linux-next/drivers/pinctrl/pinctrl-mcp23s08.c

1228 lines
30 KiB
C
Raw Normal View History

/*
* MCP23S08 SPI/I2C GPIO gpio expander driver
*
* The inputs and outputs of the mcp23s08, mcp23s17, mcp23008 and mcp23017 are
* supported.
* For the I2C versions of the chips (mcp23008 and mcp23017) generation of
* interrupts is also supported.
* The hardware of the SPI versions of the chips (mcp23s08 and mcp23s17) is
* also capable of generating interrupts, but the linux driver does not
* support that yet.
*/
#include <linux/kernel.h>
#include <linux/device.h>
#include <linux/mutex.h>
#include <linux/module.h>
#include <linux/gpio.h>
#include <linux/i2c.h>
#include <linux/spi/spi.h>
#include <linux/spi/mcp23s08.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 17:04:11 +09:00
#include <linux/slab.h>
#include <asm/byteorder.h>
#include <linux/interrupt.h>
#include <linux/of_device.h>
#include <linux/regmap.h>
#include <linux/pinctrl/pinctrl.h>
#include <linux/pinctrl/pinconf.h>
#include <linux/pinctrl/pinconf-generic.h>
/**
* MCP types supported by driver
*/
#define MCP_TYPE_S08 0
#define MCP_TYPE_S17 1
#define MCP_TYPE_008 2
#define MCP_TYPE_017 3
#define MCP_TYPE_S18 4
/* Registers are all 8 bits wide.
*
* The mcp23s17 has twice as many bits, and can be configured to work
* with either 16 bit registers or with two adjacent 8 bit banks.
*/
#define MCP_IODIR 0x00 /* init/reset: all ones */
#define MCP_IPOL 0x01
#define MCP_GPINTEN 0x02
#define MCP_DEFVAL 0x03
#define MCP_INTCON 0x04
#define MCP_IOCON 0x05
# define IOCON_MIRROR (1 << 6)
# define IOCON_SEQOP (1 << 5)
# define IOCON_HAEN (1 << 3)
# define IOCON_ODR (1 << 2)
# define IOCON_INTPOL (1 << 1)
# define IOCON_INTCC (1)
#define MCP_GPPU 0x06
#define MCP_INTF 0x07
#define MCP_INTCAP 0x08
#define MCP_GPIO 0x09
#define MCP_OLAT 0x0a
struct mcp23s08;
struct mcp23s08 {
u8 addr;
bool irq_active_high;
bool reg_shift;
u16 irq_rise;
u16 irq_fall;
int irq;
bool irq_controller;
int cached_gpio;
/* lock protects regmap access with bypass/cache flags */
struct mutex lock;
struct gpio_chip chip;
struct regmap *regmap;
struct device *dev;
struct pinctrl_dev *pctldev;
struct pinctrl_desc pinctrl_desc;
gpio: mcp23s08 handles multiple chips per chipselect Teach the mcp23s08 driver about a curious feature of these chips: up to four of them can share the same chipselect, with the SPI signals wired in parallel, by matching two bits in the first protocol byte against two address lines on the chip. This is handled by three software changes: * Platform data now holds an array of per-chip structs, not just one chip's address and pullup configuration. * Probe() and remove() now use another level of structure, wrapping an instance of the original structure for each mcp23s08 chip sharing that chipselect. * The HAEN bit is set, so that the hardware address bits can no longer be ignored (boot firmware may not have enabled them). The "one struct per chip" preserves the guts of the current code, but platform_data will need minor changes. OLD: /* incorrect "slave" ID may not have mattered */ .slave = 3, .pullups = BIT(3) | BIT(1) | BIT(0), NEW: /* slave address _must_ match chip's wiring */ .chip[3] = { .is_present = true, .pullups = BIT(3) | BIT(1) | BIT(0), }, There's no change in how things _behave_ for spi_device nodes with a single mcp23s08 chip. New multi-chip configurations assign GPIOs in sequence, without holes. The spi_device just resembles a bigger controller, but internally it has multiple gpio_chip instances. Signed-off-by: David Brownell <dbrownell@users.sourceforge.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-25 01:46:09 -07:00
};
static const struct reg_default mcp23x08_defaults[] = {
{.reg = MCP_IODIR, .def = 0xff},
{.reg = MCP_IPOL, .def = 0x00},
{.reg = MCP_GPINTEN, .def = 0x00},
{.reg = MCP_DEFVAL, .def = 0x00},
{.reg = MCP_INTCON, .def = 0x00},
{.reg = MCP_IOCON, .def = 0x00},
{.reg = MCP_GPPU, .def = 0x00},
{.reg = MCP_OLAT, .def = 0x00},
};
static const struct regmap_range mcp23x08_volatile_range = {
.range_min = MCP_INTF,
.range_max = MCP_GPIO,
};
static const struct regmap_access_table mcp23x08_volatile_table = {
.yes_ranges = &mcp23x08_volatile_range,
.n_yes_ranges = 1,
};
static const struct regmap_range mcp23x08_precious_range = {
.range_min = MCP_GPIO,
.range_max = MCP_GPIO,
};
static const struct regmap_access_table mcp23x08_precious_table = {
.yes_ranges = &mcp23x08_precious_range,
.n_yes_ranges = 1,
};
static const struct regmap_config mcp23x08_regmap = {
.reg_bits = 8,
.val_bits = 8,
.reg_stride = 1,
.volatile_table = &mcp23x08_volatile_table,
.precious_table = &mcp23x08_precious_table,
.reg_defaults = mcp23x08_defaults,
.num_reg_defaults = ARRAY_SIZE(mcp23x08_defaults),
.cache_type = REGCACHE_FLAT,
.max_register = MCP_OLAT,
};
static const struct reg_default mcp23x16_defaults[] = {
{.reg = MCP_IODIR << 1, .def = 0xffff},
{.reg = MCP_IPOL << 1, .def = 0x0000},
{.reg = MCP_GPINTEN << 1, .def = 0x0000},
{.reg = MCP_DEFVAL << 1, .def = 0x0000},
{.reg = MCP_INTCON << 1, .def = 0x0000},
{.reg = MCP_IOCON << 1, .def = 0x0000},
{.reg = MCP_GPPU << 1, .def = 0x0000},
{.reg = MCP_OLAT << 1, .def = 0x0000},
};
static const struct regmap_range mcp23x16_volatile_range = {
.range_min = MCP_INTF << 1,
.range_max = MCP_GPIO << 1,
};
static const struct regmap_access_table mcp23x16_volatile_table = {
.yes_ranges = &mcp23x16_volatile_range,
.n_yes_ranges = 1,
};
static const struct regmap_range mcp23x16_precious_range = {
.range_min = MCP_GPIO << 1,
.range_max = MCP_GPIO << 1,
};
static const struct regmap_access_table mcp23x16_precious_table = {
.yes_ranges = &mcp23x16_precious_range,
.n_yes_ranges = 1,
};
static const struct regmap_config mcp23x17_regmap = {
.reg_bits = 8,
.val_bits = 16,
.reg_stride = 2,
.max_register = MCP_OLAT << 1,
.volatile_table = &mcp23x16_volatile_table,
.precious_table = &mcp23x16_precious_table,
.reg_defaults = mcp23x16_defaults,
.num_reg_defaults = ARRAY_SIZE(mcp23x16_defaults),
.cache_type = REGCACHE_FLAT,
.val_format_endian = REGMAP_ENDIAN_LITTLE,
};
static int mcp_read(struct mcp23s08 *mcp, unsigned int reg, unsigned int *val)
{
return regmap_read(mcp->regmap, reg << mcp->reg_shift, val);
}
static int mcp_write(struct mcp23s08 *mcp, unsigned int reg, unsigned int val)
{
return regmap_write(mcp->regmap, reg << mcp->reg_shift, val);
}
static int mcp_set_mask(struct mcp23s08 *mcp, unsigned int reg,
unsigned int mask, bool enabled)
{
u16 val = enabled ? 0xffff : 0x0000;
return regmap_update_bits(mcp->regmap, reg << mcp->reg_shift,
mask, val);
}
static int mcp_set_bit(struct mcp23s08 *mcp, unsigned int reg,
unsigned int pin, bool enabled)
{
u16 mask = BIT(pin);
return mcp_set_mask(mcp, reg, mask, enabled);
}
static const struct pinctrl_pin_desc mcp23x08_pins[] = {
PINCTRL_PIN(0, "gpio0"),
PINCTRL_PIN(1, "gpio1"),
PINCTRL_PIN(2, "gpio2"),
PINCTRL_PIN(3, "gpio3"),
PINCTRL_PIN(4, "gpio4"),
PINCTRL_PIN(5, "gpio5"),
PINCTRL_PIN(6, "gpio6"),
PINCTRL_PIN(7, "gpio7"),
};
static const struct pinctrl_pin_desc mcp23x17_pins[] = {
