linux-next/kernel/sched/wait_bit.c

276 lines
8.3 KiB
C
Raw Permalink Normal View History

// SPDX-License-Identifier: GPL-2.0-only
/*
* The implementation of the wait_bit*() and related waiting APIs:
*/
#define WAIT_TABLE_BITS 8
#define WAIT_TABLE_SIZE (1 << WAIT_TABLE_BITS)
static wait_queue_head_t bit_wait_table[WAIT_TABLE_SIZE] __cacheline_aligned;
wait_queue_head_t *bit_waitqueue(unsigned long *word, int bit)
{
const int shift = BITS_PER_LONG == 32 ? 5 : 6;
unsigned long val = (unsigned long)word << shift | bit;
return bit_wait_table + hash_long(val, WAIT_TABLE_BITS);
}
EXPORT_SYMBOL(bit_waitqueue);
int wake_bit_function(struct wait_queue_entry *wq_entry, unsigned mode, int sync, void *arg)
{
struct wait_bit_key *key = arg;
struct wait_bit_queue_entry *wait_bit = container_of(wq_entry, struct wait_bit_queue_entry, wq_entry);
if (wait_bit->key.flags != key->flags ||
wait_bit->key.bit_nr != key->bit_nr ||
test_bit(key->bit_nr, key->flags))
return 0;
return autoremove_wake_function(wq_entry, mode, sync, key);
}
EXPORT_SYMBOL(wake_bit_function);
/*
* To allow interruptible waiting and asynchronous (i.e. non-blocking)
* waiting, the actions of __wait_on_bit() and __wait_on_bit_lock() are
* permitted return codes. Nonzero return codes halt waiting and return.
*/
int __sched
__wait_on_bit(struct wait_queue_head *wq_head, struct wait_bit_queue_entry *wbq_entry,
wait_bit_action_f *action, unsigned mode)
{
int ret = 0;
do {
prepare_to_wait(wq_head, &wbq_entry->wq_entry, mode);
if (test_bit(wbq_entry->key.bit_nr, wbq_entry->key.flags))
ret = (*action)(&wbq_entry->key, mode);
} while (test_bit_acquire(wbq_entry->key.bit_nr, wbq_entry->key.flags) && !ret);
finish_wait(wq_head, &wbq_entry->wq_entry);
return ret;
}
EXPORT_SYMBOL(__wait_on_bit);
int __sched out_of_line_wait_on_bit(unsigned long *word, int bit,
wait_bit_action_f *action, unsigned mode)
{
struct wait_queue_head *wq_head = bit_waitqueue(word, bit);
DEFINE_WAIT_BIT(wq_entry, word, bit);
return __wait_on_bit(wq_head, &wq_entry, action, mode);
}
EXPORT_SYMBOL(out_of_line_wait_on_bit);
int __sched out_of_line_wait_on_bit_timeout(
unsigned long *word, int bit, wait_bit_action_f *action,
unsigned mode, unsigned long timeout)
{
struct wait_queue_head *wq_head = bit_waitqueue(word, bit);
DEFINE_WAIT_BIT(wq_entry, word, bit);
wq_entry.key.timeout = jiffies + timeout;
return __wait_on_bit(wq_head, &wq_entry, action, mode);
}
EXPORT_SYMBOL_GPL(out_of_line_wait_on_bit_timeout);
int __sched
__wait_on_bit_lock(struct wait_queue_head *wq_head, struct wait_bit_queue_entry *wbq_entry,
wait_bit_action_f *action, unsigned mode)
{
int ret = 0;
for (;;) {
prepare_to_wait_exclusive(wq_head, &wbq_entry->wq_entry, mode);
if (test_bit(wbq_entry->key.bit_nr, wbq_entry->key.flags)) {
ret = action(&wbq_entry->key, mode);
/*
* See the comment in prepare_to_wait_event().
