2019-11-08 12:22:39 +00:00
|
|
|
// SPDX-License-Identifier: GPL-2.0 OR MIT
|
|
|
|
/*
|
|
|
|
* Copyright (C) 2015-2019 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
|
|
|
|
*
|
|
|
|
* This is an implementation of the ChaCha20Poly1305 AEAD construction.
|
|
|
|
*
|
|
|
|
* Information: https://tools.ietf.org/html/rfc8439
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <crypto/algapi.h>
|
|
|
|
#include <crypto/chacha20poly1305.h>
|
|
|
|
#include <crypto/chacha.h>
|
|
|
|
#include <crypto/poly1305.h>
|
crypto: lib/chacha20poly1305 - reimplement crypt_from_sg() routine
Reimplement the library routines to perform chacha20poly1305 en/decryption
on scatterlists, without [ab]using the [deprecated] blkcipher interface,
which is rather heavyweight and does things we don't really need.
Instead, we use the sg_miter API in a novel and clever way, to iterate
over the scatterlist in-place (i.e., source == destination, which is the
only way this library is expected to be used). That way, we don't have to
iterate over two scatterlists in parallel.
Another optimization is that, instead of relying on the blkcipher walker
to present the input in suitable chunks, we recognize that ChaCha is a
streamcipher, and so we can simply deal with partial blocks by keeping a
block of cipherstream on the stack and use crypto_xor() to mix it with
the in/output.
Finally, we omit the scatterwalk_and_copy() call if the last element of
the scatterlist covers the MAC as well (which is the common case),
avoiding the need to walk the scatterlist and kmap() the page twice.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2019-11-08 12:22:40 +00:00
|
|
|
#include <crypto/scatterwalk.h>
|
2019-11-08 12:22:39 +00:00
|
|
|
|
2024-10-01 19:35:57 +00:00
|
|
|
#include <linux/unaligned.h>
|
2019-11-08 12:22:39 +00:00
|
|
|
#include <linux/kernel.h>
|
|
|
|
#include <linux/init.h>
|
|
|
|
#include <linux/mm.h>
|
|
|
|
#include <linux/module.h>
|
|
|
|
|
|
|
|
#define CHACHA_KEY_WORDS (CHACHA_KEY_SIZE / sizeof(u32))
|
|
|
|
|
|
|
|
static void chacha_load_key(u32 *k, const u8 *in)
|
|
|
|
{
|
|
|
|
k[0] = get_unaligned_le32(in);
|
|
|
|
k[1] = get_unaligned_le32(in + 4);
|
|
|
|
k[2] = get_unaligned_le32(in + 8);
|
|
|
|
k[3] = get_unaligned_le32(in + 12);
|
|
|
|
k[4] = get_unaligned_le32(in + 16);
|
|
|
|
k[5] = get_unaligned_le32(in + 20);
|
|
|
|
k[6] = get_unaligned_le32(in + 24);
|
|
|
|
k[7] = get_unaligned_le32(in + 28);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void xchacha_init(u32 *chacha_state, const u8 *key, const u8 *nonce)
|
|
|
|
{
|
|
|
|
u32 k[CHACHA_KEY_WORDS];
|
|
|
|
u8 iv[CHACHA_IV_SIZE];
|
|
|
|
|
|
|
|
memset(iv, 0, 8);
|
|
|
|
memcpy(iv + 8, nonce + 16, 8);
|
|
|
|
|
|
|
|
chacha_load_key(k, key);
|
|
|
|
|
|
|
|
/* Compute the subkey given the original key and first 128 nonce bits */
|
|
|
|
chacha_init(chacha_state, k, nonce);
|
|
|
|
hchacha_block(chacha_state, k, 20);
|
|
|
|
|
|
|
|
chacha_init(chacha_state, k, iv);
|
|
|
|
|
|
