linux-next/drivers/nvdimm/region.c

164 lines
4.3 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright(c) 2013-2015 Intel Corporation. All rights reserved.
*/
#include <linux/memregion.h>
nd_btt: atomic sector updates BTT stands for Block Translation Table, and is a way to provide power fail sector atomicity semantics for block devices that have the ability to perform byte granularity IO. It relies on the capability of libnvdimm namespace devices to do byte aligned IO. The BTT works as a stacked blocked device, and reserves a chunk of space from the backing device for its accounting metadata. It is a bio-based driver because all IO is done synchronously, and there is no queuing or asynchronous completions at either the device or the driver level. The BTT uses 'lanes' to index into various 'on-disk' data structures, and lanes also act as a synchronization mechanism in case there are more CPUs than available lanes. We did a comparison between two lane lock strategies - first where we kept an atomic counter around that tracked which was the last lane that was used, and 'our' lane was determined by atomically incrementing that. That way, for the nr_cpus > nr_lanes case, theoretically, no CPU would be blocked waiting for a lane. The other strategy was to use the cpu number we're scheduled on to and hash it to a lane number. Theoretically, this could block an IO that could've otherwise run using a different, free lane. But some fio workloads showed that the direct cpu -> lane hash performed faster than tracking 'last lane' - my reasoning is the cache thrash caused by moving the atomic variable made that approach slower than simply waiting out the in-progress IO. This supports the conclusion that the driver can be a very simple bio-based one that does synchronous IOs instead of queuing. Cc: Andy Lutomirski <luto@amacapital.net> Cc: Boaz Harrosh <boaz@plexistor.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Jens Axboe <axboe@fb.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Christoph Hellwig <hch@lst.de> Cc: Neil Brown <neilb@suse.de> Cc: Jeff Moyer <jmoyer@redhat.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Greg KH <gregkh@linuxfoundation.org> [jmoyer: fix nmi watchdog timeout in btt_map_init] [jmoyer: move btt initialization to module load path] [jmoyer: fix memory leak in the btt initialization path] [jmoyer: Don't overwrite corrupted arenas] Signed-off-by: Vishal Verma <vishal.l.verma@linux.intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-06-25 08:20:32 +00:00
#include <linux/cpumask.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/nd.h>
#include "nd-core.h"
#include "nd.h"
static int nd_region_probe(struct device *dev)
{
int err, rc;
nd_btt: atomic sector updates BTT stands for Block Translation Table, and is a way to provide power fail sector atomicity semantics for block devices that have the ability to perform byte granularity IO. It relies on the capability of libnvdimm namespace devices to do byte aligned IO. The BTT works as a stacked blocked device, and reserves a chunk of space from the backing device for its accounting metadata. It is a bio-based driver because all IO is done synchronously, and there is no queuing or asynchronous completions at either the device or the driver level. The BTT uses 'lanes' to index into various 'on-disk' data structures, and lanes also act as a synchronization mechanism in case there are more CPUs than available lanes. We did a comparison between two lane lock strategies - first where we kept an atomic counter around that tracked which was the last lane that was used, and 'our' lane was determined by atomically incrementing that. That way, for the nr_cpus > nr_lanes case, theoretically, no CPU would be blocked waiting for a lane. The other strategy was to use the cpu number we're scheduled on to and hash it to a lane number. Theoretically, this could block an IO that could've otherwise run using a different, free lane. But some fio workloads showed that the direct cpu -> lane hash performed faster than tracking 'last lane' - my reasoning is the cache thrash caused by moving the atomic variable made that approach slower than simply waiting out the in-progress IO. This supports the conclusion that the driver can be a very simple bio-based one that does synchronous IOs instead of queuing. Cc: Andy Lutomirski <luto@amacapital.net> Cc: Boaz Harrosh <boaz@plexistor.