License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 15:07:57 +01:00
|
|
|
// SPDX-License-Identifier: GPL-2.0
|
mm: memcontrol: lockless page counters
Memory is internally accounted in bytes, using spinlock-protected 64-bit
counters, even though the smallest accounting delta is a page. The
counter interface is also convoluted and does too many things.
Introduce a new lockless word-sized page counter API, then change all
memory accounting over to it. The translation from and to bytes then only
happens when interfacing with userspace.
The removed locking overhead is noticable when scaling beyond the per-cpu
charge caches - on a 4-socket machine with 144-threads, the following test
shows the performance differences of 288 memcgs concurrently running a
page fault benchmark:
vanilla:
18631648.500498 task-clock (msec) # 140.643 CPUs utilized ( +- 0.33% )
1,380,638 context-switches # 0.074 K/sec ( +- 0.75% )
24,390 cpu-migrations # 0.001 K/sec ( +- 8.44% )
1,843,305,768 page-faults # 0.099 M/sec ( +- 0.00% )
50,134,994,088,218 cycles # 2.691 GHz ( +- 0.33% )
<not supported> stalled-cycles-frontend
<not supported> stalled-cycles-backend
8,049,712,224,651 instructions # 0.16 insns per cycle ( +- 0.04% )
1,586,970,584,979 branches # 85.176 M/sec ( +- 0.05% )
1,724,989,949 branch-misses # 0.11% of all branches ( +- 0.48% )
132.474343877 seconds time elapsed ( +- 0.21% )
lockless:
12195979.037525 task-clock (msec) # 133.480 CPUs utilized ( +- 0.18% )
832,850 context-switches # 0.068 K/sec ( +- 0.54% )
15,624 cpu-migrations # 0.001 K/sec ( +- 10.17% )
1,843,304,774 page-faults # 0.151 M/sec ( +- 0.00% )
32,811,216,801,141 cycles # 2.690 GHz ( +- 0.18% )
<not supported> stalled-cycles-frontend
<not supported> stalled-cycles-backend
9,999,265,091,727 instructions # 0.30 insns per cycle ( +- 0.10% )
2,076,759,325,203 branches # 170.282 M/sec ( +- 0.12% )
1,656,917,214 branch-misses # 0.08% of all branches ( +- 0.55% )
91.369330729 seconds time elapsed ( +- 0.45% )
On top of improved scalability, this also gets rid of the icky long long
types in the very heart of memcg, which is great for 32 bit and also makes
the code a lot more readable.
Notable differences between the old and new API:
- res_counter_charge() and res_counter_charge_nofail() become
page_counter_try_charge() and page_counter_charge() resp. to match
the more common kernel naming scheme of try_do()/do()
- res_counter_uncharge_until() is only ever used to cancel a local
counter and never to uncharge bigger segments of a hierarchy, so
it's replaced by the simpler page_counter_cancel()
- res_counter_set_limit() is replaced by page_counter_limit(), which
expects its callers to serialize against themselves
- res_counter_memparse_write_strategy() is replaced by
page_counter_limit(), which rounds down to the nearest page size -
rather than up. This is more reasonable for explicitely requested
hard upper limits.
- to keep charging light-weight, page_counter_try_charge() charges
speculatively, only to roll back if the result exceeds the limit.
Because of this, a failing bigger charge can temporarily lock out
smaller charges that would otherwise succeed. The error is bounded
to the difference between the smallest and the biggest possible
charge size, so for memcg, this means that a failing THP charge can
send base page charges into reclaim upto 2MB (4MB) before the limit
would have been reached. This should be acceptable.
[akpm@linux-foundation.org: add includes for WARN_ON_ONCE and memparse]
[akpm@linux-foundation.org: add includes for WARN_ON_ONCE, memparse, strncmp, and PAGE_SIZE]
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-10 15:42:31 -08:00
|
|
|
/*
|
|
|
|
* Lockless hierarchical page accounting & limiting
|
|
|
|
*
|
|
|
|
* Copyright (C) 2014 Red Hat, Inc., Johannes Weiner
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <linux/page_counter.h>
|
|
|
|
#include <linux/atomic.h>
|
|
|
|
#include <linux/kernel.h>
|
|
|
|
#include <linux/string.h>
|
|
|
|
#include <linux/sched.h>
|
|
|
|
#include <linux/bug.h>
|
|
|
|
#include <asm/page.h>
|
|
|
|
|
2018-06-07 17:07:46 -07:00
|
|
|
static void propagate_protected_usage(struct page_counter *c,
|
|
|
|
unsigned long usage)
|
mm: memory.low hierarchical behavior
This patch aims to address an issue in current memory.low semantics,
which makes it hard to use it in a hierarchy, where some leaf memory
cgroups are more valuable than others.
For example, there are memcgs A, A/B, A/C, A/D and A/E:
A A/memory.low = 2G, A/memory.current = 6G
//\\
BC DE B/memory.low = 3G B/memory.current = 2G
C/memory.low = 1G C/memory.current = 2G
D/memory.low = 0 D/memory.current = 2G
E/memory.low = 10G E/memory.current = 0
If we apply memory pressure, B, C and D are reclaimed at the same pace
while A's usage exceeds 2G. This is obviously wrong, as B's usage is
fully below B's memory.low, and C has 1G of protection as well. Also, A
is pushed to the size, which is less than A's 2G memory.low, which is
also wrong.
A simple bash script (provided below) can be used to reproduce
the problem. Current results are:
A: 1430097920
A/B: 711929856
A/C: 717426688
A/D: 741376
A/E: 0
To address the issue a concept of effective memory.low is introduced.
Effective memory.low is always equal or less than original memory.low.
In a case, when there is no memory.low overcommittment (and also for
top-level cgroups), these two values are equal.
Otherwise it's a part of parent's effective memory.low, calculated as a
cgroup's memory.low usage divided by sum of sibling's memory.low usages
(under memory.low usage I mean the size of actually protected memory:
memory.current if memory.current < memory.low, 0 otherwise). It's
necessary to track the actual usage, because otherwise an empty cgroup
with memory.low set (A/E in my example) will affect actual memory
distribution, which makes no sense. To avoid traversing the cgroup tree
twice, page_counters code is reused.
Calculating effective memory.low can be done in the reclaim path, as we
conveniently traversing the cgroup tree from top to bottom and check
memory.low on each level. So, it's a perfect place to calculate
effective memory low and save it to use it for children cgroups.
This also eliminates a need to traverse the cgroup tree from bottom to
top each time to check if parent's guarantee is not exceeded.
Setting/resetting effective memory.low is intentionally racy, but it's
fine and shouldn't lead to any significant differences in actual memory
distribution.
With this patch applied results are matching the expectations:
A: 2147930112
A/B: 1428721664
A/C: 718393344
A/D: 815104
A/E: 0
Test script:
#!/bin/bash
CGPATH="/sys/fs/cgroup"
truncate /file1 --size 2G
truncate /file2 --size 2G
truncate /file3 --size 2G
truncate /file4 --size 50G
mkdir "${CGPATH}/A"
echo "+memory" > "${CGPATH}/A/cgroup.subtree_control"
mkdir "${CGPATH}/A/B" "${CGPATH}/A/C" "${CGPATH}/A/D" "${CGPATH}/A/E"
echo 2G > "${CGPATH}/A/memory.low"
echo 3G > "${CGPATH}/A/B/memory.low"
echo 1G > "${CGPATH}/A/C/memory.low"
echo 0 > "${CGPATH}/A/D/memory.low"
echo 10G > "${CGPATH}/A/E/memory.low"
echo $$ > "${CGPATH}/A/B/cgroup.procs" && vmtouch -qt /file1
echo $$ > "${CGPATH}/A/C/cgroup.procs" && vmtouch -qt /file2
echo $$ > "${CGPATH}/A/D/cgroup.procs" && vmtouch -qt /file3
echo $$ > "${CGPATH}/cgroup.procs" && vmtouch -qt /file4
echo "A: " `cat "${CGPATH}/A/memory.current"`
echo "A/B: " `cat "${CGPATH}/A/B/memory.current"`
echo "A/C: " `cat "${CGPATH}/A/C/memory.current"`
echo "A/D: " `cat "${CGPATH}/A/D/memory.current"`
echo "A/E: " `cat "${CGPATH}/A/E/memory.current"`
rmdir "${CGPATH}/A/B" "${CGPATH}/A/C" "${CGPATH}/A/D" "${CGPATH}/A/E"
rmdir "${CGPATH}/A"
rm /file1 /file2 /file3 /file4
Link: http://lkml.kernel.org/r/20180405185921.4942-2-guro@fb.com
Signed-off-by: Roman Gushchin <guro@fb.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-06-07 17:06:22 -07:00
|
|
|
{
|
2018-06-07 17:07:46 -07:00
|
|
|
unsigned long protected, old_protected;
|
2020-04-01 21:07:27 -07:00
|
|
|
unsigned long low, min;
|
mm: memory.low hierarchical behavior
This patch aims to address an issue in current memory.low semantics,
which makes it hard to use it in a hierarchy, where some leaf memory
cgroups are more valuable than others.
For example, there are memcgs A, A/B, A/C, A/D and A/E:
A A/memory.low = 2G, A/memory.current = 6G
//\\
BC DE B/memory.low = 3G B/memory.current = 2G
C/memory.low = 1G C/memory.current = 2G
D/memory.low = 0 D/memory.current = 2G
E/memory.low = 10G E/memory.current = 0
If we apply memory pressure, B, C and D are reclaimed at the same pace
while A's usage exceeds 2G. This is obviously wrong, as B's usage is
fully below B's memory.low, and C has 1G of protection as well. Also, A
is pushed to the size, which is less than A's 2G memory.low, which is
also wrong.
A simple bash script (provided below) can be used to reproduce
the problem. Current results are:
A: 1430097920
A/B: 711929856
A/C: 717426688
A/D: 741376
A/E: 0
To address the issue a concept of effective memory.low is introduced.
Effective memory.low is always equal or less than original memory.low.
In a case, when there is no memory.low overcommittment (and also for
top-level cgroups), these two values are equal.
Otherwise it's a part of parent's effective memory.low, calculated as a
cgroup's memory.low usage divided by sum of sibling's memory.low usages
(under memory.low usage I mean the size of actually protected memory:
memory.current if memory.current < memory.low, 0 otherwise). It's
necessary to track the actual usage, because otherwise an empty cgroup
with memory.low set (A/E in my example) will affect actual memory
distribution, which makes no sense. To avoid traversing the cgroup tree
twice, page_counters code is reused.
Calculating effective memory.low can be done in the reclaim path, as we
conveniently traversing the cgroup tree from top to bottom and check
memory.low on each level. So, it's a perfect place to calculate
effective memory low and save it to use it for children cgroups.
This also eliminates a need to traverse the cgroup tree from bottom to
top each time to check if parent's guarantee is not exceeded.
Setting/resetting effective memory.low is intentionally racy, but it's
fine and shouldn't lead to any significant differences in actual memory
distribution.
With this patch applied results are matching the expectations:
A: 2147930112
A/B: 1428721664
A/C: 718393344
A/D: 815104
A/E: 0
Test script:
#!/bin/bash
CGPATH="/sys/fs/cgroup"
truncate /file1 --size 2G
truncate /file2 --size 2G
truncate /file3 --size 2G
truncate /file4 --size 50G
mkdir "${CGPATH}/A"
echo "+memory" > "${CGPATH}/A/cgroup.subtree_control"
mkdir "${CGPATH}/A/B" "${CGPATH}/A/C" "${CGPATH}/A/D" "${CGPATH}/A/E"
echo 2G > "${CGPATH}/A/memory.low"
echo 3G > "${CGPATH}/A/B/memory.low"
echo 1G > "${CGPATH}/A/C/memory.low"
echo 0 > "${CGPATH}/A/D/memory.low"
echo 10G > "${CGPATH}/A/E/memory.low"
echo $$ > "${CGPATH}/A/B/cgroup.procs" && vmtouch -qt /file1
echo $$ > "${CGPATH}/A/C/cgroup.procs" && vmtouch -qt /file2
echo $$ > "${CGPATH}/A/D/cgroup.procs" && vmtouch -qt /file3
echo $$ > "${CGPATH}/cgroup.procs" && vmtouch -qt /file4
echo "A: " `cat "${CGPATH}/A/memory.current"`
echo "A/B: " `cat "${CGPATH}/A/B/memory.current"`
echo "A/C: " `cat "${CGPATH}/A/C/memory.current"`
echo "A/D: " `cat "${CGPATH}/A/D/memory.current"`
echo "A/E: " `cat "${CGPATH}/A/E/memory.current"`
rmdir "${CGPATH}/A/B" "${CGPATH}/A/C" "${CGPATH}/A/D" "${CGPATH}/A/E"
rmdir "${CGPATH}/A"
rm /file1 /file2 /file3 /file4
Link: http://lkml.kernel.org/r/20180405185921.4942-2-guro@fb.com
Signed-off-by: Roman Gushchin <guro@fb.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-06-07 17:06:22 -07:00
|
|
|
long delta;
|
|
|
|
|
|
|
|
if (!c->parent)
|
|
|
|
return;
|
|
|
|
|
2020-04-01 21:07:27 -07:00
|
|
|
min = READ_ONCE(c->min);
|
|
|
|
if (min || atomic_long_read(&c->min_usage)) {
|
|
|
|
protected = min(usage, min);
|
2018-06-07 17:07:46 -07:00
|
|
|
old_protected = atomic_long_xchg(&c->min_usage, protected);
|
|
|
|
delta = protected - old_protected;
|
|
|
|
if (delta)
|
|
|
|
atomic_long_add(delta, &c->parent->children_min_usage);
|
|
|
|
}
|
mm: memory.low hierarchical behavior
This patch aims to address an issue in current memory.low semantics,
which makes it hard to use it in a hierarchy, where some leaf memory
cgroups are more valuable than others.
For example, there are memcgs A, A/B, A/C, A/D and A/E:
A A/memory.low = 2G, A/memory.current = 6G
//\\
BC DE B/memory.low = 3G B/memory.current = 2G
C/memory.low = 1G C/memory.current = 2G
D/memory.low = 0 D/memory.current = 2G
E/memory.low = 10G E/memory.current = 0
If we apply memory pressure, B, C and D are reclaimed at the same pace
while A's usage exceeds 2G. This is obviously wrong, as B's usage is
fully below B's memory.low, and C has 1G of protection as well. Also, A
is pushed to the size, which is less than A's 2G memory.low, which is
also wrong.
A simple bash script (provided below) can be used to reproduce
the problem. Current results are:
A: 1430097920
A/B: 711929856
A/C: 717426688
A/D: 741376
A/E: 0
To address the issue a concept of effective memory.low is introduced.
Effective memory.low is always equal or less than original memory.low.
In a case, when there is no memory.low overcommittment (and also for
top-level cgroups), these two values are equal.
Otherwise it's a part of parent's effective memory.low, calculated as a
cgroup's memory.low usage divided by sum of sibling's memory.low usages
(under memory.low usage I mean the size of actually protected memory:
memory.current if memory.current < memory.low, 0 otherwise). It's
necessary to track the actual usage, because otherwise an empty cgroup
with memory.low set (A/E in my example) will affect actual memory
distribution, which makes no sense. To avoid traversing the cgroup tree
twice, page_counters code is reused.
Calculating effective memory.low can be done in the reclaim path, as we
conveniently traversing the cgroup tree from top to bottom and check
memory.low on each level. So, it's a perfect place to calculate
effective memory low and save it to use it for children cgroups.
This also eliminates a need to traverse the cgroup tree from bottom to
top each time to check if parent's guarantee is not exceeded.
Setting/resetting effective memory.low is intentionally racy, but it's
fine and shouldn't lead to any significant differences in actual memory
distribution.
