linux-next/fs/btrfs/disk-io.c

2079 lines
55 KiB
C
Raw Normal View History

/*
* Copyright (C) 2007 Oracle. All rights reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public
* License v2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 021110-1307, USA.
*/
#include <linux/version.h>
#include <linux/fs.h>
#include <linux/blkdev.h>
#include <linux/scatterlist.h>
#include <linux/swap.h>
#include <linux/radix-tree.h>
#include <linux/writeback.h>
#include <linux/buffer_head.h> // for block_sync_page
#include <linux/workqueue.h>
#include <linux/kthread.h>
# include <linux/freezer.h>
#include "crc32c.h"
#include "ctree.h"
#include "disk-io.h"
#include "transaction.h"
#include "btrfs_inode.h"
#include "volumes.h"
#include "print-tree.h"
#include "async-thread.h"
#include "locking.h"
#include "ref-cache.h"
#include "tree-log.h"
#if 0
static int check_tree_block(struct btrfs_root *root, struct extent_buffer *buf)
{
if (extent_buffer_blocknr(buf) != btrfs_header_blocknr(buf)) {
printk(KERN_CRIT "buf blocknr(buf) is %llu, header is %llu\n",
(unsigned long long)extent_buffer_blocknr(buf),
(unsigned long long)btrfs_header_blocknr(buf));
return 1;
}
return 0;
}
#endif
static struct extent_io_ops btree_extent_io_ops;
static void end_workqueue_fn(struct btrfs_work *work);
/*
* end_io_wq structs are used to do processing in task context when an IO is
* complete. This is used during reads to verify checksums, and it is used
* by writes to insert metadata for new file extents after IO is complete.
*/
struct end_io_wq {
struct bio *bio;
bio_end_io_t *end_io;
void *private;
struct btrfs_fs_info *info;
int error;
int metadata;
struct list_head list;
struct btrfs_work work;
};
/*
* async submit bios are used to offload expensive checksumming
* onto the worker threads. They checksum file and metadata bios
* just before they are sent down the IO stack.
*/
struct async_submit_bio {
struct inode *inode;
struct bio *bio;
struct list_head list;
extent_submit_bio_hook_t *submit_bio_hook;
int rw;
int mirror_num;
struct btrfs_work work;
};
/*
* extents on the btree inode are pretty simple, there's one extent
* that covers the entire device
*/
struct extent_map *btree_get_extent(struct inode *inode, struct page *page,
size_t page_offset, u64 start, u64 len,
int create)
{
struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
struct extent_map *em;
int ret;
spin_lock(&em_tree->lock);
em = lookup_extent_mapping(em_tree, start, len);
if (em) {
em->bdev =
BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
spin_unlock(&em_tree->lock);
goto out;
}
spin_unlock(&em_tree->lock);
em = alloc_extent_map(GFP_NOFS);
if (!em) {
em = ERR_PTR(-ENOMEM);
goto out;
}
em->start = 0;
em->len = (u64)-1;
em->block_start = 0;
em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
spin_lock(&em_tree->lock);
ret = add_extent_mapping(em_tree, em);
if (ret == -EEXIST) {
u64 failed_start = em->start;
u64 failed_len = em->len;
printk("failed to insert %Lu %Lu -> %Lu into tree\n",
em->start, em->len, em->block_start);
free_extent_map(em);
em = lookup_extent_mapping(em_tree, start, len);
if (em) {
printk("after failing, found %Lu %Lu %Lu\n",
em->start, em->len, em->block_start);
ret = 0;
} else {
em = lookup_extent_mapping(em_tree, failed_start,
failed_len);
if (em) {
printk("double failure lookup gives us "
"%Lu %Lu -> %Lu\n", em->start,
em->len, em->block_start);
free_extent_map(em);
}
ret = -EIO;
}
} else if (ret) {
free_extent_map(em);
em = NULL;
}
spin_unlock(&em_tree->lock);
if (ret)
em = ERR_PTR(ret);
out:
return em;
}
u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
{
return btrfs_crc32c(seed, data, len);
}
void btrfs_csum_final(u32 crc, char *result)
{
*(__le32 *)result = ~cpu_to_le32(crc);
}
/*
* compute the csum for a btree block, and either verify it or write it
* into the csum field of the block.
