2011-03-21 14:08:55 -07:00
|
|
|
/*
|
|
|
|
* OMAP Voltage Controller (VC) interface
|
|
|
|
*
|
|
|
|
* Copyright (C) 2011 Texas Instruments, Inc.
|
|
|
|
*
|
|
|
|
* This file is licensed under the terms of the GNU General Public
|
|
|
|
* License version 2. This program is licensed "as is" without any
|
|
|
|
* warranty of any kind, whether express or implied.
|
|
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
|
|
#include <linux/delay.h>
|
|
|
|
#include <linux/init.h>
|
2012-03-08 10:20:14 -08:00
|
|
|
#include <linux/bug.h>
|
2011-03-21 14:08:55 -07:00
|
|
|
|
2012-08-31 10:59:07 -07:00
|
|
|
#include "soc.h"
|
2011-03-21 14:08:55 -07:00
|
|
|
#include "voltage.h"
|
|
|
|
#include "vc.h"
|
|
|
|
#include "prm-regbits-34xx.h"
|
|
|
|
#include "prm-regbits-44xx.h"
|
|
|
|
#include "prm44xx.h"
|
|
|
|
|
2011-06-02 17:28:13 -07:00
|
|
|
/**
|
|
|
|
* struct omap_vc_channel_cfg - describe the cfg_channel bitfield
|
|
|
|
* @sa: bit for slave address
|
|
|
|
* @rav: bit for voltage configuration register
|
|
|
|
* @rac: bit for command configuration register
|
|
|
|
* @racen: enable bit for RAC
|
|
|
|
* @cmd: bit for command value set selection
|
|
|
|
*
|
|
|
|
* Channel configuration bits, common for OMAP3+
|
OMAP3+: VC: abstract out channel configuration
VC channel configuration is programmed based on settings coming from
the PMIC configuration.
Currently, the VC channel to PMIC mapping is a simple one-to-one
mapping. Whenever a VC channel parameter is configured (i2c slave
addres, PMIC register address, on/ret/off command), the corresponding
bits are enabled in the VC channel configuration register.
If necessary, the programmability of channel configuration settings
could be extended to board/PMIC files, however, because this patch
changes the channel configuration to be programmed based on existing
values from the PMIC settings, it may not be required.
Also note that starting with OMAP4, where there are more than 2
channels, one channel is identified as the "default" channel. When
any of the bits in the channel config for the other channels are zero,
it means to use the default channel. The OMAP4 TRM (at least through
NDA version Q) is wrong in describing which is the default channel.
The default channel on OMAP4 is MPU, not CORE as decribed in the TRM.
Signed-off-by: Kevin Hilman <khilman@ti.com>
2011-03-29 15:57:16 -07:00
|
|
|
* OMAP3 register: PRM_VC_CH_CONF
|
|
|
|
* OMAP4 register: PRM_VC_CFG_CHANNEL
|
2011-06-02 17:28:13 -07:00
|
|
|
* OMAP5 register: PRM_VC_SMPS_<voltdm>_CONFIG
|
OMAP3+: VC: abstract out channel configuration
VC channel configuration is programmed based on settings coming from
the PMIC configuration.
Currently, the VC channel to PMIC mapping is a simple one-to-one
mapping. Whenever a VC channel parameter is configured (i2c slave
addres, PMIC register address, on/ret/off command), the corresponding
bits are enabled in the VC channel configuration register.
If necessary, the programmability of channel configuration settings
could be extended to board/PMIC files, however, because this patch
changes the channel configuration to be programmed based on existing
values from the PMIC settings, it may not be required.
Also note that starting with OMAP4, where there are more than 2
channels, one channel is identified as the "default" channel. When
any of the bits in the channel config for the other channels are zero,
it means to use the default channel. The OMAP4 TRM (at least through
NDA version Q) is wrong in describing which is the default channel.
The default channel on OMAP4 is MPU, not CORE as decribed in the TRM.
Signed-off-by: Kevin Hilman <khilman@ti.com>
2011-03-29 15:57:16 -07:00
|
|
|
*/
|
2011-06-02 17:28:13 -07:00
|
|
|
struct omap_vc_channel_cfg {
|
|
|
|
u8 sa;
|
|
|
|
u8 rav;
|
|
|
|
u8 rac;
|
|
|
|
u8 racen;
|
|
|
|
u8 cmd;
|
|
|
|
};
|
|
|
|
|
|
|
|
static struct omap_vc_channel_cfg vc_default_channel_cfg = {
|
|
|
|
.sa = BIT(0),
|
|
|
|
.rav = BIT(1),
|
|
|
|
.rac = BIT(2),
|
|
|
|
.racen = BIT(3),
|
|
|
|
.cmd = BIT(4),
|
|
|
|
};
|
|
|
|
|
|
|
|
/*
|
|
|
|
* On OMAP3+, all VC channels have the above default bitfield
|
|
|
|
* configuration, except the OMAP4 MPU channel. This appears
|
|
|
|
* to be a freak accident as every other VC channel has the
|
|
|
|
* default configuration, thus creating a mutant channel config.
|
|
|
|
*/
|
|
|
|
static struct omap_vc_channel_cfg vc_mutant_channel_cfg = {
|
|
|
|
.sa = BIT(0),
|
|
|
|
.rav = BIT(2),
|
|
|
|
.rac = BIT(3),
|
|
|
|
.racen = BIT(4),
|
|
|
|
.cmd = BIT(1),
|
|
|
|
};
|
|
|
|
|
|
|
|
static struct omap_vc_channel_cfg *vc_cfg_bits;
|
|
|
|
#define CFG_CHANNEL_MASK 0x1f
|
OMAP3+: VC: abstract out channel configuration
VC channel configuration is programmed based on settings coming from
the PMIC configuration.