With this patch applied results are matching the expectations:
A: 2147930112
A/B: 1428721664
A/C: 718393344
A/D: 815104
A/E: 0
Test script:
#!/bin/bash
CGPATH="/sys/fs/cgroup"
truncate /file1 --size 2G
truncate /file2 --size 2G
truncate /file3 --size 2G
truncate /file4 --size 50G
mkdir "${CGPATH}/A"
echo "+memory" > "${CGPATH}/A/cgroup.subtree_control"
mkdir "${CGPATH}/A/B" "${CGPATH}/A/C" "${CGPATH}/A/D" "${CGPATH}/A/E"
echo 2G > "${CGPATH}/A/memory.low"
echo 3G > "${CGPATH}/A/B/memory.low"
echo 1G > "${CGPATH}/A/C/memory.low"
echo 0 > "${CGPATH}/A/D/memory.low"
echo 10G > "${CGPATH}/A/E/memory.low"
echo $$ > "${CGPATH}/A/B/cgroup.procs" && vmtouch -qt /file1
echo $$ > "${CGPATH}/A/C/cgroup.procs" && vmtouch -qt /file2
echo $$ > "${CGPATH}/A/D/cgroup.procs" && vmtouch -qt /file3
echo $$ > "${CGPATH}/cgroup.procs" && vmtouch -qt /file4
echo "A: " `cat "${CGPATH}/A/memory.current"`
echo "A/B: " `cat "${CGPATH}/A/B/memory.current"`
echo "A/C: " `cat "${CGPATH}/A/C/memory.current"`
echo "A/D: " `cat "${CGPATH}/A/D/memory.current"`
echo "A/E: " `cat "${CGPATH}/A/E/memory.current"`
rmdir "${CGPATH}/A/B" "${CGPATH}/A/C" "${CGPATH}/A/D" "${CGPATH}/A/E"
rmdir "${CGPATH}/A"
rm /file1 /file2 /file3 /file4
Link: http://lkml.kernel.org/r/20180405185921.4942-2-guro@fb.com
Signed-off-by: Roman Gushchin <guro@fb.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-06-07 17:06:22 -07:00
|
|
|
|
2020-04-01 21:07:24 -07:00
|
|
|
low = READ_ONCE(c->low);
|
|
|
|
if (low || atomic_long_read(&c->low_usage)) {
|
|
|
|
protected = min(usage, low);
|
2018-06-07 17:07:46 -07:00
|
|
|
old_protected = atomic_long_xchg(&c->low_usage, protected);
|
|
|
|
delta = protected - old_protected;
|
|
|
|
if (delta)
|
|
|
|
atomic_long_add(delta, &c->parent->children_low_usage);
|
|
|
|
}
|
mm: memory.low hierarchical behavior
This patch aims to address an issue in current memory.low semantics,
which makes it hard to use it in a hierarchy, where some leaf memory
cgroups are more valuable than others.
For example, there are memcgs A, A/B, A/C, A/D and A/E:
A A/memory.low = 2G, A/memory.current = 6G
//\\
BC DE B/memory.low = 3G B/memory.current = 2G
C/memory.low = 1G C/memory.current = 2G
D/memory.low = 0 D/memory.current = 2G
E/memory.low = 10G E/memory.current = 0
If we apply memory pressure, B, C and D are reclaimed at the same pace
while A's usage exceeds 2G. This is obviously wrong, as B's usage is
fully below B's memory.low, and C has 1G of protection as well. Also, A
is pushed to the size, which is less than A's 2G memory.low, which is
also wrong.
A simple bash script (provided below) can be used to reproduce
the problem. Current results are:
A: 1430097920
A/B: 711929856
A/C: 717426688
A/D: 741376
A/E: 0
To address the issue a concept of effective memory.low is introduced.
Effective memory.low is always equal or less than original memory.low.
In a case, when there is no memory.low overcommittment (and also for
top-level cgroups), these two values are equal.
Otherwise it's a part of parent's effective memory.low, calculated as a
cgroup's memory.low usage divided by sum of sibling's memory.low usages
(under memory.low usage I mean the size of actually protected memory:
memory.current if memory.current < memory.low, 0 otherwise). It's
necessary to track the actual usage, because otherwise an empty cgroup
with memory.low set (A/E in my example) will affect actual memory
distribution, which makes no sense. To avoid traversing the cgroup tree
twice, page_counters code is reused.
Calculating effective memory.low can be done in the reclaim path, as we
conveniently traversing the cgroup tree from top to bottom and check
memory.low on each level. So, it's a perfect place to calculate
effective memory low and save it to use it for children cgroups.
This also eliminates a need to traverse the cgroup tree from bottom to
top each time to check if parent's guarantee is not exceeded.
Setting/resetting effective memory.low is intentionally racy, but it's
fine and shouldn't lead to any significant differences in actual memory
distribution.
With this patch applied results are matching the expectations:
A: 2147930112
A/B: 1428721664
A/C: 718393344
A/D: 815104
A/E: 0
Test script:
#!/bin/bash
CGPATH="/sys/fs/cgroup"
truncate /file1 --size 2G
truncate /file2 --size 2G
truncate /file3 --size 2G
truncate /file4 --size 50G
mkdir "${CGPATH}/A"
echo "+memory" > "${CGPATH}/A/cgroup.subtree_control"
mkdir "${CGPATH}/A/B" "${CGPATH}/A/C" "${CGPATH}/A/D" "${CGPATH}/A/E"
echo 2G > "${CGPATH}/A/memory.low"
echo 3G > "${CGPATH}/A/B/memory.low"
echo 1G > "${CGPATH}/A/C/memory.low"
echo 0 > "${CGPATH}/A/D/memory.low"
echo 10G > "${CGPATH}/A/E/memory.low"
echo $$ > "${CGPATH}/A/B/cgroup.procs" && vmtouch -qt /file1
echo $$ > "${CGPATH}/A/C/cgroup.procs" && vmtouch -qt /file2
echo $$ > "${CGPATH}/A/D/cgroup.procs" && vmtouch -qt /file3
echo $$ > "${CGPATH}/cgroup.procs" && vmtouch -qt /file4
echo "A: " `cat "${CGPATH}/A/memory.current"`
echo "A/B: " `cat "${CGPATH}/A/B/memory.current"`
echo "A/C: " `cat "${CGPATH}/A/C/memory.current"`
echo "A/D: " `cat "${CGPATH}/A/D/memory.current"`
echo "A/E: " `cat "${CGPATH}/A/E/memory.current"`
rmdir "${CGPATH}/A/B" "${CGPATH}/A/C" "${CGPATH}/A/D" "${CGPATH}/A/E"
rmdir "${CGPATH}/A"
rm /file1 /file2 /file3 /file4
Link: http://lkml.kernel.org/r/20180405185921.4942-2-guro@fb.com
Signed-off-by: Roman Gushchin <guro@fb.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-06-07 17:06:22 -07:00
|
|
|
}
|
|
|
|
|
mm: memcontrol: lockless page counters
Memory is internally accounted in bytes, using spinlock-protected 64-bit
counters, even though the smallest accounting delta is a page. The
counter interface is also convoluted and does too many things.
Introduce a new lockless word-sized page counter API, then change all
memory accounting over to it. The translation from and to bytes then only
happens when interfacing with userspace.
The removed locking overhead is noticable when scaling beyond the per-cpu
charge caches - on a 4-socket machine with 144-threads, the following test
shows the performance differences of 288 memcgs concurrently running a
page fault benchmark:
vanilla:
18631648.500498 task-clock (msec) # 140.643 CPUs utilized ( +- 0.33% )
1,380,638 context-switches # 0.074 K/sec ( +- 0.75% )
24,390 cpu-migrations # 0.001 K/sec ( +- 8.44% )
1,843,305,768 page-faults # 0.099 M/sec ( +- 0.00% )
50,134,994,088,218 cycles # 2.691 GHz ( +- 0.33% )
<not supported> stalled-cycles-frontend
<not supported> stalled-cycles-backend
8,049,712,224,651 instructions # 0.16 insns per cycle ( +- 0.04% )
1,586,970,584,979 branches # 85.176 M/sec ( +- 0.05% )
1,724,989,949 branch-misses # 0.11% of all branches ( +- 0.48% )
132.474343877 seconds time elapsed ( +- 0.21% )
lockless:
12195979.037525 task-clock (msec) # 133.480 CPUs utilized ( +- 0.18% )
832,850 context-switches # 0.068 K/sec ( +- 0.54% )
15,624 cpu-migrations # 0.001 K/sec ( +- 10.17% )
1,843,304,774 page-faults # 0.151 M/sec ( +- 0.00% )
32,811,216,801,141 cycles # 2.690 GHz ( +- 0.18% )
<not supported> stalled-cycles-frontend
<not supported> stalled-cycles-backend
9,999,265,091,727 instructions # 0.30 insns per cycle ( +- 0.10% )
2,076,759,325,203 branches # 170.282 M/sec ( +- 0.12% )
1,656,917,214 branch-misses # 0.08% of all branches ( +- 0.55% )
91.369330729 seconds time elapsed ( +- 0.45% )
On top of improved scalability, this also gets rid of the icky long long
types in the very heart of memcg, which is great for 32 bit and also makes
the code a lot more readable.
Notable differences between the old and new API:
- res_counter_charge() and res_counter_charge_nofail() become
page_counter_try_charge() and page_counter_charge() resp. to match
the more common kernel naming scheme of try_do()/do()
- res_counter_uncharge_until() is only ever used to cancel a local
counter and never to uncharge bigger segments of a hierarchy, so
it's replaced by the simpler page_counter_cancel()
- res_counter_set_limit() is replaced by page_counter_limit(), which
expects its callers to serialize against themselves
- res_counter_memparse_write_strategy() is replaced by
page_counter_limit(), which rounds down to the nearest page size -
rather than up. This is more reasonable for explicitely requested
hard upper limits.
- to keep charging light-weight, page_counter_try_charge() charges
speculatively, only to roll back if the result exceeds the limit.
Because of this, a failing bigger charge can temporarily lock out
smaller charges that would otherwise succeed. The error is bounded
to the difference between the smallest and the biggest possible
charge size, so for memcg, this means that a failing THP charge can
send base page charges into reclaim upto 2MB (4MB) before the limit
would have been reached. This should be acceptable.
[akpm@linux-foundation.org: add includes for WARN_ON_ONCE and memparse]
[akpm@linux-foundation.org: add includes for WARN_ON_ONCE, memparse, strncmp, and PAGE_SIZE]
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-10 15:42:31 -08:00
|
|
|
/**
|
|
|
|
* page_counter_cancel - take pages out of the local counter
|
|
|
|
* @counter: counter
|
|
|
|
* @nr_pages: number of pages to cancel
|
|
|
|
*/
|
2014-12-10 15:42:45 -08:00
|
|
|
void page_counter_cancel(struct page_counter *counter, unsigned long nr_pages)
|
mm: memcontrol: lockless page counters
Memory is internally accounted in bytes, using spinlock-protected 64-bit
counters, even though the smallest accounting delta is a page. The
counter interface is also convoluted and does too many things.
Introduce a new lockless word-sized page counter API, then change all
memory accounting over to it. The translation from and to bytes then only
happens when interfacing with userspace.
The removed locking overhead is noticable when scaling beyond the per-cpu
charge caches - on a 4-socket machine with 144-threads, the following test
shows the performance differences of 288 memcgs concurrently running a
page fault benchmark:
vanilla:
18631648.500498 task-clock (msec) # 140.643 CPUs utilized ( +- 0.33% )
1,380,638 context-switches # 0.074 K/sec ( +- 0.75% )
24,390 cpu-migrations # 0.001 K/sec ( +- 8.44% )
1,843,305,768 page-faults # 0.099 M/sec ( +- 0.00% )
50,134,994,088,218 cycles # 2.691 GHz ( +- 0.33% )
<not supported> stalled-cycles-frontend
<not supported> stalled-cycles-backend
8,049,712,224,651 instructions # 0.16 insns per cycle ( +- 0.04% )
1,586,970,584,979 branches # 85.176 M/sec ( +- 0.05% )
1,724,989,949 branch-misses # 0.11% of all branches ( +- 0.48% )
132.474343877 seconds time elapsed ( +- 0.21% )
lockless:
12195979.037525 task-clock (msec) # 133.480 CPUs utilized ( +- 0.18% )
832,850 context-switches # 0.068 K/sec ( +- 0.54% )
15,624 cpu-migrations # 0.001 K/sec ( +- 10.17% )
1,843,304,774 page-faults # 0.151 M/sec ( +- 0.00% )
32,811,216,801,141 cycles # 2.690 GHz ( +- 0.18% )
<not supported> stalled-cycles-frontend
<not supported> stalled-cycles-backend
9,999,265,091,727 instructions # 0.30 insns per cycle ( +- 0.10% )
2,076,759,325,203 branches # 170.282 M/sec ( +- 0.12% )
1,656,917,214 branch-misses # 0.08% of all branches ( +- 0.55% )
91.369330729 seconds time elapsed ( +- 0.45% )
On top of improved scalability, this also gets rid of the icky long long
types in the very heart of memcg, which is great for 32 bit and also makes
the code a lot more readable.
Notable differences between the old and new API:
- res_counter_charge() and res_counter_charge_nofail() become
page_counter_try_charge() and page_counter_charge() resp. to match
the more common kernel naming scheme of try_do()/do()
- res_counter_uncharge_until() is only ever used to cancel a local
counter and never to uncharge bigger segments of a hierarchy, so
it's replaced by the simpler page_counter_cancel()
- res_counter_set_limit() is replaced by page_counter_limit(), which
expects its callers to serialize against themselves
- res_counter_memparse_write_strategy() is replaced by
page_counter_limit(), which rounds down to the nearest page size -
rather than up. This is more reasonable for explicitely requested
hard upper limits.
- to keep charging light-weight, page_counter_try_charge() charges
speculatively, only to roll back if the result exceeds the limit.
Because of this, a failing bigger charge can temporarily lock out
smaller charges that would otherwise succeed. The error is bounded
to the difference between the smallest and the biggest possible
charge size, so for memcg, this means that a failing THP charge can
send base page charges into reclaim upto 2MB (4MB) before the limit
would have been reached. This should be acceptable.
[akpm@linux-foundation.org: add includes for WARN_ON_ONCE and memparse]
[akpm@linux-foundation.org: add includes for WARN_ON_ONCE, memparse, strncmp, and PAGE_SIZE]
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-10 15:42:31 -08:00
|
|
|
{
|
|
|
|
long new;
|
|
|
|
|
2018-06-07 17:06:18 -07:00
|
|
|
new = atomic_long_sub_return(nr_pages, &counter->usage);
|
2018-06-07 17:07:46 -07:00
|
|
|
propagate_protected_usage(counter, new);
|
mm: memcontrol: lockless page counters
Memory is internally accounted in bytes, using spinlock-protected 64-bit
counters, even though the smallest accounting delta is a page. The
counter interface is also convoluted and does too many things.
Introduce a new lockless word-sized page counter API, then change all
memory accounting over to it. The translation from and to bytes then only
happens when interfacing with userspace.
The removed locking overhead is noticable when scaling beyond the per-cpu
charge caches - on a 4-socket machine with 144-threads, the following test
shows the performance differences of 288 memcgs concurrently running a
page fault benchmark:
vanilla:
18631648.500498 task-clock (msec) # 140.643 CPUs utilized ( +- 0.33% )
1,380,638 context-switches # 0.074 K/sec ( +- 0.75% )
24,390 cpu-migrations # 0.001 K/sec ( +- 8.44% )
1,843,305,768 page-faults # 0.099 M/sec ( +- 0.00% )
50,134,994,088,218 cycles # 2.691 GHz ( +- 0.33% )
<not supported> stalled-cycles-frontend
<not supported> stalled-cycles-backend
8,049,712,224,651 instructions # 0.16 insns per cycle ( +- 0.04% )
1,586,970,584,979 branches # 85.176 M/sec ( +- 0.05% )
1,724,989,949 branch-misses # 0.11% of all branches ( +- 0.48% )
132.474343877 seconds time elapsed ( +- 0.21% )
lockless:
12195979.037525 task-clock (msec) # 133.480 CPUs utilized ( +- 0.18% )
832,850 context-switches # 0.068 K/sec ( +- 0.54% )
15,624 cpu-migrations # 0.001 K/sec ( +- 10.17% )
1,843,304,774 page-faults # 0.151 M/sec ( +- 0.00% )
32,811,216,801,141 cycles # 2.690 GHz ( +- 0.18% )
<not supported> stalled-cycles-frontend
<not supported> stalled-cycles-backend
9,999,265,091,727 instructions # 0.30 insns per cycle ( +- 0.10% )
2,076,759,325,203 branches # 170.282 M/sec ( +- 0.12% )
1,656,917,214 branch-misses # 0.08% of all branches ( +- 0.55% )
91.369330729 seconds time elapsed ( +- 0.45% )
On top of improved scalability, this also gets rid of the icky long long
types in the very heart of memcg, which is great for 32 bit and also makes
the code a lot more readable.
Notable differences between the old and new API:
- res_counter_charge() and res_counter_charge_nofail() become
page_counter_try_charge() and page_counter_charge() resp. to match
the more common kernel naming scheme of try_do()/do()
- res_counter_uncharge_until() is only ever used to cancel a local
counter and never to uncharge bigger segments of a hierarchy, so
it's replaced by the simpler page_counter_cancel()
- res_counter_set_limit() is replaced by page_counter_limit(), which
expects its callers to serialize against themselves
- res_counter_memparse_write_strategy() is replaced by
page_counter_limit(), which rounds down to the nearest page size -
rather than up. This is more reasonable for explicitely requested
hard upper limits.
- to keep charging light-weight, page_counter_try_charge() charges
speculatively, only to roll back if the result exceeds the limit.
Because of this, a failing bigger charge can temporarily lock out
smaller charges that would otherwise succeed. The error is bounded
to the difference between the smallest and the biggest possible
charge size, so for memcg, this means that a failing THP charge can
send base page charges into reclaim upto 2MB (4MB) before the limit
would have been reached. This should be acceptable.