PINCTRL_PIN(0, "gpio0"),
PINCTRL_PIN(1, "gpio1"),
PINCTRL_PIN(2, "gpio2"),
PINCTRL_PIN(3, "gpio3"),
PINCTRL_PIN(4, "gpio4"),
PINCTRL_PIN(5, "gpio5"),
PINCTRL_PIN(6, "gpio6"),
PINCTRL_PIN(7, "gpio7"),
PINCTRL_PIN(8, "gpio8"),
PINCTRL_PIN(9, "gpio9"),
PINCTRL_PIN(10, "gpio10"),
PINCTRL_PIN(11, "gpio11"),
PINCTRL_PIN(12, "gpio12"),
PINCTRL_PIN(13, "gpio13"),
PINCTRL_PIN(14, "gpio14"),
PINCTRL_PIN(15, "gpio15"),
};
static int mcp_pinctrl_get_groups_count(struct pinctrl_dev *pctldev)
{
return 0;
}
static const char *mcp_pinctrl_get_group_name(struct pinctrl_dev *pctldev,
unsigned int group)
{
return NULL;
}
static int mcp_pinctrl_get_group_pins(struct pinctrl_dev *pctldev,
unsigned int group,
const unsigned int **pins,
unsigned int *num_pins)
{
return -ENOTSUPP;
}
static const struct pinctrl_ops mcp_pinctrl_ops = {
.get_groups_count = mcp_pinctrl_get_groups_count,
.get_group_name = mcp_pinctrl_get_group_name,
.get_group_pins = mcp_pinctrl_get_group_pins,
#ifdef CONFIG_OF
.dt_node_to_map = pinconf_generic_dt_node_to_map_pin,
.dt_free_map = pinconf_generic_dt_free_map,
#endif
};
static int mcp_pinconf_get(struct pinctrl_dev *pctldev, unsigned int pin,
unsigned long *config)
{
struct mcp23s08 *mcp = pinctrl_dev_get_drvdata(pctldev);
enum pin_config_param param = pinconf_to_config_param(*config);
unsigned int data, status;
int ret;
switch (param) {
case PIN_CONFIG_BIAS_PULL_UP:
ret = mcp_read(mcp, MCP_GPPU, &data);
if (ret < 0)
return ret;
status = (data & BIT(pin)) ? 1 : 0;
break;
default:
dev_err(mcp->dev, "Invalid config param %04x\n", param);
return -ENOTSUPP;
}
*config = 0;
return status ? 0 : -EINVAL;
}
static int mcp_pinconf_set(struct pinctrl_dev *pctldev, unsigned int pin,
unsigned long *configs, unsigned int num_configs)
{
struct mcp23s08 *mcp = pinctrl_dev_get_drvdata(pctldev);
enum pin_config_param param;
u32 arg, mask;
u16 val;
int ret = 0;
int i;
for (i = 0; i < num_configs; i++) {
param = pinconf_to_config_param(configs[i]);
arg = pinconf_to_config_argument(configs[i]);
switch (param) {
case PIN_CONFIG_BIAS_PULL_UP:
val = arg ? 0xFFFF : 0x0000;
mask = BIT(pin);
ret = mcp_set_bit(mcp, MCP_GPPU, pin, arg);
break;
default:
dev_err(mcp->dev, "Invalid config param %04x\n", param);
return -ENOTSUPP;
}
}
return ret;
}
static const struct pinconf_ops mcp_pinconf_ops = {
.pin_config_get = mcp_pinconf_get,
.pin_config_set = mcp_pinconf_set,
.is_generic = true,
};
/*----------------------------------------------------------------------*/
#ifdef CONFIG_SPI_MASTER
static int mcp23sxx_spi_write(void *context, const void *data, size_t count)
{
struct mcp23s08 *mcp = context;
struct spi_device *spi = to_spi_device(mcp->dev);
struct spi_message m;
struct spi_transfer t[2] = { { .tx_buf = &mcp->addr, .len = 1, },
{ .tx_buf = data, .len = count, }, };
spi_message_init(&m);
spi_message_add_tail(&t[0], &m);
spi_message_add_tail(&t[1], &m);
return spi_sync(spi, &m);
}
static int mcp23sxx_spi_gather_write(void *context,
const void *reg, size_t reg_size,
const void *val, size_t val_size)
{
struct mcp23s08 *mcp = context;
struct spi_device *spi = to_spi_device(mcp->dev);
struct spi_message m;
struct spi_transfer t[3] = { { .tx_buf = &mcp->addr, .len = 1, },
{ .tx_buf = reg, .len = reg_size, },
{ .tx_buf = val, .len = val_size, }, };
spi_message_init(&m);
spi_message_add_tail(&t[0], &m);
spi_message_add_tail(&t[1], &m);
spi_message_add_tail(&t[2], &m);
return spi_sync(spi, &m);
}
static int mcp23sxx_spi_read(void *context, const void *reg, size_t reg_size,
void *val, size_t val_size)
{
struct mcp23s08 *mcp = context;
struct spi_device *spi = to_spi_device(mcp->dev);
u8 tx[2];
if (reg_size != 1)
return -EINVAL;
tx[0] = mcp->addr | 0x01;
tx[1] = *((u8 *) reg);
return spi_write_then_read(spi, tx, sizeof(tx), val, val_size);
}
static const struct regmap_bus mcp23sxx_spi_regmap = {
.write = mcp23sxx_spi_write,
.gather_write = mcp23sxx_spi_gather_write,
.read = mcp23sxx_spi_read,
};
#endif /* CONFIG_SPI_MASTER */
/*----------------------------------------------------------------------*/
/* A given spi_device can represent up to eight mcp23sxx chips
* sharing the same chipselect but using different addresses
* (e.g. chips #0 and #3 might be populated, but not #1 or $2).
* Driver data holds all the per-chip data.
*/
struct mcp23s08_driver_data {
unsigned ngpio;
struct mcp23s08 *mcp[8];
struct mcp23s08 chip[];
};
static int mcp23s08_direction_input(struct gpio_chip *chip, unsigned offset)
{
struct mcp23s08 *mcp = gpiochip_get_data(chip);
int status;
mutex_lock(&mcp->lock);
status = mcp_set_bit(mcp, MCP_IODIR, offset, true);
mutex_unlock(&mcp->lock);
return status;
}
static int mcp23s08_get(struct gpio_chip *chip, unsigned offset)
{
struct mcp23s08 *mcp = gpiochip_get_data(chip);
int status, ret;
mutex_lock(&mcp->lock);
/* REVISIT reading this clears any IRQ ... */
ret = mcp_read(mcp, MCP_GPIO, &status);
if (ret < 0)
status = 0;
else
status = !!(status & (1 << offset));
mcp->cached_gpio = status;
mutex_unlock(&mcp->lock);
return status;
}
static int __mcp23s08_set(struct mcp23s08 *mcp, unsigned mask, bool value)
{
return mcp_set_mask(mcp, MCP_OLAT, mask, value);
}
static void mcp23s08_set(struct gpio_chip *chip, unsigned offset, int value)
{
struct mcp23s08 *mcp = gpiochip_get_data(chip);
unsigned mask = BIT(offset);
mutex_lock(&mcp->lock);
__mcp23s08_set(mcp, mask, !!value);
mutex_unlock(&mcp->lock);
}
static int
mcp23s08_direction_output(struct gpio_chip *chip, unsigned offset, int value)
{
struct mcp23s08 *mcp = gpiochip_get_data(chip);
unsigned mask = BIT(offset);
int status;
mutex_lock(&mcp->lock);
status = __mcp23s08_set(mcp, mask, value);
if (status == 0) {
status = mcp_set_mask(mcp, MCP_IODIR, mask, false);
}
mutex_unlock(&mcp->lock);
return status;
}
/*----------------------------------------------------------------------*/
static irqreturn_t mcp23s08_irq(int irq, void *data)
{
struct mcp23s08 *mcp = data;
int intcap, intcon, intf, i, gpio, gpio_orig, intcap_mask, defval;
unsigned int child_irq;
bool intf_set, intcap_changed, gpio_bit_changed,
defval_changed, gpio_set;
mutex_lock(&mcp->lock);
if (mcp_read(mcp, MCP_INTF, &intf) < 0) {
mutex_unlock(&mcp->lock);
return IRQ_HANDLED;
}
if (mcp_read(mcp, MCP_INTCAP, &intcap) < 0) {
mutex_unlock(&mcp->lock);
return IRQ_HANDLED;
}
if (mcp_read(mcp, MCP_INTCON, &intcon) < 0) {
mutex_unlock(&mcp->lock);
return IRQ_HANDLED;
}
if (mcp_read(mcp, MCP_DEFVAL, &defval) < 0) {
mutex_unlock(&mcp->lock);
return IRQ_HANDLED;
}
/* This clears the interrupt(configurable on S18) */
if (mcp_read(mcp, MCP_GPIO, &gpio) < 0) {
mutex_unlock(&mcp->lock);
return IRQ_HANDLED;
}
gpio_orig = mcp->cached_gpio;
mcp->cached_gpio = gpio;
mutex_unlock(&mcp->lock);
if (intf == 0) {
/* There is no interrupt pending */
return IRQ_HANDLED;
}
dev_dbg(mcp->chip.parent,
"intcap 0x%04X intf 0x%04X gpio_orig 0x%04X gpio 0x%04X\n",
intcap, intf, gpio_orig, gpio);
for (i = 0; i < mcp->chip.ngpio; i++) {
/* We must check all of the inputs on the chip,
* otherwise we may not notice a change on >=2 pins.