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Jens Axboe <axboe@fb.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Christoph Hellwig <hch@lst.de> Cc: Neil Brown <neilb@suse.de> Cc: Jeff Moyer <jmoyer@redhat.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Greg KH <gregkh@linuxfoundation.org> [jmoyer: fix nmi watchdog timeout in btt_map_init] [jmoyer: move btt initialization to module load path] [jmoyer: fix memory leak in the btt initialization path] [jmoyer: Don't overwrite corrupted arenas] Signed-off-by: Vishal Verma <vishal.l.verma@linux.intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-06-25 08:20:32 +00:00
static unsigned long once;
struct nd_region_data *ndrd;
struct nd_region *nd_region = to_nd_region(dev);
struct range range = {
.start = nd_region->ndr_start,
.end = nd_region->ndr_start + nd_region->ndr_size - 1,
};
nd_btt: atomic sector updates BTT stands for Block Translation Table, and is a way to provide power fail sector atomicity semantics for block devices that have the ability to perform byte granularity IO. It relies on the capability of libnvdimm namespace devices to do byte aligned IO. The BTT works as a stacked blocked device, and reserves a chunk of space from the backing device for its accounting metadata. It is a bio-based driver because all IO is done synchronously, and there is no queuing or asynchronous completions at either the device or the driver level. The BTT uses 'lanes' to index into various 'on-disk' data structures, and lanes also act as a synchronization mechanism in case there are more CPUs than available lanes. We did a comparison between two lane lock strategies - first where we kept an atomic counter around that tracked which was the last lane that was used, and 'our' lane was determined by atomically incrementing that. That way, for the nr_cpus > nr_lanes case, theoretically, no CPU would be blocked waiting for a lane. The other strategy was to use the cpu number we're scheduled on to and hash it to a lane number. Theoretically, this could block an IO that could've otherwise run using a different, free lane. But some fio workloads showed that the direct cpu -> lane hash performed faster than tracking 'last lane' - my reasoning is the cache thrash caused by moving the atomic variable made that approach slower than simply waiting out the in-progress IO. This supports the conclusion that the driver can be a very simple bio-based one that does synchronous IOs instead of queuing. Cc: Andy Lutomirski <luto@amacapital.net> Cc: Boaz Harrosh <boaz@plexistor.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Jens Axboe <axboe@fb.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Christoph Hellwig <hch@lst.de> Cc: Neil Brown <neilb@suse.de> Cc: Jeff Moyer <jmoyer@redhat.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Greg KH <gregkh@linuxfoundation.org> [jmoyer: fix nmi watchdog timeout in btt_map_init] [jmoyer: move btt initialization to module load path] [jmoyer: fix memory leak in the btt initialization path] [jmoyer: Don't overwrite corrupted arenas] Signed-off-by: Vishal Verma <vishal.l.verma@linux.intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-06-25 08:20:32 +00:00
if (nd_region->num_lanes > num_online_cpus()
&& nd_region->num_lanes < num_possible_cpus()
&& !test_and_set_bit(0, &once)) {
dev_dbg(dev, "online cpus (%d) < concurrent i/o lanes (%d) < possible cpus (%d)\n",