|
|
memzero_explicit(k, sizeof(k));
|
|
|
|
memzero_explicit(iv, sizeof(iv));
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
__chacha20poly1305_encrypt(u8 *dst, const u8 *src, const size_t src_len,
|
|
|
|
const u8 *ad, const size_t ad_len, u32 *chacha_state)
|
|
|
|
{
|
|
|
|
const u8 *pad0 = page_address(ZERO_PAGE(0));
|
|
|
|
struct poly1305_desc_ctx poly1305_state;
|
|
|
|
union {
|
|
|
|
u8 block0[POLY1305_KEY_SIZE];
|
|
|
|
__le64 lens[2];
|
|
|
|
} b;
|
|
|
|
|
2019-11-18 07:22:16 +00:00
|
|
|
chacha20_crypt(chacha_state, b.block0, pad0, sizeof(b.block0));
|
2019-11-08 12:22:39 +00:00
|
|
|
poly1305_init(&poly1305_state, b.block0);
|
|
|
|
|
|
|
|
poly1305_update(&poly1305_state, ad, ad_len);
|
|
|
|
if (ad_len & 0xf)
|
|
|
|
poly1305_update(&poly1305_state, pad0, 0x10 - (ad_len & 0xf));
|
|
|
|
|
2019-11-18 07:22:16 +00:00
|
|
|
chacha20_crypt(chacha_state, dst, src, src_len);
|
2019-11-08 12:22:39 +00:00
|
|
|
|
|
|
|
poly1305_update(&poly1305_state, dst, src_len);
|
|
|
|
if (src_len & 0xf)
|
|
|
|
poly1305_update(&poly1305_state, pad0, 0x10 - (src_len & 0xf));
|
|
|
|
|
|
|
|
b.lens[0] = cpu_to_le64(ad_len);
|
|
|
|
b.lens[1] = cpu_to_le64(src_len);
|
|
|
|
poly1305_update(&poly1305_state, (u8 *)b.lens, sizeof(b.lens));
|
|
|
|
|
|
|
|
poly1305_final(&poly1305_state, dst + src_len);
|
|
|
|
|
|
|
|
memzero_explicit(chacha_state, CHACHA_STATE_WORDS * sizeof(u32));
|
|
|
|
memzero_explicit(&b, sizeof(b));
|
|
|
|
}
|
|
|
|
|
|
|
|
void chacha20poly1305_encrypt(u8 *dst, const u8 *src, const size_t src_len,
|
|
|
|
const u8 *ad, const size_t ad_len,
|
|
|
|
const u64 nonce,
|
|
|
|
const u8 key[CHACHA20POLY1305_KEY_SIZE])
|
|
|
|
{
|
|
|
|
u32 chacha_state[CHACHA_STATE_WORDS];
|
|
|
|
u32 k[CHACHA_KEY_WORDS];
|
|
|
|
__le64 iv[2];
|
|
|
|
|
|
|
|
chacha_load_key(k, key);
|
|
|
|
|
|
|
|
iv[0] = 0;
|
|
|
|
iv[1] = cpu_to_le64(nonce);
|
|
|
|
|
|
|
|
chacha_init(chacha_state, k, (u8 *)iv);
|
|
|
|
__chacha20poly1305_encrypt(dst, src, src_len, ad, ad_len, chacha_state);
|
|
|
|
|
|
|
|
memzero_explicit(iv, sizeof(iv));
|
|
|
|
memzero_explicit(k, sizeof(k));
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(chacha20poly1305_encrypt);
|
|
|
|
|
|
|
|
void xchacha20poly1305_encrypt(u8 *dst, const u8 *src, const size_t src_len,
|
|
|
|
const u8 *ad, const size_t ad_len,
|
|
|
|
const u8 nonce[XCHACHA20POLY1305_NONCE_SIZE],
|
|
|
|
const u8 key[CHACHA20POLY1305_KEY_SIZE])
|
|
|
|
{
|
|
|
|
u32 chacha_state[CHACHA_STATE_WORDS];
|
|
|
|
|
|
|
|
xchacha_init(chacha_state, key, nonce);
|
|
|
|
__chacha20poly1305_encrypt(dst, src, src_len, ad, ad_len, chacha_state);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(xchacha20poly1305_encrypt);
|
|
|
|
|
|
|
|
static bool
|
|
|
|
__chacha20poly1305_decrypt(u8 *dst, const u8 *src, const size_t src_len,
|
|
|
|
const u8 *ad, const size_t ad_len, u32 *chacha_state)
|
|
|
|
{
|
|
|
|
const u8 *pad0 = page_address(ZERO_PAGE(0));
|
|
|
|
struct poly1305_desc_ctx poly1305_state;
|
|
|
|