*/
static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
int verify)
{
char result[BTRFS_CRC32_SIZE];
unsigned long len;
unsigned long cur_len;
unsigned long offset = BTRFS_CSUM_SIZE;
char *map_token = NULL;
char *kaddr;
unsigned long map_start;
unsigned long map_len;
int err;
u32 crc = ~(u32)0;
len = buf->len - offset;
while(len > 0) {
err = map_private_extent_buffer(buf, offset, 32,
&map_token, &kaddr,
&map_start, &map_len, KM_USER0);
if (err) {
printk("failed to map extent buffer! %lu\n",
offset);
return 1;
}
cur_len = min(len, map_len - (offset - map_start));
crc = btrfs_csum_data(root, kaddr + offset - map_start,
crc, cur_len);
len -= cur_len;
offset += cur_len;
unmap_extent_buffer(buf, map_token, KM_USER0);
}
btrfs_csum_final(crc, result);
if (verify) {
/* FIXME, this is not good */
if (memcmp_extent_buffer(buf, result, 0, BTRFS_CRC32_SIZE)) {
u32 val;
u32 found = 0;
memcpy(&found, result, BTRFS_CRC32_SIZE);
read_extent_buffer(buf, &val, 0, BTRFS_CRC32_SIZE);
printk("btrfs: %s checksum verify failed on %llu "
"wanted %X found %X level %d\n",
root->fs_info->sb->s_id,
buf->start, val, found, btrfs_header_level(buf));
return 1;
}
} else {
write_extent_buffer(buf, result, 0, BTRFS_CRC32_SIZE);
}
return 0;
}
/*
* we can't consider a given block up to date unless the transid of the
* block matches the transid in the parent node's pointer. This is how we
* detect blocks that either didn't get written at all or got written
* in the wrong place.
*/
static int verify_parent_transid(struct extent_io_tree *io_tree,
struct extent_buffer *eb, u64 parent_transid)
{
int ret;
if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
return 0;
lock_extent(io_tree, eb->start, eb->start + eb->len - 1, GFP_NOFS);
if (extent_buffer_uptodate(io_tree, eb) &&
btrfs_header_generation(eb) == parent_transid) {
ret = 0;
goto out;
}
printk("parent transid verify failed on %llu wanted %llu found %llu\n",
(unsigned long long)eb->start,
(unsigned long long)parent_transid,
(unsigned long long)btrfs_header_generation(eb));
ret = 1;
clear_extent_buffer_uptodate(io_tree, eb);
out:
unlock_extent(io_tree, eb->start, eb->start + eb->len - 1,
GFP_NOFS);
return ret;
}
/*
* helper to read a given tree block, doing retries as required when
* the checksums don't match and we have alternate mirrors to try.