nd_btt: atomic sector updates BTT stands for Block Translation Table, and is a way to provide power fail sector atomicity semantics for block devices that have the ability to perform byte granularity IO. It relies on the capability of libnvdimm namespace devices to do byte aligned IO. The BTT works as a stacked blocked device, and reserves a chunk of space from the backing device for its accounting metadata. It is a bio-based driver because all IO is done synchronously, and there is no queuing or asynchronous completions at either the device or the driver level. The BTT uses 'lanes' to index into various 'on-disk' data structures, and lanes also act as a synchronization mechanism in case there are more CPUs than available lanes. We did a comparison between two lane lock strategies - first where we kept an atomic counter around that tracked which was the last lane that was used, and 'our' lane was determined by atomically incrementing that. That way, for the nr_cpus > nr_lanes case, theoretically, no CPU would be blocked waiting for a lane. The other strategy was to use the cpu number we're scheduled on to and hash it to a lane number. Theoretically, this could block an IO that could've otherwise run using a different, free lane. But some fio workloads showed that the direct cpu -> lane hash performed faster than tracking 'last lane' - my reasoning is the cache thrash caused by moving the atomic variable made that approach slower than simply waiting out the in-progress IO. This supports the conclusion that the driver can be a very simple bio-based one that does synchronous IOs instead of queuing. Cc: Andy Lutomirski <luto@amacapital.net> Cc: Boaz Harrosh <boaz@plexistor.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Jens Axboe <axboe@fb.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Christoph Hellwig <hch@lst.de> Cc: Neil Brown <neilb@suse.de> Cc: Jeff Moyer <jmoyer@redhat.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Greg KH <gregkh@linuxfoundation.org> [jmoyer: fix nmi watchdog timeout in btt_map_init] [jmoyer: move btt initialization to module load path] [jmoyer: fix memory leak in the btt initialization path] [jmoyer: Don't overwrite corrupted arenas] Signed-off-by: Vishal Verma <vishal.l.verma@linux.intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-06-25 08:20:32 +00:00
num_online_cpus(), nd_region->num_lanes,
num_possible_cpus());
dev_dbg(dev, "setting nr_cpus=%d may yield better libnvdimm device performance\n",
nd_btt: atomic sector updates BTT stands for Block Translation Table, and is a way to provide power fail sector atomicity semantics for block devices that have the ability to perform byte granularity IO. It relies on the capability of libnvdimm namespace devices to do byte aligned IO. The BTT works as a stacked blocked device, and reserves a chunk of space from the backing device for its accounting metadata. It is a bio-based driver because all IO is done synchronously, and there is no queuing or asynchronous completions at either the device or the driver level. The BTT uses 'lanes' to index into various 'on-disk' data structures, and lanes also act as a synchronization mechanism in case there are more CPUs than available lanes. We did a comparison between two lane lock strategies - first where we kept an atomic counter around that tracked which was the last lane that was used, and 'our' lane was determined by atomically incrementing that. That way, for the nr_cpus > nr_lanes case, theoretically, no CPU would be blocked waiting for a lane. The other strategy was to use the cpu number we're scheduled on to and hash it to a lane number. Theoretically, this could block an IO that could've otherwise run using a different, free lane. But some fio workloads showed that the direct cpu -> lane hash performed faster than tracking 'last lane' - my reasoning is the cache thrash caused by moving the atomic variable made that approach slower than simply waiting out the in-progress IO. This supports the conclusion that the driver can be a very simple bio-based one that does synchronous IOs instead of queuing. Cc: Andy Lutomirski <luto@amacapital.net> Cc: Boaz Harrosh <boaz@plexistor.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Jens Axboe <axboe@fb.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Christoph Hellwig <hch@lst.de> Cc: Neil Brown <neilb@suse.de> Cc: Jeff Moyer <jmoyer@redhat.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Greg KH <gregkh@linuxfoundation.org> [jmoyer: fix nmi watchdog timeout in btt_map_init] [jmoyer: move btt initialization to module load path] [jmoyer: fix memory leak in the btt initialization path] [jmoyer: Don't overwrite corrupted arenas] Signed-off-by: Vishal Verma <vishal.l.verma@linux.intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-06-25 08:20:32 +00:00