size_t dst_len;
|
|
|
|
int ret;
|
|
|
|
union {
|
|
|
|
u8 block0[POLY1305_KEY_SIZE];
|
|
|
|
u8 mac[POLY1305_DIGEST_SIZE];
|
|
|
|
__le64 lens[2];
|
|
|
|
} b;
|
|
|
|
|
|
|
|
if (unlikely(src_len < POLY1305_DIGEST_SIZE))
|
|
|
|
return false;
|
|
|
|
|
2019-11-18 07:22:16 +00:00
|
|
|
chacha20_crypt(chacha_state, b.block0, pad0, sizeof(b.block0));
|
2019-11-08 12:22:39 +00:00
|
|
|
poly1305_init(&poly1305_state, b.block0);
|
|
|
|
|
|
|
|
poly1305_update(&poly1305_state, ad, ad_len);
|
|
|
|
if (ad_len & 0xf)
|
|
|
|
poly1305_update(&poly1305_state, pad0, 0x10 - (ad_len & 0xf));
|
|
|
|
|
|
|
|
dst_len = src_len - POLY1305_DIGEST_SIZE;
|
|
|
|
poly1305_update(&poly1305_state, src, dst_len);
|
|
|
|
if (dst_len & 0xf)
|
|
|
|
poly1305_update(&poly1305_state, pad0, 0x10 - (dst_len & 0xf));
|
|
|
|
|
|
|
|
b.lens[0] = cpu_to_le64(ad_len);
|
|
|
|
b.lens[1] = cpu_to_le64(dst_len);
|
|
|
|
poly1305_update(&poly1305_state, (u8 *)b.lens, sizeof(b.lens));
|
|
|
|
|
|
|
|
poly1305_final(&poly1305_state, b.mac);
|
|
|
|
|
|
|
|
ret = crypto_memneq(b.mac, src + dst_len, POLY1305_DIGEST_SIZE);
|
|
|
|
if (likely(!ret))
|
2019-11-18 07:22:16 +00:00
|
|
|
chacha20_crypt(chacha_state, dst, src, dst_len);
|
2019-11-08 12:22:39 +00:00
|
|
|
|
|
|
|
memzero_explicit(&b, sizeof(b));
|
|
|
|
|
|
|
|
return !ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool chacha20poly1305_decrypt(u8 *dst, const u8 *src, const size_t src_len,
|
|
|
|
const u8 *ad, const size_t ad_len,
|
|
|
|
const u64 nonce,
|
|
|
|
const u8 key[CHACHA20POLY1305_KEY_SIZE])
|
|
|
|
{
|
|
|
|
u32 chacha_state[CHACHA_STATE_WORDS];
|
|
|
|
u32 k[CHACHA_KEY_WORDS];
|
|
|
|
__le64 iv[2];
|
|
|
|
bool ret;
|
|
|
|
|
|
|
|
chacha_load_key(k, key);
|
|
|
|
|
|
|
|
iv[0] = 0;
|
|
|
|
iv[1] = cpu_to_le64(nonce);
|
|
|
|
|
|
|
|
chacha_init(chacha_state, k, (u8 *)iv);
|
|
|
|
ret = __chacha20poly1305_decrypt(dst, src, src_len, ad, ad_len,
|
|
|
|
chacha_state);
|
|
|
|
|
|
|
|
memzero_explicit(chacha_state, sizeof(chacha_state));
|
|
|
|
memzero_explicit(iv, sizeof(iv));
|
|
|
|
memzero_explicit(k, sizeof(k));
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(chacha20poly1305_decrypt);
|
|
|
|
|
|
|
|
bool xchacha20poly1305_decrypt(u8 *dst, const u8 *src, const size_t src_len,
|
|
|
|
const u8 *ad, const size_t ad_len,
|
|
|
|
const u8 nonce[XCHACHA20POLY1305_NONCE_SIZE],
|
|
|
|
const u8 key[CHACHA20POLY1305_KEY_SIZE])
|
|
|
|
{
|
|
|
|
u32 chacha_state[CHACHA_STATE_WORDS];
|
|
|
|
|
|
|
|
xchacha_init(chacha_state, key, nonce);
|
|
|
|
return __chacha20poly1305_decrypt(dst, src, src_len, ad, ad_len,
|
|
|
|
chacha_state);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(xchacha20poly1305_decrypt);
|
|
|
|
|
crypto: lib/chacha20poly1305 - reimplement crypt_from_sg() routine
Reimplement the library routines to perform chacha20poly1305 en/decryption
on scatterlists, without [ab]using the [deprecated] blkcipher interface,
which is rather heavyweight and does things we don't really need.
