_read_unlock() protection around fetching perf_callchain_entry, but with the refactoring in previous commit it's now pretty straightforward. We make sure to do rcu_read_unlock (in sleepable mode only) right before stack_map_get_build_id_offset() call which can sleep. By that time we don't have any more use of perf_callchain_entry. Note, bpf_get_task_stack() will fail for user mode if task != current. And for kernel mode build ID are irrelevant. So in that sense adding sleepable bpf_get_task_stack() implementation is a no-op. It feel right to wire this up for symmetry and completeness, but I'm open to just dropping it until we support `user && crosstask` condition. Reviewed-by: Eduard Zingerman <eddyz87@gmail.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/r/20240829174232.3133883-10-andrii@kernel.org Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-08-29 10:42:31 -07:00
}
trace_nr = trace->nr - skip;
trace_nr = (trace_nr <= num_elem) ? trace_nr : num_elem;
copy_len = trace_nr * elem_size;
ips = trace->ip + skip;
bpf: wire up sleepable bpf_get_stack() and bpf_get_task_stack() helpers Add sleepable implementations of bpf_get_stack() and bpf_get_task_stack() helpers and allow them to be used from sleepable BPF program (e.g., sleepable uprobes). Note, the stack trace IPs capturing itself is not sleepable (that would need to be a separate project), only build ID fetching is sleepable and thus more reliable, as it will wait for data to be paged in, if necessary. For that we make use of sleepable build_id_parse() implementation. Now that build ID related internals in kernel/bpf/stackmap.c can be used both in sleepable and non-sleepable contexts, we need to add additional rcu_read_lock()/rcu_read_unlock() protection around fetching perf_callchain_entry, but with the refactoring in previous commit it's now pretty straightforward. We make sure to do rcu_read_unlock (in sleepable mode only) right before stack_map_get_build_id_offset() call which can sleep. By that time we don't have any more use of perf_callchain_entry. Note, bpf_get_task_stack() will fail for user mode if task != current. And for kernel mode build ID are irrelevant. So in that sense adding sleepable bpf_get_task_stack() implementation is a no-op. It feel right to wire this up for symmetry and completeness, but I'm open to just dropping it until we support `user && crosstask` condition. Reviewed-by: Eduard Zingerman <eddyz87@gmail.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/r/20240829174232.3133883-10-andrii@kernel.org Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-08-29 10:42:31 -07:00
if (user_build_id) {
struct bpf_stack_build_id *id_offs = buf;
u32 i;
for (i = 0; i < trace_nr; i++)
id_offs[i].ip = ips[i];
} else {
memcpy(buf, ips, copy_len);
}
bpf: wire up sleepable bpf_get_stack() and bpf_get_task_stack() helpers Add sleepable implementations of bpf_get_stack() and bpf_get_task_stack() helpers and allow them to be used from sleepable BPF program (e.g., sleepable uprobes). Note, the stack trace IPs capturing itself is not sleepable (that would need to be a separate project), only build ID fetching is sleepable and thus more reliable, as it will wait for data to be paged in, if necessary. For that we make use of sleepable build_id_parse() implementation. Now that build ID related internals in kernel/bpf/stackmap.c can be used both in sleepable and non-sleepable contexts, we need to add additional rcu_read_lock()/rcu_read_unlock() protection around fetching perf_callchain_entry, but with the refactoring in previous commit it's now pretty straightforward. We make sure to do rcu_read_unlock (in sleepable mode only) right before stack_map_get_build_id_offset() call which can sleep. By that time we don't have any more use of perf_callchain_entry. Note, bpf_get_task_stack() will fail for user mode if task != current. And for kernel mode build ID are irrelevant. So in that sense adding sleepable bpf_get_task_stack() implementation is a no-op. It feel right to wire this up for symmetry and completeness, but I'm open to just dropping it until we support `user && crosstask` condition. Reviewed-by: Eduard Zingerman <eddyz87@gmail.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/r/20240829174232.3133883-10-andrii@kernel.org Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-08-29 10:42:31 -07:00
/* trace/ips should not be dereferenced after this point */
if (may_fault)
rcu_read_unlock();
if (user_build_id)
stack_map_get_build_id_offset(buf, trace_nr, user, may_fault);
if (size > copy_len)
memset(buf + copy_len, 0, size - copy_len);
return copy_len;
err_fault:
err = -EFAULT;
clear:
memset(buf, 0, size);
return err;
}
BPF_CALL_4(bpf_get_stack, struct pt_regs *, regs, void *, buf, u32, size,
u64, flags)
{
bpf: wire up sleepable bpf_get_stack() and bpf_get_task_stack() helpers Add sleepable implementations of bpf_get_stack() and bpf_get_task_stack() helpers and allow them to be used from sleepable BPF program (e.g., sleepable uprobes). Note, the stack trace IPs capturing itself is not sleepable (that would need to be a separate project), only build ID fetching is sleepable and thus more reliable, as it will wait for data to be paged in, if necessary. For that we make use of sleepable build_id_parse() implementation. Now that build ID related internals in kernel/bpf/stackmap.c can be used both in sleepable and non-sleepable contexts, we need to add additional rcu_read_lock()/rcu_read_unlock() protection around fetching perf_callchain_entry, but with the refactoring in previous commit it's now pretty straightforward. We make sure to do rcu_read_unlock (in sleepable mode only) right before stack_map_get_build_id_offset() call which can sleep. By that time we don't have any more use of perf_callchain_entry. Note, bpf_get_task_stack() will fail for user mode if task != current. And for kernel mode build ID are irrelevant. So in that sense adding sleepable bpf_get_task_stack() implementation is a no-op. It feel right to wire this up for symmetry and completeness, but I'm open to just dropping it until we support `user && crosstask` condition. Reviewed-by: Eduard Zingerman <eddyz87@gmail.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/r/20240829174232.3133883-10-andrii@kernel.org Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-08-29 10:42:31 -07:00