nd_region->num_lanes);
}
rc = nd_region_activate(nd_region);
if (rc)
return rc;
if (devm_init_badblocks(dev, &nd_region->bb))
return -ENODEV;
nd_region->bb_state =
sysfs_get_dirent(nd_region->dev.kobj.sd, "badblocks");
if (!nd_region->bb_state)
dev_warn(dev, "'badblocks' notification disabled\n");
nvdimm_badblocks_populate(nd_region, &nd_region->bb, &range);
libnvdimm/region: Register badblocks before namespaces Namespace activation expects to be able to reference region badblocks. The following warning sometimes triggers when asynchronous namespace activation races in front of the completion of namespace probing. Move all possible namespace probing after region badblocks initialization. Otherwise, lockdep sometimes catches the uninitialized state of the badblocks seqlock with stack trace signatures like: INFO: trying to register non-static key. pmem2: detected capacity change from 0 to 136365211648 the code is fine but needs lockdep annotation. turning off the locking correctness validator. CPU: 9 PID: 358 Comm: kworker/u80:5 Tainted: G OE 5.2.0-rc4+ #3382 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 0.0.0 02/06/2015 Workqueue: events_unbound async_run_entry_fn Call Trace: dump_stack+0x85/0xc0 pmem1.12: detected capacity change from 0 to 8589934592 register_lock_class+0x56a/0x570 ? check_object+0x140/0x270 __lock_acquire+0x80/0x1710 ? __mutex_lock+0x39d/0x910 lock_acquire+0x9e/0x180 ? nd_pfn_validate+0x28f/0x440 [libnvdimm] badblocks_check+0x93/0x1f0 ? nd_pfn_validate+0x28f/0x440 [libnvdimm] nd_pfn_validate+0x28f/0x440 [libnvdimm] ? lockdep_hardirqs_on+0xf0/0x180 nd_dax_probe+0x9a/0x120 [libnvdimm] nd_pmem_probe+0x6d/0x180 [nd_pmem] nvdimm_bus_probe+0x90/0x2c0 [libnvdimm] Fixes: 48af2f7e52f4 ("libnvdimm, pfn: during init, clear errors...") Cc: <stable@vger.kernel.org> Cc: Vishal Verma <vishal.l.verma@intel.com> Reviewed-by: Vishal Verma <vishal.l.verma@intel.com> Link: https://lore.kernel.org/r/156341208365.292348.1547528796026249120.stgit@dwillia2-desk3.amr.corp.intel.com Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2019-07-18 01:08:03 +00:00
rc = nd_region_register_namespaces(nd_region, &err);
if (rc < 0)
return rc;
ndrd = dev_get_drvdata(dev);
ndrd->ns_active = rc;
ndrd->ns_count = rc + err;
if (rc && err && rc == err)
return -ENODEV;
nd_region->btt_seed = nd_btt_create(nd_region);
nd_region->pfn_seed = nd_pfn_create(nd_region);
nd_region->dax_seed = nd_dax_create(nd_region);
if (err == 0)
return 0;
/*
* Given multiple namespaces per region, we do not want to
* disable all the successfully registered peer namespaces upon
* a single registration failure. If userspace is missing a
* namespace that it expects it can disable/re-enable the region
* to retry discovery after correcting the failure.
* <regionX>/namespaces returns the current
* "<async-registered>/<total>" namespace count.
*/
dev_err(dev, "failed to register %d namespace%s, continuing...\n",
err, err == 1 ? "" : "s");
return 0;
}
static int child_unregister(struct device *dev, void *data)
{
nd_device_unregister(dev, ND_SYNC);
return 0;
}
static void nd_region_remove(struct device *dev)
{
struct nd_region *nd_region = to_nd_region(dev);
device_for_each_child(dev, NULL, child_unregister);
/* flush attribute readers and disable */
nvdimm_bus_lock(dev);
nd_region->ns_seed = NULL;
nd_region->btt_seed = NULL;
nd_region->pfn_seed = NULL;
nd_region->dax_seed = NULL;
dev_set_drvdata(dev, NULL);
nvdimm_bus_unlock(dev);
/*
* Note, this assumes device_lock() context to not race
* nd_region_notify()
*/
sysfs_put(nd_region->bb_state);
nd_region->bb_state = NULL;
/*
* Try to flush caches here since a disabled region may be subject to
* secure erase while disabled, and previous dirty data should not be
* written back to a new instance of the region. This only matters on
* bare metal where security commands are available, so silent failure
* here is ok.