Instead, we use the sg_miter API in a novel and clever way, to iterate
over the scatterlist in-place (i.e., source == destination, which is the
only way this library is expected to be used). That way, we don't have to
iterate over two scatterlists in parallel.
Another optimization is that, instead of relying on the blkcipher walker
to present the input in suitable chunks, we recognize that ChaCha is a
streamcipher, and so we can simply deal with partial blocks by keeping a
block of cipherstream on the stack and use crypto_xor() to mix it with
the in/output.
Finally, we omit the scatterwalk_and_copy() call if the last element of
the scatterlist covers the MAC as well (which is the common case),
avoiding the need to walk the scatterlist and kmap() the page twice.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2019-11-08 12:22:40 +00:00
|
|
|
static
|
|
|
|
bool chacha20poly1305_crypt_sg_inplace(struct scatterlist *src,
|
|
|
|
const size_t src_len,
|
|
|
|
const u8 *ad, const size_t ad_len,
|
|
|
|
const u64 nonce,
|
|
|
|
const u8 key[CHACHA20POLY1305_KEY_SIZE],
|
|
|
|
int encrypt)
|
|
|
|
{
|
|
|
|
const u8 *pad0 = page_address(ZERO_PAGE(0));
|
|
|
|
struct poly1305_desc_ctx poly1305_state;
|
|
|
|
u32 chacha_state[CHACHA_STATE_WORDS];
|
|
|
|
struct sg_mapping_iter miter;
|
|
|
|
size_t partial = 0;
|
|
|
|
unsigned int flags;
|
|
|
|
bool ret = true;
|
|
|
|
int sl;
|
|
|
|
union {
|
|
|
|
struct {
|
|
|
|
u32 k[CHACHA_KEY_WORDS];
|
|
|
|
__le64 iv[2];
|
|
|
|
};
|
|
|
|
u8 block0[POLY1305_KEY_SIZE];
|
|
|
|
u8 chacha_stream[CHACHA_BLOCK_SIZE];
|
|
|
|
struct {
|
|
|
|
u8 mac[2][POLY1305_DIGEST_SIZE];
|
|
|
|
};
|
|
|
|
__le64 lens[2];
|
|
|
|
} b __aligned(16);
|
|
|
|
|
2020-02-06 11:42:01 +00:00
|
|
|
if (WARN_ON(src_len > INT_MAX))
|
|
|
|
return false;
|
|
|
|
|
crypto: lib/chacha20poly1305 - reimplement crypt_from_sg() routine
Reimplement the library routines to perform chacha20poly1305 en/decryption
on scatterlists, without [ab]using the [deprecated] blkcipher interface,
which is rather heavyweight and does things we don't really need.
Instead, we use the sg_miter API in a novel and clever way, to iterate
over the scatterlist in-place (i.e., source == destination, which is the
only way this library is expected to be used). That way, we don't have to
iterate over two scatterlists in parallel.