*
* On at least the mcp23s17, INTCAP is only updated
* one byte at a time(INTCAPA and INTCAPB are
* not written to at the same time - only on a per-bank
* basis).
*
* INTF only contains the single bit that caused the
* interrupt per-bank. On the mcp23s17, there is
* INTFA and INTFB. If two pins are changed on the A
* side at the same time, INTF will only have one bit
* set. If one pin on the A side and one pin on the B
* side are changed at the same time, INTF will have
* two bits set. Thus, INTF can't be the only check
* to see if the input has changed.
*/
intf_set = intf & BIT(i);
if (i < 8 && intf_set)
intcap_mask = 0x00FF;
else if (i >= 8 && intf_set)
intcap_mask = 0xFF00;
else
intcap_mask = 0x00;
intcap_changed = (intcap_mask &
(intcap & BIT(i))) !=
(intcap_mask & (BIT(i) & gpio_orig));
gpio_set = BIT(i) & gpio;
gpio_bit_changed = (BIT(i) & gpio_orig) !=
(BIT(i) & gpio);
defval_changed = (BIT(i) & intcon) &&
((BIT(i) & gpio) !=
(BIT(i) & defval));
if (((gpio_bit_changed || intcap_changed) &&
(BIT(i) & mcp->irq_rise) && gpio_set) ||
((gpio_bit_changed || intcap_changed) &&
(BIT(i) & mcp->irq_fall) && !gpio_set) ||
defval_changed) {
child_irq = irq_find_mapping(mcp->chip.irqdomain, i);
handle_nested_irq(child_irq);
}
}
return IRQ_HANDLED;
}
static void mcp23s08_irq_mask(struct irq_data *data)
{
struct gpio_chip *gc = irq_data_get_irq_chip_data(data);
struct mcp23s08 *mcp = gpiochip_get_data(gc);
unsigned int pos = data->hwirq;
mcp_set_bit(mcp, MCP_GPINTEN, pos, false);
}
static void mcp23s08_irq_unmask(struct irq_data *data)
{
struct gpio_chip *gc = irq_data_get_irq_chip_data(data);
struct mcp23s08 *mcp = gpiochip_get_data(gc);
unsigned int pos = data->hwirq;
mcp_set_bit(mcp, MCP_GPINTEN, pos, true);
}
static int mcp23s08_irq_set_type(struct irq_data *data, unsigned int type)
{
struct gpio_chip *gc = irq_data_get_irq_chip_data(data);
struct mcp23s08 *mcp = gpiochip_get_data(gc);
unsigned int pos = data->hwirq;
int status = 0;
if ((type & IRQ_TYPE_EDGE_BOTH) == IRQ_TYPE_EDGE_BOTH) {
mcp_set_bit(mcp, MCP_INTCON, pos, false);
mcp->irq_rise |= BIT(pos);
mcp->irq_fall |= BIT(pos);
} else if (type & IRQ_TYPE_EDGE_RISING) {
mcp_set_bit(mcp, MCP_INTCON, pos, false);
mcp->irq_rise |= BIT(pos);
mcp->irq_fall &= ~BIT(pos);
} else if (type & IRQ_TYPE_EDGE_FALLING) {
mcp_set_bit(mcp, MCP_INTCON, pos, false);
mcp->irq_rise &= ~BIT(pos);
mcp->irq_fall |= BIT(pos);
} else if (type & IRQ_TYPE_LEVEL_HIGH) {
mcp_set_bit(mcp, MCP_INTCON, pos, true);
mcp_set_bit(mcp, MCP_DEFVAL, pos, false);
} else if (type & IRQ_TYPE_LEVEL_LOW) {
mcp_set_bit(mcp, MCP_INTCON, pos, true);
mcp_set_bit(mcp, MCP_DEFVAL, pos, true);
} else
return -EINVAL;
return status;
}
static void mcp23s08_irq_bus_lock(struct irq_data *data)
{
struct gpio_chip *gc = irq_data_get_irq_chip_data(data);
struct mcp23s08 *mcp = gpiochip_get_data(gc);
mutex_lock(&mcp->lock);
regcache_cache_only(mcp->regmap, true);
}
static void mcp23s08_irq_bus_unlock(struct irq_data *data)
{
struct gpio_chip *gc = irq_data_get_irq_chip_data(data);
struct mcp23s08 *mcp = gpiochip_get_data(gc);
regcache_cache_only(mcp->regmap, false);
regcache_sync(mcp->regmap);
mutex_unlock(&mcp->lock);
}
static struct irq_chip mcp23s08_irq_chip = {
.name = "gpio-mcp23xxx",
.irq_mask = mcp23s08_irq_mask,
.irq_unmask = mcp23s08_irq_unmask,
.irq_set_type = mcp23s08_irq_set_type,
.irq_bus_lock = mcp23s08_irq_bus_lock,
.irq_bus_sync_unlock = mcp23s08_irq_bus_unlock,
};
static int mcp23s08_irq_setup(struct mcp23s08 *mcp)
{
struct gpio_chip *chip = &mcp->chip;
int err;
unsigned long irqflags = IRQF_ONESHOT | IRQF_SHARED;
if (mcp->irq_active_high)
irqflags |= IRQF_TRIGGER_HIGH;
else
irqflags |= IRQF_TRIGGER_LOW;
gpio: change member .dev to .parent The name .dev in a struct is normally reserved for a struct device that is let us say a superclass to the thing described by the struct. struct gpio_chip stands out by confusingly using a struct device *dev to point to the parent device (such as a platform_device) that represents the hardware. As we want to give gpio_chip:s real devices, this is not working. We need to rename this member to parent. This was done by two coccinelle scripts, I guess it is possible to combine them into one, but I don't know such stuff. They look like this: @@ struct gpio_chip *var; @@ -var->dev +var->parent and: @@ struct gpio_chip var; @@ -var.dev +var.parent and: @@ struct bgpio_chip *var; @@ -var->gc.dev +var->gc.parent Plus a few instances of bgpio that I couldn't figure out how to teach Coccinelle to rewrite. This patch hits all over the place, but I *strongly* prefer this solution to any piecemal approaches that just exercise patch mechanics all over the place. It mainly hits drivers/gpio and drivers/pinctrl which is my own backyard anyway. Cc: Haavard Skinnemoen <hskinnemoen@gmail.com> Cc: Rafał Miłecki <zajec5@gmail.com> Cc: Richard Purdie <rpurdie@rpsys.net> Cc: Mauro Carvalho Chehab <mchehab@osg.samsung.com> Cc: Alek Du <alek.du@intel.com> Cc: Jaroslav Kysela <perex@perex.cz> Cc: Takashi Iwai <tiwai@suse.com> Acked-by: Dmitry Torokhov <dmitry.torokhov@gmail.com> Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Acked-by: Lee Jones <lee.jones@linaro.org> Acked-by: Jiri Kosina <jkosina@suse.cz> Acked-by: Hans-Christian Egtvedt <egtvedt@samfundet.no> Acked-by: Jacek Anaszewski <j.anaszewski@samsung.com> Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
2015-11-04 09:56:26 +01:00
err = devm_request_threaded_irq(chip->parent, mcp->irq, NULL,
mcp23s08_irq,
irqflags, dev_name(chip->parent), mcp);
if (err != 0) {