[akpm@linux-foundation.org: add includes for WARN_ON_ONCE and memparse]
[akpm@linux-foundation.org: add includes for WARN_ON_ONCE, memparse, strncmp, and PAGE_SIZE]
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-10 15:42:31 -08:00
|
|
|
/* More uncharges than charges? */
|
|
|
|
WARN_ON_ONCE(new < 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* page_counter_charge - hierarchically charge pages
|
|
|
|
* @counter: counter
|
|
|
|
* @nr_pages: number of pages to charge
|
|
|
|
*
|
|
|
|
* NOTE: This does not consider any configured counter limits.
|
|
|
|
*/
|
|
|
|
void page_counter_charge(struct page_counter *counter, unsigned long nr_pages)
|
|
|
|
{
|
|
|
|
struct page_counter *c;
|
|
|
|
|
|
|
|
for (c = counter; c; c = c->parent) {
|
|
|
|
long new;
|
|
|
|
|
2018-06-07 17:06:18 -07:00
|
|
|
new = atomic_long_add_return(nr_pages, &c->usage);
|
2018-06-07 17:07:46 -07:00
|
|
|
propagate_protected_usage(counter, new);
|
mm: memcontrol: lockless page counters
Memory is internally accounted in bytes, using spinlock-protected 64-bit
counters, even though the smallest accounting delta is a page. The
counter interface is also convoluted and does too many things.
Introduce a new lockless word-sized page counter API, then change all
memory accounting over to it. The translation from and to bytes then only
happens when interfacing with userspace.
The removed locking overhead is noticable when scaling beyond the per-cpu
charge caches - on a 4-socket machine with 144-threads, the following test
shows the performance differences of 288 memcgs concurrently running a
page fault benchmark:
vanilla:
18631648.500498 task-clock (msec) # 140.643 CPUs utilized ( +- 0.33% )
1,380,638 context-switches # 0.074 K/sec ( +- 0.75% )
24,390 cpu-migrations # 0.001 K/sec ( +- 8.44% )
1,843,305,768 page-faults # 0.099 M/sec ( +- 0.00% )
50,134,994,088,218 cycles # 2.691 GHz ( +- 0.33% )
<not supported> stalled-cycles-frontend
<not supported> stalled-cycles-backend
8,049,712,224,651 instructions # 0.16 insns per cycle ( +- 0.04% )
1,586,970,584,979 branches # 85.176 M/sec ( +- 0.05% )
1,724,989,949 branch-misses # 0.11% of all branches ( +- 0.48% )
132.474343877 seconds time elapsed ( +- 0.21% )
lockless:
12195979.037525 task-clock (msec) # 133.480 CPUs utilized ( +- 0.18% )
832,850 context-switches # 0.068 K/sec ( +- 0.54% )
15,624 cpu-migrations # 0.001 K/sec ( +- 10.17% )
1,843,304,774 page-faults # 0.151 M/sec ( +- 0.00% )
32,811,216,801,141 cycles # 2.690 GHz ( +- 0.18% )
<not supported> stalled-cycles-frontend
<not supported> stalled-cycles-backend
9,999,265,091,727 instructions # 0.30 insns per cycle ( +- 0.10% )
2,076,759,325,203 branches # 170.282 M/sec ( +- 0.12% )
1,656,917,214 branch-misses # 0.08% of all branches ( +- 0.55% )
91.369330729 seconds time elapsed ( +- 0.45% )
On top of improved scalability, this also gets rid of the icky long long
types in the very heart of memcg, which is great for 32 bit and also makes
the code a lot more readable.
Notable differences between the old and new API:
- res_counter_charge() and res_counter_charge_nofail() become
page_counter_try_charge() and page_counter_charge() resp. to match
the more common kernel naming scheme of try_do()/do()
- res_counter_uncharge_until() is only ever used to cancel a local
counter and never to uncharge bigger segments of a hierarchy, so
it's replaced by the simpler page_counter_cancel()
- res_counter_set_limit() is replaced by page_counter_limit(), which
expects its callers to serialize against themselves
- res_counter_memparse_write_strategy() is replaced by
page_counter_limit(), which rounds down to the nearest page size -
rather than up. This is more reasonable for explicitely requested
hard upper limits.
- to keep charging light-weight, page_counter_try_charge() charges
speculatively, only to roll back if the result exceeds the limit.
Because of this, a failing bigger charge can temporarily lock out
smaller charges that would otherwise succeed. The error is bounded
to the difference between the smallest and the biggest possible
charge size, so for memcg, this means that a failing THP charge can
send base page charges into reclaim upto 2MB (4MB) before the limit
would have been reached. This should be acceptable.
[akpm@linux-foundation.org: add includes for WARN_ON_ONCE and memparse]
[akpm@linux-foundation.org: add includes for WARN_ON_ONCE, memparse, strncmp, and PAGE_SIZE]
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-10 15:42:31 -08:00
|
|
|
/*
|
|
|
|
* This is indeed racy, but we can live with some
|
|
|
|
* inaccuracy in the watermark.
|
|
|
|
*/
|
|
|
|
if (new > c->watermark)
|
|
|
|
c->watermark = new;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* page_counter_try_charge - try to hierarchically charge pages
|
|
|
|
* @counter: counter
|
|
|
|
* @nr_pages: number of pages to charge
|
|
|
|
* @fail: points first counter to hit its limit, if any
|
|
|
|
*
|
2015-11-05 18:50:26 -08:00
|
|
|
* Returns %true on success, or %false and @fail if the counter or one
|
|
|
|
* of its ancestors has hit its configured limit.
|
mm: memcontrol: lockless page counters
Memory is internally accounted in bytes, using spinlock-protected 64-bit
counters, even though the smallest accounting delta is a page. The
counter interface is also convoluted and does too many things.
Introduce a new lockless word-sized page counter API, then change all
memory accounting over to it. The translation from and to bytes then only
happens when interfacing with userspace.
The removed locking overhead is noticable when scaling beyond the per-cpu
charge caches - on a 4-socket machine with 144-threads, the following test
shows the performance differences of 288 memcgs concurrently running a
page fault benchmark:
vanilla:
18631648.500498 task-clock (msec) # 140.643 CPUs utilized ( +- 0.33% )
1,380,638 context-switches # 0.074 K/sec ( +- 0.75% )
24,390 cpu-migrations # 0.001 K/sec ( +- 8.44% )
1,843,305,768 page-faults # 0.099 M/sec ( +- 0.00% )
50,134,994,088,218 cycles # 2.691 GHz ( +- 0.33% )
<not supported> stalled-cycles-frontend
<not supported> stalled-cycles-backend
8,049,712,224,651 instructions # 0.16 insns per cycle ( +- 0.04% )
1,586,970,584,979 branches # 85.176 M/sec ( +- 0.05% )
1,724,989,949 branch-misses # 0.11% of all branches ( +- 0.48% )
132.474343877 seconds time elapsed ( +- 0.21% )
lockless:
12195979.037525 task-clock (msec) # 133.480 CPUs utilized ( +- 0.18% )
832,850 context-switches # 0.068 K/sec ( +- 0.54% )
15,624 cpu-migrations # 0.001 K/sec ( +- 10.17% )
1,843,304,774 page-faults # 0.151 M/sec ( +- 0.00% )
32,811,216,801,141 cycles # 2.690 GHz ( +- 0.18% )
<not supported> stalled-cycles-frontend
<not supported> stalled-cycles-backend
9,999,265,091,727 instructions # 0.30 insns per cycle ( +- 0.10% )
2,076,759,325,203 branches # 170.282 M/sec ( +- 0.12% )
1,656,917,214 branch-misses # 0.08% of all branches ( +- 0.55% )
91.369330729 seconds time elapsed ( +- 0.45% )
On top of improved scalability, this also gets rid of the icky long long
types in the very heart of memcg, which is great for 32 bit and also makes
the code a lot more readable.
Notable differences between the old and new API:
- res_counter_charge() and res_counter_charge_nofail() become
page_counter_try_charge() and page_counter_charge() resp. to match
the more common kernel naming scheme of try_do()/do()
- res_counter_uncharge_until() is only ever used to cancel a local
counter and never to uncharge bigger segments of a hierarchy, so
it's replaced by the simpler page_counter_cancel()
- res_counter_set_limit() is replaced by page_counter_limit(), which
expects its callers to serialize against themselves
- res_counter_memparse_write_strategy() is replaced by
page_counter_limit(), which rounds down to the nearest page size -
rather than up. This is more reasonable for explicitely requested
hard upper limits.
- to keep charging light-weight, page_counter_try_charge() charges
speculatively, only to roll back if the result exceeds the limit.
Because of this, a failing bigger charge can temporarily lock out
smaller charges that would otherwise succeed. The error is bounded
to the difference between the smallest and the biggest possible
charge size, so for memcg, this means that a failing THP charge can
send base page charges into reclaim upto 2MB (4MB) before the limit
would have been reached. This should be acceptable.
[akpm@linux-foundation.org: add includes for WARN_ON_ONCE and memparse]
[akpm@linux-foundation.org: add includes for WARN_ON_ONCE, memparse, strncmp, and PAGE_SIZE]
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-10 15:42:31 -08:00
|
|
|
*/
|
2015-11-05 18:50:26 -08:00
|
|
|
bool page_counter_try_charge(struct page_counter *counter,
|
|
|
|
unsigned long nr_pages,
|
|
|
|
struct page_counter **fail)
|
mm: memcontrol: lockless page counters
Memory is internally accounted in bytes, using spinlock-protected 64-bit
counters, even though the smallest accounting delta is a page. The
counter interface is also convoluted and does too many things.
Introduce a new lockless word-sized page counter API, then change all
memory accounting over to it. The translation from and to bytes then only
happens when interfacing with userspace.
The removed locking overhead is noticable when scaling beyond the per-cpu
charge caches - on a 4-socket machine with 144-threads, the following test
shows the performance differences of 288 memcgs concurrently running a
page fault benchmark:
vanilla:
18631648.500498 task-clock (msec) # 140.643 CPUs utilized ( +- 0.33% )
1,380,638 context-switches # 0.074 K/sec ( +- 0.75% )
24,390 cpu-migrations # 0.001 K/sec ( +- 8.44% )
1,843,305,768 page-faults # 0.099 M/sec ( +- 0.00% )
50,134,994,088,218 cycles # 2.691 GHz ( +- 0.33% )
<not supported> stalled-cycles-frontend
<not supported> stalled-cycles-backend
8,049,712,224,651 instructions # 0.16 insns per cycle ( +- 0.04% )
1,586,970,584,979 branches # 85.176 M/sec ( +- 0.05% )
1,724,989,949 branch-misses # 0.11% of all branches ( +- 0.48% )
132.474343877 seconds time elapsed ( +- 0.21% )
lockless:
12195979.037525 task-clock (msec) # 133.480 CPUs utilized ( +- 0.18% )
832,850 context-switches # 0.068 K/sec ( +- 0.54% )
15,624 cpu-migrations # 0.001 K/sec ( +- 10.17% )
1,843,304,774 page-faults # 0.151 M/sec ( +- 0.00% )
32,811,216,801,141 cycles # 2.690 GHz ( +- 0.18% )
<not supported> stalled-cycles-frontend
<not supported> stalled-cycles-backend
9,999,265,091,727 instructions # 0.30 insns per cycle ( +- 0.10% )
2,076,759,325,203 branches # 170.282 M/sec ( +- 0.12% )
1,656,917,214 branch-misses # 0.08% of all branches ( +- 0.55% )
91.369330729 seconds time elapsed ( +- 0.45% )
On top of improved scalability, this also gets rid of the icky long long
types in the very heart of memcg, which is great for 32 bit and also makes
the code a lot more readable.
Notable differences between the old and new API:
- res_counter_charge() and res_counter_charge_nofail() become
page_counter_try_charge() and page_counter_charge() resp. to match
the more common kernel naming scheme of try_do()/do()
- res_counter_uncharge_until() is only ever used to cancel a local
counter and never to uncharge bigger segments of a hierarchy, so
it's replaced by the simpler page_counter_cancel()
- res_counter_set_limit() is replaced by page_counter_limit(), which
expects its callers to serialize against themselves
- res_counter_memparse_write_strategy() is replaced by
page_counter_limit(), which rounds down to the nearest page size -
rather than up. This is more reasonable for explicitely requested
hard upper limits.
- to keep charging light-weight, page_counter_try_charge() charges
speculatively, only to roll back if the result exceeds the limit.
Because of this, a failing bigger charge can temporarily lock out
smaller charges that would otherwise succeed. The error is bounded
to the difference between the smallest and the biggest possible
charge size, so for memcg, this means that a failing THP charge can
send base page charges into reclaim upto 2MB (4MB) before the limit
would have been reached. This should be acceptable.
[akpm@linux-foundation.org: add includes for WARN_ON_ONCE and memparse]
[akpm@linux-foundation.org: add includes for WARN_ON_ONCE, memparse, strncmp, and PAGE_SIZE]
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-10 15:42:31 -08:00
|
|
|
{
|
|
|
|
struct page_counter *c;
|
|
|
|
|
|
|
|
for (c = counter; c; c = c->parent) {
|
|
|
|
long new;
|
|
|
|
/*
|
|
|
|
* Charge speculatively to avoid an expensive CAS. If
|
|
|
|
* a bigger charge fails, it might falsely lock out a
|
|
|
|
* racing smaller charge and send it into reclaim
|
|
|
|
* early, but the error is limited to the difference
|
|
|
|
* between the two sizes, which is less than 2M/4M in
|
|
|
|
* case of a THP locking out a regular page charge.
|
|
|
|
*
|
|
|
|
* The atomic_long_add_return() implies a full memory
|
|
|
|
* barrier between incrementing the count and reading
|
|
|
|
* the limit. When racing with page_counter_limit(),
|
|
|
|
* we either see the new limit or the setter sees the
|
|
|
|
* counter has changed and retries.
|
|
|
|
*/
|
2018-06-07 17:06:18 -07:00
|
|
|
new = atomic_long_add_return(nr_pages, &c->usage);
|
|
|
|
if (new > c->max) {
|
|
|
|
atomic_long_sub(nr_pages, &c->usage);
|
2018-06-07 17:07:46 -07:00
|
|
|
propagate_protected_usage(counter, new);
|
mm: memcontrol: lockless page counters
Memory is internally accounted in bytes, using spinlock-protected 64-bit
counters, even though the smallest accounting delta is a page. The
counter interface is also convoluted and does too many things.
Introduce a new lockless word-sized page counter API, then change all
memory accounting over to it. The translation from and to bytes then only
happens when interfacing with userspace.
The removed locking overhead is noticable when scaling beyond the per-cpu
charge caches - on a 4-socket machine with 144-threads, the following test
shows the performance differences of 288 memcgs concurrently running a
page fault benchmark:
vanilla:
18631648.500498 task-clock (msec) # 140.643 CPUs utilized ( +- 0.33% )
1,380,638 context-switches # 0.074 K/sec ( +- 0.75% )
24,390 cpu-migrations # 0.001 K/sec ( +- 8.44% )
1,843,305,768 page-faults # 0.099 M/sec ( +- 0.00% )
50,134,994,088,218 cycles # 2.691 GHz ( +- 0.33% )
<not supported> stalled-cycles-frontend
<not supported> stalled-cycles-backend
8,049,712,224,651 instructions # 0.16 insns per cycle ( +- 0.04% )
1,586,970,584,979 branches # 85.176 M/sec ( +- 0.05% )
1,724,989,949 branch-misses # 0.11% of all branches ( +- 0.48% )
132.474343877 seconds time elapsed ( +- 0.21% )
lockless:
12195979.037525 task-clock (msec) # 133.480 CPUs utilized ( +- 0.18% )
832,850 context-switches # 0.068 K/sec ( +- 0.54% )
15,624 cpu-migrations # 0.001 K/sec ( +- 10.17% )
1,843,304,774 page-faults # 0.151 M/sec ( +- 0.00% )
32,811,216,801,141 cycles # 2.690 GHz ( +- 0.18% )
<not supported> stalled-cycles-frontend
<not supported> stalled-cycles-backend
9,999,265,091,727 instructions # 0.30 insns per cycle ( +- 0.10% )
2,076,759,325,203 branches # 170.282 M/sec ( +- 0.12% )
1,656,917,214 branch-misses # 0.08% of all branches ( +- 0.55% )
91.369330729 seconds time elapsed ( +- 0.45% )
On top of improved scalability, this also gets rid of the icky long long
types in the very heart of memcg, which is great for 32 bit and also makes
the code a lot more readable.
Notable differences between the old and new API:
- res_counter_charge() and res_counter_charge_nofail() become
page_counter_try_charge() and page_counter_charge() resp. to match
the more common kernel naming scheme of try_do()/do()
- res_counter_uncharge_until() is only ever used to cancel a local
counter and never to uncharge bigger segments of a hierarchy, so
it's replaced by the simpler page_counter_cancel()
- res_counter_set_limit() is replaced by page_counter_limit(), which
expects its callers to serialize against themselves
- res_counter_memparse_write_strategy() is replaced by
page_counter_limit(), which rounds down to the nearest page size -
rather than up. This is more reasonable for explicitely requested
hard upper limits.