return __bpf_get_stack(regs, NULL, NULL, buf, size, flags, false /* !may_fault */);
}
const struct bpf_func_proto bpf_get_stack_proto = {
.func = bpf_get_stack,
.gpl_only = true,
.ret_type = RET_INTEGER,
.arg1_type = ARG_PTR_TO_CTX,
.arg2_type = ARG_PTR_TO_UNINIT_MEM,
.arg3_type = ARG_CONST_SIZE_OR_ZERO,
.arg4_type = ARG_ANYTHING,
};
bpf: wire up sleepable bpf_get_stack() and bpf_get_task_stack() helpers Add sleepable implementations of bpf_get_stack() and bpf_get_task_stack() helpers and allow them to be used from sleepable BPF program (e.g., sleepable uprobes). Note, the stack trace IPs capturing itself is not sleepable (that would need to be a separate project), only build ID fetching is sleepable and thus more reliable, as it will wait for data to be paged in, if necessary. For that we make use of sleepable build_id_parse() implementation. Now that build ID related internals in kernel/bpf/stackmap.c can be used both in sleepable and non-sleepable contexts, we need to add additional rcu_read_lock()/rcu_read_unlock() protection around fetching perf_callchain_entry, but with the refactoring in previous commit it's now pretty straightforward. We make sure to do rcu_read_unlock (in sleepable mode only) right before stack_map_get_build_id_offset() call which can sleep. By that time we don't have any more use of perf_callchain_entry. Note, bpf_get_task_stack() will fail for user mode if task != current. And for kernel mode build ID are irrelevant. So in that sense adding sleepable bpf_get_task_stack() implementation is a no-op. It feel right to wire this up for symmetry and completeness, but I'm open to just dropping it until we support `user && crosstask` condition. Reviewed-by: Eduard Zingerman <eddyz87@gmail.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/r/20240829174232.3133883-10-andrii@kernel.org Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-08-29 10:42:31 -07:00
BPF_CALL_4(bpf_get_stack_sleepable, struct pt_regs *, regs, void *, buf, u32, size,
u64, flags)
{
return __bpf_get_stack(regs, NULL, NULL, buf, size, flags, true /* may_fault */);
}
const struct bpf_func_proto bpf_get_stack_sleepable_proto = {
.func = bpf_get_stack_sleepable,
.gpl_only = true,
.ret_type = RET_INTEGER,
.arg1_type = ARG_PTR_TO_CTX,
.arg2_type = ARG_PTR_TO_UNINIT_MEM,
.arg3_type = ARG_CONST_SIZE_OR_ZERO,
.arg4_type = ARG_ANYTHING,
};
static long __bpf_get_task_stack(struct task_struct *task, void *buf, u32 size,
u64 flags, bool may_fault)
{
bpf: Refcount task stack in bpf_get_task_stack On x86 the struct pt_regs * grabbed by task_pt_regs() points to an offset of task->stack. The pt_regs are later dereferenced in __bpf_get_stack (e.g. by user_mode() check). This can cause a fault if the task in question exits while bpf_get_task_stack is executing, as warned by task_stack_page's comment: * When accessing the stack of a non-current task that might exit, use * try_get_task_stack() instead. task_stack_page will return a pointer * that could get freed out from under you. Taking the comment's advice and using try_get_task_stack() and put_task_stack() to hold task->stack refcount, or bail early if it's already 0. Incrementing stack_refcount will ensure the task's stack sticks around while we're using its data. I noticed this bug while testing a bpf task iter similar to bpf_iter_task_stack in selftests, except mine grabbed user stack, and getting intermittent crashes, which resulted in dumps like: BUG: unable to handle page fault for address: 0000000000003fe0 \#PF: supervisor read access in kernel mode \#PF: error_code(0x0000) - not-present page RIP: 0010:__bpf_get_stack+0xd0/0x230 <snip...> Call Trace: bpf_prog_0a2be35c092cb190_get_task_stacks+0x5d/0x3ec bpf_iter_run_prog+0x24/0x81 __task_seq_show+0x58/0x80 bpf_seq_read+0xf7/0x3d0 vfs_read+0x91/0x140 ksys_read+0x59/0xd0 do_syscall_64+0x48/0x120 entry_SYSCALL_64_after_hwframe+0x44/0xa9 Fixes: fa28dcb82a38 ("bpf: Introduce helper bpf_get_task_stack()") Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Song Liu <songliubraving@fb.com> Link: https://lore.kernel.org/bpf/20210401000747.3648767-1-davemarchevsky@fb.com
2021-03-31 17:07:47 -07:00
struct pt_regs *regs;
long res = -EINVAL;
bpf: Refcount task stack in bpf_get_task_stack On x86 the struct pt_regs * grabbed by task_pt_regs() points to an offset of task->stack. The pt_regs are later dereferenced in __bpf_get_stack (e.g. by user_mode() check). This can cause a fault if the task in question exits while bpf_get_task_stack is executing, as warned by task_stack_page's comment: * When accessing the stack of a non-current task that might exit, use * try_get_task_stack() instead. task_stack_page will return a pointer * that could get freed out from under you. Taking the comment's advice and using try_get_task_stack() and put_task_stack() to hold task->stack refcount, or bail early if it's already 0. Incrementing stack_refcount will ensure the task's stack sticks around while we're using its data. I noticed this bug while testing a bpf task iter similar to bpf_iter_task_stack in selftests, except mine grabbed user stack, and getting intermittent crashes, which resulted in dumps like: BUG: unable to handle page fault for address: 0000000000003fe0 \#PF: supervisor read access in kernel mode \#PF: error_code(0x0000) - not-present page RIP: 0010:__bpf_get_stack+0xd0/0x230 <snip...> Call Trace: bpf_prog_0a2be35c092cb190_get_task_stacks+0x5d/0x3ec bpf_iter_run_prog+0x24/0x81 __task_seq_show+0x58/0x80 bpf_seq_read+0xf7/0x3d0 vfs_read+0x91/0x140 ksys_read+0x59/0xd0 do_syscall_64+0x48/0x120 entry_SYSCALL_64_after_hwframe+0x44/0xa9 Fixes: fa28dcb82a38 ("bpf: Introduce helper bpf_get_task_stack()") Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Song Liu <songliubraving@fb.com> Link: https://lore.kernel.org/bpf/20210401000747.3648767-1-davemarchevsky@fb.com
2021-03-31 17:07:47 -07:00
if (!try_get_task_stack(task))
return -EFAULT;
regs = task_pt_regs(task);
if (regs)