Another optimization is that, instead of relying on the blkcipher walker
to present the input in suitable chunks, we recognize that ChaCha is a
streamcipher, and so we can simply deal with partial blocks by keeping a
block of cipherstream on the stack and use crypto_xor() to mix it with
the in/output.
Finally, we omit the scatterwalk_and_copy() call if the last element of
the scatterlist covers the MAC as well (which is the common case),
avoiding the need to walk the scatterlist and kmap() the page twice.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2019-11-08 12:22:40 +00:00
|
|
|
chacha_load_key(b.k, key);
|
|
|
|
|
|
|
|
b.iv[0] = 0;
|
|
|
|
b.iv[1] = cpu_to_le64(nonce);
|
|
|
|
|
|
|
|
chacha_init(chacha_state, b.k, (u8 *)b.iv);
|
2019-11-18 07:22:16 +00:00
|
|
|
chacha20_crypt(chacha_state, b.block0, pad0, sizeof(b.block0));
|
crypto: lib/chacha20poly1305 - reimplement crypt_from_sg() routine
Reimplement the library routines to perform chacha20poly1305 en/decryption
on scatterlists, without [ab]using the [deprecated] blkcipher interface,
which is rather heavyweight and does things we don't really need.
Instead, we use the sg_miter API in a novel and clever way, to iterate
over the scatterlist in-place (i.e., source == destination, which is the
only way this library is expected to be used). That way, we don't have to
iterate over two scatterlists in parallel.
Another optimization is that, instead of relying on the blkcipher walker
to present the input in suitable chunks, we recognize that ChaCha is a
streamcipher, and so we can simply deal with partial blocks by keeping a
block of cipherstream on the stack and use crypto_xor() to mix it with
the in/output.
Finally, we omit the scatterwalk_and_copy() call if the last element of
the scatterlist covers the MAC as well (which is the common case),
avoiding the need to walk the scatterlist and kmap() the page twice.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2019-11-08 12:22:40 +00:00
|
|
|
poly1305_init(&poly1305_state, b.block0);
|
|
|
|
|
|
|
|
if (unlikely(ad_len)) {
|
|
|
|
poly1305_update(&poly1305_state, ad, ad_len);
|
|
|
|
if (ad_len & 0xf)
|
|
|
|
poly1305_update(&poly1305_state, pad0, 0x10 - (ad_len & 0xf));
|
|
|
|
}
|
|
|
|
|
2020-09-15 03:30:24 +00:00
|
|
|
flags = SG_MITER_TO_SG | SG_MITER_ATOMIC;
|
crypto: lib/chacha20poly1305 - reimplement crypt_from_sg() routine
Reimplement the library routines to perform chacha20poly1305 en/decryption
on scatterlists, without [ab]using the [deprecated] blkcipher interface,
which is rather heavyweight and does things we don't really need.
Instead, we use the sg_miter API in a novel and clever way, to iterate
over the scatterlist in-place (i.e., source == destination, which is the
only way this library is expected to be used). That way, we don't have to
iterate over two scatterlists in parallel.
Another optimization is that, instead of relying on the blkcipher walker
to present the input in suitable chunks, we recognize that ChaCha is a
streamcipher, and so we can simply deal with partial blocks by keeping a
block of cipherstream on the stack and use crypto_xor() to mix it with
the in/output.