- to keep charging light-weight, page_counter_try_charge() charges
speculatively, only to roll back if the result exceeds the limit.
Because of this, a failing bigger charge can temporarily lock out
smaller charges that would otherwise succeed. The error is bounded
to the difference between the smallest and the biggest possible
charge size, so for memcg, this means that a failing THP charge can
send base page charges into reclaim upto 2MB (4MB) before the limit
would have been reached. This should be acceptable.
[akpm@linux-foundation.org: add includes for WARN_ON_ONCE and memparse]
[akpm@linux-foundation.org: add includes for WARN_ON_ONCE, memparse, strncmp, and PAGE_SIZE]
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-10 15:42:31 -08:00
|
|
|
/*
|
|
|
|
* This is racy, but we can live with some
|
|
|
|
* inaccuracy in the failcnt.
|
|
|
|
*/
|
|
|
|
c->failcnt++;
|
|
|
|
*fail = c;
|
|
|
|
goto failed;
|
|
|
|
}
|
2018-06-07 17:07:46 -07:00
|
|
|
propagate_protected_usage(counter, new);
|
mm: memcontrol: lockless page counters
Memory is internally accounted in bytes, using spinlock-protected 64-bit
counters, even though the smallest accounting delta is a page. The
counter interface is also convoluted and does too many things.
Introduce a new lockless word-sized page counter API, then change all
memory accounting over to it. The translation from and to bytes then only
happens when interfacing with userspace.
The removed locking overhead is noticable when scaling beyond the per-cpu
charge caches - on a 4-socket machine with 144-threads, the following test
shows the performance differences of 288 memcgs concurrently running a
page fault benchmark:
vanilla:
18631648.500498 task-clock (msec) # 140.643 CPUs utilized ( +- 0.33% )
1,380,638 context-switches # 0.074 K/sec ( +- 0.75% )
24,390 cpu-migrations # 0.001 K/sec ( +- 8.44% )
1,843,305,768 page-faults # 0.099 M/sec ( +- 0.00% )
50,134,994,088,218 cycles # 2.691 GHz ( +- 0.33% )
<not supported> stalled-cycles-frontend
<not supported> stalled-cycles-backend
8,049,712,224,651 instructions # 0.16 insns per cycle ( +- 0.04% )
1,586,970,584,979 branches # 85.176 M/sec ( +- 0.05% )
1,724,989,949 branch-misses # 0.11% of all branches ( +- 0.48% )
132.474343877 seconds time elapsed ( +- 0.21% )
lockless:
12195979.037525 task-clock (msec) # 133.480 CPUs utilized ( +- 0.18% )
832,850 context-switches # 0.068 K/sec ( +- 0.54% )
15,624 cpu-migrations # 0.001 K/sec ( +- 10.17% )
1,843,304,774 page-faults # 0.151 M/sec ( +- 0.00% )
32,811,216,801,141 cycles # 2.690 GHz ( +- 0.18% )
<not supported> stalled-cycles-frontend
<not supported> stalled-cycles-backend
9,999,265,091,727 instructions # 0.30 insns per cycle ( +- 0.10% )
2,076,759,325,203 branches # 170.282 M/sec ( +- 0.12% )
1,656,917,214 branch-misses # 0.08% of all branches ( +- 0.55% )
91.369330729 seconds time elapsed ( +- 0.45% )
On top of improved scalability, this also gets rid of the icky long long
types in the very heart of memcg, which is great for 32 bit and also makes
the code a lot more readable.
Notable differences between the old and new API:
- res_counter_charge() and res_counter_charge_nofail() become
page_counter_try_charge() and page_counter_charge() resp. to match
the more common kernel naming scheme of try_do()/do()
- res_counter_uncharge_until() is only ever used to cancel a local
counter and never to uncharge bigger segments of a hierarchy, so
it's replaced by the simpler page_counter_cancel()
- res_counter_set_limit() is replaced by page_counter_limit(), which
expects its callers to serialize against themselves
- res_counter_memparse_write_strategy() is replaced by
page_counter_limit(), which rounds down to the nearest page size -
rather than up. This is more reasonable for explicitely requested
hard upper limits.
- to keep charging light-weight, page_counter_try_charge() charges
speculatively, only to roll back if the result exceeds the limit.
Because of this, a failing bigger charge can temporarily lock out
smaller charges that would otherwise succeed. The error is bounded
to the difference between the smallest and the biggest possible
charge size, so for memcg, this means that a failing THP charge can
send base page charges into reclaim upto 2MB (4MB) before the limit
would have been reached. This should be acceptable.
[akpm@linux-foundation.org: add includes for WARN_ON_ONCE and memparse]
[akpm@linux-foundation.org: add includes for WARN_ON_ONCE, memparse, strncmp, and PAGE_SIZE]
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-10 15:42:31 -08:00
|
|
|
/*
|
|
|
|
* Just like with failcnt, we can live with some
|
|
|
|
* inaccuracy in the watermark.
|
|
|
|
*/
|
|
|
|
if (new > c->watermark)
|
|
|
|
c->watermark = new;
|
|
|
|
}
|
2015-11-05 18:50:26 -08:00
|
|
|
return true;
|
mm: memcontrol: lockless page counters
Memory is internally accounted in bytes, using spinlock-protected 64-bit
counters, even though the smallest accounting delta is a page. The
counter interface is also convoluted and does too many things.
Introduce a new lockless word-sized page counter API, then change all
memory accounting over to it. The translation from and to bytes then only
happens when interfacing with userspace.
The removed locking overhead is noticable when scaling beyond the per-cpu
charge caches - on a 4-socket machine with 144-threads, the following test
shows the performance differences of 288 memcgs concurrently running a
page fault benchmark:
vanilla:
18631648.500498 task-clock (msec) # 140.643 CPUs utilized ( +- 0.33% )
1,380,638 context-switches # 0.074 K/sec ( +- 0.75% )
24,390 cpu-migrations # 0.001 K/sec ( +- 8.44% )
1,843,305,768 page-faults # 0.099 M/sec ( +- 0.00% )
50,134,994,088,218 cycles # 2.691 GHz ( +- 0.33% )
<not supported> stalled-cycles-frontend
<not supported> stalled-cycles-backend
8,049,712,224,651 instructions # 0.16 insns per cycle ( +- 0.04% )
1,586,970,584,979 branches # 85.176 M/sec ( +- 0.05% )
1,724,989,949 branch-misses # 0.11% of all branches ( +- 0.48% )
132.474343877 seconds time elapsed ( +- 0.21% )
lockless:
12195979.037525 task-clock (msec) # 133.480 CPUs utilized ( +- 0.18% )
832,850 context-switches # 0.068 K/sec ( +- 0.54% )
15,624 cpu-migrations # 0.001 K/sec ( +- 10.17% )
1,843,304,774 page-faults # 0.151 M/sec ( +- 0.00% )
32,811,216,801,141 cycles # 2.690 GHz ( +- 0.18% )
<not supported> stalled-cycles-frontend
<not supported> stalled-cycles-backend
9,999,265,091,727 instructions # 0.30 insns per cycle ( +- 0.10% )
2,076,759,325,203 branches # 170.282 M/sec ( +- 0.12% )
1,656,917,214 branch-misses # 0.08% of all branches ( +- 0.55% )
91.369330729 seconds time elapsed ( +- 0.45% )
On top of improved scalability, this also gets rid of the icky long long
types in the very heart of memcg, which is great for 32 bit and also makes
the code a lot more readable.
Notable differences between the old and new API:
- res_counter_charge() and res_counter_charge_nofail() become
page_counter_try_charge() and page_counter_charge() resp. to match
the more common kernel naming scheme of try_do()/do()
- res_counter_uncharge_until() is only ever used to cancel a local
counter and never to uncharge bigger segments of a hierarchy, so
it's replaced by the simpler page_counter_cancel()
- res_counter_set_limit() is replaced by page_counter_limit(), which
expects its callers to serialize against themselves
- res_counter_memparse_write_strategy() is replaced by
page_counter_limit(), which rounds down to the nearest page size -
rather than up. This is more reasonable for explicitely requested
hard upper limits.
- to keep charging light-weight, page_counter_try_charge() charges
speculatively, only to roll back if the result exceeds the limit.
Because of this, a failing bigger charge can temporarily lock out
smaller charges that would otherwise succeed. The error is bounded
to the difference between the smallest and the biggest possible
charge size, so for memcg, this means that a failing THP charge can
send base page charges into reclaim upto 2MB (4MB) before the limit
would have been reached. This should be acceptable.
[akpm@linux-foundation.org: add includes for WARN_ON_ONCE and memparse]
[akpm@linux-foundation.org: add includes for WARN_ON_ONCE, memparse, strncmp, and PAGE_SIZE]
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-10 15:42:31 -08:00
|
|
|
|
|
|
|
failed:
|
|
|
|
for (c = counter; c != *fail; c = c->parent)
|
|
|
|
page_counter_cancel(c, nr_pages);
|
|
|
|
|
2015-11-05 18:50:26 -08:00
|
|
|
return false;
|
mm: memcontrol: lockless page counters
Memory is internally accounted in bytes, using spinlock-protected 64-bit
counters, even though the smallest accounting delta is a page. The
counter interface is also convoluted and does too many things.
Introduce a new lockless word-sized page counter API, then change all
memory accounting over to it. The translation from and to bytes then only
happens when interfacing with userspace.
The removed locking overhead is noticable when scaling beyond the per-cpu
charge caches - on a 4-socket machine with 144-threads, the following test
shows the performance differences of 288 memcgs concurrently running a
page fault benchmark:
vanilla:
18631648.500498 task-clock (msec) # 140.643 CPUs utilized ( +- 0.33% )
1,380,638 context-switches # 0.074 K/sec ( +- 0.75% )
24,390 cpu-migrations # 0.001 K/sec ( +- 8.44% )
1,843,305,768 page-faults # 0.099 M/sec ( +- 0.00% )
50,134,994,088,218 cycles # 2.691 GHz ( +- 0.33% )
<not supported> stalled-cycles-frontend
<not supported> stalled-cycles-backend
8,049,712,224,651 instructions # 0.16 insns per cycle ( +- 0.04% )
1,586,970,584,979 branches # 85.176 M/sec ( +- 0.05% )
1,724,989,949 branch-misses # 0.11% of all branches ( +- 0.48% )
132.474343877 seconds time elapsed ( +- 0.21% )
lockless:
12195979.037525 task-clock (msec) # 133.480 CPUs utilized ( +- 0.18% )
832,850 context-switches # 0.068 K/sec ( +- 0.54% )
15,624 cpu-migrations # 0.001 K/sec ( +- 10.17% )
1,843,304,774 page-faults # 0.151 M/sec ( +- 0.00% )
32,811,216,801,141 cycles # 2.690 GHz ( +- 0.18% )
<not supported> stalled-cycles-frontend
<not supported> stalled-cycles-backend
9,999,265,091,727 instructions # 0.30 insns per cycle ( +- 0.10% )
2,076,759,325,203 branches # 170.282 M/sec ( +- 0.12% )
1,656,917,214 branch-misses # 0.08% of all branches ( +- 0.55% )
91.369330729 seconds time elapsed ( +- 0.45% )
On top of improved scalability, this also gets rid of the icky long long
types in the very heart of memcg, which is great for 32 bit and also makes
the code a lot more readable.
Notable differences between the old and new API:
- res_counter_charge() and res_counter_charge_nofail() become
page_counter_try_charge() and page_counter_charge() resp. to match
the more common kernel naming scheme of try_do()/do()
- res_counter_uncharge_until() is only ever used to cancel a local
counter and never to uncharge bigger segments of a hierarchy, so
it's replaced by the simpler page_counter_cancel()
- res_counter_set_limit() is replaced by page_counter_limit(), which
expects its callers to serialize against themselves
- res_counter_memparse_write_strategy() is replaced by
page_counter_limit(), which rounds down to the nearest page size -
rather than up. This is more reasonable for explicitely requested
hard upper limits.
- to keep charging light-weight, page_counter_try_charge() charges
speculatively, only to roll back if the result exceeds the limit.
Because of this, a failing bigger charge can temporarily lock out
smaller charges that would otherwise succeed. The error is bounded
to the difference between the smallest and the biggest possible
charge size, so for memcg, this means that a failing THP charge can
send base page charges into reclaim upto 2MB (4MB) before the limit
would have been reached. This should be acceptable.
[akpm@linux-foundation.org: add includes for WARN_ON_ONCE and memparse]
[akpm@linux-foundation.org: add includes for WARN_ON_ONCE, memparse, strncmp, and PAGE_SIZE]
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-10 15:42:31 -08:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* page_counter_uncharge - hierarchically uncharge pages
|
|
|
|
* @counter: counter
|
|
|
|
* @nr_pages: number of pages to uncharge
|
|
|
|
*/
|
2014-12-10 15:42:45 -08:00
|
|
|
void page_counter_uncharge(struct page_counter *counter, unsigned long nr_pages)
|
mm: memcontrol: lockless page counters
Memory is internally accounted in bytes, using spinlock-protected 64-bit
counters, even though the smallest accounting delta is a page. The
counter interface is also convoluted and does too many things.
Introduce a new lockless word-sized page counter API, then change all
memory accounting over to it. The translation from and to bytes then only
happens when interfacing with userspace.
The removed locking overhead is noticable when scaling beyond the per-cpu
charge caches - on a 4-socket machine with 144-threads, the following test
shows the performance differences of 288 memcgs concurrently running a
page fault benchmark:
vanilla:
18631648.500498 task-clock (msec) # 140.643 CPUs utilized ( +- 0.33% )
1,380,638 context-switches # 0.074 K/sec ( +- 0.75% )
24,390 cpu-migrations # 0.001 K/sec ( +- 8.44% )
1,843,305,768 page-faults # 0.099 M/sec ( +- 0.00% )
50,134,994,088,218 cycles # 2.691 GHz ( +- 0.33% )
<not supported> stalled-cycles-frontend
<not supported> stalled-cycles-backend
8,049,712,224,651 instructions # 0.16 insns per cycle ( +- 0.04% )
1,586,970,584,979 branches # 85.176 M/sec ( +- 0.05% )
1,724,989,949 branch-misses # 0.11% of all branches ( +- 0.48% )
132.474343877 seconds time elapsed ( +- 0.21% )
lockless:
12195979.037525 task-clock (msec) # 133.480 CPUs utilized ( +- 0.18% )
832,850 context-switches # 0.068 K/sec ( +- 0.54% )
15,624 cpu-migrations # 0.001 K/sec ( +- 10.17% )
1,843,304,774 page-faults # 0.151 M/sec ( +- 0.00% )
32,811,216,801,141 cycles # 2.690 GHz ( +- 0.18% )
<not supported> stalled-cycles-frontend
<not supported> stalled-cycles-backend
9,999,265,091,727 instructions # 0.30 insns per cycle ( +- 0.10% )
2,076,759,325,203 branches # 170.282 M/sec ( +- 0.12% )
1,656,917,214 branch-misses # 0.08% of all branches ( +- 0.55% )
91.369330729 seconds time elapsed ( +- 0.45% )
On top of improved scalability, this also gets rid of the icky long long
types in the very heart of memcg, which is great for 32 bit and also makes
the code a lot more readable.
Notable differences between the old and new API:
- res_counter_charge() and res_counter_charge_nofail() become
page_counter_try_charge() and page_counter_charge() resp. to match
the more common kernel naming scheme of try_do()/do()
- res_counter_uncharge_until() is only ever used to cancel a local
counter and never to uncharge bigger segments of a hierarchy, so
it's replaced by the simpler page_counter_cancel()
- res_counter_set_limit() is replaced by page_counter_limit(), which
expects its callers to serialize against themselves
- res_counter_memparse_write_strategy() is replaced by
page_counter_limit(), which rounds down to the nearest page size -
rather than up. This is more reasonable for explicitely requested
hard upper limits.
- to keep charging light-weight, page_counter_try_charge() charges
speculatively, only to roll back if the result exceeds the limit.
Because of this, a failing bigger charge can temporarily lock out
smaller charges that would otherwise succeed. The error is bounded
to the difference between the smallest and the biggest possible
charge size, so for memcg, this means that a failing THP charge can
send base page charges into reclaim upto 2MB (4MB) before the limit
would have been reached. This should be acceptable.
[akpm@linux-foundation.org: add includes for WARN_ON_ONCE and memparse]
[akpm@linux-foundation.org: add includes for WARN_ON_ONCE, memparse, strncmp, and PAGE_SIZE]
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-10 15:42:31 -08:00
|
|
|
{
|
|
|
|
struct page_counter *c;
|
|
|
|
|
2014-12-10 15:42:45 -08:00
|
|
|
for (c = counter; c; c = c->parent)
|
|
|
|
page_counter_cancel(c, nr_pages);
|
mm: memcontrol: lockless page counters
Memory is internally accounted in bytes, using spinlock-protected 64-bit
counters, even though the smallest accounting delta is a page. The
counter interface is also convoluted and does too many things.