bpf: wire up sleepable bpf_get_stack() and bpf_get_task_stack() helpers Add sleepable implementations of bpf_get_stack() and bpf_get_task_stack() helpers and allow them to be used from sleepable BPF program (e.g., sleepable uprobes). Note, the stack trace IPs capturing itself is not sleepable (that would need to be a separate project), only build ID fetching is sleepable and thus more reliable, as it will wait for data to be paged in, if necessary. For that we make use of sleepable build_id_parse() implementation. Now that build ID related internals in kernel/bpf/stackmap.c can be used both in sleepable and non-sleepable contexts, we need to add additional rcu_read_lock()/rcu_read_unlock() protection around fetching perf_callchain_entry, but with the refactoring in previous commit it's now pretty straightforward. We make sure to do rcu_read_unlock (in sleepable mode only) right before stack_map_get_build_id_offset() call which can sleep. By that time we don't have any more use of perf_callchain_entry. Note, bpf_get_task_stack() will fail for user mode if task != current. And for kernel mode build ID are irrelevant. So in that sense adding sleepable bpf_get_task_stack() implementation is a no-op. It feel right to wire this up for symmetry and completeness, but I'm open to just dropping it until we support `user && crosstask` condition. Reviewed-by: Eduard Zingerman <eddyz87@gmail.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/r/20240829174232.3133883-10-andrii@kernel.org Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-08-29 10:42:31 -07:00
res = __bpf_get_stack(regs, task, NULL, buf, size, flags, may_fault);
bpf: Refcount task stack in bpf_get_task_stack On x86 the struct pt_regs * grabbed by task_pt_regs() points to an offset of task->stack. The pt_regs are later dereferenced in __bpf_get_stack (e.g. by user_mode() check). This can cause a fault if the task in question exits while bpf_get_task_stack is executing, as warned by task_stack_page's comment: * When accessing the stack of a non-current task that might exit, use * try_get_task_stack() instead. task_stack_page will return a pointer * that could get freed out from under you. Taking the comment's advice and using try_get_task_stack() and put_task_stack() to hold task->stack refcount, or bail early if it's already 0. Incrementing stack_refcount will ensure the task's stack sticks around while we're using its data. I noticed this bug while testing a bpf task iter similar to bpf_iter_task_stack in selftests, except mine grabbed user stack, and getting intermittent crashes, which resulted in dumps like: BUG: unable to handle page fault for address: 0000000000003fe0 \#PF: supervisor read access in kernel mode \#PF: error_code(0x0000) - not-present page RIP: 0010:__bpf_get_stack+0xd0/0x230 <snip...> Call Trace: bpf_prog_0a2be35c092cb190_get_task_stacks+0x5d/0x3ec bpf_iter_run_prog+0x24/0x81 __task_seq_show+0x58/0x80 bpf_seq_read+0xf7/0x3d0 vfs_read+0x91/0x140 ksys_read+0x59/0xd0 do_syscall_64+0x48/0x120 entry_SYSCALL_64_after_hwframe+0x44/0xa9 Fixes: fa28dcb82a38 ("bpf: Introduce helper bpf_get_task_stack()") Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Song Liu <songliubraving@fb.com> Link: https://lore.kernel.org/bpf/20210401000747.3648767-1-davemarchevsky@fb.com
2021-03-31 17:07:47 -07:00
put_task_stack(task);
return res;
}
bpf: wire up sleepable bpf_get_stack() and bpf_get_task_stack() helpers Add sleepable implementations of bpf_get_stack() and bpf_get_task_stack() helpers and allow them to be used from sleepable BPF program (e.g., sleepable uprobes). Note, the stack trace IPs capturing itself is not sleepable (that would need to be a separate project), only build ID fetching is sleepable and thus more reliable, as it will wait for data to be paged in, if necessary. For that we make use of sleepable build_id_parse() implementation. Now that build ID related internals in kernel/bpf/stackmap.c can be used both in sleepable and non-sleepable contexts, we need to add additional rcu_read_lock()/rcu_read_unlock() protection around fetching perf_callchain_entry, but with the refactoring in previous commit it's now pretty straightforward. We make sure to do rcu_read_unlock (in sleepable mode only) right before stack_map_get_build_id_offset() call which can sleep. By that time we don't have any more use of perf_callchain_entry. Note, bpf_get_task_stack() will fail for user mode if task != current. And for kernel mode build ID are irrelevant. So in that sense adding sleepable bpf_get_task_stack() implementation is a no-op. It feel right to wire this up for symmetry and completeness, but I'm open to just dropping it until we support `user && crosstask` condition. Reviewed-by: Eduard Zingerman <eddyz87@gmail.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/r/20240829174232.3133883-10-andrii@kernel.org Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-08-29 10:42:31 -07:00
BPF_CALL_4(bpf_get_task_stack, struct task_struct *, task, void *, buf,
u32, size, u64, flags)
{
return __bpf_get_task_stack(task, buf, size, flags, false /* !may_fault */);
}
const struct bpf_func_proto bpf_get_task_stack_proto = {
.func = bpf_get_task_stack,
.gpl_only = false,
.ret_type = RET_INTEGER,
.arg1_type = ARG_PTR_TO_BTF_ID,
.arg1_btf_id = &btf_tracing_ids[BTF_TRACING_TYPE_TASK],
.arg2_type = ARG_PTR_TO_UNINIT_MEM,
.arg3_type = ARG_CONST_SIZE_OR_ZERO,
.arg4_type = ARG_ANYTHING,
};
bpf: wire up sleepable bpf_get_stack() and bpf_get_task_stack() helpers Add sleepable implementations of bpf_get_stack() and bpf_get_task_stack() helpers and allow them to be used from sleepable BPF program (e.g., sleepable uprobes). Note, the stack trace IPs capturing itself is not sleepable (that would need to be a separate project), only build ID fetching is sleepable and thus more reliable, as it will wait for data to be paged in, if necessary. For that we make use of sleepable build_id_parse() implementation. Now that build ID related internals in kernel/bpf/stackmap.c can be used both in sleepable and non-sleepable contexts, we need to add additional rcu_read_lock()/rcu_read_unlock() protection around fetching perf_callchain_entry, but with the refactoring in previous commit it's now pretty straightforward. We make sure to do rcu_read_unlock (in sleepable mode only) right before stack_map_get_build_id_offset() call which can sleep. By that time we don't have any more use of perf_callchain_entry. Note, bpf_get_task_stack() will fail for user mode if task != current. And for kernel mode build ID are irrelevant. So in that sense adding sleepable bpf_get_task_stack() implementation is a no-op. It feel right to wire this up for symmetry and completeness, but I'm open to just dropping it until we support `user && crosstask` condition. Reviewed-by: Eduard Zingerman <eddyz87@gmail.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/r/20240829174232.3133883-10-andrii@kernel.org Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-08-29 10:42:31 -07:00