Currently, the VC channel to PMIC mapping is a simple one-to-one
mapping. Whenever a VC channel parameter is configured (i2c slave
addres, PMIC register address, on/ret/off command), the corresponding
bits are enabled in the VC channel configuration register.
If necessary, the programmability of channel configuration settings
could be extended to board/PMIC files, however, because this patch
changes the channel configuration to be programmed based on existing
values from the PMIC settings, it may not be required.
Also note that starting with OMAP4, where there are more than 2
channels, one channel is identified as the "default" channel. When
any of the bits in the channel config for the other channels are zero,
it means to use the default channel. The OMAP4 TRM (at least through
NDA version Q) is wrong in describing which is the default channel.
The default channel on OMAP4 is MPU, not CORE as decribed in the TRM.
Signed-off-by: Kevin Hilman <khilman@ti.com>
2011-03-29 15:57:16 -07:00
|
|
|
|
|
|
|
/**
|
|
|
|
* omap_vc_config_channel - configure VC channel to PMIC mappings
|
|
|
|
* @voltdm: pointer to voltagdomain defining the desired VC channel
|
|
|
|
*
|
|
|
|
* Configures the VC channel to PMIC mappings for the following
|
|
|
|
* PMIC settings
|
|
|
|
* - i2c slave address (SA)
|
|
|
|
* - voltage configuration address (RAV)
|
|
|
|
* - command configuration address (RAC) and enable bit (RACEN)
|
|
|
|
* - command values for ON, ONLP, RET and OFF (CMD)
|
|
|
|
*
|
|
|
|
* This function currently only allows flexible configuration of the
|
|
|
|
* non-default channel. Starting with OMAP4, there are more than 2
|
|
|
|
* channels, with one defined as the default (on OMAP4, it's MPU.)
|
|
|
|
* Only the non-default channel can be configured.
|
|
|
|
*/
|
|
|
|
static int omap_vc_config_channel(struct voltagedomain *voltdm)
|
|
|
|
{
|
|
|
|
struct omap_vc_channel *vc = voltdm->vc;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* For default channel, the only configurable bit is RACEN.
|
|
|
|
* All others must stay at zero (see function comment above.)
|
|
|
|
*/
|
|
|
|
if (vc->flags & OMAP_VC_CHANNEL_DEFAULT)
|
2011-06-02 17:28:13 -07:00
|
|
|
vc->cfg_channel &= vc_cfg_bits->racen;
|
OMAP3+: VC: abstract out channel configuration
VC channel configuration is programmed based on settings coming from
the PMIC configuration.
Currently, the VC channel to PMIC mapping is a simple one-to-one
mapping. Whenever a VC channel parameter is configured (i2c slave
addres, PMIC register address, on/ret/off command), the corresponding
bits are enabled in the VC channel configuration register.
If necessary, the programmability of channel configuration settings
could be extended to board/PMIC files, however, because this patch
changes the channel configuration to be programmed based on existing
values from the PMIC settings, it may not be required.
Also note that starting with OMAP4, where there are more than 2
channels, one channel is identified as the "default" channel. When
any of the bits in the channel config for the other channels are zero,
it means to use the default channel. The OMAP4 TRM (at least through
NDA version Q) is wrong in describing which is the default channel.
The default channel on OMAP4 is MPU, not CORE as decribed in the TRM.
Signed-off-by: Kevin Hilman <khilman@ti.com>
2011-03-29 15:57:16 -07:00
|
|
|
|
|
|
|
voltdm->rmw(CFG_CHANNEL_MASK << vc->cfg_channel_sa_shift,
|
|
|
|
vc->cfg_channel << vc->cfg_channel_sa_shift,
|
2011-07-20 16:35:46 -07:00
|
|
|
vc->cfg_channel_reg);
|
OMAP3+: VC: abstract out channel configuration
VC channel configuration is programmed based on settings coming from
the PMIC configuration.
Currently, the VC channel to PMIC mapping is a simple one-to-one
mapping. Whenever a VC channel parameter is configured (i2c slave
addres, PMIC register address, on/ret/off command), the corresponding
bits are enabled in the VC channel configuration register.
If necessary, the programmability of channel configuration settings
could be extended to board/PMIC files, however, because this patch
changes the channel configuration to be programmed based on existing
values from the PMIC settings, it may not be required.
Also note that starting with OMAP4, where there are more than 2
channels, one channel is identified as the "default" channel. When
any of the bits in the channel config for the other channels are zero,
it means to use the default channel. The OMAP4 TRM (at least through
NDA version Q) is wrong in describing which is the default channel.
The default channel on OMAP4 is MPU, not CORE as decribed in the TRM.