gpio: change member .dev to .parent The name .dev in a struct is normally reserved for a struct device that is let us say a superclass to the thing described by the struct. struct gpio_chip stands out by confusingly using a struct device *dev to point to the parent device (such as a platform_device) that represents the hardware. As we want to give gpio_chip:s real devices, this is not working. We need to rename this member to parent. This was done by two coccinelle scripts, I guess it is possible to combine them into one, but I don't know such stuff. They look like this: @@ struct gpio_chip *var; @@ -var->dev +var->parent and: @@ struct gpio_chip var; @@ -var.dev +var.parent and: @@ struct bgpio_chip *var; @@ -var->gc.dev +var->gc.parent Plus a few instances of bgpio that I couldn't figure out how to teach Coccinelle to rewrite. This patch hits all over the place, but I *strongly* prefer this solution to any piecemal approaches that just exercise patch mechanics all over the place. It mainly hits drivers/gpio and drivers/pinctrl which is my own backyard anyway. Cc: Haavard Skinnemoen <hskinnemoen@gmail.com> Cc: Rafał Miłecki <zajec5@gmail.com> Cc: Richard Purdie <rpurdie@rpsys.net> Cc: Mauro Carvalho Chehab <mchehab@osg.samsung.com> Cc: Alek Du <alek.du@intel.com> Cc: Jaroslav Kysela <perex@perex.cz> Cc: Takashi Iwai <tiwai@suse.com> Acked-by: Dmitry Torokhov <dmitry.torokhov@gmail.com> Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Acked-by: Lee Jones <lee.jones@linaro.org> Acked-by: Jiri Kosina <jkosina@suse.cz> Acked-by: Hans-Christian Egtvedt <egtvedt@samfundet.no> Acked-by: Jacek Anaszewski <j.anaszewski@samsung.com> Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
2015-11-04 09:56:26 +01:00
dev_err(chip->parent, "unable to request IRQ#%d: %d\n",
mcp->irq, err);
return err;
}
gpio: simplify adding threaded interrupts This tries to simplify the use of CONFIG_GPIOLIB_IRQCHIP when using threaded interrupts: add a new call gpiochip_irqchip_add_nested() to indicate that we're dealing with a nested rather than a chained irqchip, then create a separate gpiochip_set_nested_irqchip() to mirror the gpiochip_set_chained_irqchip() call to connect the parent and child interrupts. In the nested case gpiochip_set_nested_irqchip() does nothing more than call irq_set_parent() on each valid child interrupt, which has little semantic effect in the kernel, but this is probably still formally correct. Update all drivers using nested interrupts to use gpiochip_irqchip_add_nested() so we can now see clearly which these users are. The DLN2 driver can drop its specific hack with .irq_not_threaded as we now recognize whether a chip is threaded or not from its use of gpiochip_irqchip_add_nested() signature rather than from inspecting .can_sleep. We rename the .irq_parent to .irq_chained_parent since this parent IRQ is only really kept around for the chained interrupt handlers. Cc: Lars Poeschel <poeschel@lemonage.de> Cc: Octavian Purdila <octavian.purdila@intel.com> Cc: Daniel Baluta <daniel.baluta@intel.com> Cc: Bin Gao <bin.gao@linux.intel.com> Cc: Mika Westerberg <mika.westerberg@linux.intel.com> Cc: Ajay Thomas <ajay.thomas.david.rajamanickam@intel.com> Cc: Semen Protsenko <semen.protsenko@globallogic.com> Cc: Alexander Stein <alexander.stein@systec-electronic.com> Cc: Phil Reid <preid@electromag.com.au> Cc: Bartosz Golaszewski <bgolaszewski@baylibre.com> Cc: Patrice Chotard <patrice.chotard@st.com> Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
2016-11-24 10:57:25 +01:00
err = gpiochip_irqchip_add_nested(chip,
&mcp23s08_irq_chip,
0,
handle_simple_irq,
IRQ_TYPE_NONE);
if (err) {
dev_err(chip->parent,
"could not connect irqchip to gpiochip: %d\n", err);
return err;
}
gpio: simplify adding threaded interrupts This tries to simplify the use of CONFIG_GPIOLIB_IRQCHIP when using threaded interrupts: add a new call gpiochip_irqchip_add_nested() to indicate that we're dealing with a nested rather than a chained irqchip, then create a separate gpiochip_set_nested_irqchip() to mirror the gpiochip_set_chained_irqchip() call to connect the parent and child interrupts. In the nested case gpiochip_set_nested_irqchip() does nothing more than call irq_set_parent() on each valid child interrupt, which has little semantic effect in the kernel, but this is probably still formally correct. Update all drivers using nested interrupts to use gpiochip_irqchip_add_nested() so we can now see clearly which these users are. The DLN2 driver can drop its specific hack with .irq_not_threaded as we now recognize whether a chip is threaded or not from its use of gpiochip_irqchip_add_nested() signature rather than from inspecting .can_sleep. We rename the .irq_parent to .irq_chained_parent since this parent IRQ is only really kept around for the chained interrupt handlers. Cc: Lars Poeschel <poeschel@lemonage.de> Cc: Octavian Purdila <octavian.purdila@intel.com> Cc: Daniel Baluta <daniel.baluta@intel.com> Cc: Bin Gao <bin.gao@linux.intel.com> Cc: Mika Westerberg <mika.westerberg@linux.intel.com> Cc: Ajay Thomas <ajay.thomas.david.rajamanickam@intel.com> Cc: Semen Protsenko <semen.protsenko@globallogic.com> Cc: Alexander Stein <alexander.stein@systec-electronic.com> Cc: Phil Reid <preid@electromag.com.au> Cc: Bartosz Golaszewski <bgolaszewski@baylibre.com> Cc: Patrice Chotard <patrice.chotard@st.com> Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
2016-11-24 10:57:25 +01:00
gpiochip_set_nested_irqchip(chip,
&mcp23s08_irq_chip,
mcp->irq);
return 0;
}
/*----------------------------------------------------------------------*/
#ifdef CONFIG_DEBUG_FS
#include <linux/seq_file.h>
/*
* This compares the chip's registers with the register
* cache and corrects any incorrectly set register. This
* can be used to fix state for MCP23xxx, that temporary
* lost its power supply.
*/
#define MCP23S08_CONFIG_REGS 8
static int __check_mcp23s08_reg_cache(struct mcp23s08 *mcp)
{
int cached[MCP23S08_CONFIG_REGS];
int err = 0, i;
/* read cached config registers */
for (i = 0; i < MCP23S08_CONFIG_REGS; i++) {
err = mcp_read(mcp, i, &cached[i]);
if (err)
goto out;
}
regcache_cache_bypass(mcp->regmap, true);
for (i = 0; i < MCP23S08_CONFIG_REGS; i++) {
int uncached;
err = mcp_read(mcp, i, &uncached);
if (err)
goto out;
if (uncached != cached[i]) {
dev_err(mcp->dev, "restoring reg 0x%02x from 0x%04x to 0x%04x (power-loss?)\n",
i, uncached, cached[i]);
mcp_write(mcp, i, cached[i]);
}
}
out:
if (err)
dev_err(mcp->dev, "read error: reg=%02x, err=%d", i, err);
regcache_cache_bypass(mcp->regmap, false);
return err;
}
/*
* This shows more info than the generic gpio dump code:
* pullups, deglitching, open drain drive.