* finish_wait() does not necessarily takes wwq_head->lock,
* but test_and_set_bit() implies mb() which pairs with
* smp_mb__after_atomic() before wake_up_page().
*/
if (ret)
finish_wait(wq_head, &wbq_entry->wq_entry);
}
if (!test_and_set_bit(wbq_entry->key.bit_nr, wbq_entry->key.flags)) {
if (!ret)
finish_wait(wq_head, &wbq_entry->wq_entry);
return 0;
} else if (ret) {
return ret;
}
}
}
EXPORT_SYMBOL(__wait_on_bit_lock);
int __sched out_of_line_wait_on_bit_lock(unsigned long *word, int bit,
wait_bit_action_f *action, unsigned mode)
{
struct wait_queue_head *wq_head = bit_waitqueue(word, bit);
DEFINE_WAIT_BIT(wq_entry, word, bit);
return __wait_on_bit_lock(wq_head, &wq_entry, action, mode);
}
EXPORT_SYMBOL(out_of_line_wait_on_bit_lock);
void __wake_up_bit(struct wait_queue_head *wq_head, unsigned long *word, int bit)
{
struct wait_bit_key key = __WAIT_BIT_KEY_INITIALIZER(word, bit);
if (waitqueue_active(wq_head))
__wake_up(wq_head, TASK_NORMAL, 1, &key);
}
EXPORT_SYMBOL(__wake_up_bit);
/**
* wake_up_bit - wake up waiters on a bit
* @word: the address containing the bit being waited on
* @bit: the bit at that address being waited on
*
* Wake up any process waiting in wait_on_bit() or similar for the
* given bit to be cleared.
*
* The wake-up is sent to tasks in a waitqueue selected by hash from a
* shared pool. Only those tasks on that queue which have requested
* wake_up on this specific address and bit will be woken, and only if the
* bit is clear.
*
* In order for this to function properly there must be a full memory
* barrier after the bit is cleared and before this function is called.
* If the bit was cleared atomically, such as a by clear_bit() then
* smb_mb__after_atomic() can be used, othwewise smb_mb() is needed.
* If the bit was cleared with a fully-ordered operation, no further
* barrier is required.
*
* Normally the bit should be cleared by an operation with RELEASE
* semantics so that any changes to memory made before the bit is
* cleared are guaranteed to be visible after the matching wait_on_bit()
* completes.
*/
void wake_up_bit(unsigned long *word, int bit)
{
__wake_up_bit(bit_waitqueue(word, bit), word, bit);
}
EXPORT_SYMBOL(wake_up_bit);
sched/wait: Introduce wait_var_event() As a replacement for the wait_on_atomic_t() API provide the wait_var_event() API. The wait_var_event() API is based on the very same hashed-waitqueue idea, but doesn't care about the type (atomic_t) or the specific condition (atomic_read() == 0). IOW. it's much more widely applicable/flexible. It shares all the benefits/disadvantages of a hashed-waitqueue approach with the existing wait_on_atomic_t/wait_on_bit() APIs. The API is modeled after the existing wait_event() API, but instead of taking a wait_queue_head, it takes an address. This addresses is hashed to obtain a wait_queue_head from the bit_wait_table. Similar to the wait_event() API, it takes a condition expression as second argument and will wait until this expression becomes true. The following are (mostly) identical replacements: wait_on_atomic_t(&my_atomic, atomic_t_wait, TASK_UNINTERRUPTIBLE); wake_up_atomic_t(&my_atomic); wait_var_event(&my_atomic, !atomic_read(&my_atomic)); wake_up_var(&my_atomic); The only difference is that wake_up_var() is an unconditional wakeup and doesn't check the previously hard-coded (atomic_read() == 0) condition here. This is of little concequence, since most callers are already conditional on atomic_dec_and_test() and the ones that are not, are trivial to make so. Tested-by: Dan Williams <dan.j.williams@intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: David Howells <dhowells@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-03-15 11:40:33 +01:00
wait_queue_head_t *__var_waitqueue(void *p)
{
return bit_wait_table + hash_ptr(p, WAIT_TABLE_BITS);