Signed-off-by: Kevin Hilman <khilman@ti.com>
2011-03-29 15:57:16 -07:00
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2011-03-21 14:08:55 -07:00
|
|
|
/* Voltage scale and accessory APIs */
|
|
|
|
int omap_vc_pre_scale(struct voltagedomain *voltdm,
|
|
|
|
unsigned long target_volt,
|
|
|
|
u8 *target_vsel, u8 *current_vsel)
|
|
|
|
{
|
2011-03-22 16:14:57 -07:00
|
|
|
struct omap_vc_channel *vc = voltdm->vc;
|
2011-04-05 15:15:31 -07:00
|
|
|
u32 vc_cmdval;
|
2011-03-21 14:08:55 -07:00
|
|
|
|
|
|
|
/* Check if sufficient pmic info is available for this vdd */
|
2011-03-30 11:01:10 -07:00
|
|
|
if (!voltdm->pmic) {
|
2011-03-21 14:08:55 -07:00
|
|
|
pr_err("%s: Insufficient pmic info to scale the vdd_%s\n",
|
|
|
|
__func__, voltdm->name);
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
|
2011-03-30 11:01:10 -07:00
|
|
|
if (!voltdm->pmic->uv_to_vsel) {
|
2012-07-26 00:54:26 -06:00
|
|
|
pr_err("%s: PMIC function to convert voltage in uV to vsel not registered. Hence unable to scale voltage for vdd_%s\n",
|
|
|
|
__func__, voltdm->name);
|
2011-03-21 14:08:55 -07:00
|
|
|
return -ENODATA;
|
|
|
|
}
|
|
|
|
|
2011-03-28 10:40:15 -07:00
|
|
|
if (!voltdm->read || !voltdm->write) {
|
2011-03-21 14:08:55 -07:00
|
|
|
pr_err("%s: No read/write API for accessing vdd_%s regs\n",
|
|
|
|
__func__, voltdm->name);
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
|
2011-03-30 11:01:10 -07:00
|
|
|
*target_vsel = voltdm->pmic->uv_to_vsel(target_volt);
|
2011-04-05 16:55:22 -07:00
|
|
|
*current_vsel = voltdm->pmic->uv_to_vsel(voltdm->nominal_volt);
|
2011-03-21 14:08:55 -07:00
|
|
|
|
|
|
|
/* Setting the ON voltage to the new target voltage */
|
2011-03-28 10:40:15 -07:00
|
|
|
vc_cmdval = voltdm->read(vc->cmdval_reg);
|
2011-03-22 16:14:57 -07:00
|
|
|
vc_cmdval &= ~vc->common->cmd_on_mask;
|
|
|
|
vc_cmdval |= (*target_vsel << vc->common->cmd_on_shift);
|
2011-03-28 10:40:15 -07:00
|
|
|
voltdm->write(vc_cmdval, vc->cmdval_reg);
|
2011-03-21 14:08:55 -07:00
|
|
|
|
2012-09-25 19:33:35 +03:00
|
|
|
voltdm->vc_param->on = target_volt;
|
|
|
|
|
2011-04-05 15:15:31 -07:00
|
|
|
omap_vp_update_errorgain(voltdm, target_volt);
|
2011-03-21 14:08:55 -07:00
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
void omap_vc_post_scale(struct voltagedomain *voltdm,
|
|
|
|
unsigned long target_volt,
|
|
|
|
u8 target_vsel, u8 current_vsel)
|
|
|
|
{
|
|
|
|
u32 smps_steps = 0, smps_delay = 0;
|
|
|
|
|
|
|
|
smps_steps = abs(target_vsel - current_vsel);
|
|
|
|
/* SMPS slew rate / step size. 2us added as buffer. */
|
2011-03-30 11:01:10 -07:00
|
|
|
smps_delay = ((smps_steps * voltdm->pmic->step_size) /
|
|
|
|
voltdm->pmic->slew_rate) + 2;
|
2011-03-21 14:08:55 -07:00
|
|
|
udelay(smps_delay);
|
|
|
|
}
|
|
|
|
|
2011-03-22 16:14:57 -07:00
|
|
|
/* vc_bypass_scale - VC bypass method of voltage scaling */
|
|
|
|
int omap_vc_bypass_scale(struct voltagedomain *voltdm,
|
|
|
|
unsigned long target_volt)
|
2011-03-21 14:08:55 -07:00
|
|
|
{
|
2011-03-22 16:14:57 -07:00
|
|
|
struct omap_vc_channel *vc = voltdm->vc;
|
2011-03-21 14:08:55 -07:00
|
|
|
u32 loop_cnt = 0, retries_cnt = 0;
|
|
|
|
u32 vc_valid, vc_bypass_val_reg, vc_bypass_value;
|
|
|
|
u8 target_vsel, current_vsel;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
ret = omap_vc_pre_scale(voltdm, target_volt, &target_vsel, ¤t_vsel);
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
|
2011-03-22 16:14:57 -07:00
|
|
|
vc_valid = vc->common->valid;
|
|
|
|
vc_bypass_val_reg = vc->common->bypass_val_reg;
|
|
|
|
vc_bypass_value = (target_vsel << vc->common->data_shift) |
|
2011-03-29 14:24:47 -07:00
|
|
|
(vc->volt_reg_addr << vc->common->regaddr_shift) |
|
|
|
|
(vc->i2c_slave_addr << vc->common->slaveaddr_shift);
|
2011-03-21 14:08:55 -07:00
|
|
|
|
2011-03-28 10:40:15 -07:00
|
|
|
voltdm->write(vc_bypass_value, vc_bypass_val_reg);
|
|
|
|
voltdm->write(vc_bypass_value | vc_valid, vc_bypass_val_reg);
|
2011-03-21 14:08:55 -07:00
|
|
|
|
2011-03-28 10:40:15 -07:00
|
|
|
vc_bypass_value = voltdm->read(vc_bypass_val_reg);
|
2011-03-21 14:08:55 -07:00
|
|
|
/*
|
|
|
|
* Loop till the bypass command is acknowledged from the SMPS.
|
|
|
|
* NOTE: This is legacy code. The loop count and retry count needs
|
|
|
|
* to be revisited.