BPF_CALL_4(bpf_get_task_stack_sleepable, struct task_struct *, task, void *, buf,
u32, size, u64, flags)
{
return __bpf_get_task_stack(task, buf, size, flags, true /* !may_fault */);
}
const struct bpf_func_proto bpf_get_task_stack_sleepable_proto = {
.func = bpf_get_task_stack_sleepable,
.gpl_only = false,
.ret_type = RET_INTEGER,
.arg1_type = ARG_PTR_TO_BTF_ID,
.arg1_btf_id = &btf_tracing_ids[BTF_TRACING_TYPE_TASK],
.arg2_type = ARG_PTR_TO_UNINIT_MEM,
.arg3_type = ARG_CONST_SIZE_OR_ZERO,
.arg4_type = ARG_ANYTHING,
};
BPF_CALL_4(bpf_get_stack_pe, struct bpf_perf_event_data_kern *, ctx,
void *, buf, u32, size, u64, flags)
{
struct pt_regs *regs = (struct pt_regs *)(ctx->regs);
struct perf_event *event = ctx->event;
struct perf_callchain_entry *trace;
bool kernel, user;
int err = -EINVAL;
__u64 nr_kernel;
if (!(event->attr.sample_type & PERF_SAMPLE_CALLCHAIN))
bpf: wire up sleepable bpf_get_stack() and bpf_get_task_stack() helpers Add sleepable implementations of bpf_get_stack() and bpf_get_task_stack() helpers and allow them to be used from sleepable BPF program (e.g., sleepable uprobes). Note, the stack trace IPs capturing itself is not sleepable (that would need to be a separate project), only build ID fetching is sleepable and thus more reliable, as it will wait for data to be paged in, if necessary. For that we make use of sleepable build_id_parse() implementation. Now that build ID related internals in kernel/bpf/stackmap.c can be used both in sleepable and non-sleepable contexts, we need to add additional rcu_read_lock()/rcu_read_unlock() protection around fetching perf_callchain_entry, but with the refactoring in previous commit it's now pretty straightforward. We make sure to do rcu_read_unlock (in sleepable mode only) right before stack_map_get_build_id_offset() call which can sleep. By that time we don't have any more use of perf_callchain_entry. Note, bpf_get_task_stack() will fail for user mode if task != current. And for kernel mode build ID are irrelevant. So in that sense adding sleepable bpf_get_task_stack() implementation is a no-op. It feel right to wire this up for symmetry and completeness, but I'm open to just dropping it until we support `user && crosstask` condition. Reviewed-by: Eduard Zingerman <eddyz87@gmail.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/r/20240829174232.3133883-10-andrii@kernel.org Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-08-29 10:42:31 -07:00
return __bpf_get_stack(regs, NULL, NULL, buf, size, flags, false /* !may_fault */);
if (unlikely(flags & ~(BPF_F_SKIP_FIELD_MASK | BPF_F_USER_STACK |
BPF_F_USER_BUILD_ID)))
goto clear;
user = flags & BPF_F_USER_STACK;
kernel = !user;
err = -EFAULT;
trace = ctx->data->callchain;
if (unlikely(!trace))
goto clear;
nr_kernel = count_kernel_ip(trace);
if (kernel) {
__u64 nr = trace->nr;
trace->nr = nr_kernel;
bpf: wire up sleepable bpf_get_stack() and bpf_get_task_stack() helpers Add sleepable implementations of bpf_get_stack() and bpf_get_task_stack() helpers and allow them to be used from sleepable BPF program (e.g., sleepable uprobes). Note, the stack trace IPs capturing itself is not sleepable (that would need to be a separate project), only build ID fetching is sleepable and thus more reliable, as it will wait for data to be paged in, if necessary. For that we make use of sleepable build_id_parse() implementation. Now that build ID related internals in kernel/bpf/stackmap.c can be used both in sleepable and non-sleepable contexts, we need to add additional rcu_read_lock()/rcu_read_unlock() protection around fetching perf_callchain_entry, but with the refactoring in previous commit it's now pretty straightforward. We make sure to do rcu_read_unlock (in sleepable mode only) right before stack_map_get_build_id_offset() call which can sleep. By that time we don't have any more use of perf_callchain_entry. Note, bpf_get_task_stack() will fail for user mode if task != current. And for kernel mode build ID are irrelevant. So in that sense adding sleepable bpf_get_task_stack() implementation is a no-op. It feel right to wire this up for symmetry and completeness, but I'm open to just dropping it until we support `user && crosstask` condition. Reviewed-by: Eduard Zingerman <eddyz87@gmail.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/r/20240829174232.3133883-10-andrii@kernel.org Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-08-29 10:42:31 -07:00
err = __bpf_get_stack(regs, NULL, trace, buf, size, flags, false /* !may_fault */);
/* restore nr */
trace->nr = nr;
} else { /* user */
u64 skip = flags & BPF_F_SKIP_FIELD_MASK;
skip += nr_kernel;
if (skip > BPF_F_SKIP_FIELD_MASK)
goto clear;
flags = (flags & ~BPF_F_SKIP_FIELD_MASK) | skip;
bpf: wire up sleepable bpf_get_stack() and bpf_get_task_stack() helpers Add sleepable implementations of bpf_get_stack() and bpf_get_task_stack() helpers and allow them to be used from sleepable BPF program (e.g., sleepable uprobes). Note, the stack trace IPs capturing itself is not sleepable (that would need to be a separate project), only build ID fetching is sleepable and thus more reliable, as it will wait for data to be paged in, if necessary. For that we make use of sleepable build_id_parse() implementation. Now that build ID related internals in kernel/bpf/stackmap.c can be used both in sleepable and non-sleepable contexts, we need to add additional rcu_read_lock()/rcu_read_unlock() protection around fetching perf_callchain_entry, but with the refactoring in previous commit it's now pretty straightforward. We make sure to do rcu_read_unlock (in sleepable mode only) right before stack_map_get_build_id_offset() call which can sleep. By that time we don't have any more use of perf_callchain_entry. Note, bpf_get_task_stack() will fail for user mode if task != current. And for kernel mode build ID are irrelevant. So in that sense adding sleepable bpf_get_task_stack() implementation is a no-op. It feel right to wire this up for symmetry and completeness, but I'm open to just dropping it until we support `user && crosstask` condition. Reviewed-by: Eduard Zingerman <eddyz87@gmail.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/r/20240829174232.3133883-10-andrii@kernel.org Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-08-29 10:42:31 -07:00