*/
static void mcp23s08_dbg_show(struct seq_file *s, struct gpio_chip *chip)
{
struct mcp23s08 *mcp;
char bank;
int t;
unsigned mask;
int iodir, gpio, gppu;
mcp = gpiochip_get_data(chip);
/* NOTE: we only handle one bank for now ... */
bank = '0' + ((mcp->addr >> 1) & 0x7);
mutex_lock(&mcp->lock);
t = __check_mcp23s08_reg_cache(mcp);
if (t) {
seq_printf(s, " I/O Error\n");
goto done;
}
t = mcp_read(mcp, MCP_IODIR, &iodir);
if (t) {
seq_printf(s, " I/O Error\n");
goto done;
}
t = mcp_read(mcp, MCP_GPIO, &gpio);
if (t) {
seq_printf(s, " I/O Error\n");
goto done;
}
t = mcp_read(mcp, MCP_GPPU, &gppu);
if (t) {
seq_printf(s, " I/O Error\n");
goto done;
}
for (t = 0, mask = BIT(0); t < chip->ngpio; t++, mask <<= 1) {
const char *label;
label = gpiochip_is_requested(chip, t);
if (!label)
continue;
seq_printf(s, " gpio-%-3d P%c.%d (%-12s) %s %s %s",
chip->base + t, bank, t, label,
(iodir & mask) ? "in " : "out",
(gpio & mask) ? "hi" : "lo",
(gppu & mask) ? "up" : " ");
/* NOTE: ignoring the irq-related registers */
seq_puts(s, "\n");
}
done:
mutex_unlock(&mcp->lock);
}
#else
#define mcp23s08_dbg_show NULL
#endif
/*----------------------------------------------------------------------*/
static int mcp23s08_probe_one(struct mcp23s08 *mcp, struct device *dev,
void *data, unsigned addr, unsigned type,
struct mcp23s08_platform_data *pdata, int cs)
{
int status, ret;
bool mirror = false;
mutex_init(&mcp->lock);
mcp->dev = dev;
mcp->addr = addr;
mcp->irq_active_high = false;
mcp->chip.direction_input = mcp23s08_direction_input;
mcp->chip.get = mcp23s08_get;
mcp->chip.direction_output = mcp23s08_direction_output;
mcp->chip.set = mcp23s08_set;
mcp->chip.dbg_show = mcp23s08_dbg_show;
#ifdef CONFIG_OF_GPIO
mcp->chip.of_gpio_n_cells = 2;
mcp->chip.of_node = dev->of_node;
#endif
switch (type) {
#ifdef CONFIG_SPI_MASTER
case MCP_TYPE_S08:
mcp->regmap = devm_regmap_init(dev, &mcp23sxx_spi_regmap, mcp,
&mcp23x08_regmap);
mcp->reg_shift = 0;
mcp->chip.ngpio = 8;
mcp->chip.label = "mcp23s08";
break;
case MCP_TYPE_S17:
mcp->regmap = devm_regmap_init(dev, &mcp23sxx_spi_regmap, mcp,
&mcp23x17_regmap);
mcp->reg_shift = 1;
mcp->chip.ngpio = 16;
mcp->chip.label = "mcp23s17";
break;
case MCP_TYPE_S18:
mcp->regmap = devm_regmap_init(dev, &mcp23sxx_spi_regmap, mcp,
&mcp23x17_regmap);
mcp->reg_shift = 1;
mcp->chip.ngpio = 16;
mcp->chip.label = "mcp23s18";
break;
#endif /* CONFIG_SPI_MASTER */
#if IS_ENABLED(CONFIG_I2C)
case MCP_TYPE_008:
mcp->regmap = devm_regmap_init_i2c(data, &mcp23x08_regmap);
mcp->reg_shift = 0;
mcp->chip.ngpio = 8;
mcp->chip.label = "mcp23008";
break;
case MCP_TYPE_017:
mcp->regmap = devm_regmap_init_i2c(data, &mcp23x17_regmap);
mcp->reg_shift = 1;
mcp->chip.ngpio = 16;
mcp->chip.label = "mcp23017";
break;
#endif /* CONFIG_I2C */
default:
dev_err(dev, "invalid device type (%d)\n", type);
return -EINVAL;
}
if (IS_ERR(mcp->regmap))
return PTR_ERR(mcp->regmap);
mcp->chip.base = pdata->base;
mcp->chip.can_sleep = true;
gpio: change member .dev to .parent The name .dev in a struct is normally reserved for a struct device that is let us say a superclass to the thing described by the struct. struct gpio_chip stands out by confusingly using a struct device *dev to point to the parent device (such as a platform_device) that represents the hardware. As we want to give gpio_chip:s real devices, this is not working. We need to rename this member to parent. This was done by two coccinelle scripts, I guess it is possible to combine them into one, but I don't know such stuff. They look like this: @@ struct gpio_chip *var; @@ -var->dev +var->parent and: @@ struct gpio_chip var; @@ -var.dev +var.parent and: @@ struct bgpio_chip *var; @@ -var->gc.dev +var->gc.parent Plus a few instances of bgpio that I couldn't figure out how to teach Coccinelle to rewrite. This patch hits all over the place, but I *strongly* prefer this solution to any piecemal approaches that just exercise patch mechanics all over the place. It mainly hits drivers/gpio and drivers/pinctrl which is my own backyard anyway. Cc: Haavard Skinnemoen <hskinnemoen@gmail.com> Cc: Rafał Miłecki <zajec5@gmail.com> Cc: Richard Purdie <rpurdie@rpsys.net> Cc: Mauro Carvalho Chehab <mchehab@osg.samsung.com> Cc: Alek Du <alek.du@intel.com> Cc: Jaroslav Kysela <perex@perex.cz> Cc: Takashi Iwai <tiwai@suse.com> Acked-by: Dmitry Torokhov <dmitry.torokhov@gmail.com> Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Acked-by: Lee Jones <lee.jones@linaro.org> Acked-by: Jiri Kosina <jkosina@suse.cz> Acked-by: Hans-Christian Egtvedt <egtvedt@samfundet.no> Acked-by: Jacek Anaszewski <j.anaszewski@samsung.com> Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
2015-11-04 09:56:26 +01:00
mcp->chip.parent = dev;
mcp->chip.owner = THIS_MODULE;
gpio: mcp23s08 handles multiple chips per chipselect Teach the mcp23s08 driver about a curious feature of these chips: up to four of them can share the same chipselect, with the SPI signals wired in parallel, by matching two bits in the first protocol byte against two address lines on the chip. This is handled by three software changes: * Platform data now holds an array of per-chip structs, not just one chip's address and pullup configuration. * Probe() and remove() now use another level of structure, wrapping an instance of the original structure for each mcp23s08 chip sharing that chipselect. * The HAEN bit is set, so that the hardware address bits can no longer be ignored (boot firmware may not have enabled them). The "one struct per chip" preserves the guts of the current code, but platform_data will need minor changes. OLD: /* incorrect "slave" ID may not have mattered */ .slave = 3, .pullups = BIT(3) | BIT(1) | BIT(0), NEW: /* slave address _must_ match chip's wiring */ .chip[3] = { .is_present = true, .pullups = BIT(3) | BIT(1) | BIT(0), }, There's no change in how things _behave_ for spi_device nodes with a single mcp23s08 chip. New multi-chip configurations assign GPIOs in sequence, without holes. The spi_device just resembles a bigger controller, but internally it has multiple gpio_chip instances. Signed-off-by: David Brownell <dbrownell@users.sourceforge.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-25 01:46:09 -07:00
/* verify MCP_IOCON.SEQOP = 0, so sequential reads work,
* and MCP_IOCON.HAEN = 1, so we work with all chips.