|
|
|
|
*/
|
|
|
|
while (!(vc_bypass_value & vc_valid)) {
|
|
|
|
loop_cnt++;
|
|
|
|
|
|
|
|
if (retries_cnt > 10) {
|
|
|
|
pr_warning("%s: Retry count exceeded\n", __func__);
|
|
|
|
return -ETIMEDOUT;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (loop_cnt > 50) {
|
|
|
|
retries_cnt++;
|
|
|
|
loop_cnt = 0;
|
|
|
|
udelay(10);
|
|
|
|
}
|
2011-03-28 10:40:15 -07:00
|
|
|
vc_bypass_value = voltdm->read(vc_bypass_val_reg);
|
2011-03-21 14:08:55 -07:00
|
|
|
}
|
|
|
|
|
|
|
|
omap_vc_post_scale(voltdm, target_volt, target_vsel, current_vsel);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2012-09-25 19:33:36 +03:00
|
|
|
/**
|
|
|
|
* omap3_set_i2c_timings - sets i2c sleep timings for a channel
|
|
|
|
* @voltdm: channel to configure
|
|
|
|
* @off_mode: select whether retention or off mode values used
|
|
|
|
*
|
|
|
|
* Calculates and sets up voltage controller to use I2C based
|
|
|
|
* voltage scaling for sleep modes. This can be used for either off mode
|
|
|
|
* or retention. Off mode has additionally an option to use sys_off_mode
|
|
|
|
* pad, which uses a global signal to program the whole power IC to
|
|
|
|
* off-mode.
|
|
|
|
*/
|
|
|
|
static void omap3_set_i2c_timings(struct voltagedomain *voltdm, bool off_mode)
|
2011-03-21 14:08:55 -07:00
|
|
|
{
|
2012-09-25 19:33:36 +03:00
|
|
|
unsigned long voltsetup1;
|
|
|
|
u32 tgt_volt;
|
|
|
|
|
|
|
|
if (off_mode)
|
|
|
|
tgt_volt = voltdm->vc_param->off;
|
|
|
|
else
|
|
|
|
tgt_volt = voltdm->vc_param->ret;
|
|
|
|
|
|
|
|
voltsetup1 = (voltdm->vc_param->on - tgt_volt) /
|
|
|
|
voltdm->pmic->slew_rate;
|
|
|
|
|
|
|
|
voltsetup1 = voltsetup1 * voltdm->sys_clk.rate / 8 / 1000000 + 1;
|
|
|
|
|
|
|
|
voltdm->rmw(voltdm->vfsm->voltsetup_mask,
|
|
|
|
voltsetup1 << __ffs(voltdm->vfsm->voltsetup_mask),
|
|
|
|
voltdm->vfsm->voltsetup_reg);
|
|
|
|
|
2011-03-21 14:08:55 -07:00
|
|
|
/*
|
2012-09-25 19:33:36 +03:00
|
|
|
* pmic is not controlling the voltage scaling during retention,
|
|
|
|
* thus set voltsetup2 to 0
|
2011-03-21 14:08:55 -07:00
|
|
|
*/
|
2012-09-25 19:33:36 +03:00
|
|
|
voltdm->write(0, OMAP3_PRM_VOLTSETUP2_OFFSET);
|
2011-03-21 14:08:55 -07:00
|
|
|
}
|
|
|
|
|
2012-09-25 19:33:36 +03:00
|
|
|
/**
|
|
|
|
* omap3_set_off_timings - sets off-mode timings for a channel
|
|
|
|
* @voltdm: channel to configure
|
|
|
|
*
|
|
|
|
* Calculates and sets up off-mode timings for a channel. Off-mode
|
|
|
|
* can use either I2C based voltage scaling, or alternatively
|
|
|
|
* sys_off_mode pad can be used to send a global command to power IC.
|
|
|
|
* This function first checks which mode is being used, and calls
|
|
|
|
* omap3_set_i2c_timings() if the system is using I2C control mode.
|
|
|
|
* sys_off_mode has the additional benefit that voltages can be
|
|
|
|
* scaled to zero volt level with TWL4030 / TWL5030, I2C can only
|
|
|
|
* scale to 600mV.