err = __bpf_get_stack(regs, NULL, trace, buf, size, flags, false /* !may_fault */);
}
return err;
clear:
memset(buf, 0, size);
return err;
}
const struct bpf_func_proto bpf_get_stack_proto_pe = {
.func = bpf_get_stack_pe,
.gpl_only = true,
.ret_type = RET_INTEGER,
.arg1_type = ARG_PTR_TO_CTX,
.arg2_type = ARG_PTR_TO_UNINIT_MEM,
.arg3_type = ARG_CONST_SIZE_OR_ZERO,
.arg4_type = ARG_ANYTHING,
};
bpf: convert stackmap to pre-allocation It was observed that calling bpf_get_stackid() from a kprobe inside slub or from spin_unlock causes similar deadlock as with hashmap, therefore convert stackmap to use pre-allocated memory. The call_rcu is no longer feasible mechanism, since delayed freeing causes bpf_get_stackid() to fail unpredictably when number of actual stacks is significantly less than user requested max_entries. Since elements are no longer freed into slub, we can push elements into freelist immediately and let them be recycled. However the very unlikley race between user space map_lookup() and program-side recycling is possible: cpu0 cpu1 ---- ---- user does lookup(stackidX) starts copying ips into buffer delete(stackidX) calls bpf_get_stackid() which recyles the element and overwrites with new stack trace To avoid user space seeing a partial stack trace consisting of two merged stack traces, do bucket = xchg(, NULL); copy; xchg(,bucket); to preserve consistent stack trace delivery to user space. Now we can move memset(,0) of left-over element value from critical path of bpf_get_stackid() into slow-path of user space lookup. Also disallow lookup() from bpf program, since it's useless and program shouldn't be messing with collected stack trace. Note that similar race between user space lookup and kernel side updates is also present in hashmap, but it's not a new race. bpf programs were always allowed to modify hash and array map elements while user space is copying them. Fixes: d5a3b1f69186 ("bpf: introduce BPF_MAP_TYPE_STACK_TRACE") Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-03-07 21:57:17 -08:00
/* Called from eBPF program */
static void *stack_map_lookup_elem(struct bpf_map *map, void *key)
bpf: convert stackmap to pre-allocation It was observed that calling bpf_get_stackid() from a kprobe inside slub or from spin_unlock causes similar deadlock as with hashmap, therefore convert stackmap to use pre-allocated memory. The call_rcu is no longer feasible mechanism, since delayed freeing causes bpf_get_stackid() to fail unpredictably when number of actual stacks is significantly less than user requested max_entries. Since elements are no longer freed into slub, we can push elements into freelist immediately and let them be recycled. However the very unlikley race between user space map_lookup() and program-side recycling is possible: cpu0 cpu1 ---- ---- user does lookup(stackidX) starts copying ips into buffer delete(stackidX) calls bpf_get_stackid() which recyles the element and overwrites with new stack trace To avoid user space seeing a partial stack trace consisting of two merged stack traces, do bucket = xchg(, NULL); copy; xchg(,bucket); to preserve consistent stack trace delivery to user space. Now we can move memset(,0) of left-over element value from critical path of bpf_get_stackid() into slow-path of user space lookup. Also disallow lookup() from bpf program, since it's useless and program shouldn't be messing with collected stack trace. Note that similar race between user space lookup and kernel side updates is also present in hashmap, but it's not a new race. bpf programs were always allowed to modify hash and array map elements while user space is copying them. Fixes: d5a3b1f69186 ("bpf: introduce BPF_MAP_TYPE_STACK_TRACE") Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-03-07 21:57:17 -08:00
{
return ERR_PTR(-EOPNOTSUPP);
bpf: convert stackmap to pre-allocation It was observed that calling bpf_get_stackid() from a kprobe inside slub or from spin_unlock causes similar deadlock as with hashmap, therefore convert stackmap to use pre-allocated memory. The call_rcu is no longer feasible mechanism, since delayed freeing causes bpf_get_stackid() to fail unpredictably when number of actual stacks is significantly less than user requested max_entries. Since elements are no longer freed into slub, we can push elements into freelist immediately and let them be recycled. However the very unlikley race between user space map_lookup() and program-side recycling is possible: cpu0 cpu1 ---- ---- user does lookup(stackidX) starts copying ips into buffer delete(stackidX) calls bpf_get_stackid() which recyles the element and overwrites with new stack trace To avoid user space seeing a partial stack trace consisting of two merged stack traces, do bucket = xchg(, NULL); copy; xchg(,bucket); to preserve consistent stack trace delivery to user space. Now we can move memset(,0) of left-over element value from critical path of bpf_get_stackid() into slow-path of user space lookup. Also disallow lookup() from bpf program, since it's useless and program shouldn't be messing with collected stack trace. Note that similar race between user space lookup and kernel side updates is also present in hashmap, but it's not a new race. bpf programs were always allowed to modify hash and array map elements while user space is copying them. Fixes: d5a3b1f69186 ("bpf: introduce BPF_MAP_TYPE_STACK_TRACE") Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-03-07 21:57:17 -08:00
}
/* Called from syscall */
int bpf_stackmap_copy(struct bpf_map *map, void *key, void *value)
{
struct bpf_stack_map *smap = container_of(map, struct bpf_stack_map, map);