*/
ret = mcp_read(mcp, MCP_IOCON, &status);
if (ret < 0)
goto fail;
mcp->irq_controller = pdata->irq_controller;
if (mcp->irq && mcp->irq_controller) {
mcp->irq_active_high =
gpio: change member .dev to .parent The name .dev in a struct is normally reserved for a struct device that is let us say a superclass to the thing described by the struct. struct gpio_chip stands out by confusingly using a struct device *dev to point to the parent device (such as a platform_device) that represents the hardware. As we want to give gpio_chip:s real devices, this is not working. We need to rename this member to parent. This was done by two coccinelle scripts, I guess it is possible to combine them into one, but I don't know such stuff. They look like this: @@ struct gpio_chip *var; @@ -var->dev +var->parent and: @@ struct gpio_chip var; @@ -var.dev +var.parent and: @@ struct bgpio_chip *var; @@ -var->gc.dev +var->gc.parent Plus a few instances of bgpio that I couldn't figure out how to teach Coccinelle to rewrite. This patch hits all over the place, but I *strongly* prefer this solution to any piecemal approaches that just exercise patch mechanics all over the place. It mainly hits drivers/gpio and drivers/pinctrl which is my own backyard anyway. Cc: Haavard Skinnemoen <hskinnemoen@gmail.com> Cc: Rafał Miłecki <zajec5@gmail.com> Cc: Richard Purdie <rpurdie@rpsys.net> Cc: Mauro Carvalho Chehab <mchehab@osg.samsung.com> Cc: Alek Du <alek.du@intel.com> Cc: Jaroslav Kysela <perex@perex.cz> Cc: Takashi Iwai <tiwai@suse.com> Acked-by: Dmitry Torokhov <dmitry.torokhov@gmail.com> Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Acked-by: Lee Jones <lee.jones@linaro.org> Acked-by: Jiri Kosina <jkosina@suse.cz> Acked-by: Hans-Christian Egtvedt <egtvedt@samfundet.no> Acked-by: Jacek Anaszewski <j.anaszewski@samsung.com> Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
2015-11-04 09:56:26 +01:00
of_property_read_bool(mcp->chip.parent->of_node,
"microchip,irq-active-high");
mirror = pdata->mirror;
}
if ((status & IOCON_SEQOP) || !(status & IOCON_HAEN) || mirror ||
mcp->irq_active_high) {
/* mcp23s17 has IOCON twice, make sure they are in sync */
status &= ~(IOCON_SEQOP | (IOCON_SEQOP << 8));
status |= IOCON_HAEN | (IOCON_HAEN << 8);
if (mcp->irq_active_high)
status |= IOCON_INTPOL | (IOCON_INTPOL << 8);
else
status &= ~(IOCON_INTPOL | (IOCON_INTPOL << 8));
if (mirror)
status |= IOCON_MIRROR | (IOCON_MIRROR << 8);
if (type == MCP_TYPE_S18)
status |= IOCON_INTCC | (IOCON_INTCC << 8);
ret = mcp_write(mcp, MCP_IOCON, status);
if (ret < 0)
goto fail;
}
ret = devm_gpiochip_add_data(dev, &mcp->chip, mcp);
if (ret < 0)
goto fail;
if (mcp->irq && mcp->irq_controller) {
ret = mcp23s08_irq_setup(mcp);
if (ret)
goto fail;
}
mcp->pinctrl_desc.name = "mcp23xxx-pinctrl";
mcp->pinctrl_desc.pctlops = &mcp_pinctrl_ops;
mcp->pinctrl_desc.confops = &mcp_pinconf_ops;
mcp->pinctrl_desc.npins = mcp->chip.ngpio;
if (mcp->pinctrl_desc.npins == 8)
mcp->pinctrl_desc.pins = mcp23x08_pins;
else if (mcp->pinctrl_desc.npins == 16)
mcp->pinctrl_desc.pins = mcp23x17_pins;
mcp->pinctrl_desc.owner = THIS_MODULE;
mcp->pctldev = devm_pinctrl_register(dev, &mcp->pinctrl_desc, mcp);
if (IS_ERR(mcp->pctldev)) {
ret = PTR_ERR(mcp->pctldev);
goto fail;
}
gpio: mcp23s08 handles multiple chips per chipselect Teach the mcp23s08 driver about a curious feature of these chips: up to four of them can share the same chipselect, with the SPI signals wired in parallel, by matching two bits in the first protocol byte against two address lines on the chip. This is handled by three software changes: * Platform data now holds an array of per-chip structs, not just one chip's address and pullup configuration. * Probe() and remove() now use another level of structure, wrapping an instance of the original structure for each mcp23s08 chip sharing that chipselect. * The HAEN bit is set, so that the hardware address bits can no longer be ignored (boot firmware may not have enabled them). The "one struct per chip" preserves the guts of the current code, but platform_data will need minor changes. OLD: /* incorrect "slave" ID may not have mattered */ .slave = 3, .pullups = BIT(3) | BIT(1) | BIT(0), NEW: /* slave address _must_ match chip's wiring */ .chip[3] = { .is_present = true, .pullups = BIT(3) | BIT(1) | BIT(0), }, There's no change in how things _behave_ for spi_device nodes with a single mcp23s08 chip. New multi-chip configurations assign GPIOs in sequence, without holes. The spi_device just resembles a bigger controller, but internally it has multiple gpio_chip instances. Signed-off-by: David Brownell <dbrownell@users.sourceforge.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-25 01:46:09 -07:00
fail:
if (ret < 0)
dev_dbg(dev, "can't setup chip %d, --> %d\n", addr, ret);
return ret;
gpio: mcp23s08 handles multiple chips per chipselect Teach the mcp23s08 driver about a curious feature of these chips: up to four of them can share the same chipselect, with the SPI signals wired in parallel, by matching two bits in the first protocol byte against two address lines on the chip. This is handled by three software changes: * Platform data now holds an array of per-chip structs, not just one chip's address and pullup configuration. * Probe() and remove() now use another level of structure, wrapping an instance of the original structure for each mcp23s08 chip sharing that chipselect. * The HAEN bit is set, so that the hardware address bits can no longer be ignored (boot firmware may not have enabled them). The "one struct per chip" preserves the guts of the current code, but platform_data will need minor changes. OLD: /* incorrect "slave" ID may not have mattered */ .slave = 3, .pullups = BIT(3) | BIT(1) | BIT(0), NEW: /* slave address _must_ match chip's wiring */ .chip[3] = { .is_present = true, .pullups = BIT(3) | BIT(1) | BIT(0), }, There's no change in how things _behave_ for spi_device nodes with a single mcp23s08 chip. New multi-chip configurations assign GPIOs in sequence, without holes. The spi_device just resembles a bigger controller, but internally it has multiple gpio_chip instances. Signed-off-by: David Brownell <dbrownell@users.sourceforge.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-25 01:46:09 -07:00
}
/*----------------------------------------------------------------------*/
#ifdef CONFIG_OF
#ifdef CONFIG_SPI_MASTER
static const struct of_device_id mcp23s08_spi_of_match[] = {
{
.compatible = "microchip,mcp23s08",
.data = (void *) MCP_TYPE_S08,
},
{
.compatible = "microchip,mcp23s17",
.data = (void *) MCP_TYPE_S17,
},
{
.compatible = "microchip,mcp23s18",
.data = (void *) MCP_TYPE_S18,
},
/* NOTE: The use of the mcp prefix is deprecated and will be removed. */
{
.compatible = "mcp,mcp23s08",
.data = (void *) MCP_TYPE_S08,
},
{
.compatible = "mcp,mcp23s17",
.data = (void *) MCP_TYPE_S17,
},
{ },
};
MODULE_DEVICE_TABLE(of, mcp23s08_spi_of_match);
#endif
#if IS_ENABLED(CONFIG_I2C)
static const struct of_device_id mcp23s08_i2c_of_match[] = {
{
.compatible = "microchip,mcp23008",
.data = (void *) MCP_TYPE_008,
},
{
.compatible = "microchip,mcp23017",
.data = (void *) MCP_TYPE_017,
},
/* NOTE: The use of the mcp prefix is deprecated and will be removed. */
{
.compatible = "mcp,mcp23008",
.data = (void *) MCP_TYPE_008,
},
{
.compatible = "mcp,mcp23017",
.data = (void *) MCP_TYPE_017,
},
{ },
};
MODULE_DEVICE_TABLE(of, mcp23s08_i2c_of_match);
#endif
#endif /* CONFIG_OF */
#if IS_ENABLED(CONFIG_I2C)
static int mcp230xx_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct mcp23s08_platform_data *pdata, local_pdata;
struct mcp23s08 *mcp;
int status;
pdata = dev_get_platdata(&client->dev);
if (!pdata) {
pdata = &local_pdata;
pdata->base = -1;
pdata->irq_controller = device_property_read_bool(
&client->dev, "interrupt-controller");
pdata->mirror = device_property_read_bool(
&client->dev, "microchip,irq-mirror");
}
mcp = devm_kzalloc(&client->dev, sizeof(*mcp), GFP_KERNEL);
if (!mcp)
return -ENOMEM;
mcp->irq = client->irq;
status = mcp23s08_probe_one(mcp, &client->dev, client, client->addr,
id->driver_data, pdata, 0);
if (status)
return status;
i2c_set_clientdata(client, mcp);
return 0;
}
static const struct i2c_device_id mcp230xx_id[] = {
{ "mcp23008", MCP_TYPE_008 },
{ "mcp23017", MCP_TYPE_017 },
{ },
};
MODULE_DEVICE_TABLE(i2c, mcp230xx_id);
static struct i2c_driver mcp230xx_driver = {
.driver = {
.name = "mcp230xx",
.of_match_table = of_match_ptr(mcp23s08_i2c_of_match),
},
.probe = mcp230xx_probe,
.id_table = mcp230xx_id,