|
|
|
|
*/
|
|
|
|
static void omap3_set_off_timings(struct voltagedomain *voltdm)
|
2011-03-21 14:08:55 -07:00
|
|
|
{
|
2012-09-25 19:33:36 +03:00
|
|
|
unsigned long clksetup;
|
|
|
|
unsigned long voltsetup2;
|
|
|
|
unsigned long voltsetup2_old;
|
|
|
|
u32 val;
|
2011-03-21 14:08:55 -07:00
|
|
|
|
2012-09-25 19:33:36 +03:00
|
|
|
/* check if sys_off_mode is used to control off-mode voltages */
|
|
|
|
val = voltdm->read(OMAP3_PRM_VOLTCTRL_OFFSET);
|
|
|
|
if (!(val & OMAP3430_SEL_OFF_MASK)) {
|
|
|
|
/* No, omap is controlling them over I2C */
|
|
|
|
omap3_set_i2c_timings(voltdm, true);
|
2011-03-21 14:08:55 -07:00
|
|
|
return;
|
2012-09-25 19:33:36 +03:00
|
|
|
}
|
2011-03-21 14:08:55 -07:00
|
|
|
|
2012-09-25 19:33:36 +03:00
|
|
|
clksetup = voltdm->read(OMAP3_PRM_CLKSETUP_OFFSET);
|
2011-03-21 14:08:55 -07:00
|
|
|
|
2012-09-25 19:33:36 +03:00
|
|
|
/* voltsetup 2 in us */
|
|
|
|
voltsetup2 = voltdm->vc_param->on / voltdm->pmic->slew_rate;
|
|
|
|
|
|
|
|
/* convert to 32k clk cycles */
|
|
|
|
voltsetup2 = DIV_ROUND_UP(voltsetup2 * 32768, 1000000);
|
|
|
|
|
|
|
|
voltsetup2_old = voltdm->read(OMAP3_PRM_VOLTSETUP2_OFFSET);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Update voltsetup2 if higher than current value (needed because
|
|
|
|
* we have multiple channels with different ramp times), also
|
|
|
|
* update voltoffset always to value recommended by TRM
|
|
|
|
*/
|
|
|
|
if (voltsetup2 > voltsetup2_old) {
|
|
|
|
voltdm->write(voltsetup2, OMAP3_PRM_VOLTSETUP2_OFFSET);
|
|
|
|
voltdm->write(clksetup - voltsetup2,
|
|
|
|
OMAP3_PRM_VOLTOFFSET_OFFSET);
|
|
|
|
} else
|
|
|
|
voltdm->write(clksetup - voltsetup2_old,
|
|
|
|
OMAP3_PRM_VOLTOFFSET_OFFSET);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* omap is not controlling voltage scaling during off-mode,
|
|
|
|
* thus set voltsetup1 to 0
|
|
|
|
*/
|
|
|
|
voltdm->rmw(voltdm->vfsm->voltsetup_mask, 0,
|
|
|
|
voltdm->vfsm->voltsetup_reg);
|
|
|
|
|
|
|
|
/* voltoffset must be clksetup minus voltsetup2 according to TRM */
|
|
|
|
voltdm->write(clksetup - voltsetup2, OMAP3_PRM_VOLTOFFSET_OFFSET);
|
2011-03-21 14:08:55 -07:00
|
|
|
}
|
|
|
|
|
2012-09-25 19:33:36 +03:00
|
|
|
static void __init omap3_vc_init_channel(struct voltagedomain *voltdm)
|
|
|
|
{
|
|
|
|
omap3_set_off_timings(voltdm);
|
|
|
|
}
|
2011-03-21 14:08:55 -07:00
|
|
|
|
2012-09-25 19:33:38 +03:00
|
|
|
/**
|
|
|
|
* omap4_calc_volt_ramp - calculates voltage ramping delays on omap4
|
|
|
|
* @voltdm: channel to calculate values for
|
|
|
|
* @voltage_diff: voltage difference in microvolts
|
|
|
|
*
|
|
|
|
* Calculates voltage ramp prescaler + counter values for a voltage
|
|
|
|
* difference on omap4. Returns a field value suitable for writing to
|
|
|
|
* VOLTSETUP register for a channel in following format:
|
|
|
|
* bits[8:9] prescaler ... bits[0:5] counter. See OMAP4 TRM for reference.
|
|
|
|
*/
|
|
|
|
static u32 omap4_calc_volt_ramp(struct voltagedomain *voltdm, u32 voltage_diff)
|
|
|
|
{
|
|
|
|
u32 prescaler;
|
|
|
|
u32 cycles;
|
|
|
|
u32 time;
|
|
|
|
|
|
|
|
time = voltage_diff / voltdm->pmic->slew_rate;
|
|
|
|
|
|
|
|
cycles = voltdm->sys_clk.rate / 1000 * time / 1000;
|
|
|
|
|
|
|
|
cycles /= 64;
|
|
|
|
prescaler = 0;
|
|
|
|
|
|
|
|
/* shift to next prescaler until no overflow */
|
|
|
|
|
|
|
|
/* scale for div 256 = 64 * 4 */
|
|
|
|
if (cycles > 63) {
|
|
|
|
cycles /= 4;
|
|
|
|
prescaler++;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* scale for div 512 = 256 * 2 */
|
|
|
|
if (cycles > 63) {
|
|
|
|
cycles /= 2;
|
|
|
|
prescaler++;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* scale for div 2048 = 512 * 4 */
|
|
|
|
if (cycles > 63) {
|
|
|
|
cycles /= 4;
|
|
|
|
prescaler++;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* check for overflow => invalid ramp time */
|
|
|
|
if (cycles > 63) {
|
|
|
|
pr_warn("%s: invalid setuptime for vdd_%s\n", __func__,
|
|
|
|
voltdm->name);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
cycles++;
|
|
|
|
|
|
|
|
return (prescaler << OMAP4430_RAMP_UP_PRESCAL_SHIFT) |
|
|
|
|
(cycles << OMAP4430_RAMP_UP_COUNT_SHIFT);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* omap4_set_timings - set voltage ramp timings for a channel
|
|
|
|
* @voltdm: channel to configure
|
|
|
|
* @off_mode: whether off-mode values are used
|
|
|
|
*
|
|
|
|
* Calculates and sets the voltage ramp up / down values for a channel.