sched/wait: Introduce wait_var_event() As a replacement for the wait_on_atomic_t() API provide the wait_var_event() API. The wait_var_event() API is based on the very same hashed-waitqueue idea, but doesn't care about the type (atomic_t) or the specific condition (atomic_read() == 0). IOW. it's much more widely applicable/flexible. It shares all the benefits/disadvantages of a hashed-waitqueue approach with the existing wait_on_atomic_t/wait_on_bit() APIs. The API is modeled after the existing wait_event() API, but instead of taking a wait_queue_head, it takes an address. This addresses is hashed to obtain a wait_queue_head from the bit_wait_table. Similar to the wait_event() API, it takes a condition expression as second argument and will wait until this expression becomes true. The following are (mostly) identical replacements: wait_on_atomic_t(&my_atomic, atomic_t_wait, TASK_UNINTERRUPTIBLE); wake_up_atomic_t(&my_atomic); wait_var_event(&my_atomic, !atomic_read(&my_atomic)); wake_up_var(&my_atomic); The only difference is that wake_up_var() is an unconditional wakeup and doesn't check the previously hard-coded (atomic_read() == 0) condition here. This is of little concequence, since most callers are already conditional on atomic_dec_and_test() and the ones that are not, are trivial to make so. Tested-by: Dan Williams <dan.j.williams@intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: David Howells <dhowells@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-03-15 11:40:33 +01:00
}
EXPORT_SYMBOL(__var_waitqueue);
static int
var_wake_function(struct wait_queue_entry *wq_entry, unsigned int mode,
int sync, void *arg)
{
struct wait_bit_key *key = arg;
struct wait_bit_queue_entry *wbq_entry =
container_of(wq_entry, struct wait_bit_queue_entry, wq_entry);
if (wbq_entry->key.flags != key->flags ||
wbq_entry->key.bit_nr != key->bit_nr)
return 0;
return autoremove_wake_function(wq_entry, mode, sync, key);
}
void init_wait_var_entry(struct wait_bit_queue_entry *wbq_entry, void *var, int flags)
{
*wbq_entry = (struct wait_bit_queue_entry){
.key = {
.flags = (var),
.bit_nr = -1,
},
.wq_entry = {
.flags = flags,
sched/wait: Introduce wait_var_event() As a replacement for the wait_on_atomic_t() API provide the wait_var_event() API. The wait_var_event() API is based on the very same hashed-waitqueue idea, but doesn't care about the type (atomic_t) or the specific condition (atomic_read() == 0). IOW. it's much more widely applicable/flexible. It shares all the benefits/disadvantages of a hashed-waitqueue approach with the existing wait_on_atomic_t/wait_on_bit() APIs. The API is modeled after the existing wait_event() API, but instead of taking a wait_queue_head, it takes an address. This addresses is hashed to obtain a wait_queue_head from the bit_wait_table. Similar to the wait_event() API, it takes a condition expression as second argument and will wait until this expression becomes true. The following are (mostly) identical replacements: wait_on_atomic_t(&my_atomic, atomic_t_wait, TASK_UNINTERRUPTIBLE); wake_up_atomic_t(&my_atomic); wait_var_event(&my_atomic, !atomic_read(&my_atomic)); wake_up_var(&my_atomic); The only difference is that wake_up_var() is an unconditional wakeup and doesn't check the previously hard-coded (atomic_read() == 0) condition here. This is of little concequence, since most callers are already conditional on atomic_dec_and_test() and the ones that are not, are trivial to make so. Tested-by: Dan Williams <dan.j.williams@intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: David Howells <dhowells@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-03-15 11:40:33 +01:00
.private = current,
.func = var_wake_function,
.entry = LIST_HEAD_INIT(wbq_entry->wq_entry.entry),
},
};
}
EXPORT_SYMBOL(init_wait_var_entry);
/**
* wake_up_var - wake up waiters on a variable (kernel address)
* @var: the address of the variable being waited on
*
* Wake up any process waiting in wait_var_event() or similar for the
* given variable to change. wait_var_event() can be waiting for an
* arbitrary condition to be true and associates that condition with an
* address. Calling wake_up_var() suggests that the condition has been
* made true, but does not strictly require the condtion to use the
* address given.