*/
static int btree_read_extent_buffer_pages(struct btrfs_root *root,
struct extent_buffer *eb,
u64 start, u64 parent_transid)
{
struct extent_io_tree *io_tree;
int ret;
int num_copies = 0;
int mirror_num = 0;
io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
while (1) {
ret = read_extent_buffer_pages(io_tree, eb, start, 1,
btree_get_extent, mirror_num);
if (!ret &&
!verify_parent_transid(io_tree, eb, parent_transid))
return ret;
printk("read extent buffer pages failed with ret %d mirror no %d\n", ret, mirror_num);
num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
eb->start, eb->len);
if (num_copies == 1)
return ret;
mirror_num++;
if (mirror_num > num_copies)
return ret;
}
return -EIO;
}
/*
* checksum a dirty tree block before IO. This has extra checks to make
* sure we only fill in the checksum field in the first page of a multi-page block
*/
int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
{
struct extent_io_tree *tree;
u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
u64 found_start;
int found_level;
unsigned long len;
struct extent_buffer *eb;
int ret;
tree = &BTRFS_I(page->mapping->host)->io_tree;
if (page->private == EXTENT_PAGE_PRIVATE)
goto out;
if (!page->private)
goto out;
len = page->private >> 2;
if (len == 0) {
WARN_ON(1);
}
eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE,
btrfs_header_generation(eb));
BUG_ON(ret);
found_start = btrfs_header_bytenr(eb);
if (found_start != start) {
printk("warning: eb start incorrect %Lu buffer %Lu len %lu\n",
start, found_start, len);
WARN_ON(1);
goto err;
}
if (eb->first_page != page) {
printk("bad first page %lu %lu\n", eb->first_page->index,
page->index);
WARN_ON(1);
goto err;
}
if (!PageUptodate(page)) {
printk("csum not up to date page %lu\n", page->index);
WARN_ON(1);
goto err;
}
found_level = btrfs_header_level(eb);
csum_tree_block(root, eb, 0);
err:
free_extent_buffer(eb);
out:
return 0;
}
int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
struct extent_state *state)
{
struct extent_io_tree *tree;
u64 found_start;
int found_level;
unsigned long len;
struct extent_buffer *eb;
struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
int ret = 0;
tree = &BTRFS_I(page->mapping->host)->io_tree;
if (page->private == EXTENT_PAGE_PRIVATE)
goto out;
if (!page->private)
goto out;
len = page->private >> 2;
if (len == 0) {
WARN_ON(1);
}
eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
found_start = btrfs_header_bytenr(eb);
if (found_start != start) {
printk("bad tree block start %llu %llu\n",
(unsigned long long)found_start,
(unsigned long long)eb->start);
ret = -EIO;
goto err;
}
if (eb->first_page != page) {
printk("bad first page %lu %lu\n", eb->first_page->index,
page->index);
WARN_ON(1);
ret = -EIO;
goto err;
}
if (memcmp_extent_buffer(eb, root->fs_info->fsid,
(unsigned long)btrfs_header_fsid(eb),
BTRFS_FSID_SIZE)) {
printk("bad fsid on block %Lu\n", eb->start);
ret = -EIO;
goto err;
}
found_level = btrfs_header_level(eb);
ret = csum_tree_block(root, eb, 1);
if (ret)
ret = -EIO;
end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
end = eb->start + end - 1;
err:
free_extent_buffer(eb);
out:
return ret;
}
static void end_workqueue_bio(struct bio *bio, int err)
{
struct end_io_wq *end_io_wq = bio->bi_private;
struct btrfs_fs_info *fs_info;
fs_info = end_io_wq->info;
end_io_wq->error = err;
end_io_wq->work.func = end_workqueue_fn;
end_io_wq->work.flags = 0;
if (bio->bi_rw & (1 << BIO_RW))
btrfs_queue_worker(&fs_info->endio_write_workers,
&end_io_wq->work);
else
btrfs_queue_worker(&fs_info->endio_workers, &end_io_wq->work);
}
int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
int metadata)
{
struct end_io_wq *end_io_wq;
end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
if (!end_io_wq)
return -ENOMEM;
end_io_wq->private = bio->bi_private;
end_io_wq->end_io = bio->bi_end_io;
end_io_wq->info = info;
end_io_wq->error = 0;
end_io_wq->bio = bio;
end_io_wq->metadata = metadata;
bio->bi_private = end_io_wq;