|
|
|
|
*/
|
|
|
|
static void omap4_set_timings(struct voltagedomain *voltdm, bool off_mode)
|
|
|
|
{
|
|
|
|
u32 val;
|
|
|
|
u32 ramp;
|
|
|
|
int offset;
|
|
|
|
|
|
|
|
if (off_mode) {
|
|
|
|
ramp = omap4_calc_volt_ramp(voltdm,
|
|
|
|
voltdm->vc_param->on - voltdm->vc_param->off);
|
|
|
|
offset = voltdm->vfsm->voltsetup_off_reg;
|
|
|
|
} else {
|
|
|
|
ramp = omap4_calc_volt_ramp(voltdm,
|
|
|
|
voltdm->vc_param->on - voltdm->vc_param->ret);
|
|
|
|
offset = voltdm->vfsm->voltsetup_reg;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!ramp)
|
|
|
|
return;
|
|
|
|
|
|
|
|
val = voltdm->read(offset);
|
|
|
|
|
|
|
|
val |= ramp << OMAP4430_RAMP_DOWN_COUNT_SHIFT;
|
|
|
|
|
|
|
|
val |= ramp << OMAP4430_RAMP_UP_COUNT_SHIFT;
|
|
|
|
|
|
|
|
voltdm->write(val, offset);
|
|
|
|
}
|
|
|
|
|
2011-03-21 14:08:55 -07:00
|
|
|
/* OMAP4 specific voltage init functions */
|
|
|
|
static void __init omap4_vc_init_channel(struct voltagedomain *voltdm)
|
|
|
|
{
|
|
|
|
static bool is_initialized;
|
|
|
|
u32 vc_val;
|
|
|
|
|
2012-09-25 19:33:38 +03:00
|
|
|
omap4_set_timings(voltdm, true);
|
|
|
|
omap4_set_timings(voltdm, false);
|
|
|
|
|
2011-03-21 14:08:55 -07:00
|
|
|
if (is_initialized)
|
|
|
|
return;
|
|
|
|
|
|
|
|
/* XXX These are magic numbers and do not belong! */
|
|
|
|
vc_val = (0x60 << OMAP4430_SCLL_SHIFT | 0x26 << OMAP4430_SCLH_SHIFT);
|
2011-03-28 10:40:15 -07:00
|
|
|
voltdm->write(vc_val, OMAP4_PRM_VC_CFG_I2C_CLK_OFFSET);
|
2011-03-21 14:08:55 -07:00
|
|
|
|
|
|
|
is_initialized = true;
|
|
|
|
}
|
|
|
|
|
2011-03-30 16:36:30 -07:00
|
|
|
/**
|
|
|
|
* omap_vc_i2c_init - initialize I2C interface to PMIC
|
|
|
|
* @voltdm: voltage domain containing VC data
|
|
|
|
*
|
2012-02-07 10:13:02 +00:00
|
|
|
* Use PMIC supplied settings for I2C high-speed mode and
|
2011-03-30 16:36:30 -07:00
|
|
|
* master code (if set) and program the VC I2C configuration
|
|
|
|
* register.
|
|
|
|
*
|
|
|
|
* The VC I2C configuration is common to all VC channels,
|
|
|
|
* so this function only configures I2C for the first VC
|
|
|
|
* channel registers. All other VC channels will use the
|
|
|
|
* same configuration.
|
|
|
|
*/
|
|
|
|
static void __init omap_vc_i2c_init(struct voltagedomain *voltdm)
|
|
|
|
{
|
|
|
|
struct omap_vc_channel *vc = voltdm->vc;
|
|
|
|
static bool initialized;
|
|
|
|
static bool i2c_high_speed;
|
|
|
|
u8 mcode;
|
|
|
|
|
|
|
|
if (initialized) {
|
|
|
|
if (voltdm->pmic->i2c_high_speed != i2c_high_speed)
|
2012-02-07 10:23:43 +00:00
|
|
|
pr_warn("%s: I2C config for vdd_%s does not match other channels (%u).",
|
|
|
|
__func__, voltdm->name, i2c_high_speed);
|
2011-03-30 16:36:30 -07:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
i2c_high_speed = voltdm->pmic->i2c_high_speed;
|
|
|
|
if (i2c_high_speed)
|
|
|
|
voltdm->rmw(vc->common->i2c_cfg_hsen_mask,
|
|
|
|
vc->common->i2c_cfg_hsen_mask,
|
|
|
|
vc->common->i2c_cfg_reg);
|
|
|
|
|
|
|
|
mcode = voltdm->pmic->i2c_mcode;
|
|
|
|
if (mcode)
|
|
|
|
voltdm->rmw(vc->common->i2c_mcode_mask,
|
|
|
|
mcode << __ffs(vc->common->i2c_mcode_mask),
|
|
|
|
vc->common->i2c_cfg_reg);
|
|
|
|
|
|
|
|
initialized = true;
|
|
|
|
}
|
|
|
|
|
2012-09-25 19:33:35 +03:00
|
|
|
/**
|
|
|
|
* omap_vc_calc_vsel - calculate vsel value for a channel
|
|
|
|
* @voltdm: channel to calculate value for
|
|
|
|
* @uvolt: microvolt value to convert to vsel
|
|
|
|
*
|
|
|
|
* Converts a microvolt value to vsel value for the used PMIC.
|
|
|
|
* This checks whether the microvolt value is out of bounds, and
|
|
|
|
* adjusts the value accordingly. If unsupported value detected,
|
|
|
|
* warning is thrown.