bpf: convert stackmap to pre-allocation It was observed that calling bpf_get_stackid() from a kprobe inside slub or from spin_unlock causes similar deadlock as with hashmap, therefore convert stackmap to use pre-allocated memory. The call_rcu is no longer feasible mechanism, since delayed freeing causes bpf_get_stackid() to fail unpredictably when number of actual stacks is significantly less than user requested max_entries. Since elements are no longer freed into slub, we can push elements into freelist immediately and let them be recycled. However the very unlikley race between user space map_lookup() and program-side recycling is possible: cpu0 cpu1 ---- ---- user does lookup(stackidX) starts copying ips into buffer delete(stackidX) calls bpf_get_stackid() which recyles the element and overwrites with new stack trace To avoid user space seeing a partial stack trace consisting of two merged stack traces, do bucket = xchg(, NULL); copy; xchg(,bucket); to preserve consistent stack trace delivery to user space. Now we can move memset(,0) of left-over element value from critical path of bpf_get_stackid() into slow-path of user space lookup. Also disallow lookup() from bpf program, since it's useless and program shouldn't be messing with collected stack trace. Note that similar race between user space lookup and kernel side updates is also present in hashmap, but it's not a new race. bpf programs were always allowed to modify hash and array map elements while user space is copying them. Fixes: d5a3b1f69186 ("bpf: introduce BPF_MAP_TYPE_STACK_TRACE") Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-03-07 21:57:17 -08:00
struct stack_map_bucket *bucket, *old_bucket;
u32 id = *(u32 *)key, trace_len;
if (unlikely(id >= smap->n_buckets))
bpf: convert stackmap to pre-allocation It was observed that calling bpf_get_stackid() from a kprobe inside slub or from spin_unlock causes similar deadlock as with hashmap, therefore convert stackmap to use pre-allocated memory. The call_rcu is no longer feasible mechanism, since delayed freeing causes bpf_get_stackid() to fail unpredictably when number of actual stacks is significantly less than user requested max_entries. Since elements are no longer freed into slub, we can push elements into freelist immediately and let them be recycled. However the very unlikley race between user space map_lookup() and program-side recycling is possible: cpu0 cpu1 ---- ---- user does lookup(stackidX) starts copying ips into buffer delete(stackidX) calls bpf_get_stackid() which recyles the element and overwrites with new stack trace To avoid user space seeing a partial stack trace consisting of two merged stack traces, do bucket = xchg(, NULL); copy; xchg(,bucket); to preserve consistent stack trace delivery to user space. Now we can move memset(,0) of left-over element value from critical path of bpf_get_stackid() into slow-path of user space lookup. Also disallow lookup() from bpf program, since it's useless and program shouldn't be messing with collected stack trace. Note that similar race between user space lookup and kernel side updates is also present in hashmap, but it's not a new race. bpf programs were always allowed to modify hash and array map elements while user space is copying them. Fixes: d5a3b1f69186 ("bpf: introduce BPF_MAP_TYPE_STACK_TRACE") Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-03-07 21:57:17 -08:00
return -ENOENT;
bucket = xchg(&smap->buckets[id], NULL);
if (!bucket)
return -ENOENT;
bpf: extend stackmap to save binary_build_id+offset instead of address Currently, bpf stackmap store address for each entry in the call trace. To map these addresses to user space files, it is necessary to maintain the mapping from these virtual address to symbols in the binary. Usually, the user space profiler (such as perf) has to scan /proc/pid/maps at the beginning of profiling, and monitor mmap2() calls afterwards. Given the cost of maintaining the address map, this solution is not practical for system wide profiling that is always on. This patch tries to solve this problem with a variation of stackmap. This variation is enabled by flag BPF_F_STACK_BUILD_ID. Instead of storing addresses, the variation stores ELF file build_id + offset. Build ID is a 20-byte unique identifier for ELF files. The following command shows the Build ID of /bin/bash: [user@]$ readelf -n /bin/bash ... Build ID: XXXXXXXXXX ... With BPF_F_STACK_BUILD_ID, bpf_get_stackid() tries to parse Build ID for each entry in the call trace, and translate it into the following struct: struct bpf_stack_build_id_offset { __s32 status; unsigned char build_id[BPF_BUILD_ID_SIZE]; union { __u64 offset; __u64 ip; }; }; The search of build_id is limited to the first page of the file, and this page should be in page cache. Otherwise, we fallback to store ip for this entry (ip field in struct bpf_stack_build_id_offset). This requires the build_id to be stored in the first page. A quick survey of binary and dynamic library files in a few different systems shows that almost all binary and dynamic library files have build_id in the first page. Build_id is only meaningful for user stack. If a kernel stack is added to a stackmap with BPF_F_STACK_BUILD_ID, it will automatically fallback to only store ip (status == BPF_STACK_BUILD_ID_IP). Similarly, if build_id lookup failed for some reason, it will also fallback to store ip. User space can access struct bpf_stack_build_id_offset with bpf syscall BPF_MAP_LOOKUP_ELEM. It is necessary for user space to maintain mapping from build id to binary files. This mostly static mapping is much easier to maintain than per process address maps. Note: Stackmap with build_id only works in non-nmi context at this time. This is because we need to take mm->mmap_sem for find_vma(). If this changes, we would like to allow build_id lookup in nmi context. Signed-off-by: Song Liu <songliubraving@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-03-14 10:23:21 -07:00
trace_len = bucket->nr * stack_map_data_size(map);
memcpy(value, bucket->data, trace_len);