bio->bi_end_io = end_workqueue_bio;
return 0;
}
unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
{
unsigned long limit = min_t(unsigned long,
info->workers.max_workers,
info->fs_devices->open_devices);
return 256 * limit;
}
int btrfs_congested_async(struct btrfs_fs_info *info, int iodone)
{
return atomic_read(&info->nr_async_bios) >
btrfs_async_submit_limit(info);
}
static void run_one_async_submit(struct btrfs_work *work)
{
struct btrfs_fs_info *fs_info;
struct async_submit_bio *async;
int limit;
async = container_of(work, struct async_submit_bio, work);
fs_info = BTRFS_I(async->inode)->root->fs_info;
limit = btrfs_async_submit_limit(fs_info);
limit = limit * 2 / 3;
atomic_dec(&fs_info->nr_async_submits);
if (atomic_read(&fs_info->nr_async_submits) < limit &&
waitqueue_active(&fs_info->async_submit_wait))
wake_up(&fs_info->async_submit_wait);
async->submit_bio_hook(async->inode, async->rw, async->bio,
async->mirror_num);
kfree(async);
}
int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
int rw, struct bio *bio, int mirror_num,
extent_submit_bio_hook_t *submit_bio_hook)
{
struct async_submit_bio *async;
int limit = btrfs_async_submit_limit(fs_info);
async = kmalloc(sizeof(*async), GFP_NOFS);
if (!async)
return -ENOMEM;
async->inode = inode;
async->rw = rw;
async->bio = bio;
async->mirror_num = mirror_num;
async->submit_bio_hook = submit_bio_hook;
async->work.func = run_one_async_submit;
async->work.flags = 0;
while(atomic_read(&fs_info->async_submit_draining) &&
atomic_read(&fs_info->nr_async_submits)) {
wait_event(fs_info->async_submit_wait,
(atomic_read(&fs_info->nr_async_submits) == 0));
}
atomic_inc(&fs_info->nr_async_submits);
btrfs_queue_worker(&fs_info->workers, &async->work);
if (atomic_read(&fs_info->nr_async_submits) > limit) {
wait_event_timeout(fs_info->async_submit_wait,
(atomic_read(&fs_info->nr_async_submits) < limit),
HZ/10);
wait_event_timeout(fs_info->async_submit_wait,
(atomic_read(&fs_info->nr_async_bios) < limit),
HZ/10);
}
return 0;
}
static int btree_csum_one_bio(struct bio *bio)
{
struct bio_vec *bvec = bio->bi_io_vec;
int bio_index = 0;
struct btrfs_root *root;
WARN_ON(bio->bi_vcnt <= 0);
while(bio_index < bio->bi_vcnt) {
root = BTRFS_I(bvec->bv_page->mapping->host)->root;
csum_dirty_buffer(root, bvec->bv_page);
bio_index++;
bvec++;
}
return 0;
}
static int __btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
int mirror_num)
{
struct btrfs_root *root = BTRFS_I(inode)->root;
int ret;
/*
* when we're called for a write, we're already in the async
* submission context. Just jump into btrfs_map_bio
*/
if (rw & (1 << BIO_RW)) {
btree_csum_one_bio(bio);
return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
mirror_num, 1);
}
/*
* called for a read, do the setup so that checksum validation
* can happen in the async kernel threads
*/
ret = btrfs_bio_wq_end_io(root->fs_info, bio, 1);
BUG_ON(ret);
return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
}
static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
int mirror_num)
{
/*
* kthread helpers are used to submit writes so that checksumming
* can happen in parallel across all CPUs
*/
if (!(rw & (1 << BIO_RW))) {
return __btree_submit_bio_hook(inode, rw, bio, mirror_num);
}
return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
inode, rw, bio, mirror_num,
__btree_submit_bio_hook);
}
static int btree_writepage(struct page *page, struct writeback_control *wbc)
{
struct extent_io_tree *tree;
tree = &BTRFS_I(page->mapping->host)->io_tree;
if (current->flags & PF_MEMALLOC) {
redirty_page_for_writepage(wbc, page);
unlock_page(page);
return 0;
}
return extent_write_full_page(tree, page, btree_get_extent, wbc);
}
static int btree_writepages(struct address_space *mapping,
struct writeback_control *wbc)
{
struct extent_io_tree *tree;
tree = &BTRFS_I(mapping->host)->io_tree;
if (wbc->sync_mode == WB_SYNC_NONE) {
u64 num_dirty;
u64 start = 0;
unsigned long thresh = 32 * 1024 * 1024;
if (wbc->for_kupdate)
return 0;