|
|
|
|
*/
|
|
|
|
static u8 omap_vc_calc_vsel(struct voltagedomain *voltdm, u32 uvolt)
|
|
|
|
{
|
|
|
|
if (voltdm->pmic->vddmin > uvolt)
|
|
|
|
uvolt = voltdm->pmic->vddmin;
|
|
|
|
if (voltdm->pmic->vddmax < uvolt) {
|
|
|
|
WARN(1, "%s: voltage not supported by pmic: %u vs max %u\n",
|
|
|
|
__func__, uvolt, voltdm->pmic->vddmax);
|
|
|
|
/* Lets try maximum value anyway */
|
|
|
|
uvolt = voltdm->pmic->vddmax;
|
|
|
|
}
|
|
|
|
|
|
|
|
return voltdm->pmic->uv_to_vsel(uvolt);
|
|
|
|
}
|
|
|
|
|
2011-03-21 14:08:55 -07:00
|
|
|
void __init omap_vc_init_channel(struct voltagedomain *voltdm)
|
|
|
|
{
|
2011-03-22 16:14:57 -07:00
|
|
|
struct omap_vc_channel *vc = voltdm->vc;
|
2011-03-29 15:14:38 -07:00
|
|
|
u8 on_vsel, onlp_vsel, ret_vsel, off_vsel;
|
|
|
|
u32 val;
|
2011-03-21 14:08:55 -07:00
|
|
|
|
2011-03-30 11:01:10 -07:00
|
|
|
if (!voltdm->pmic || !voltdm->pmic->uv_to_vsel) {
|
2012-02-07 10:13:02 +00:00
|
|
|
pr_err("%s: No PMIC info for vdd_%s\n", __func__, voltdm->name);
|
2011-03-21 14:08:55 -07:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
2011-03-28 10:40:15 -07:00
|
|
|
if (!voltdm->read || !voltdm->write) {
|
2011-03-21 14:08:55 -07:00
|
|
|
pr_err("%s: No read/write API for accessing vdd_%s regs\n",
|
|
|
|
__func__, voltdm->name);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
OMAP3+: VC: abstract out channel configuration
VC channel configuration is programmed based on settings coming from
the PMIC configuration.
Currently, the VC channel to PMIC mapping is a simple one-to-one
mapping. Whenever a VC channel parameter is configured (i2c slave
addres, PMIC register address, on/ret/off command), the corresponding
bits are enabled in the VC channel configuration register.
If necessary, the programmability of channel configuration settings
could be extended to board/PMIC files, however, because this patch
changes the channel configuration to be programmed based on existing
values from the PMIC settings, it may not be required.
Also note that starting with OMAP4, where there are more than 2
channels, one channel is identified as the "default" channel. When
any of the bits in the channel config for the other channels are zero,
it means to use the default channel. The OMAP4 TRM (at least through
NDA version Q) is wrong in describing which is the default channel.
The default channel on OMAP4 is MPU, not CORE as decribed in the TRM.
Signed-off-by: Kevin Hilman <khilman@ti.com>
2011-03-29 15:57:16 -07:00
|
|
|
vc->cfg_channel = 0;
|
2011-06-02 17:28:13 -07:00
|
|
|
if (vc->flags & OMAP_VC_CHANNEL_CFG_MUTANT)
|
|
|
|
vc_cfg_bits = &vc_mutant_channel_cfg;
|
|
|
|
else
|
|
|
|
vc_cfg_bits = &vc_default_channel_cfg;
|
OMAP3+: VC: abstract out channel configuration
VC channel configuration is programmed based on settings coming from
the PMIC configuration.
Currently, the VC channel to PMIC mapping is a simple one-to-one
mapping. Whenever a VC channel parameter is configured (i2c slave
addres, PMIC register address, on/ret/off command), the corresponding
bits are enabled in the VC channel configuration register.
If necessary, the programmability of channel configuration settings
could be extended to board/PMIC files, however, because this patch
changes the channel configuration to be programmed based on existing
values from the PMIC settings, it may not be required.
Also note that starting with OMAP4, where there are more than 2
channels, one channel is identified as the "default" channel. When
any of the bits in the channel config for the other channels are zero,
it means to use the default channel. The OMAP4 TRM (at least through
NDA version Q) is wrong in describing which is the default channel.
The default channel on OMAP4 is MPU, not CORE as decribed in the TRM.
Signed-off-by: Kevin Hilman <khilman@ti.com>
2011-03-29 15:57:16 -07:00
|
|
|
|
2011-03-29 14:02:36 -07:00
|
|
|
/* get PMIC/board specific settings */
|
2011-03-30 11:01:10 -07:00
|
|
|
vc->i2c_slave_addr = voltdm->pmic->i2c_slave_addr;
|
|
|
|
vc->volt_reg_addr = voltdm->pmic->volt_reg_addr;
|
|
|
|
vc->cmd_reg_addr = voltdm->pmic->cmd_reg_addr;
|
2011-03-29 14:02:36 -07:00
|
|
|
|
|
|
|
/* Configure the i2c slave address for this VC */
|
|
|
|
voltdm->rmw(vc->smps_sa_mask,
|
|
|
|
vc->i2c_slave_addr << __ffs(vc->smps_sa_mask),
|
2011-07-20 16:35:46 -07:00
|
|
|
vc->smps_sa_reg);
|
2011-06-02 17:28:13 -07:00
|
|
|
vc->cfg_channel |= vc_cfg_bits->sa;
|
2011-03-21 14:08:55 -07:00
|
|
|
|
2011-06-09 11:01:55 -07:00
|
|
|
/*
|
|
|
|
* Configure the PMIC register addresses.
|
|
|
|
*/
|
|
|
|
voltdm->rmw(vc->smps_volra_mask,
|
|
|
|
vc->volt_reg_addr << __ffs(vc->smps_volra_mask),
|
2011-07-20 16:35:46 -07:00
|
|
|
vc->smps_volra_reg);
|
2011-06-02 17:28:13 -07:00
|
|
|
vc->cfg_channel |= vc_cfg_bits->rav;
|
OMAP3+: VC: abstract out channel configuration
VC channel configuration is programmed based on settings coming from
the PMIC configuration.