*
* The wake-up is sent to tasks in a waitqueue selected by hash from a
* shared pool. Only those tasks on that queue which have requested
* wake_up on this specific address will be woken.
*
* In order for this to function properly there must be a full memory
* barrier after the variable is updated (or more accurately, after the
* condition waited on has been made to be true) and before this function
* is called. If the variable was updated atomically, such as a by
* atomic_dec() then smb_mb__after_atomic() can be used. If the
* variable was updated by a fully ordered operation such as
* atomic_dec_and_test() then no extra barrier is required. Otherwise
* smb_mb() is needed.
*
* Normally the variable should be updated (the condition should be made
* to be true) by an operation with RELEASE semantics such as
* smp_store_release() so that any changes to memory made before the
* variable was updated are guaranteed to be visible after the matching
* wait_var_event() completes.
*/
sched/wait: Introduce wait_var_event() As a replacement for the wait_on_atomic_t() API provide the wait_var_event() API. The wait_var_event() API is based on the very same hashed-waitqueue idea, but doesn't care about the type (atomic_t) or the specific condition (atomic_read() == 0). IOW. it's much more widely applicable/flexible. It shares all the benefits/disadvantages of a hashed-waitqueue approach with the existing wait_on_atomic_t/wait_on_bit() APIs. The API is modeled after the existing wait_event() API, but instead of taking a wait_queue_head, it takes an address. This addresses is hashed to obtain a wait_queue_head from the bit_wait_table. Similar to the wait_event() API, it takes a condition expression as second argument and will wait until this expression becomes true. The following are (mostly) identical replacements: wait_on_atomic_t(&my_atomic, atomic_t_wait, TASK_UNINTERRUPTIBLE); wake_up_atomic_t(&my_atomic); wait_var_event(&my_atomic, !atomic_read(&my_atomic)); wake_up_var(&my_atomic); The only difference is that wake_up_var() is an unconditional wakeup and doesn't check the previously hard-coded (atomic_read() == 0) condition here. This is of little concequence, since most callers are already conditional on atomic_dec_and_test() and the ones that are not, are trivial to make so. Tested-by: Dan Williams <dan.j.williams@intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: David Howells <dhowells@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-03-15 11:40:33 +01:00
void wake_up_var(void *var)
{
__wake_up_bit(__var_waitqueue(var), var, -1);
}
EXPORT_SYMBOL(wake_up_var);
__sched int bit_wait(struct wait_bit_key *word, int mode)
{
schedule();
if (signal_pending_state(mode, current))
return -EINTR;
return 0;
}
EXPORT_SYMBOL(bit_wait);
__sched int bit_wait_io(struct wait_bit_key *word, int mode)
{
io_schedule();
if (signal_pending_state(mode, current))
return -EINTR;
return 0;
}
EXPORT_SYMBOL(bit_wait_io);
__sched int bit_wait_timeout(struct wait_bit_key *word, int mode)
{
unsigned long now = READ_ONCE(jiffies);
if (time_after_eq(now, word->timeout))
return -EAGAIN;
schedule_timeout(word->timeout - now);
if (signal_pending_state(mode, current))
return -EINTR;
return 0;
}
EXPORT_SYMBOL_GPL(bit_wait_timeout);
void __init wait_bit_init(void)
{
int i;
for (i = 0; i < WAIT_TABLE_SIZE; i++)
init_waitqueue_head(bit_wait_table + i);
}