*/
if (cpu_cache_has_invalidate_memregion())
cpu_cache_invalidate_memregion(IORES_DESC_PERSISTENT_MEMORY);
}
static int child_notify(struct device *dev, void *data)
{
nd_device_notify(dev, *(enum nvdimm_event *) data);
return 0;
}
static void nd_region_notify(struct device *dev, enum nvdimm_event event)
{
if (event == NVDIMM_REVALIDATE_POISON) {
struct nd_region *nd_region = to_nd_region(dev);
libnvdimm/region: Initialize bad block for volatile namespaces We do check for a bad block during namespace init and that use region bad block list. We need to initialize the bad block for volatile regions for this to work. We also observe a lockdep warning as below because the lock is not initialized correctly since we skip bad block init for volatile regions. INFO: trying to register non-static key. the code is fine but needs lockdep annotation. turning off the locking correctness validator. CPU: 2 PID: 1 Comm: swapper/0 Not tainted 5.3.0-rc1-15699-g3dee241c937e #149 Call Trace: [c0000000f95cb250] [c00000000147dd84] dump_stack+0xe8/0x164 (unreliable) [c0000000f95cb2a0] [c00000000022ccd8] register_lock_class+0x308/0xa60 [c0000000f95cb3a0] [c000000000229cc0] __lock_acquire+0x170/0x1ff0 [c0000000f95cb4c0] [c00000000022c740] lock_acquire+0x220/0x270 [c0000000f95cb580] [c000000000a93230] badblocks_check+0xc0/0x290 [c0000000f95cb5f0] [c000000000d97540] nd_pfn_validate+0x5c0/0x7f0 [c0000000f95cb6d0] [c000000000d98300] nd_dax_probe+0xd0/0x1f0 [c0000000f95cb760] [c000000000d9b66c] nd_pmem_probe+0x10c/0x160 [c0000000f95cb790] [c000000000d7f5ec] nvdimm_bus_probe+0x10c/0x240 [c0000000f95cb820] [c000000000d0f844] really_probe+0x254/0x4e0 [c0000000f95cb8b0] [c000000000d0fdfc] driver_probe_device+0x16c/0x1e0 [c0000000f95cb930] [c000000000d10238] device_driver_attach+0x68/0xa0 [c0000000f95cb970] [c000000000d1040c] __driver_attach+0x19c/0x1c0 [c0000000f95cb9f0] [c000000000d0c4c4] bus_for_each_dev+0x94/0x130 [c0000000f95cba50] [c000000000d0f014] driver_attach+0x34/0x50 [c0000000f95cba70] [c000000000d0e208] bus_add_driver+0x178/0x2f0 [c0000000f95cbb00] [c000000000d117c8] driver_register+0x108/0x170 [c0000000f95cbb70] [c000000000d7edb0] __nd_driver_register+0xe0/0x100 [c0000000f95cbbd0] [c000000001a6baa4] nd_pmem_driver_init+0x34/0x48 [c0000000f95cbbf0] [c0000000000106f4] do_one_initcall+0x1d4/0x4b0 [c0000000f95cbcd0] [c0000000019f499c] kernel_init_freeable+0x544/0x65c [c0000000f95cbdb0] [c000000000010d6c] kernel_init+0x2c/0x180 [c0000000f95cbe20] [c00000000000b954] ret_from_kernel_thread+0x5c/0x68 Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Link: https://lore.kernel.org/r/20190919083355.26340-1-aneesh.kumar@linux.ibm.com Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2019-09-19 08:33:55 +00:00
if (is_memory(&nd_region->dev)) {
mm/memremap_pages: convert to 'struct range' The 'struct resource' in 'struct dev_pagemap' is only used for holding resource span information. The other fields, 'name', 'flags', 'desc', 'parent', 'sibling', and 'child' are all unused wasted space. This is in preparation for introducing a multi-range extension of devm_memremap_pages(). The bulk of this change is unwinding all the places internal to libnvdimm that used 'struct resource' unnecessarily, and replacing instances of 'struct dev_pagemap'.res with 'struct dev_pagemap'.range. P2PDMA had a minor usage of the resource flags field, but only to report failures with "%pR". That is replaced with an open coded print of the range. [dan.carpenter@oracle.com: mm/hmm/test: use after free in dmirror_allocate_chunk()] Link: https://lkml.kernel.org/r/20200926121402.GA7467@kadam Signed-off-by: Dan Williams <dan.j.williams@intel.com> Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com> [xen] Cc: Paul Mackerras <paulus@ozlabs.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Vishal Verma <vishal.l.verma@intel.com> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: Dave Jiang <dave.jiang@intel.com> Cc: Ben Skeggs <bskeggs@redhat.com> Cc: David Airlie <airlied@linux.ie> Cc: Daniel Vetter <daniel@ffwll.ch> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Bjorn Helgaas <bhelgaas@google.com> Cc: Juergen Gross <jgross@suse.com> Cc: Stefano Stabellini <sstabellini@kernel.org> Cc: "Jérôme Glisse" <jglisse@redhat.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Ard Biesheuvel <ardb@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brice Goglin <Brice.Goglin@inria.fr> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Hulk Robot <hulkci@huawei.