};
static int __init mcp23s08_i2c_init(void)
{
return i2c_add_driver(&mcp230xx_driver);
}
static void mcp23s08_i2c_exit(void)
{
i2c_del_driver(&mcp230xx_driver);
}
#else
static int __init mcp23s08_i2c_init(void) { return 0; }
static void mcp23s08_i2c_exit(void) { }
#endif /* CONFIG_I2C */
/*----------------------------------------------------------------------*/
#ifdef CONFIG_SPI_MASTER
gpio: mcp23s08 handles multiple chips per chipselect Teach the mcp23s08 driver about a curious feature of these chips: up to four of them can share the same chipselect, with the SPI signals wired in parallel, by matching two bits in the first protocol byte against two address lines on the chip. This is handled by three software changes: * Platform data now holds an array of per-chip structs, not just one chip's address and pullup configuration. * Probe() and remove() now use another level of structure, wrapping an instance of the original structure for each mcp23s08 chip sharing that chipselect. * The HAEN bit is set, so that the hardware address bits can no longer be ignored (boot firmware may not have enabled them). The "one struct per chip" preserves the guts of the current code, but platform_data will need minor changes. OLD: /* incorrect "slave" ID may not have mattered */ .slave = 3, .pullups = BIT(3) | BIT(1) | BIT(0), NEW: /* slave address _must_ match chip's wiring */ .chip[3] = { .is_present = true, .pullups = BIT(3) | BIT(1) | BIT(0), }, There's no change in how things _behave_ for spi_device nodes with a single mcp23s08 chip. New multi-chip configurations assign GPIOs in sequence, without holes. The spi_device just resembles a bigger controller, but internally it has multiple gpio_chip instances. Signed-off-by: David Brownell <dbrownell@users.sourceforge.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-25 01:46:09 -07:00
static int mcp23s08_probe(struct spi_device *spi)
{
struct mcp23s08_platform_data *pdata, local_pdata;
gpio: mcp23s08 handles multiple chips per chipselect Teach the mcp23s08 driver about a curious feature of these chips: up to four of them can share the same chipselect, with the SPI signals wired in parallel, by matching two bits in the first protocol byte against two address lines on the chip. This is handled by three software changes: * Platform data now holds an array of per-chip structs, not just one chip's address and pullup configuration. * Probe() and remove() now use another level of structure, wrapping an instance of the original structure for each mcp23s08 chip sharing that chipselect. * The HAEN bit is set, so that the hardware address bits can no longer be ignored (boot firmware may not have enabled them). The "one struct per chip" preserves the guts of the current code, but platform_data will need minor changes. OLD: /* incorrect "slave" ID may not have mattered */ .slave = 3, .pullups = BIT(3) | BIT(1) | BIT(0), NEW: /* slave address _must_ match chip's wiring */ .chip[3] = { .is_present = true, .pullups = BIT(3) | BIT(1) | BIT(0), }, There's no change in how things _behave_ for spi_device nodes with a single mcp23s08 chip. New multi-chip configurations assign GPIOs in sequence, without holes. The spi_device just resembles a bigger controller, but internally it has multiple gpio_chip instances. Signed-off-by: David Brownell <dbrownell@users.sourceforge.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-25 01:46:09 -07:00
unsigned addr;
int chips = 0;
gpio: mcp23s08 handles multiple chips per chipselect Teach the mcp23s08 driver about a curious feature of these chips: up to four of them can share the same chipselect, with the SPI signals wired in parallel, by matching two bits in the first protocol byte against two address lines on the chip. This is handled by three software changes: * Platform data now holds an array of per-chip structs, not just one chip's address and pullup configuration. * Probe() and remove() now use another level of structure, wrapping an instance of the original structure for each mcp23s08 chip sharing that chipselect. * The HAEN bit is set, so that the hardware address bits can no longer be ignored (boot firmware may not have enabled them). The "one struct per chip" preserves the guts of the current code, but platform_data will need minor changes. OLD: /* incorrect "slave" ID may not have mattered */ .slave = 3, .pullups = BIT(3) | BIT(1) | BIT(0), NEW: /* slave address _must_ match chip's wiring */ .chip[3] = { .is_present = true, .pullups = BIT(3) | BIT(1) | BIT(0), }, There's no change in how things _behave_ for spi_device nodes with a single mcp23s08 chip. New multi-chip configurations assign GPIOs in sequence, without holes. The spi_device just resembles a bigger controller, but internally it has multiple gpio_chip instances. Signed-off-by: David Brownell <dbrownell@users.sourceforge.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-25 01:46:09 -07:00
struct mcp23s08_driver_data *data;
int status, type;
unsigned ngpio = 0;
const struct of_device_id *match;
u32 spi_present_mask = 0;
match = of_match_device(of_match_ptr(mcp23s08_spi_of_match), &spi->dev);
if (match)
type = (int)(uintptr_t)match->data;
else
type = spi_get_device_id(spi)->driver_data;
pdata = dev_get_platdata(&spi->dev);
if (!pdata) {
pdata = &local_pdata;
pdata->base = -1;
pdata->irq_controller = device_property_read_bool(&spi->dev,
"interrupt-controller");
pdata->mirror = device_property_read_bool(&spi->dev,
"microchip,irq-mirror");
status = device_property_read_u32(&spi->dev,
"microchip,spi-present-mask", &spi_present_mask);
if (status) {
status = device_property_read_u32(&spi->dev,
"mcp,spi-present-mask", &spi_present_mask);
if (status) {
dev_err(&spi->dev, "missing spi-present-mask");
return -ENODEV;
}
}
} else {
for (addr = 0; addr < ARRAY_SIZE(pdata->chip); addr++) {
if (!pdata->chip[addr].is_present)
continue;
if ((type == MCP_TYPE_S08) && (addr > 3)) {
dev_err(&spi->dev,
"mcp23s08 only supports address 0..3");
return -EINVAL;
}
spi_present_mask |= BIT(addr);
}
gpio: mcp23s08 handles multiple chips per chipselect Teach the mcp23s08 driver about a curious feature of these chips: up to four of them can share the same chipselect, with the SPI signals wired in parallel, by matching two bits in the first protocol byte against two address lines on the chip. This is handled by three software changes: * Platform data now holds an array of per-chip structs, not just one chip's address and pullup configuration. * Probe() and remove() now use another level of structure, wrapping an instance of the original structure for each mcp23s08 chip sharing that chipselect. * The HAEN bit is set, so that the hardware address bits can no longer be ignored (boot firmware may not have enabled them). The "one struct per chip" preserves the guts of the current code, but platform_data will need minor changes. OLD: /* incorrect "slave" ID may not have mattered */ .slave = 3, .pullups = BIT(3) | BIT(1) | BIT(0), NEW: /* slave address _must_ match chip's wiring */ .chip[3] = { .is_present = true, .pullups = BIT(3) | BIT(1) | BIT(0), }, There's no change in how things _behave_ for spi_device nodes with a single mcp23s08 chip. New multi-chip configurations assign GPIOs in sequence, without holes. The spi_device just resembles a bigger controller, but internally it has multiple gpio_chip instances. Signed-off-by: David Brownell <dbrownell@users.sourceforge.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-25 01:46:09 -07:00
}
if (!spi_present_mask || spi_present_mask >= 256) {
dev_err(&spi->dev, "invalid spi-present-mask");
return -ENODEV;
}
for (addr = 0; addr < ARRAY_SIZE(pdata->chip); addr++) {
if (spi_present_mask & BIT(addr))
chips++;
}
if (!chips)
return -ENODEV;
data = devm_kzalloc(&spi->dev,
sizeof(*data) + chips * sizeof(struct mcp23s08),
GFP_KERNEL);