bpf: convert stackmap to pre-allocation It was observed that calling bpf_get_stackid() from a kprobe inside slub or from spin_unlock causes similar deadlock as with hashmap, therefore convert stackmap to use pre-allocated memory. The call_rcu is no longer feasible mechanism, since delayed freeing causes bpf_get_stackid() to fail unpredictably when number of actual stacks is significantly less than user requested max_entries. Since elements are no longer freed into slub, we can push elements into freelist immediately and let them be recycled. However the very unlikley race between user space map_lookup() and program-side recycling is possible: cpu0 cpu1 ---- ---- user does lookup(stackidX) starts copying ips into buffer delete(stackidX) calls bpf_get_stackid() which recyles the element and overwrites with new stack trace To avoid user space seeing a partial stack trace consisting of two merged stack traces, do bucket = xchg(, NULL); copy; xchg(,bucket); to preserve consistent stack trace delivery to user space. Now we can move memset(,0) of left-over element value from critical path of bpf_get_stackid() into slow-path of user space lookup. Also disallow lookup() from bpf program, since it's useless and program shouldn't be messing with collected stack trace. Note that similar race between user space lookup and kernel side updates is also present in hashmap, but it's not a new race. bpf programs were always allowed to modify hash and array map elements while user space is copying them. Fixes: d5a3b1f69186 ("bpf: introduce BPF_MAP_TYPE_STACK_TRACE") Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-03-07 21:57:17 -08:00
memset(value + trace_len, 0, map->value_size - trace_len);
old_bucket = xchg(&smap->buckets[id], bucket);
if (old_bucket)
pcpu_freelist_push(&smap->freelist, &old_bucket->fnode);
return 0;
}
static int stack_map_get_next_key(struct bpf_map *map, void *key,
void *next_key)
{
struct bpf_stack_map *smap = container_of(map,
struct bpf_stack_map, map);
u32 id;
WARN_ON_ONCE(!rcu_read_lock_held());
if (!key) {
id = 0;
} else {
id = *(u32 *)key;
if (id >= smap->n_buckets || !smap->buckets[id])
id = 0;
else
id++;
}
while (id < smap->n_buckets && !smap->buckets[id])
id++;
if (id >= smap->n_buckets)
return -ENOENT;
*(u32 *)next_key = id;
return 0;
}
bpf: return long from bpf_map_ops funcs This patch changes the return types of bpf_map_ops functions to long, where previously int was returned. Using long allows for bpf programs to maintain the sign bit in the absence of sign extension during situations where inlined bpf helper funcs make calls to the bpf_map_ops funcs and a negative error is returned. The definitions of the helper funcs are generated from comments in the bpf uapi header at `include/uapi/linux/bpf.h`. The return type of these helpers was previously changed from int to long in commit bdb7b79b4ce8. For any case where one of the map helpers call the bpf_map_ops funcs that are still returning 32-bit int, a compiler might not include sign extension instructions to properly convert the 32-bit negative value a 64-bit negative value. For example: bpf assembly excerpt of an inlined helper calling a kernel function and checking for a specific error: ; err = bpf_map_update_elem(&mymap, &key, &val, BPF_NOEXIST); ... 46: call 0xffffffffe103291c ; htab_map_update_elem ; if (err && err != -EEXIST) { 4b: cmp $0xffffffffffffffef,%rax ; cmp -EEXIST,%rax kernel function assembly excerpt of return value from `htab_map_update_elem` returning 32-bit int: movl $0xffffffef, %r9d ... movl %r9d, %eax ...results in the comparison: cmp $0xffffffffffffffef, $0x00000000ffffffef Fixes: bdb7b79b4ce8 ("bpf: Switch most helper return values from 32-bit int to 64-bit long") Tested-by: Eduard Zingerman <eddyz87@gmail.com> Signed-off-by: JP Kobryn <inwardvessel@gmail.com> Link: https://lore.kernel.org/r/20230322194754.185781-3-inwardvessel@gmail.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-03-22 12:47:54 -07:00
static long stack_map_update_elem(struct bpf_map *map, void *key, void *value,
u64 map_flags)
{
return -EINVAL;
}
/* Called from syscall or from eBPF program */
bpf: return long from bpf_map_ops funcs This patch changes the return types of bpf_map_ops functions to long, where previously int was returned. Using long allows for bpf programs to maintain the sign bit in the absence of sign extension during situations where inlined bpf helper funcs make calls to the bpf_map_ops funcs and a negative error is returned. The definitions of the helper funcs are generated from comments in the bpf uapi header at `include/uapi/linux/bpf.h`. The return type of these helpers was previously changed from int to long in commit bdb7b79b4ce8. For any case where one of the map helpers call the bpf_map_ops funcs that are still returning 32-bit int, a compiler might not include sign extension instructions to properly convert the 32-bit negative value a 64-bit negative value. For example: bpf assembly excerpt of an inlined helper calling a kernel function and checking for a specific error: ; err = bpf_map_update_elem(&mymap, &key, &val, BPF_NOEXIST); ... 46: call 0xffffffffe103291c ; htab_map_update_elem ; if (err && err != -EEXIST) { 4b: cmp $0xffffffffffffffef,%rax ; cmp -EEXIST,%rax kernel function assembly excerpt of return value from `htab_map_update_elem` returning 32-bit int: movl $0xffffffef, %r9d ... movl %r9d, %eax ...results in the comparison: cmp $0xffffffffffffffef, $0x00000000ffffffef Fixes: bdb7b79b4ce8 ("bpf: Switch most helper return values from 32-bit int to 64-bit long") Tested-by: Eduard Zingerman <eddyz87@gmail.com> Signed-off-by: JP Kobryn <inwardvessel@gmail.com> Link: https://lore.kernel.org/r/20230322194754.185781-3-inwardvessel@gmail.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-03-22 12:47:54 -07:00
static long stack_map_delete_elem(struct bpf_map *map, void *key)
{
struct bpf_stack_map *smap = container_of(map, struct bpf_stack_map, map);
struct stack_map_bucket *old_bucket;
u32 id = *(u32 *)key;
if (unlikely(id >= smap->n_buckets))
return -E2BIG;
old_bucket = xchg(&smap->buckets[id], NULL);
if (old_bucket) {