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jason Gunthorpe <jgg@mellanox.com> Cc: Jason Yan <yanaijie@huawei.com> Cc: Jeff Moyer <jmoyer@redhat.com> Cc: Jia He <justin.he@arm.com> Cc: Joao Martins <joao.m.martins@oracle.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: kernel test robot <lkp@intel.com> Cc: Mike Rapoport <rppt@linux.ibm.com> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: "Rafael J. Wysocki" <rafael.j.wysocki@intel.com> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tom Lendacky <thomas.lendacky@amd.com> Cc: Wei Yang <richard.weiyang@linux.alibaba.com> Cc: Will Deacon <will@kernel.org> Link: https://lkml.kernel.org/r/159643103173.4062302.768998885691711532.stgit@dwillia2-desk3.amr.corp.intel.com Link: https://lkml.kernel.org/r/160106115761.30709.13539840236873663620.stgit@dwillia2-desk3.amr.corp.intel.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-13 23:50:29 +00:00
struct range range = {
.start = nd_region->ndr_start,
.end = nd_region->ndr_start +
nd_region->ndr_size - 1,
};
nvdimm_badblocks_populate(nd_region,
mm/memremap_pages: convert to 'struct range' The 'struct resource' in 'struct dev_pagemap' is only used for holding resource span information. The other fields, 'name', 'flags', 'desc', 'parent', 'sibling', and 'child' are all unused wasted space. This is in preparation for introducing a multi-range extension of devm_memremap_pages(). The bulk of this change is unwinding all the places internal to libnvdimm that used 'struct resource' unnecessarily, and replacing instances of 'struct dev_pagemap'.res with 'struct dev_pagemap'.range. P2PDMA had a minor usage of the resource flags field, but only to report failures with "%pR". That is replaced with an open coded print of the range. [dan.carpenter@oracle.com: mm/hmm/test: use after free in dmirror_allocate_chunk()] Link: https://lkml.kernel.org/r/20200926121402.GA7467@kadam Signed-off-by: Dan Williams <dan.j.williams@intel.com> Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com> [xen] Cc: Paul Mackerras <paulus@ozlabs.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Vishal Verma <vishal.l.verma@intel.com> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: Dave Jiang <dave.jiang@intel.com> Cc: Ben Skeggs <bskeggs@redhat.com> Cc: David Airlie <airlied@linux.ie> Cc: Daniel Vetter <daniel@ffwll.ch> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Bjorn Helgaas <bhelgaas@google.com> Cc: Juergen Gross <jgross@suse.com> Cc: Stefano Stabellini <sstabellini@kernel.org> Cc: "Jérôme Glisse" <jglisse@redhat.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Ard Biesheuvel <ardb@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brice Goglin <Brice.Goglin@inria.fr> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Hulk Robot <hulkci@huawei.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jason Gunthorpe <jgg@mellanox.com> Cc: Jason Yan <yanaijie@huawei.com> Cc: Jeff Moyer <jmoyer@redhat.com> Cc: Jia He <justin.he@arm.com> Cc: Joao Martins <joao.m.martins@oracle.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: kernel test robot <lkp@intel.com> Cc: Mike Rapoport <rppt@linux.ibm.com> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: "Rafael J. Wysocki" <rafael.j.wysocki@intel.com> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tom Lendacky <thomas.lendacky@amd.com> Cc: Wei Yang <richard.weiyang@linux.alibaba.com> Cc: Will Deacon <will@kernel.org> Link: https://lkml.kernel.org/r/159643103173.4062302.768998885691711532.stgit@dwillia2-desk3.amr.corp.intel.com Link: https://lkml.kernel.org/r/160106115761.30709.13539840236873663620.stgit@dwillia2-desk3.amr.corp.intel.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-13 23:50:29 +00:00
&nd_region->bb, &range);
if (nd_region->bb_state)
sysfs_notify_dirent(nd_region->bb_state);
}
}
device_for_each_child(dev, &event, child_notify);
}
static struct nd_device_driver nd_region_driver = {
.probe = nd_region_probe,
.remove = nd_region_remove,
.notify = nd_region_notify,
.drv = {
.name = "nd_region",
},
.type = ND_DRIVER_REGION_BLK | ND_DRIVER_REGION_PMEM,
};
int __init nd_region_init(void)
{
return nd_driver_register(&nd_region_driver);
}
void nd_region_exit(void)
{
driver_unregister(&nd_region_driver.drv);
}
MODULE_ALIAS_ND_DEVICE(ND_DEVICE_REGION_PMEM);