gpio: mcp23s08 handles multiple chips per chipselect Teach the mcp23s08 driver about a curious feature of these chips: up to four of them can share the same chipselect, with the SPI signals wired in parallel, by matching two bits in the first protocol byte against two address lines on the chip. This is handled by three software changes: * Platform data now holds an array of per-chip structs, not just one chip's address and pullup configuration. * Probe() and remove() now use another level of structure, wrapping an instance of the original structure for each mcp23s08 chip sharing that chipselect. * The HAEN bit is set, so that the hardware address bits can no longer be ignored (boot firmware may not have enabled them). The "one struct per chip" preserves the guts of the current code, but platform_data will need minor changes. OLD: /* incorrect "slave" ID may not have mattered */ .slave = 3, .pullups = BIT(3) | BIT(1) | BIT(0), NEW: /* slave address _must_ match chip's wiring */ .chip[3] = { .is_present = true, .pullups = BIT(3) | BIT(1) | BIT(0), }, There's no change in how things _behave_ for spi_device nodes with a single mcp23s08 chip. New multi-chip configurations assign GPIOs in sequence, without holes. The spi_device just resembles a bigger controller, but internally it has multiple gpio_chip instances. Signed-off-by: David Brownell <dbrownell@users.sourceforge.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-25 01:46:09 -07:00
if (!data)
return -ENOMEM;
gpio: mcp23s08 handles multiple chips per chipselect Teach the mcp23s08 driver about a curious feature of these chips: up to four of them can share the same chipselect, with the SPI signals wired in parallel, by matching two bits in the first protocol byte against two address lines on the chip. This is handled by three software changes: * Platform data now holds an array of per-chip structs, not just one chip's address and pullup configuration. * Probe() and remove() now use another level of structure, wrapping an instance of the original structure for each mcp23s08 chip sharing that chipselect. * The HAEN bit is set, so that the hardware address bits can no longer be ignored (boot firmware may not have enabled them). The "one struct per chip" preserves the guts of the current code, but platform_data will need minor changes. OLD: /* incorrect "slave" ID may not have mattered */ .slave = 3, .pullups = BIT(3) | BIT(1) | BIT(0), NEW: /* slave address _must_ match chip's wiring */ .chip[3] = { .is_present = true, .pullups = BIT(3) | BIT(1) | BIT(0), }, There's no change in how things _behave_ for spi_device nodes with a single mcp23s08 chip. New multi-chip configurations assign GPIOs in sequence, without holes. The spi_device just resembles a bigger controller, but internally it has multiple gpio_chip instances. Signed-off-by: David Brownell <dbrownell@users.sourceforge.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-25 01:46:09 -07:00
spi_set_drvdata(spi, data);
for (addr = 0; addr < ARRAY_SIZE(pdata->chip); addr++) {
if (!(spi_present_mask & (1 << addr)))
gpio: mcp23s08 handles multiple chips per chipselect Teach the mcp23s08 driver about a curious feature of these chips: up to four of them can share the same chipselect, with the SPI signals wired in parallel, by matching two bits in the first protocol byte against two address lines on the chip. This is handled by three software changes: * Platform data now holds an array of per-chip structs, not just one chip's address and pullup configuration. * Probe() and remove() now use another level of structure, wrapping an instance of the original structure for each mcp23s08 chip sharing that chipselect. * The HAEN bit is set, so that the hardware address bits can no longer be ignored (boot firmware may not have enabled them). The "one struct per chip" preserves the guts of the current code, but platform_data will need minor changes. OLD: /* incorrect "slave" ID may not have mattered */ .slave = 3, .pullups = BIT(3) | BIT(1) | BIT(0), NEW: /* slave address _must_ match chip's wiring */ .chip[3] = { .is_present = true, .pullups = BIT(3) | BIT(1) | BIT(0), }, There's no change in how things _behave_ for spi_device nodes with a single mcp23s08 chip. New multi-chip configurations assign GPIOs in sequence, without holes. The spi_device just resembles a bigger controller, but internally it has multiple gpio_chip instances. Signed-off-by: David Brownell <dbrownell@users.sourceforge.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-25 01:46:09 -07:00
continue;
chips--;
data->mcp[addr] = &data->chip[chips];
data->mcp[addr]->irq = spi->irq;
status = mcp23s08_probe_one(data->mcp[addr], &spi->dev, spi,
0x40 | (addr << 1), type, pdata,
addr);
gpio: mcp23s08 handles multiple chips per chipselect Teach the mcp23s08 driver about a curious feature of these chips: up to four of them can share the same chipselect, with the SPI signals wired in parallel, by matching two bits in the first protocol byte against two address lines on the chip. This is handled by three software changes: * Platform data now holds an array of per-chip structs, not just one chip's address and pullup configuration. * Probe() and remove() now use another level of structure, wrapping an instance of the original structure for each mcp23s08 chip sharing that chipselect. * The HAEN bit is set, so that the hardware address bits can no longer be ignored (boot firmware may not have enabled them). The "one struct per chip" preserves the guts of the current code, but platform_data will need minor changes. OLD: /* incorrect "slave" ID may not have mattered */ .slave = 3, .pullups = BIT(3) | BIT(1) | BIT(0), NEW: /* slave address _must_ match chip's wiring */ .chip[3] = { .is_present = true, .pullups = BIT(3) | BIT(1) | BIT(0), }, There's no change in how things _behave_ for spi_device nodes with a single mcp23s08 chip. New multi-chip configurations assign GPIOs in sequence, without holes. The spi_device just resembles a bigger controller, but internally it has multiple gpio_chip instances. Signed-off-by: David Brownell <dbrownell@users.sourceforge.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-25 01:46:09 -07:00
if (status < 0)
return status;
if (pdata->base != -1)
pdata->base += data->mcp[addr]->chip.ngpio;
ngpio += data->mcp[addr]->chip.ngpio;
gpio: mcp23s08 handles multiple chips per chipselect Teach the mcp23s08 driver about a curious feature of these chips: up to four of them can share the same chipselect, with the SPI signals wired in parallel, by matching two bits in the first protocol byte against two address lines on the chip. This is handled by three software changes: * Platform data now holds an array of per-chip structs, not just one chip's address and pullup configuration. * Probe() and remove() now use another level of structure, wrapping an instance of the original structure for each mcp23s08 chip sharing that chipselect. * The HAEN bit is set, so that the hardware address bits can no longer be ignored (boot firmware may not have enabled them). The "one struct per chip" preserves the guts of the current code, but platform_data will need minor changes. OLD: /* incorrect "slave" ID may not have mattered */ .slave = 3, .pullups = BIT(3) | BIT(1) | BIT(0), NEW: /* slave address _must_ match chip's wiring */ .chip[3] = { .is_present = true, .pullups = BIT(3) | BIT(1) | BIT(0), }, There's no change in how things _behave_ for spi_device nodes with a single mcp23s08 chip. New multi-chip configurations assign GPIOs in sequence, without holes. The spi_device just resembles a bigger controller, but internally it has multiple gpio_chip instances. Signed-off-by: David Brownell <dbrownell@users.sourceforge.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-25 01:46:09 -07:00
}
data->ngpio = ngpio;
/* NOTE: these chips have a relatively sane IRQ framework, with
* per-signal masking and level/edge triggering. It's not yet
* handled here...
*/
return 0;
}
static const struct spi_device_id mcp23s08_ids[] = {
{ "mcp23s08", MCP_TYPE_S08 },
{ "mcp23s17", MCP_TYPE_S17 },
{ "mcp23s18", MCP_TYPE_S18 },
{ },
};
MODULE_DEVICE_TABLE(spi, mcp23s08_ids);
static struct spi_driver mcp23s08_driver = {
.probe = mcp23s08_probe,
.id_table = mcp23s08_ids,
.driver = {
.name = "mcp23s08",
.of_match_table = of_match_ptr(mcp23s08_spi_of_match),
},
};
static int __init mcp23s08_spi_init(void)
{
return spi_register_driver(&mcp23s08_driver);
}
static void mcp23s08_spi_exit(void)
{
spi_unregister_driver(&mcp23s08_driver);
}
#else
static int __init mcp23s08_spi_init(void) { return 0; }
static void mcp23s08_spi_exit(void) { }
#endif /* CONFIG_SPI_MASTER */
/*----------------------------------------------------------------------*/
static int __init mcp23s08_init(void)
{
int ret;
ret = mcp23s08_spi_init();
if (ret)
goto spi_fail;
ret = mcp23s08_i2c_init();
if (ret)
goto i2c_fail;
return 0;
i2c_fail:
mcp23s08_spi_exit();
spi_fail:
return ret;
}
/* register after spi/i2c postcore initcall and before
* subsys initcalls that may rely on these GPIOs
*/
subsys_initcall(mcp23s08_init);
static void __exit mcp23s08_exit(void)
{
mcp23s08_spi_exit();
mcp23s08_i2c_exit();
}
module_exit(mcp23s08_exit);
MODULE_LICENSE("GPL");