Introduce a new lockless word-sized page counter API, then change all
memory accounting over to it. The translation from and to bytes then only
happens when interfacing with userspace.
The removed locking overhead is noticable when scaling beyond the per-cpu
charge caches - on a 4-socket machine with 144-threads, the following test
shows the performance differences of 288 memcgs concurrently running a
page fault benchmark:
vanilla:
18631648.500498 task-clock (msec) # 140.643 CPUs utilized ( +- 0.33% )
1,380,638 context-switches # 0.074 K/sec ( +- 0.75% )
24,390 cpu-migrations # 0.001 K/sec ( +- 8.44% )
1,843,305,768 page-faults # 0.099 M/sec ( +- 0.00% )
50,134,994,088,218 cycles # 2.691 GHz ( +- 0.33% )
<not supported> stalled-cycles-frontend
<not supported> stalled-cycles-backend
8,049,712,224,651 instructions # 0.16 insns per cycle ( +- 0.04% )
1,586,970,584,979 branches # 85.176 M/sec ( +- 0.05% )
1,724,989,949 branch-misses # 0.11% of all branches ( +- 0.48% )
132.474343877 seconds time elapsed ( +- 0.21% )
lockless:
12195979.037525 task-clock (msec) # 133.480 CPUs utilized ( +- 0.18% )
832,850 context-switches # 0.068 K/sec ( +- 0.54% )
15,624 cpu-migrations # 0.001 K/sec ( +- 10.17% )
1,843,304,774 page-faults # 0.151 M/sec ( +- 0.00% )
32,811,216,801,141 cycles # 2.690 GHz ( +- 0.18% )
<not supported> stalled-cycles-frontend
<not supported> stalled-cycles-backend
9,999,265,091,727 instructions # 0.30 insns per cycle ( +- 0.10% )
2,076,759,325,203 branches # 170.282 M/sec ( +- 0.12% )
1,656,917,214 branch-misses # 0.08% of all branches ( +- 0.55% )
91.369330729 seconds time elapsed ( +- 0.45% )
On top of improved scalability, this also gets rid of the icky long long
types in the very heart of memcg, which is great for 32 bit and also makes
the code a lot more readable.
Notable differences between the old and new API:
- res_counter_charge() and res_counter_charge_nofail() become
page_counter_try_charge() and page_counter_charge() resp. to match
the more common kernel naming scheme of try_do()/do()
- res_counter_uncharge_until() is only ever used to cancel a local
counter and never to uncharge bigger segments of a hierarchy, so
it's replaced by the simpler page_counter_cancel()
- res_counter_set_limit() is replaced by page_counter_limit(), which
expects its callers to serialize against themselves
- res_counter_memparse_write_strategy() is replaced by
page_counter_limit(), which rounds down to the nearest page size -
rather than up. This is more reasonable for explicitely requested
hard upper limits.
- to keep charging light-weight, page_counter_try_charge() charges
speculatively, only to roll back if the result exceeds the limit.
Because of this, a failing bigger charge can temporarily lock out
smaller charges that would otherwise succeed. The error is bounded
to the difference between the smallest and the biggest possible
charge size, so for memcg, this means that a failing THP charge can
send base page charges into reclaim upto 2MB (4MB) before the limit
would have been reached. This should be acceptable.
[akpm@linux-foundation.org: add includes for WARN_ON_ONCE and memparse]
[akpm@linux-foundation.org: add includes for WARN_ON_ONCE, memparse, strncmp, and PAGE_SIZE]
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-10 15:42:31 -08:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
2018-06-07 17:06:18 -07:00
|
|
|
* page_counter_set_max - set the maximum number of pages allowed
|
mm: memcontrol: lockless page counters
Memory is internally accounted in bytes, using spinlock-protected 64-bit
counters, even though the smallest accounting delta is a page. The
counter interface is also convoluted and does too many things.
Introduce a new lockless word-sized page counter API, then change all
memory accounting over to it. The translation from and to bytes then only
happens when interfacing with userspace.
The removed locking overhead is noticable when scaling beyond the per-cpu
charge caches - on a 4-socket machine with 144-threads, the following test
shows the performance differences of 288 memcgs concurrently running a
page fault benchmark:
vanilla:
18631648.500498 task-clock (msec) # 140.643 CPUs utilized ( +- 0.33% )
1,380,638 context-switches # 0.074 K/sec ( +- 0.75% )
24,390 cpu-migrations # 0.001 K/sec ( +- 8.44% )
1,843,305,768 page-faults # 0.099 M/sec ( +- 0.00% )
50,134,994,088,218 cycles # 2.691 GHz ( +- 0.33% )
<not supported> stalled-cycles-frontend
<not supported> stalled-cycles-backend
8,049,712,224,651 instructions # 0.16 insns per cycle ( +- 0.04% )
1,586,970,584,979 branches # 85.176 M/sec ( +- 0.05% )
1,724,989,949 branch-misses # 0.11% of all branches ( +- 0.48% )
132.474343877 seconds time elapsed ( +- 0.21% )
lockless:
12195979.037525 task-clock (msec) # 133.480 CPUs utilized ( +- 0.18% )
832,850 context-switches # 0.068 K/sec ( +- 0.54% )
15,624 cpu-migrations # 0.001 K/sec ( +- 10.17% )
1,843,304,774 page-faults # 0.151 M/sec ( +- 0.00% )
32,811,216,801,141 cycles # 2.690 GHz ( +- 0.18% )
<not supported> stalled-cycles-frontend
<not supported> stalled-cycles-backend
9,999,265,091,727 instructions # 0.30 insns per cycle ( +- 0.10% )
2,076,759,325,203 branches # 170.282 M/sec ( +- 0.12% )
1,656,917,214 branch-misses # 0.08% of all branches ( +- 0.55% )
91.369330729 seconds time elapsed ( +- 0.45% )
On top of improved scalability, this also gets rid of the icky long long
types in the very heart of memcg, which is great for 32 bit and also makes
the code a lot more readable.
Notable differences between the old and new API:
- res_counter_charge() and res_counter_charge_nofail() become
page_counter_try_charge() and page_counter_charge() resp. to match
the more common kernel naming scheme of try_do()/do()
- res_counter_uncharge_until() is only ever used to cancel a local
counter and never to uncharge bigger segments of a hierarchy, so
it's replaced by the simpler page_counter_cancel()
- res_counter_set_limit() is replaced by page_counter_limit(), which
expects its callers to serialize against themselves
- res_counter_memparse_write_strategy() is replaced by
page_counter_limit(), which rounds down to the nearest page size -
rather than up. This is more reasonable for explicitely requested
hard upper limits.
- to keep charging light-weight, page_counter_try_charge() charges
speculatively, only to roll back if the result exceeds the limit.
Because of this, a failing bigger charge can temporarily lock out
smaller charges that would otherwise succeed. The error is bounded
to the difference between the smallest and the biggest possible
charge size, so for memcg, this means that a failing THP charge can
send base page charges into reclaim upto 2MB (4MB) before the limit
would have been reached. This should be acceptable.
[akpm@linux-foundation.org: add includes for WARN_ON_ONCE and memparse]
[akpm@linux-foundation.org: add includes for WARN_ON_ONCE, memparse, strncmp, and PAGE_SIZE]
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-10 15:42:31 -08:00
|
|
|
* @counter: counter
|
2018-06-07 17:06:18 -07:00
|
|
|
* @nr_pages: limit to set
|
mm: memcontrol: lockless page counters
Memory is internally accounted in bytes, using spinlock-protected 64-bit
counters, even though the smallest accounting delta is a page. The
counter interface is also convoluted and does too many things.
Introduce a new lockless word-sized page counter API, then change all
memory accounting over to it. The translation from and to bytes then only
happens when interfacing with userspace.
The removed locking overhead is noticable when scaling beyond the per-cpu
charge caches - on a 4-socket machine with 144-threads, the following test
shows the performance differences of 288 memcgs concurrently running a
page fault benchmark:
vanilla:
18631648.500498 task-clock (msec) # 140.643 CPUs utilized ( +- 0.33% )
1,380,638 context-switches # 0.074 K/sec ( +- 0.75% )
24,390 cpu-migrations # 0.001 K/sec ( +- 8.44% )
1,843,305,768 page-faults # 0.099 M/sec ( +- 0.00% )
50,134,994,088,218 cycles # 2.691 GHz ( +- 0.33% )
<not supported> stalled-cycles-frontend
<not supported> stalled-cycles-backend
8,049,712,224,651 instructions # 0.16 insns per cycle ( +- 0.04% )
1,586,970,584,979 branches # 85.176 M/sec ( +- 0.05% )
1,724,989,949 branch-misses # 0.11% of all branches ( +- 0.48% )
132.474343877 seconds time elapsed ( +- 0.21% )
lockless:
12195979.037525 task-clock (msec) # 133.480 CPUs utilized ( +- 0.18% )
832,850 context-switches # 0.068 K/sec ( +- 0.54% )
15,624 cpu-migrations # 0.001 K/sec ( +- 10.17% )
1,843,304,774 page-faults # 0.151 M/sec ( +- 0.00% )
32,811,216,801,141 cycles # 2.690 GHz ( +- 0.18% )
<not supported> stalled-cycles-frontend
<not supported> stalled-cycles-backend
9,999,265,091,727 instructions # 0.30 insns per cycle ( +- 0.10% )
2,076,759,325,203 branches # 170.282 M/sec ( +- 0.12% )
1,656,917,214 branch-misses # 0.08% of all branches ( +- 0.55% )
91.369330729 seconds time elapsed ( +- 0.45% )
On top of improved scalability, this also gets rid of the icky long long
types in the very heart of memcg, which is great for 32 bit and also makes
the code a lot more readable.
Notable differences between the old and new API:
- res_counter_charge() and res_counter_charge_nofail() become
page_counter_try_charge() and page_counter_charge() resp. to match
the more common kernel naming scheme of try_do()/do()
- res_counter_uncharge_until() is only ever used to cancel a local
counter and never to uncharge bigger segments of a hierarchy, so
it's replaced by the simpler page_counter_cancel()
- res_counter_set_limit() is replaced by page_counter_limit(), which
expects its callers to serialize against themselves
- res_counter_memparse_write_strategy() is replaced by
page_counter_limit(), which rounds down to the nearest page size -
rather than up. This is more reasonable for explicitely requested
hard upper limits.
- to keep charging light-weight, page_counter_try_charge() charges
speculatively, only to roll back if the result exceeds the limit.
Because of this, a failing bigger charge can temporarily lock out
smaller charges that would otherwise succeed. The error is bounded
to the difference between the smallest and the biggest possible
charge size, so for memcg, this means that a failing THP charge can
send base page charges into reclaim upto 2MB (4MB) before the limit
would have been reached. This should be acceptable.
[akpm@linux-foundation.org: add includes for WARN_ON_ONCE and memparse]
[akpm@linux-foundation.org: add includes for WARN_ON_ONCE, memparse, strncmp, and PAGE_SIZE]
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-10 15:42:31 -08:00
|
|
|
*
|
|
|
|
* Returns 0 on success, -EBUSY if the current number of pages on the
|
|
|
|
* counter already exceeds the specified limit.
|
|
|
|
*
|
|
|
|
* The caller must serialize invocations on the same counter.
|
|
|
|
*/
|
2018-06-07 17:06:18 -07:00
|
|
|
int page_counter_set_max(struct page_counter *counter, unsigned long nr_pages)
|
mm: memcontrol: lockless page counters
Memory is internally accounted in bytes, using spinlock-protected 64-bit
counters, even though the smallest accounting delta is a page. The
counter interface is also convoluted and does too many things.
Introduce a new lockless word-sized page counter API, then change all
memory accounting over to it. The translation from and to bytes then only
happens when interfacing with userspace.
The removed locking overhead is noticable when scaling beyond the per-cpu
charge caches - on a 4-socket machine with 144-threads, the following test
shows the performance differences of 288 memcgs concurrently running a
page fault benchmark:
vanilla:
18631648.500498 task-clock (msec) # 140.643 CPUs utilized ( +- 0.33% )
1,380,638 context-switches # 0.074 K/sec ( +- 0.75% )
24,390 cpu-migrations # 0.001 K/sec ( +- 8.44% )
1,843,305,768 page-faults # 0.099 M/sec ( +- 0.00% )
50,134,994,088,218 cycles # 2.691 GHz ( +- 0.33% )
<not supported> stalled-cycles-frontend
<not supported> stalled-cycles-backend
8,049,712,224,651 instructions # 0.16 insns per cycle ( +- 0.04% )
1,586,970,584,979 branches # 85.176 M/sec ( +- 0.05% )
1,724,989,949 branch-misses # 0.11% of all branches ( +- 0.48% )
132.474343877 seconds time elapsed ( +- 0.21% )
lockless:
12195979.037525 task-clock (msec) # 133.480 CPUs utilized ( +- 0.18% )
832,850 context-switches # 0.068 K/sec ( +- 0.54% )
15,624 cpu-migrations # 0.001 K/sec ( +- 10.17% )
1,843,304,774 page-faults # 0.151 M/sec ( +- 0.00% )
32,811,216,801,141 cycles # 2.690 GHz ( +- 0.18% )
<not supported> stalled-cycles-frontend
<not supported> stalled-cycles-backend
9,999,265,091,727 instructions # 0.30 insns per cycle ( +- 0.10% )
2,076,759,325,203 branches # 170.282 M/sec ( +- 0.12% )
1,656,917,214 branch-misses # 0.08% of all branches ( +- 0.55% )
91.369330729 seconds time elapsed ( +- 0.45% )
On top of improved scalability, this also gets rid of the icky long long
types in the very heart of memcg, which is great for 32 bit and also makes
the code a lot more readable.
Notable differences between the old and new API:
- res_counter_charge() and res_counter_charge_nofail() become
page_counter_try_charge() and page_counter_charge() resp. to match
the more common kernel naming scheme of try_do()/do()
- res_counter_uncharge_until() is only ever used to cancel a local
counter and never to uncharge bigger segments of a hierarchy, so
it's replaced by the simpler page_counter_cancel()
- res_counter_set_limit() is replaced by page_counter_limit(), which
expects its callers to serialize against themselves
- res_counter_memparse_write_strategy() is replaced by
page_counter_limit(), which rounds down to the nearest page size -
rather than up. This is more reasonable for explicitely requested
hard upper limits.
- to keep charging light-weight, page_counter_try_charge() charges
speculatively, only to roll back if the result exceeds the limit.
Because of this, a failing bigger charge can temporarily lock out
smaller charges that would otherwise succeed. The error is bounded
to the difference between the smallest and the biggest possible
charge size, so for memcg, this means that a failing THP charge can
send base page charges into reclaim upto 2MB (4MB) before the limit
would have been reached. This should be acceptable.
[akpm@linux-foundation.org: add includes for WARN_ON_ONCE and memparse]
[akpm@linux-foundation.org: add includes for WARN_ON_ONCE, memparse, strncmp, and PAGE_SIZE]
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-10 15:42:31 -08:00
|
|
|
{
|
|
|
|
for (;;) {
|
|
|
|
unsigned long old;
|
2018-06-07 17:06:18 -07:00
|
|
|
long usage;
|
mm: memcontrol: lockless page counters
Memory is internally accounted in bytes, using spinlock-protected 64-bit
counters, even though the smallest accounting delta is a page. The
counter interface is also convoluted and does too many things.
Introduce a new lockless word-sized page counter API, then change all
memory accounting over to it. The translation from and to bytes then only
happens when interfacing with userspace.
The removed locking overhead is noticable when scaling beyond the per-cpu
charge caches - on a 4-socket machine with 144-threads, the following test
shows the performance differences of 288 memcgs concurrently running a
page fault benchmark:
vanilla:
18631648.500498 task-clock (msec) # 140.643 CPUs utilized ( +- 0.33% )
1,380,638 context-switches # 0.074 K/sec ( +- 0.75% )
24,390 cpu-migrations # 0.001 K/sec ( +- 8.44% )
1,843,305,768 page-faults # 0.099 M/sec ( +- 0.00% )
50,134,994,088,218 cycles # 2.691 GHz ( +- 0.33% )
<not supported> stalled-cycles-frontend
<not supported> stalled-cycles-backend
8,049,712,224,651 instructions # 0.16 insns per cycle ( +- 0.04% )
1,586,970,584,979 branches # 85.176 M/sec ( +- 0.05% )
1,724,989,949 branch-misses # 0.11% of all branches ( +- 0.48% )
132.474343877 seconds time elapsed ( +- 0.21% )
lockless:
12195979.037525 task-clock (msec) # 133.480 CPUs utilized ( +- 0.18% )
832,850 context-switches # 0.068 K/sec ( +- 0.54% )
15,624 cpu-migrations # 0.001 K/sec ( +- 10.17% )
1,843,304,774 page-faults # 0.151 M/sec ( +- 0.00% )
32,811,216,801,141 cycles # 2.690 GHz ( +- 0.18% )
<not supported> stalled-cycles-frontend
<not supported> stalled-cycles-backend
9,999,265,091,727 instructions # 0.30 insns per cycle ( +- 0.10% )
2,076,759,325,203 branches # 170.282 M/sec ( +- 0.12% )
1,656,917,214 branch-misses # 0.08% of all branches ( +- 0.55% )
91.369330729 seconds time elapsed ( +- 0.45% )
On top of improved scalability, this also gets rid of the icky long long
types in the very heart of memcg, which is great for 32 bit and also makes
the code a lot more readable.