Finally, we omit the scatterwalk_and_copy() call if the last element of
the scatterlist covers the MAC as well (which is the common case),
avoiding the need to walk the scatterlist and kmap() the page twice.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2019-11-08 12:22:40 +00:00
|
|
|
|
|
|
|
sg_miter_start(&miter, src, sg_nents(src), flags);
|
|
|
|
|
|
|
|
for (sl = src_len; sl > 0 && sg_miter_next(&miter); sl -= miter.length) {
|
|
|
|
u8 *addr = miter.addr;
|
|
|
|
size_t length = min_t(size_t, sl, miter.length);
|
|
|
|
|
|
|
|
if (!encrypt)
|
|
|
|
poly1305_update(&poly1305_state, addr, length);
|
|
|
|
|
|
|
|
if (unlikely(partial)) {
|
|
|
|
size_t l = min(length, CHACHA_BLOCK_SIZE - partial);
|
|
|
|
|
|
|
|
crypto_xor(addr, b.chacha_stream + partial, l);
|
|
|
|
partial = (partial + l) & (CHACHA_BLOCK_SIZE - 1);
|
|
|
|
|
|
|
|
addr += l;
|
|
|
|
length -= l;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (likely(length >= CHACHA_BLOCK_SIZE || length == sl)) {
|
|
|
|
size_t l = length;
|
|
|
|
|
|
|
|
if (unlikely(length < sl))
|
|
|
|
l &= ~(CHACHA_BLOCK_SIZE - 1);
|
2019-11-18 07:22:16 +00:00
|
|
|
chacha20_crypt(chacha_state, addr, addr, l);
|
crypto: lib/chacha20poly1305 - reimplement crypt_from_sg() routine
Reimplement the library routines to perform chacha20poly1305 en/decryption
on scatterlists, without [ab]using the [deprecated] blkcipher interface,
which is rather heavyweight and does things we don't really need.
Instead, we use the sg_miter API in a novel and clever way, to iterate
over the scatterlist in-place (i.e., source == destination, which is the
only way this library is expected to be used). That way, we don't have to
iterate over two scatterlists in parallel.
Another optimization is that, instead of relying on the blkcipher walker
to present the input in suitable chunks, we recognize that ChaCha is a
streamcipher, and so we can simply deal with partial blocks by keeping a
block of cipherstream on the stack and use crypto_xor() to mix it with
the in/output.
Finally, we omit the scatterwalk_and_copy() call if the last element of
the scatterlist covers the MAC as well (which is the common case),
avoiding the need to walk the scatterlist and kmap() the page twice.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2019-11-08 12:22:40 +00:00
|
|
|
addr += l;
|
|
|
|
length -= l;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (unlikely(length > 0)) {
|
2019-11-18 07:22:16 +00:00
|
|
|
chacha20_crypt(chacha_state, b.chacha_stream, pad0,
|
|
|
|
CHACHA_BLOCK_SIZE);
|
crypto: lib/chacha20poly1305 - reimplement crypt_from_sg() routine
Reimplement the library routines to perform chacha20poly1305 en/decryption
on scatterlists, without [ab]using the [deprecated] blkcipher interface,
which is rather heavyweight and does things we don't really need.
Instead, we use the sg_miter API in a novel and clever way, to iterate
over the scatterlist in-place (i.e., source == destination, which is the
only way this library is expected to be used). That way, we don't have to
iterate over two scatterlists in parallel.
Another optimization is that, instead of relying on the blkcipher walker
to present the input in suitable chunks, we recognize that ChaCha is a
streamcipher, and so we can simply deal with partial blocks by keeping a
block of cipherstream on the stack and use crypto_xor() to mix it with
the in/output.