bpf: convert stackmap to pre-allocation It was observed that calling bpf_get_stackid() from a kprobe inside slub or from spin_unlock causes similar deadlock as with hashmap, therefore convert stackmap to use pre-allocated memory. The call_rcu is no longer feasible mechanism, since delayed freeing causes bpf_get_stackid() to fail unpredictably when number of actual stacks is significantly less than user requested max_entries. Since elements are no longer freed into slub, we can push elements into freelist immediately and let them be recycled. However the very unlikley race between user space map_lookup() and program-side recycling is possible: cpu0 cpu1 ---- ---- user does lookup(stackidX) starts copying ips into buffer delete(stackidX) calls bpf_get_stackid() which recyles the element and overwrites with new stack trace To avoid user space seeing a partial stack trace consisting of two merged stack traces, do bucket = xchg(, NULL); copy; xchg(,bucket); to preserve consistent stack trace delivery to user space. Now we can move memset(,0) of left-over element value from critical path of bpf_get_stackid() into slow-path of user space lookup. Also disallow lookup() from bpf program, since it's useless and program shouldn't be messing with collected stack trace. Note that similar race between user space lookup and kernel side updates is also present in hashmap, but it's not a new race. bpf programs were always allowed to modify hash and array map elements while user space is copying them. Fixes: d5a3b1f69186 ("bpf: introduce BPF_MAP_TYPE_STACK_TRACE") Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-03-07 21:57:17 -08:00
pcpu_freelist_push(&smap->freelist, &old_bucket->fnode);
return 0;
} else {
return -ENOENT;
}
}
/* Called when map->refcnt goes to zero, either from workqueue or from syscall */
static void stack_map_free(struct bpf_map *map)
{
struct bpf_stack_map *smap = container_of(map, struct bpf_stack_map, map);
bpf_map_area_free(smap->elems);
bpf: convert stackmap to pre-allocation It was observed that calling bpf_get_stackid() from a kprobe inside slub or from spin_unlock causes similar deadlock as with hashmap, therefore convert stackmap to use pre-allocated memory. The call_rcu is no longer feasible mechanism, since delayed freeing causes bpf_get_stackid() to fail unpredictably when number of actual stacks is significantly less than user requested max_entries. Since elements are no longer freed into slub, we can push elements into freelist immediately and let them be recycled. However the very unlikley race between user space map_lookup() and program-side recycling is possible: cpu0 cpu1 ---- ---- user does lookup(stackidX) starts copying ips into buffer delete(stackidX) calls bpf_get_stackid() which recyles the element and overwrites with new stack trace To avoid user space seeing a partial stack trace consisting of two merged stack traces, do bucket = xchg(, NULL); copy; xchg(,bucket); to preserve consistent stack trace delivery to user space. Now we can move memset(,0) of left-over element value from critical path of bpf_get_stackid() into slow-path of user space lookup. Also disallow lookup() from bpf program, since it's useless and program shouldn't be messing with collected stack trace. Note that similar race between user space lookup and kernel side updates is also present in hashmap, but it's not a new race. bpf programs were always allowed to modify hash and array map elements while user space is copying them. Fixes: d5a3b1f69186 ("bpf: introduce BPF_MAP_TYPE_STACK_TRACE") Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-03-07 21:57:17 -08:00
pcpu_freelist_destroy(&smap->freelist);
bpf_map_area_free(smap);
put_callchain_buffers();
}
static u64 stack_map_mem_usage(const struct bpf_map *map)
{
struct bpf_stack_map *smap = container_of(map, struct bpf_stack_map, map);
u64 value_size = map->value_size;
u64 n_buckets = smap->n_buckets;
u64 enties = map->max_entries;
u64 usage = sizeof(*smap);
usage += n_buckets * sizeof(struct stack_map_bucket *);
usage += enties * (sizeof(struct stack_map_bucket) + value_size);
return usage;
}
BTF_ID_LIST_SINGLE(stack_trace_map_btf_ids, struct, bpf_stack_map)
const struct bpf_map_ops stack_trace_map_ops = {
bpf: Add map_meta_equal map ops Some properties of the inner map is used in the verification time. When an inner map is inserted to an outer map at runtime, bpf_map_meta_equal() is currently used to ensure those properties of the inserting inner map stays the same as the verification time. In particular, the current bpf_map_meta_equal() checks max_entries which turns out to be too restrictive for most of the maps which do not use max_entries during the verification time. It limits the use case that wants to replace a smaller inner map with a larger inner map. There are some maps do use max_entries during verification though. For example, the map_gen_lookup in array_map_ops uses the max_entries to generate the inline lookup code. To accommodate differences between maps, the map_meta_equal is added to bpf_map_ops. Each map-type can decide what to check when its map is used as an inner map during runtime. Also, some map types cannot be used as an inner map and they are currently black listed in bpf_map_meta_alloc() in map_in_map.c. It is not unusual that the new map types may not aware that such blacklist exists. This patch enforces an explicit opt-in and only allows a map to be used as an inner map if it has implemented the map_meta_equal ops. It is based on the discussion in [1]. All maps that support inner map has its map_meta_equal points to bpf_map_meta_equal in this patch. A later patch will relax the max_entries check for most maps. bpf_types.h counts 28 map types. This patch adds 23 ".map_meta_equal" by using coccinelle. -5 for BPF_MAP_TYPE_PROG_ARRAY BPF_MAP_TYPE_(PERCPU)_CGROUP_STORAGE BPF_MAP_TYPE_STRUCT_OPS BPF_MAP_TYPE_ARRAY_OF_MAPS BPF_MAP_TYPE_HASH_OF_MAPS The "if (inner_map->inner_map_meta)" check in bpf_map_meta_alloc() is moved such that the same error is returned. [1]: https://lore.kernel.org/bpf/20200522022342.899756-1-kafai@fb.com/ Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Link: https://lore.kernel.org/bpf/20200828011806.1970400-1-kafai@fb.com
2020-08-27 18:18:06 -07:00
.map_meta_equal = bpf_map_meta_equal,
.map_alloc = stack_map_alloc,
.map_free = stack_map_free,
.map_get_next_key = stack_map_get_next_key,
.map_lookup_elem = stack_map_lookup_elem,
.map_update_elem = stack_map_update_elem,
.map_delete_elem = stack_map_delete_elem,
.map_check_btf = map_check_no_btf,
.map_mem_usage = stack_map_mem_usage,
.map_btf_id = &stack_trace_map_btf_ids[0],
};