Notable differences between the old and new API:
- res_counter_charge() and res_counter_charge_nofail() become
page_counter_try_charge() and page_counter_charge() resp. to match
the more common kernel naming scheme of try_do()/do()
- res_counter_uncharge_until() is only ever used to cancel a local
counter and never to uncharge bigger segments of a hierarchy, so
it's replaced by the simpler page_counter_cancel()
- res_counter_set_limit() is replaced by page_counter_limit(), which
expects its callers to serialize against themselves
- res_counter_memparse_write_strategy() is replaced by
page_counter_limit(), which rounds down to the nearest page size -
rather than up. This is more reasonable for explicitely requested
hard upper limits.
- to keep charging light-weight, page_counter_try_charge() charges
speculatively, only to roll back if the result exceeds the limit.
Because of this, a failing bigger charge can temporarily lock out
smaller charges that would otherwise succeed. The error is bounded
to the difference between the smallest and the biggest possible
charge size, so for memcg, this means that a failing THP charge can
send base page charges into reclaim upto 2MB (4MB) before the limit
would have been reached. This should be acceptable.
[akpm@linux-foundation.org: add includes for WARN_ON_ONCE and memparse]
[akpm@linux-foundation.org: add includes for WARN_ON_ONCE, memparse, strncmp, and PAGE_SIZE]
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-10 15:42:31 -08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Update the limit while making sure that it's not
|
|
|
|
* below the concurrently-changing counter value.
|
|
|
|
*
|
|
|
|
* The xchg implies two full memory barriers before
|
|
|
|
* and after, so the read-swap-read is ordered and
|
|
|
|
* ensures coherency with page_counter_try_charge():
|
|
|
|
* that function modifies the count before checking
|
|
|
|
* the limit, so if it sees the old limit, we see the
|
|
|
|
* modified counter and retry.
|
|
|
|
*/
|
2018-06-07 17:06:18 -07:00
|
|
|
usage = atomic_long_read(&counter->usage);
|
mm: memcontrol: lockless page counters
Memory is internally accounted in bytes, using spinlock-protected 64-bit
counters, even though the smallest accounting delta is a page. The
counter interface is also convoluted and does too many things.
Introduce a new lockless word-sized page counter API, then change all
memory accounting over to it. The translation from and to bytes then only
happens when interfacing with userspace.
The removed locking overhead is noticable when scaling beyond the per-cpu
charge caches - on a 4-socket machine with 144-threads, the following test
shows the performance differences of 288 memcgs concurrently running a
page fault benchmark:
vanilla:
18631648.500498 task-clock (msec) # 140.643 CPUs utilized ( +- 0.33% )
1,380,638 context-switches # 0.074 K/sec ( +- 0.75% )
24,390 cpu-migrations # 0.001 K/sec ( +- 8.44% )
1,843,305,768 page-faults # 0.099 M/sec ( +- 0.00% )
50,134,994,088,218 cycles # 2.691 GHz ( +- 0.33% )
<not supported> stalled-cycles-frontend
<not supported> stalled-cycles-backend
8,049,712,224,651 instructions # 0.16 insns per cycle ( +- 0.04% )
1,586,970,584,979 branches # 85.176 M/sec ( +- 0.05% )
1,724,989,949 branch-misses # 0.11% of all branches ( +- 0.48% )
132.474343877 seconds time elapsed ( +- 0.21% )
lockless:
12195979.037525 task-clock (msec) # 133.480 CPUs utilized ( +- 0.18% )
832,850 context-switches # 0.068 K/sec ( +- 0.54% )
15,624 cpu-migrations # 0.001 K/sec ( +- 10.17% )
1,843,304,774 page-faults # 0.151 M/sec ( +- 0.00% )
32,811,216,801,141 cycles # 2.690 GHz ( +- 0.18% )
<not supported> stalled-cycles-frontend
<not supported> stalled-cycles-backend
9,999,265,091,727 instructions # 0.30 insns per cycle ( +- 0.10% )
2,076,759,325,203 branches # 170.282 M/sec ( +- 0.12% )
1,656,917,214 branch-misses # 0.08% of all branches ( +- 0.55% )
91.369330729 seconds time elapsed ( +- 0.45% )
On top of improved scalability, this also gets rid of the icky long long
types in the very heart of memcg, which is great for 32 bit and also makes
the code a lot more readable.
Notable differences between the old and new API:
- res_counter_charge() and res_counter_charge_nofail() become
page_counter_try_charge() and page_counter_charge() resp. to match
the more common kernel naming scheme of try_do()/do()
- res_counter_uncharge_until() is only ever used to cancel a local
counter and never to uncharge bigger segments of a hierarchy, so
it's replaced by the simpler page_counter_cancel()
- res_counter_set_limit() is replaced by page_counter_limit(), which
expects its callers to serialize against themselves
- res_counter_memparse_write_strategy() is replaced by
page_counter_limit(), which rounds down to the nearest page size -
rather than up. This is more reasonable for explicitely requested
hard upper limits.
- to keep charging light-weight, page_counter_try_charge() charges
speculatively, only to roll back if the result exceeds the limit.
Because of this, a failing bigger charge can temporarily lock out
smaller charges that would otherwise succeed. The error is bounded
to the difference between the smallest and the biggest possible
charge size, so for memcg, this means that a failing THP charge can
send base page charges into reclaim upto 2MB (4MB) before the limit
would have been reached. This should be acceptable.
[akpm@linux-foundation.org: add includes for WARN_ON_ONCE and memparse]
[akpm@linux-foundation.org: add includes for WARN_ON_ONCE, memparse, strncmp, and PAGE_SIZE]
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-10 15:42:31 -08:00
|
|
|
|
2018-06-07 17:06:18 -07:00
|
|
|
if (usage > nr_pages)
|
mm: memcontrol: lockless page counters
Memory is internally accounted in bytes, using spinlock-protected 64-bit
counters, even though the smallest accounting delta is a page. The
counter interface is also convoluted and does too many things.
Introduce a new lockless word-sized page counter API, then change all
memory accounting over to it. The translation from and to bytes then only
happens when interfacing with userspace.
The removed locking overhead is noticable when scaling beyond the per-cpu
charge caches - on a 4-socket machine with 144-threads, the following test
shows the performance differences of 288 memcgs concurrently running a
page fault benchmark:
vanilla:
18631648.500498 task-clock (msec) # 140.643 CPUs utilized ( +- 0.33% )
1,380,638 context-switches # 0.074 K/sec ( +- 0.75% )
24,390 cpu-migrations # 0.001 K/sec ( +- 8.44% )
1,843,305,768 page-faults # 0.099 M/sec ( +- 0.00% )
50,134,994,088,218 cycles # 2.691 GHz ( +- 0.33% )
<not supported> stalled-cycles-frontend
<not supported> stalled-cycles-backend
8,049,712,224,651 instructions # 0.16 insns per cycle ( +- 0.04% )
1,586,970,584,979 branches # 85.176 M/sec ( +- 0.05% )
1,724,989,949 branch-misses # 0.11% of all branches ( +- 0.48% )
132.474343877 seconds time elapsed ( +- 0.21% )
lockless:
12195979.037525 task-clock (msec) # 133.480 CPUs utilized ( +- 0.18% )
832,850 context-switches # 0.068 K/sec ( +- 0.54% )
15,624 cpu-migrations # 0.001 K/sec ( +- 10.17% )
1,843,304,774 page-faults # 0.151 M/sec ( +- 0.00% )
32,811,216,801,141 cycles # 2.690 GHz ( +- 0.18% )
<not supported> stalled-cycles-frontend
<not supported> stalled-cycles-backend
9,999,265,091,727 instructions # 0.30 insns per cycle ( +- 0.10% )
2,076,759,325,203 branches # 170.282 M/sec ( +- 0.12% )
1,656,917,214 branch-misses # 0.08% of all branches ( +- 0.55% )
91.369330729 seconds time elapsed ( +- 0.45% )
On top of improved scalability, this also gets rid of the icky long long
types in the very heart of memcg, which is great for 32 bit and also makes
the code a lot more readable.
Notable differences between the old and new API:
- res_counter_charge() and res_counter_charge_nofail() become
page_counter_try_charge() and page_counter_charge() resp. to match
the more common kernel naming scheme of try_do()/do()
- res_counter_uncharge_until() is only ever used to cancel a local
counter and never to uncharge bigger segments of a hierarchy, so
it's replaced by the simpler page_counter_cancel()
- res_counter_set_limit() is replaced by page_counter_limit(), which
expects its callers to serialize against themselves
- res_counter_memparse_write_strategy() is replaced by
page_counter_limit(), which rounds down to the nearest page size -
rather than up. This is more reasonable for explicitely requested
hard upper limits.
- to keep charging light-weight, page_counter_try_charge() charges
speculatively, only to roll back if the result exceeds the limit.
Because of this, a failing bigger charge can temporarily lock out
smaller charges that would otherwise succeed. The error is bounded
to the difference between the smallest and the biggest possible
charge size, so for memcg, this means that a failing THP charge can
send base page charges into reclaim upto 2MB (4MB) before the limit
would have been reached. This should be acceptable.
[akpm@linux-foundation.org: add includes for WARN_ON_ONCE and memparse]
[akpm@linux-foundation.org: add includes for WARN_ON_ONCE, memparse, strncmp, and PAGE_SIZE]
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-10 15:42:31 -08:00
|
|
|
return -EBUSY;
|
|
|
|
|
2018-06-07 17:06:18 -07:00
|
|
|
old = xchg(&counter->max, nr_pages);
|
mm: memcontrol: lockless page counters
Memory is internally accounted in bytes, using spinlock-protected 64-bit
counters, even though the smallest accounting delta is a page. The
counter interface is also convoluted and does too many things.
Introduce a new lockless word-sized page counter API, then change all
memory accounting over to it. The translation from and to bytes then only
happens when interfacing with userspace.
The removed locking overhead is noticable when scaling beyond the per-cpu
charge caches - on a 4-socket machine with 144-threads, the following test
shows the performance differences of 288 memcgs concurrently running a
page fault benchmark:
vanilla:
18631648.500498 task-clock (msec) # 140.643 CPUs utilized ( +- 0.33% )
1,380,638 context-switches # 0.074 K/sec ( +- 0.75% )
24,390 cpu-migrations # 0.001 K/sec ( +- 8.44% )
1,843,305,768 page-faults # 0.099 M/sec ( +- 0.00% )
50,134,994,088,218 cycles # 2.691 GHz ( +- 0.33% )
<not supported> stalled-cycles-frontend
<not supported> stalled-cycles-backend
8,049,712,224,651 instructions # 0.16 insns per cycle ( +- 0.04% )
1,586,970,584,979 branches # 85.176 M/sec ( +- 0.05% )
1,724,989,949 branch-misses # 0.11% of all branches ( +- 0.48% )
132.474343877 seconds time elapsed ( +- 0.21% )
lockless:
12195979.037525 task-clock (msec) # 133.480 CPUs utilized ( +- 0.18% )
832,850 context-switches # 0.068 K/sec ( +- 0.54% )
15,624 cpu-migrations # 0.001 K/sec ( +- 10.17% )
1,843,304,774 page-faults # 0.151 M/sec ( +- 0.00% )
32,811,216,801,141 cycles # 2.690 GHz ( +- 0.18% )
<not supported> stalled-cycles-frontend
<not supported> stalled-cycles-backend
9,999,265,091,727 instructions # 0.30 insns per cycle ( +- 0.10% )
2,076,759,325,203 branches # 170.282 M/sec ( +- 0.12% )
1,656,917,214 branch-misses # 0.08% of all branches ( +- 0.55% )
91.369330729 seconds time elapsed ( +- 0.45% )
On top of improved scalability, this also gets rid of the icky long long
types in the very heart of memcg, which is great for 32 bit and also makes
the code a lot more readable.
Notable differences between the old and new API:
- res_counter_charge() and res_counter_charge_nofail() become
page_counter_try_charge() and page_counter_charge() resp. to match
the more common kernel naming scheme of try_do()/do()
- res_counter_uncharge_until() is only ever used to cancel a local
counter and never to uncharge bigger segments of a hierarchy, so
it's replaced by the simpler page_counter_cancel()
- res_counter_set_limit() is replaced by page_counter_limit(), which
expects its callers to serialize against themselves
- res_counter_memparse_write_strategy() is replaced by
page_counter_limit(), which rounds down to the nearest page size -
rather than up. This is more reasonable for explicitely requested
hard upper limits.
- to keep charging light-weight, page_counter_try_charge() charges
speculatively, only to roll back if the result exceeds the limit.
Because of this, a failing bigger charge can temporarily lock out
smaller charges that would otherwise succeed. The error is bounded
to the difference between the smallest and the biggest possible
charge size, so for memcg, this means that a failing THP charge can
send base page charges into reclaim upto 2MB (4MB) before the limit
would have been reached. This should be acceptable.
[akpm@linux-foundation.org: add includes for WARN_ON_ONCE and memparse]
[akpm@linux-foundation.org: add includes for WARN_ON_ONCE, memparse, strncmp, and PAGE_SIZE]
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-10 15:42:31 -08:00
|
|
|
|
2018-06-07 17:06:18 -07:00
|
|
|
if (atomic_long_read(&counter->usage) <= usage)
|
mm: memcontrol: lockless page counters
Memory is internally accounted in bytes, using spinlock-protected 64-bit
counters, even though the smallest accounting delta is a page. The
counter interface is also convoluted and does too many things.
Introduce a new lockless word-sized page counter API, then change all
memory accounting over to it. The translation from and to bytes then only
happens when interfacing with userspace.
The removed locking overhead is noticable when scaling beyond the per-cpu
charge caches - on a 4-socket machine with 144-threads, the following test
shows the performance differences of 288 memcgs concurrently running a
page fault benchmark:
vanilla:
18631648.500498 task-clock (msec) # 140.643 CPUs utilized ( +- 0.33% )
1,380,638 context-switches # 0.074 K/sec ( +- 0.75% )
24,390 cpu-migrations # 0.001 K/sec ( +- 8.44% )
1,843,305,768 page-faults # 0.099 M/sec ( +- 0.00% )
50,134,994,088,218 cycles # 2.691 GHz ( +- 0.33% )
<not supported> stalled-cycles-frontend
<not supported> stalled-cycles-backend
8,049,712,224,651 instructions # 0.16 insns per cycle ( +- 0.04% )
1,586,970,584,979 branches # 85.176 M/sec ( +- 0.05% )
1,724,989,949 branch-misses # 0.11% of all branches ( +- 0.48% )
132.474343877 seconds time elapsed ( +- 0.21% )
lockless:
12195979.037525 task-clock (msec) # 133.480 CPUs utilized ( +- 0.18% )
832,850 context-switches # 0.068 K/sec ( +- 0.54% )
15,624 cpu-migrations # 0.001 K/sec ( +- 10.17% )
1,843,304,774 page-faults # 0.151 M/sec ( +- 0.00% )
32,811,216,801,141 cycles # 2.690 GHz ( +- 0.18% )
<not supported> stalled-cycles-frontend
<not supported> stalled-cycles-backend
9,999,265,091,727 instructions # 0.30 insns per cycle ( +- 0.10% )
2,076,759,325,203 branches # 170.282 M/sec ( +- 0.12% )
1,656,917,214 branch-misses # 0.08% of all branches ( +- 0.55% )
91.369330729 seconds time elapsed ( +- 0.45% )
On top of improved scalability, this also gets rid of the icky long long
types in the very heart of memcg, which is great for 32 bit and also makes
the code a lot more readable.
Notable differences between the old and new API:
- res_counter_charge() and res_counter_charge_nofail() become
page_counter_try_charge() and page_counter_charge() resp. to match
the more common kernel naming scheme of try_do()/do()
- res_counter_uncharge_until() is only ever used to cancel a local
counter and never to uncharge bigger segments of a hierarchy, so
it's replaced by the simpler page_counter_cancel()
- res_counter_set_limit() is replaced by page_counter_limit(), which
expects its callers to serialize against themselves
- res_counter_memparse_write_strategy() is replaced by
page_counter_limit(), which rounds down to the nearest page size -
rather than up. This is more reasonable for explicitely requested
hard upper limits.
- to keep charging light-weight, page_counter_try_charge() charges
speculatively, only to roll back if the result exceeds the limit.
Because of this, a failing bigger charge can temporarily lock out
smaller charges that would otherwise succeed. The error is bounded
to the difference between the smallest and the biggest possible
charge size, so for memcg, this means that a failing THP charge can
send base page charges into reclaim upto 2MB (4MB) before the limit
would have been reached. This should be acceptable.