Finally, we omit the scatterwalk_and_copy() call if the last element of
the scatterlist covers the MAC as well (which is the common case),
avoiding the need to walk the scatterlist and kmap() the page twice.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2019-11-08 12:22:40 +00:00
|
|
|
crypto_xor(addr, b.chacha_stream, length);
|
|
|
|
partial = length;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (encrypt)
|
|
|
|
poly1305_update(&poly1305_state, miter.addr,
|
|
|
|
min_t(size_t, sl, miter.length));
|
|
|
|
}
|
|
|
|
|
|
|
|
if (src_len & 0xf)
|
|
|
|
poly1305_update(&poly1305_state, pad0, 0x10 - (src_len & 0xf));
|
|
|
|
|
|
|
|
b.lens[0] = cpu_to_le64(ad_len);
|
|
|
|
b.lens[1] = cpu_to_le64(src_len);
|
|
|
|
poly1305_update(&poly1305_state, (u8 *)b.lens, sizeof(b.lens));
|
|
|
|
|
|
|
|
if (likely(sl <= -POLY1305_DIGEST_SIZE)) {
|
|
|
|
if (encrypt) {
|
|
|
|
poly1305_final(&poly1305_state,
|
|
|
|
miter.addr + miter.length + sl);
|
|
|
|
ret = true;
|
|
|
|
} else {
|
|
|
|
poly1305_final(&poly1305_state, b.mac[0]);
|
|
|
|
ret = !crypto_memneq(b.mac[0],
|
|
|
|
miter.addr + miter.length + sl,
|
|
|
|
POLY1305_DIGEST_SIZE);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
sg_miter_stop(&miter);
|
|
|
|
|
|
|
|
if (unlikely(sl > -POLY1305_DIGEST_SIZE)) {
|
|
|
|
poly1305_final(&poly1305_state, b.mac[1]);
|
|
|
|
scatterwalk_map_and_copy(b.mac[encrypt], src, src_len,
|
|
|
|
sizeof(b.mac[1]), encrypt);
|
|
|
|
ret = encrypt ||
|
|
|
|
!crypto_memneq(b.mac[0], b.mac[1], POLY1305_DIGEST_SIZE);
|
|
|
|
}
|
|
|
|
|
|
|
|
memzero_explicit(chacha_state, sizeof(chacha_state));
|
|
|
|
memzero_explicit(&b, sizeof(b));
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool chacha20poly1305_encrypt_sg_inplace(struct scatterlist *src, size_t src_len,
|
|
|
|
const u8 *ad, const size_t ad_len,
|
|
|
|
const u64 nonce,
|
|
|
|
const u8 key[CHACHA20POLY1305_KEY_SIZE])
|
|
|
|
{
|
|
|
|
return chacha20poly1305_crypt_sg_inplace(src, src_len, ad, ad_len,
|
|
|
|
nonce, key, 1);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(chacha20poly1305_encrypt_sg_inplace);
|
|
|
|
|
|
|
|
bool chacha20poly1305_decrypt_sg_inplace(struct scatterlist *src, size_t src_len,
|
|
|
|
const u8 *ad, const size_t ad_len,
|
|
|
|
const u64 nonce,
|
|
|
|
const u8 key[CHACHA20POLY1305_KEY_SIZE])
|
|
|
|
{
|
|
|
|
if (unlikely(src_len < POLY1305_DIGEST_SIZE))
|
|
|
|
return false;
|
|
|
|
|
|
|
|
return chacha20poly1305_crypt_sg_inplace(src,
|
|
|
|
src_len - POLY1305_DIGEST_SIZE,
|
|
|
|
ad, ad_len, nonce, key, 0);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(chacha20poly1305_decrypt_sg_inplace);
|
|
|
|
|
2021-07-11 22:31:45 +00:00
|
|
|
static int __init chacha20poly1305_init(void)
|
2019-11-08 12:22:39 +00:00
|
|
|
{
|
|
|
|
if (!IS_ENABLED(CONFIG_CRYPTO_MANAGER_DISABLE_TESTS) &&
|
|
|
|
WARN_ON(!chacha20poly1305_selftest()))
|
|
|
|
return -ENODEV;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2021-07-11 22:31:45 +00:00
|
|
|
static void __exit chacha20poly1305_exit(void)
|
2021-01-15 19:30:12 +00:00
|
|
|
{
|
|
|
|
}
|
|
|
|
|
2021-07-11 22:31:45 +00:00
|
|
|
module_init(chacha20poly1305_init);
|
|
|
|
module_exit(chacha20poly1305_exit);
|
2019-11-08 12:22:39 +00:00
|
|
|
MODULE_LICENSE("GPL v2");
|
|
|
|
MODULE_DESCRIPTION("ChaCha20Poly1305 AEAD construction");
|
|
|
|
MODULE_AUTHOR("Jason A. Donenfeld <Jason@zx2c4.com>");
|