Currently, the VC channel to PMIC mapping is a simple one-to-one
mapping. Whenever a VC channel parameter is configured (i2c slave
addres, PMIC register address, on/ret/off command), the corresponding
bits are enabled in the VC channel configuration register.
If necessary, the programmability of channel configuration settings
could be extended to board/PMIC files, however, because this patch
changes the channel configuration to be programmed based on existing
values from the PMIC settings, it may not be required.
Also note that starting with OMAP4, where there are more than 2
channels, one channel is identified as the "default" channel. When
any of the bits in the channel config for the other channels are zero,
it means to use the default channel. The OMAP4 TRM (at least through
NDA version Q) is wrong in describing which is the default channel.
The default channel on OMAP4 is MPU, not CORE as decribed in the TRM.
Signed-off-by: Kevin Hilman <khilman@ti.com>
2011-03-29 15:57:16 -07:00
|
|
|
|
|
|
|
if (vc->cmd_reg_addr) {
|
2011-06-09 11:01:55 -07:00
|
|
|
voltdm->rmw(vc->smps_cmdra_mask,
|
|
|
|
vc->cmd_reg_addr << __ffs(vc->smps_cmdra_mask),
|
2011-07-20 16:35:46 -07:00
|
|
|
vc->smps_cmdra_reg);
|
2011-06-02 17:28:13 -07:00
|
|
|
vc->cfg_channel |= vc_cfg_bits->rac | vc_cfg_bits->racen;
|
OMAP3+: VC: abstract out channel configuration
VC channel configuration is programmed based on settings coming from
the PMIC configuration.
Currently, the VC channel to PMIC mapping is a simple one-to-one
mapping. Whenever a VC channel parameter is configured (i2c slave
addres, PMIC register address, on/ret/off command), the corresponding
bits are enabled in the VC channel configuration register.
If necessary, the programmability of channel configuration settings
could be extended to board/PMIC files, however, because this patch
changes the channel configuration to be programmed based on existing
values from the PMIC settings, it may not be required.
Also note that starting with OMAP4, where there are more than 2
channels, one channel is identified as the "default" channel. When
any of the bits in the channel config for the other channels are zero,
it means to use the default channel. The OMAP4 TRM (at least through
NDA version Q) is wrong in describing which is the default channel.
The default channel on OMAP4 is MPU, not CORE as decribed in the TRM.
Signed-off-by: Kevin Hilman <khilman@ti.com>
2011-03-29 15:57:16 -07:00
|
|
|
}
|
2011-03-21 14:08:55 -07:00
|
|
|
|
2011-03-29 15:14:38 -07:00
|
|
|
/* Set up the on, inactive, retention and off voltage */
|
2012-09-25 19:33:35 +03:00
|
|
|
on_vsel = omap_vc_calc_vsel(voltdm, voltdm->vc_param->on);
|
|
|
|
onlp_vsel = omap_vc_calc_vsel(voltdm, voltdm->vc_param->onlp);
|
|
|
|
ret_vsel = omap_vc_calc_vsel(voltdm, voltdm->vc_param->ret);
|
|
|
|
off_vsel = omap_vc_calc_vsel(voltdm, voltdm->vc_param->off);
|
|
|
|
|
2011-03-29 15:14:38 -07:00
|
|
|
val = ((on_vsel << vc->common->cmd_on_shift) |
|
|
|
|
(onlp_vsel << vc->common->cmd_onlp_shift) |
|
|
|
|
(ret_vsel << vc->common->cmd_ret_shift) |
|
|
|
|
(off_vsel << vc->common->cmd_off_shift));
|
|
|
|
voltdm->write(val, vc->cmdval_reg);
|
2011-06-02 17:28:13 -07:00
|
|
|
vc->cfg_channel |= vc_cfg_bits->cmd;
|
OMAP3+: VC: abstract out channel configuration
VC channel configuration is programmed based on settings coming from
the PMIC configuration.
Currently, the VC channel to PMIC mapping is a simple one-to-one
mapping. Whenever a VC channel parameter is configured (i2c slave
addres, PMIC register address, on/ret/off command), the corresponding
bits are enabled in the VC channel configuration register.
If necessary, the programmability of channel configuration settings
could be extended to board/PMIC files, however, because this patch
changes the channel configuration to be programmed based on existing
values from the PMIC settings, it may not be required.
Also note that starting with OMAP4, where there are more than 2
channels, one channel is identified as the "default" channel. When
any of the bits in the channel config for the other channels are zero,
it means to use the default channel. The OMAP4 TRM (at least through
NDA version Q) is wrong in describing which is the default channel.
The default channel on OMAP4 is MPU, not CORE as decribed in the TRM.
Signed-off-by: Kevin Hilman <khilman@ti.com>
2011-03-29 15:57:16 -07:00
|
|
|
|
|
|
|
/* Channel configuration */
|
|
|
|
omap_vc_config_channel(voltdm);
|
2011-03-29 15:14:38 -07:00
|
|
|
|
2011-03-30 16:36:30 -07:00
|
|
|
omap_vc_i2c_init(voltdm);
|
|
|
|
|
2011-03-21 14:08:55 -07:00
|
|
|
if (cpu_is_omap34xx())
|
|
|
|
omap3_vc_init_channel(voltdm);
|
|
|
|
else if (cpu_is_omap44xx())
|
|
|
|
omap4_vc_init_channel(voltdm);
|
|
|
|
}
|
|
|
|
|