[akpm@linux-foundation.org: add includes for WARN_ON_ONCE and memparse]
[akpm@linux-foundation.org: add includes for WARN_ON_ONCE, memparse, strncmp, and PAGE_SIZE]
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-10 15:42:31 -08:00
|
|
|
return 0;
|
|
|
|
|
2018-06-07 17:06:18 -07:00
|
|
|
counter->max = old;
|
mm: memcontrol: lockless page counters
Memory is internally accounted in bytes, using spinlock-protected 64-bit
counters, even though the smallest accounting delta is a page. The
counter interface is also convoluted and does too many things.
Introduce a new lockless word-sized page counter API, then change all
memory accounting over to it. The translation from and to bytes then only
happens when interfacing with userspace.
The removed locking overhead is noticable when scaling beyond the per-cpu
charge caches - on a 4-socket machine with 144-threads, the following test
shows the performance differences of 288 memcgs concurrently running a
page fault benchmark:
vanilla:
18631648.500498 task-clock (msec) # 140.643 CPUs utilized ( +- 0.33% )
1,380,638 context-switches # 0.074 K/sec ( +- 0.75% )
24,390 cpu-migrations # 0.001 K/sec ( +- 8.44% )
1,843,305,768 page-faults # 0.099 M/sec ( +- 0.00% )
50,134,994,088,218 cycles # 2.691 GHz ( +- 0.33% )
<not supported> stalled-cycles-frontend
<not supported> stalled-cycles-backend
8,049,712,224,651 instructions # 0.16 insns per cycle ( +- 0.04% )
1,586,970,584,979 branches # 85.176 M/sec ( +- 0.05% )
1,724,989,949 branch-misses # 0.11% of all branches ( +- 0.48% )
132.474343877 seconds time elapsed ( +- 0.21% )
lockless:
12195979.037525 task-clock (msec) # 133.480 CPUs utilized ( +- 0.18% )
832,850 context-switches # 0.068 K/sec ( +- 0.54% )
15,624 cpu-migrations # 0.001 K/sec ( +- 10.17% )
1,843,304,774 page-faults # 0.151 M/sec ( +- 0.00% )
32,811,216,801,141 cycles # 2.690 GHz ( +- 0.18% )
<not supported> stalled-cycles-frontend
<not supported> stalled-cycles-backend
9,999,265,091,727 instructions # 0.30 insns per cycle ( +- 0.10% )
2,076,759,325,203 branches # 170.282 M/sec ( +- 0.12% )
1,656,917,214 branch-misses # 0.08% of all branches ( +- 0.55% )
91.369330729 seconds time elapsed ( +- 0.45% )
On top of improved scalability, this also gets rid of the icky long long
types in the very heart of memcg, which is great for 32 bit and also makes
the code a lot more readable.
Notable differences between the old and new API:
- res_counter_charge() and res_counter_charge_nofail() become
page_counter_try_charge() and page_counter_charge() resp. to match
the more common kernel naming scheme of try_do()/do()
- res_counter_uncharge_until() is only ever used to cancel a local
counter and never to uncharge bigger segments of a hierarchy, so
it's replaced by the simpler page_counter_cancel()
- res_counter_set_limit() is replaced by page_counter_limit(), which
expects its callers to serialize against themselves
- res_counter_memparse_write_strategy() is replaced by
page_counter_limit(), which rounds down to the nearest page size -
rather than up. This is more reasonable for explicitely requested
hard upper limits.
- to keep charging light-weight, page_counter_try_charge() charges
speculatively, only to roll back if the result exceeds the limit.
Because of this, a failing bigger charge can temporarily lock out
smaller charges that would otherwise succeed. The error is bounded
to the difference between the smallest and the biggest possible
charge size, so for memcg, this means that a failing THP charge can
send base page charges into reclaim upto 2MB (4MB) before the limit
would have been reached. This should be acceptable.
[akpm@linux-foundation.org: add includes for WARN_ON_ONCE and memparse]
[akpm@linux-foundation.org: add includes for WARN_ON_ONCE, memparse, strncmp, and PAGE_SIZE]
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-10 15:42:31 -08:00
|
|
|
cond_resched();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2018-06-07 17:07:46 -07:00
|
|
|
/**
|
|
|
|
* page_counter_set_min - set the amount of protected memory
|
|
|
|
* @counter: counter
|
|
|
|
* @nr_pages: value to set
|
|
|
|
*
|
|
|
|
* The caller must serialize invocations on the same counter.
|
|
|
|
*/
|
|
|
|
void page_counter_set_min(struct page_counter *counter, unsigned long nr_pages)
|
|
|
|
{
|
|
|
|
struct page_counter *c;
|
|
|
|
|
2020-04-01 21:07:27 -07:00
|
|
|
WRITE_ONCE(counter->min, nr_pages);
|
2018-06-07 17:07:46 -07:00
|
|
|
|
|
|
|
for (c = counter; c; c = c->parent)
|
|
|
|
propagate_protected_usage(c, atomic_long_read(&c->usage));
|
|
|
|
}
|
|
|
|
|
mm: memory.low hierarchical behavior
This patch aims to address an issue in current memory.low semantics,
which makes it hard to use it in a hierarchy, where some leaf memory
cgroups are more valuable than others.
For example, there are memcgs A, A/B, A/C, A/D and A/E:
A A/memory.low = 2G, A/memory.current = 6G
//\\
BC DE B/memory.low = 3G B/memory.current = 2G
C/memory.low = 1G C/memory.current = 2G
D/memory.low = 0 D/memory.current = 2G
E/memory.low = 10G E/memory.current = 0
If we apply memory pressure, B, C and D are reclaimed at the same pace
while A's usage exceeds 2G. This is obviously wrong, as B's usage is
fully below B's memory.low, and C has 1G of protection as well. Also, A
is pushed to the size, which is less than A's 2G memory.low, which is
also wrong.
A simple bash script (provided below) can be used to reproduce
the problem. Current results are:
A: 1430097920
A/B: 711929856
A/C: 717426688
A/D: 741376
A/E: 0
To address the issue a concept of effective memory.low is introduced.
Effective memory.low is always equal or less than original memory.low.
In a case, when there is no memory.low overcommittment (and also for
top-level cgroups), these two values are equal.
Otherwise it's a part of parent's effective memory.low, calculated as a
cgroup's memory.low usage divided by sum of sibling's memory.low usages
(under memory.low usage I mean the size of actually protected memory:
memory.current if memory.current < memory.low, 0 otherwise). It's
necessary to track the actual usage, because otherwise an empty cgroup
with memory.low set (A/E in my example) will affect actual memory
distribution, which makes no sense. To avoid traversing the cgroup tree
twice, page_counters code is reused.
Calculating effective memory.low can be done in the reclaim path, as we
conveniently traversing the cgroup tree from top to bottom and check
memory.low on each level. So, it's a perfect place to calculate
effective memory low and save it to use it for children cgroups.
This also eliminates a need to traverse the cgroup tree from bottom to
top each time to check if parent's guarantee is not exceeded.
Setting/resetting effective memory.low is intentionally racy, but it's
fine and shouldn't lead to any significant differences in actual memory
distribution.
With this patch applied results are matching the expectations:
A: 2147930112
A/B: 1428721664
A/C: 718393344
A/D: 815104
A/E: 0
Test script:
#!/bin/bash
CGPATH="/sys/fs/cgroup"
truncate /file1 --size 2G
truncate /file2 --size 2G
truncate /file3 --size 2G
truncate /file4 --size 50G
mkdir "${CGPATH}/A"
echo "+memory" > "${CGPATH}/A/cgroup.subtree_control"
mkdir "${CGPATH}/A/B" "${CGPATH}/A/C" "${CGPATH}/A/D" "${CGPATH}/A/E"
echo 2G > "${CGPATH}/A/memory.low"
echo 3G > "${CGPATH}/A/B/memory.low"
echo 1G > "${CGPATH}/A/C/memory.low"
echo 0 > "${CGPATH}/A/D/memory.low"
echo 10G > "${CGPATH}/A/E/memory.low"
echo $$ > "${CGPATH}/A/B/cgroup.procs" && vmtouch -qt /file1
echo $$ > "${CGPATH}/A/C/cgroup.procs" && vmtouch -qt /file2
echo $$ > "${CGPATH}/A/D/cgroup.procs" && vmtouch -qt /file3
echo $$ > "${CGPATH}/cgroup.procs" && vmtouch -qt /file4
echo "A: " `cat "${CGPATH}/A/memory.current"`
echo "A/B: " `cat "${CGPATH}/A/B/memory.current"`
echo "A/C: " `cat "${CGPATH}/A/C/memory.current"`
echo "A/D: " `cat "${CGPATH}/A/D/memory.current"`
echo "A/E: " `cat "${CGPATH}/A/E/memory.current"`
rmdir "${CGPATH}/A/B" "${CGPATH}/A/C" "${CGPATH}/A/D" "${CGPATH}/A/E"
rmdir "${CGPATH}/A"
rm /file1 /file2 /file3 /file4
Link: http://lkml.kernel.org/r/20180405185921.4942-2-guro@fb.com
Signed-off-by: Roman Gushchin <guro@fb.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-06-07 17:06:22 -07:00
|
|
|
/**
|
|
|
|
* page_counter_set_low - set the amount of protected memory
|
|
|
|
* @counter: counter
|
|
|
|
* @nr_pages: value to set
|
|
|
|
*
|
|
|
|
* The caller must serialize invocations on the same counter.
|
|
|
|
*/
|
|
|
|
void page_counter_set_low(struct page_counter *counter, unsigned long nr_pages)
|
|
|
|
{
|
|
|
|
struct page_counter *c;
|
|
|
|
|
2020-04-01 21:07:24 -07:00
|
|
|
WRITE_ONCE(counter->low, nr_pages);
|
mm: memory.low hierarchical behavior
This patch aims to address an issue in current memory.low semantics,
which makes it hard to use it in a hierarchy, where some leaf memory
cgroups are more valuable than others.
For example, there are memcgs A, A/B, A/C, A/D and A/E:
A A/memory.low = 2G, A/memory.current = 6G
//\\
BC DE B/memory.low = 3G B/memory.current = 2G
C/memory.low = 1G C/memory.current = 2G
D/memory.low = 0 D/memory.current = 2G
E/memory.low = 10G E/memory.current = 0
If we apply memory pressure, B, C and D are reclaimed at the same pace
while A's usage exceeds 2G. This is obviously wrong, as B's usage is
fully below B's memory.low, and C has 1G of protection as well. Also, A
is pushed to the size, which is less than A's 2G memory.low, which is
also wrong.
A simple bash script (provided below) can be used to reproduce
the problem. Current results are:
A: 1430097920
A/B: 711929856
A/C: 717426688
A/D: 741376
A/E: 0
To address the issue a concept of effective memory.low is introduced.
Effective memory.low is always equal or less than original memory.low.
In a case, when there is no memory.low overcommittment (and also for
top-level cgroups), these two values are equal.
Otherwise it's a part of parent's effective memory.low, calculated as a
cgroup's memory.low usage divided by sum of sibling's memory.low usages
(under memory.low usage I mean the size of actually protected memory:
memory.current if memory.current < memory.low, 0 otherwise). It's
necessary to track the actual usage, because otherwise an empty cgroup
with memory.low set (A/E in my example) will affect actual memory
distribution, which makes no sense. To avoid traversing the cgroup tree
twice, page_counters code is reused.
Calculating effective memory.low can be done in the reclaim path, as we
conveniently traversing the cgroup tree from top to bottom and check
memory.low on each level. So, it's a perfect place to calculate
effective memory low and save it to use it for children cgroups.
This also eliminates a need to traverse the cgroup tree from bottom to
top each time to check if parent's guarantee is not exceeded.
Setting/resetting effective memory.low is intentionally racy, but it's
fine and shouldn't lead to any significant differences in actual memory
distribution.
With this patch applied results are matching the expectations:
A: 2147930112
A/B: 1428721664
A/C: 718393344
A/D: 815104
A/E: 0
Test script:
#!/bin/bash
CGPATH="/sys/fs/cgroup"
truncate /file1 --size 2G
truncate /file2 --size 2G
truncate /file3 --size 2G
truncate /file4 --size 50G
mkdir "${CGPATH}/A"
echo "+memory" > "${CGPATH}/A/cgroup.subtree_control"
mkdir "${CGPATH}/A/B" "${CGPATH}/A/C" "${CGPATH}/A/D" "${CGPATH}/A/E"
echo 2G > "${CGPATH}/A/memory.low"
echo 3G > "${CGPATH}/A/B/memory.low"
echo 1G > "${CGPATH}/A/C/memory.low"
echo 0 > "${CGPATH}/A/D/memory.low"
echo 10G > "${CGPATH}/A/E/memory.low"
echo $$ > "${CGPATH}/A/B/cgroup.procs" && vmtouch -qt /file1
echo $$ > "${CGPATH}/A/C/cgroup.procs" && vmtouch -qt /file2
echo $$ > "${CGPATH}/A/D/cgroup.procs" && vmtouch -qt /file3
echo $$ > "${CGPATH}/cgroup.procs" && vmtouch -qt /file4
echo "A: " `cat "${CGPATH}/A/memory.current"`
echo "A/B: " `cat "${CGPATH}/A/B/memory.current"`
echo "A/C: " `cat "${CGPATH}/A/C/memory.current"`
echo "A/D: " `cat "${CGPATH}/A/D/memory.current"`
echo "A/E: " `cat "${CGPATH}/A/E/memory.current"`
rmdir "${CGPATH}/A/B" "${CGPATH}/A/C" "${CGPATH}/A/D" "${CGPATH}/A/E"
rmdir "${CGPATH}/A"
rm /file1 /file2 /file3 /file4
Link: http://lkml.kernel.org/r/20180405185921.4942-2-guro@fb.com
Signed-off-by: Roman Gushchin <guro@fb.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-06-07 17:06:22 -07:00
|
|
|
|
|
|
|
for (c = counter; c; c = c->parent)
|
2018-06-07 17:07:46 -07:00
|
|
|
propagate_protected_usage(c, atomic_long_read(&c->usage));
|
mm: memory.low hierarchical behavior
This patch aims to address an issue in current memory.low semantics,
which makes it hard to use it in a hierarchy, where some leaf memory
cgroups are more valuable than others.
For example, there are memcgs A, A/B, A/C, A/D and A/E:
A A/memory.low = 2G, A/memory.current = 6G
//\\
BC DE B/memory.low = 3G B/memory.current = 2G
C/memory.low = 1G C/memory.current = 2G
D/memory.low = 0 D/memory.current = 2G
E/memory.low = 10G E/memory.current = 0
If we apply memory pressure, B, C and D are reclaimed at the same pace
while A's usage exceeds 2G. This is obviously wrong, as B's usage is
fully below B's memory.low, and C has 1G of protection as well. Also, A
is pushed to the size, which is less than A's 2G memory.low, which is
also wrong.
A simple bash script (provided below) can be used to reproduce
the problem. Current results are:
A: 1430097920
A/B: 711929856
A/C: 717426688
A/D: 741376
A/E: 0
To address the issue a concept of effective memory.low is introduced.
Effective memory.low is always equal or less than original memory.low.
In a case, when there is no memory.low overcommittment (and also for
top-level cgroups), these two values are equal.
Otherwise it's a part of parent's effective memory.low, calculated as a
cgroup's memory.low usage divided by sum of sibling's memory.low usages
(under memory.low usage I mean the size of actually protected memory:
memory.current if memory.current < memory.low, 0 otherwise). It's
necessary to track the actual usage, because otherwise an empty cgroup
with memory.low set (A/E in my example) will affect actual memory
distribution, which makes no sense. To avoid traversing the cgroup tree
twice, page_counters code is reused.
Calculating effective memory.low can be done in the reclaim path, as we
conveniently traversing the cgroup tree from top to bottom and check
memory.low on each level. So, it's a perfect place to calculate
effective memory low and save it to use it for children cgroups.
This also eliminates a need to traverse the cgroup tree from bottom to
top each time to check if parent's guarantee is not exceeded.
Setting/resetting effective memory.low is intentionally racy, but it's
fine and shouldn't lead to any significant differences in actual memory
distribution.
With this patch applied results are matching the expectations:
A: 2147930112
A/B: 1428721664
A/C: 718393344
A/D: 815104
A/E: 0
Test script:
#!/bin/bash
CGPATH="/sys/fs/cgroup"
truncate /file1 --size 2G
truncate /file2 --size 2G
truncate /file3 --size 2G
truncate /file4 --size 50G
mkdir "${CGPATH}/A"
echo "+memory" > "${CGPATH}/A/cgroup.subtree_control"
mkdir "${CGPATH}/A/B" "${CGPATH}/A/C" "${CGPATH}/A/D" "${CGPATH}/A/E"
echo 2G > "${CGPATH}/A/memory.low"
echo 3G > "${CGPATH}/A/B/memory.low"
echo 1G > "${CGPATH}/A/C/memory.low"
echo 0 > "${CGPATH}/A/D/memory.low"
echo 10G > "${CGPATH}/A/E/memory.low"
echo $$ > "${CGPATH}/A/B/cgroup.procs" && vmtouch -qt /file1
echo $$ > "${CGPATH}/A/C/cgroup.procs" && vmtouch -qt /file2
echo $$ > "${CGPATH}/A/D/cgroup.procs" && vmtouch -qt /file3
echo $$ > "${CGPATH}/cgroup.procs" && vmtouch -qt /file4
echo "A: " `cat "${CGPATH}/A/memory.current"`
echo "A/B: " `cat "${CGPATH}/A/B/memory.current"`
echo "A/C: " `cat "${CGPATH}/A/C/memory.current"`
echo "A/D: " `cat "${CGPATH}/A/D/memory.current"`
echo "A/E: " `cat "${CGPATH}/A/E/memory.current"`
rmdir "${CGPATH}/A/B" "${CGPATH}/A/C" "${CGPATH}/A/D" "${CGPATH}/A/E"
rmdir "${CGPATH}/A"
rm /file1 /file2 /file3 /file4
Link: http://lkml.kernel.org/r/20180405185921.4942-2-guro@fb.com
Signed-off-by: Roman Gushchin <guro@fb.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-06-07 17:06:22 -07:00
|
|
|
}
|
|
|
|
|
mm: memcontrol: lockless page counters
Memory is internally accounted in bytes, using spinlock-protected 64-bit
counters, even though the smallest accounting delta is a page. The
counter interface is also convoluted and does too many things.
Introduce a new lockless word-sized page counter API, then change all
memory accounting over to it. The translation from and to bytes then only
happens when interfacing with userspace.
The removed locking overhead is noticable when scaling beyond the per-cpu
charge caches - on a 4-socket machine with 144-threads, the following test
shows the performance differences of 288 memcgs concurrently running a
page fault benchmark:
vanilla:
18631648.500498 task-clock (msec) # 140.643 CPUs utilized ( +- 0.33% )
1,380,638 context-switches # 0.074 K/sec ( +- 0.75% )
24,390 cpu-migrations # 0.001 K/sec ( +- 8.44% )
1,843,305,768 page-faults # 0.099 M/sec ( +- 0.00% )
50,134,994,088,218 cycles # 2.691 GHz ( +- 0.33% )
<not supported> stalled-cycles-frontend
<not supported> stalled-cycles-backend
8,049,712,224,651 instructions # 0.16 insns per cycle ( +- 0.04% )
1,586,970,584,979 branches # 85.176 M/sec ( +- 0.05% )
1,724,989,949 branch-misses # 0.11% of all branches ( +- 0.48% )
132.474343877 seconds time elapsed ( +- 0.21% )
lockless:
12195979.037525 task-clock (msec) # 133.480 CPUs utilized ( +- 0.18% )
832,850 context-switches # 0.068 K/sec ( +- 0.54% )
15,624 cpu-migrations # 0.001 K/sec ( +- 10.17% )
1,843,304,774 page-faults # 0.151 M/sec ( +- 0.00% )
32,811,216,801,141 cycles # 2.690 GHz ( +- 0.18% )
<not supported> stalled-cycles-frontend
<not supported> stalled-cycles-backend
9,999,265,091,727 instructions # 0.30 insns per cycle ( +- 0.10% )
2,076,759,325,203 branches # 170.282 M/sec ( +- 0.12% )
1,656,917,214 branch-misses # 0.08% of all branches ( +- 0.55% )
91.369330729 seconds time elapsed ( +- 0.45% )
On top of improved scalability, this also gets rid of the icky long long
types in the very heart of memcg, which is great for 32 bit and also makes
the code a lot more readable.
Notable differences between the old and new API:
- res_counter_charge() and res_counter_charge_nofail() become
page_counter_try_charge() and page_counter_charge() resp. to match
the more common kernel naming scheme of try_do()/do()
- res_counter_uncharge_until() is only ever used to cancel a local
counter and never to uncharge bigger segments of a hierarchy, so
it's replaced by the simpler page_counter_cancel()
- res_counter_set_limit() is replaced by page_counter_limit(), which
expects its callers to serialize against themselves
- res_counter_memparse_write_strategy() is replaced by
page_counter_limit(), which rounds down to the nearest page size -
rather than up. This is more reasonable for explicitely requested
hard upper limits.
- to keep charging light-weight, page_counter_try_charge() charges
speculatively, only to roll back if the result exceeds the limit.
Because of this, a failing bigger charge can temporarily lock out
smaller charges that would otherwise succeed. The error is bounded
to the difference between the smallest and the biggest possible
charge size, so for memcg, this means that a failing THP charge can
send base page charges into reclaim upto 2MB (4MB) before the limit
would have been reached. This should be acceptable.
[akpm@linux-foundation.org: add includes for WARN_ON_ONCE and memparse]
[akpm@linux-foundation.org: add includes for WARN_ON_ONCE, memparse, strncmp, and PAGE_SIZE]
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-10 15:42:31 -08:00
|
|
|
/**
|
|
|
|
* page_counter_memparse - memparse() for page counter limits
|
|
|
|
* @buf: string to parse
|
2015-02-11 15:26:03 -08:00
|
|
|
* @max: string meaning maximum possible value
|
mm: memcontrol: lockless page counters
Memory is internally accounted in bytes, using spinlock-protected 64-bit
counters, even though the smallest accounting delta is a page. The
counter interface is also convoluted and does too many things.
Introduce a new lockless word-sized page counter API, then change all
memory accounting over to it. The translation from and to bytes then only
happens when interfacing with userspace.
The removed locking overhead is noticable when scaling beyond the per-cpu
charge caches - on a 4-socket machine with 144-threads, the following test
shows the performance differences of 288 memcgs concurrently running a
page fault benchmark:
vanilla:
18631648.500498 task-clock (msec) # 140.643 CPUs utilized ( +- 0.33% )
1,380,638 context-switches # 0.074 K/sec ( +- 0.75% )
24,390 cpu-migrations # 0.001 K/sec ( +- 8.44% )
1,843,305,768 page-faults # 0.099 M/sec ( +- 0.00% )
50,134,994,088,218 cycles # 2.691 GHz ( +- 0.33% )
<not supported> stalled-cycles-frontend
<not supported> stalled-cycles-backend
8,049,712,224,651 instructions # 0.16 insns per cycle ( +- 0.04% )
1,586,970,584,979 branches # 85.176 M/sec ( +- 0.05% )
1,724,989,949 branch-misses # 0.11% of all branches ( +- 0.48% )
132.474343877 seconds time elapsed ( +- 0.21% )
lockless:
12195979.037525 task-clock (msec) # 133.480 CPUs utilized ( +- 0.18% )
832,850 context-switches # 0.068 K/sec ( +- 0.54% )
15,624 cpu-migrations # 0.001 K/sec ( +- 10.17% )
1,843,304,774 page-faults # 0.151 M/sec ( +- 0.00% )
32,811,216,801,141 cycles # 2.690 GHz ( +- 0.18% )
<not supported> stalled-cycles-frontend
<not supported> stalled-cycles-backend
9,999,265,091,727 instructions # 0.30 insns per cycle ( +- 0.10% )
2,076,759,325,203 branches # 170.282 M/sec ( +- 0.12% )
1,656,917,214 branch-misses # 0.08% of all branches ( +- 0.55% )
91.369330729 seconds time elapsed ( +- 0.45% )
On top of improved scalability, this also gets rid of the icky long long
types in the very heart of memcg, which is great for 32 bit and also makes
the code a lot more readable.
Notable differences between the old and new API:
- res_counter_charge() and res_counter_charge_nofail() become
page_counter_try_charge() and page_counter_charge() resp. to match
the more common kernel naming scheme of try_do()/do()
- res_counter_uncharge_until() is only ever used to cancel a local
counter and never to uncharge bigger segments of a hierarchy, so
it's replaced by the simpler page_counter_cancel()
- res_counter_set_limit() is replaced by page_counter_limit(), which
expects its callers to serialize against themselves
- res_counter_memparse_write_strategy() is replaced by
page_counter_limit(), which rounds down to the nearest page size -
rather than up. This is more reasonable for explicitely requested
hard upper limits.
- to keep charging light-weight, page_counter_try_charge() charges
speculatively, only to roll back if the result exceeds the limit.
Because of this, a failing bigger charge can temporarily lock out
smaller charges that would otherwise succeed. The error is bounded
to the difference between the smallest and the biggest possible
charge size, so for memcg, this means that a failing THP charge can
send base page charges into reclaim upto 2MB (4MB) before the limit
would have been reached. This should be acceptable.
[akpm@linux-foundation.org: add includes for WARN_ON_ONCE and memparse]
[akpm@linux-foundation.org: add includes for WARN_ON_ONCE, memparse, strncmp, and PAGE_SIZE]
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-10 15:42:31 -08:00
|
|
|
* @nr_pages: returns the result in number of pages
|
|
|
|
*
|
|
|
|
* Returns -EINVAL, or 0 and @nr_pages on success. @nr_pages will be
|
|
|
|
* limited to %PAGE_COUNTER_MAX.
|
|
|
|
*/
|
2015-02-11 15:26:03 -08:00
|
|
|
int page_counter_memparse(const char *buf, const char *max,
|
|
|
|
unsigned long *nr_pages)
|
mm: memcontrol: lockless page counters
Memory is internally accounted in bytes, using spinlock-protected 64-bit
counters, even though the smallest accounting delta is a page. The
counter interface is also convoluted and does too many things.
Introduce a new lockless word-sized page counter API, then change all
memory accounting over to it. The translation from and to bytes then only
happens when interfacing with userspace.
The removed locking overhead is noticable when scaling beyond the per-cpu
charge caches - on a 4-socket machine with 144-threads, the following test
shows the performance differences of 288 memcgs concurrently running a
page fault benchmark:
vanilla:
18631648.500498 task-clock (msec) # 140.643 CPUs utilized ( +- 0.33% )
1,380,638 context-switches # 0.074 K/sec ( +- 0.75% )
24,390 cpu-migrations # 0.001 K/sec ( +- 8.44% )
1,843,305,768 page-faults # 0.099 M/sec ( +- 0.00% )
50,134,994,088,218 cycles # 2.691 GHz ( +- 0.33% )
<not supported> stalled-cycles-frontend
<not supported> stalled-cycles-backend
8,049,712,224,651 instructions # 0.16 insns per cycle ( +- 0.04% )
1,586,970,584,979 branches # 85.176 M/sec ( +- 0.05% )
1,724,989,949 branch-misses # 0.11% of all branches ( +- 0.48% )
132.474343877 seconds time elapsed ( +- 0.21% )
lockless:
12195979.037525 task-clock (msec) # 133.480 CPUs utilized ( +- 0.18% )
832,850 context-switches # 0.068 K/sec ( +- 0.54% )
15,624 cpu-migrations # 0.001 K/sec ( +- 10.17% )
1,843,304,774 page-faults # 0.151 M/sec ( +- 0.00% )
32,811,216,801,141 cycles # 2.690 GHz ( +- 0.18% )
<not supported> stalled-cycles-frontend
<not supported> stalled-cycles-backend
9,999,265,091,727 instructions # 0.30 insns per cycle ( +- 0.10% )
2,076,759,325,203 branches # 170.282 M/sec ( +- 0.12% )
1,656,917,214 branch-misses # 0.08% of all branches ( +- 0.55% )
91.369330729 seconds time elapsed ( +- 0.45% )
On top of improved scalability, this also gets rid of the icky long long
types in the very heart of memcg, which is great for 32 bit and also makes
the code a lot more readable.
Notable differences between the old and new API:
- res_counter_charge() and res_counter_charge_nofail() become
page_counter_try_charge() and page_counter_charge() resp. to match
the more common kernel naming scheme of try_do()/do()
- res_counter_uncharge_until() is only ever used to cancel a local
counter and never to uncharge bigger segments of a hierarchy, so
it's replaced by the simpler page_counter_cancel()
- res_counter_set_limit() is replaced by page_counter_limit(), which
expects its callers to serialize against themselves
- res_counter_memparse_write_strategy() is replaced by
page_counter_limit(), which rounds down to the nearest page size -
rather than up. This is more reasonable for explicitely requested
hard upper limits.
- to keep charging light-weight, page_counter_try_charge() charges
speculatively, only to roll back if the result exceeds the limit.
Because of this, a failing bigger charge can temporarily lock out
smaller charges that would otherwise succeed. The error is bounded
to the difference between the smallest and the biggest possible
charge size, so for memcg, this means that a failing THP charge can
send base page charges into reclaim upto 2MB (4MB) before the limit
would have been reached. This should be acceptable.
[akpm@linux-foundation.org: add includes for WARN_ON_ONCE and memparse]
[akpm@linux-foundation.org: add includes for WARN_ON_ONCE, memparse, strncmp, and PAGE_SIZE]
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-10 15:42:31 -08:00
|
|
|
{
|
|
|
|
char *end;
|
|
|
|
u64 bytes;
|
|
|
|
|
2015-02-11 15:26:03 -08:00
|
|
|
if (!strcmp(buf, max)) {
|
mm: memcontrol: lockless page counters
Memory is internally accounted in bytes, using spinlock-protected 64-bit
counters, even though the smallest accounting delta is a page. The
counter interface is also convoluted and does too many things.
Introduce a new lockless word-sized page counter API, then change all
memory accounting over to it. The translation from and to bytes then only
happens when interfacing with userspace.
The removed locking overhead is noticable when scaling beyond the per-cpu
charge caches - on a 4-socket machine with 144-threads, the following test
shows the performance differences of 288 memcgs concurrently running a
page fault benchmark:
vanilla:
18631648.500498 task-clock (msec) # 140.643 CPUs utilized ( +- 0.33% )
1,380,638 context-switches # 0.074 K/sec ( +- 0.75% )
24,390 cpu-migrations # 0.001 K/sec ( +- 8.44% )
1,843,305,768 page-faults # 0.099 M/sec ( +- 0.00% )
50,134,994,088,218 cycles # 2.691 GHz ( +- 0.33% )
<not supported> stalled-cycles-frontend
<not supported> stalled-cycles-backend
8,049,712,224,651 instructions # 0.16 insns per cycle ( +- 0.04% )
1,586,970,584,979 branches # 85.176 M/sec ( +- 0.05% )
1,724,989,949 branch-misses # 0.11% of all branches ( +- 0.48% )
132.474343877 seconds time elapsed ( +- 0.21% )
lockless:
12195979.037525 task-clock (msec) # 133.480 CPUs utilized ( +- 0.18% )
832,850 context-switches # 0.068 K/sec ( +- 0.54% )
15,624 cpu-migrations # 0.001 K/sec ( +- 10.17% )
1,843,304,774 page-faults # 0.151 M/sec ( +- 0.00% )
32,811,216,801,141 cycles # 2.690 GHz ( +- 0.18% )
<not supported> stalled-cycles-frontend
<not supported> stalled-cycles-backend
9,999,265,091,727 instructions # 0.30 insns per cycle ( +- 0.10% )
2,076,759,325,203 branches # 170.282 M/sec ( +- 0.12% )
1,656,917,214 branch-misses # 0.08% of all branches ( +- 0.55% )
91.369330729 seconds time elapsed ( +- 0.45% )
On top of improved scalability, this also gets rid of the icky long long
types in the very heart of memcg, which is great for 32 bit and also makes
the code a lot more readable.
Notable differences between the old and new API:
- res_counter_charge() and res_counter_charge_nofail() become
page_counter_try_charge() and page_counter_charge() resp. to match
the more common kernel naming scheme of try_do()/do()
- res_counter_uncharge_until() is only ever used to cancel a local
counter and never to uncharge bigger segments of a hierarchy, so
it's replaced by the simpler page_counter_cancel()
- res_counter_set_limit() is replaced by page_counter_limit(), which
expects its callers to serialize against themselves
- res_counter_memparse_write_strategy() is replaced by
page_counter_limit(), which rounds down to the nearest page size -
rather than up. This is more reasonable for explicitely requested
hard upper limits.
- to keep charging light-weight, page_counter_try_charge() charges
speculatively, only to roll back if the result exceeds the limit.
Because of this, a failing bigger charge can temporarily lock out
smaller charges that would otherwise succeed. The error is bounded
to the difference between the smallest and the biggest possible
charge size, so for memcg, this means that a failing THP charge can
send base page charges into reclaim upto 2MB (4MB) before the limit
would have been reached. This should be acceptable.
[akpm@linux-foundation.org: add includes for WARN_ON_ONCE and memparse]
[akpm@linux-foundation.org: add includes for WARN_ON_ONCE, memparse, strncmp, and PAGE_SIZE]
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-10 15:42:31 -08:00
|
|
|
*nr_pages = PAGE_COUNTER_MAX;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
bytes = memparse(buf, &end);
|
|
|
|
if (*end != '\0')
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
*nr_pages = min(bytes / PAGE_SIZE, (u64)PAGE_COUNTER_MAX);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|