num_dirty = count_range_bits(tree, &start, (u64)-1,
thresh, EXTENT_DIRTY);
if (num_dirty < thresh) {
return 0;
}
}
return extent_writepages(tree, mapping, btree_get_extent, wbc);
}
int btree_readpage(struct file *file, struct page *page)
{
struct extent_io_tree *tree;
tree = &BTRFS_I(page->mapping->host)->io_tree;
return extent_read_full_page(tree, page, btree_get_extent);
}
static int btree_releasepage(struct page *page, gfp_t gfp_flags)
{
struct extent_io_tree *tree;
struct extent_map_tree *map;
int ret;
if (PageWriteback(page) || PageDirty(page))
return 0;
tree = &BTRFS_I(page->mapping->host)->io_tree;
map = &BTRFS_I(page->mapping->host)->extent_tree;
ret = try_release_extent_state(map, tree, page, gfp_flags);
if (!ret) {
return 0;
}
ret = try_release_extent_buffer(tree, page);
if (ret == 1) {
ClearPagePrivate(page);
set_page_private(page, 0);
page_cache_release(page);
}
return ret;
}
static void btree_invalidatepage(struct page *page, unsigned long offset)
{
struct extent_io_tree *tree;
tree = &BTRFS_I(page->mapping->host)->io_tree;
extent_invalidatepage(tree, page, offset);
btree_releasepage(page, GFP_NOFS);
if (PagePrivate(page)) {
printk("warning page private not zero on page %Lu\n",
page_offset(page));
ClearPagePrivate(page);
set_page_private(page, 0);
page_cache_release(page);
}
}
#if 0
static int btree_writepage(struct page *page, struct writeback_control *wbc)
{
struct buffer_head *bh;
struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
struct buffer_head *head;
if (!page_has_buffers(page)) {
create_empty_buffers(page, root->fs_info->sb->s_blocksize,
(1 << BH_Dirty)|(1 << BH_Uptodate));
}
head = page_buffers(page);
bh = head;
do {
if (buffer_dirty(bh))
csum_tree_block(root, bh, 0);
bh = bh->b_this_page;
} while (bh != head);
return block_write_full_page(page, btree_get_block, wbc);
}
#endif
static struct address_space_operations btree_aops = {
.readpage = btree_readpage,
.writepage = btree_writepage,
.writepages = btree_writepages,
.releasepage = btree_releasepage,
.invalidatepage = btree_invalidatepage,
.sync_page = block_sync_page,
};
int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
u64 parent_transid)
{
struct extent_buffer *buf = NULL;
struct inode *btree_inode = root->fs_info->btree_inode;
int ret = 0;
buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
if (!buf)
return 0;
read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
buf, 0, 0, btree_get_extent, 0);
free_extent_buffer(buf);
return ret;
}
struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
u64 bytenr, u32 blocksize)
{
struct inode *btree_inode = root->fs_info->btree_inode;
struct extent_buffer *eb;
eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
bytenr, blocksize, GFP_NOFS);
return eb;
}
struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
u64 bytenr, u32 blocksize)
{
struct inode *btree_inode = root->fs_info->btree_inode;
struct extent_buffer *eb;
eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
bytenr, blocksize, NULL, GFP_NOFS);
return eb;
}
int btrfs_write_tree_block(struct extent_buffer *buf)
{
return btrfs_fdatawrite_range(buf->first_page->mapping, buf->start,
buf->start + buf->len - 1, WB_SYNC_ALL);
}
int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
{
return btrfs_wait_on_page_writeback_range(buf->first_page->mapping,
buf->start, buf->start + buf->len -1);
}
struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
u32 blocksize, u64 parent_transid)
{
struct extent_buffer *buf = NULL;
struct inode *btree_inode = root->fs_info->btree_inode;
struct extent_io_tree *io_tree;
int ret;
io_tree = &BTRFS_I(btree_inode)->io_tree;
buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
if (!buf)
return NULL;
ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
if (ret == 0) {
buf->flags |= EXTENT_UPTODATE;
} else {
WARN_ON(1);
}
return buf;
}
int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
struct extent_buffer *buf)
{
struct inode *btree_inode = root->fs_info->btree_inode;
if (btrfs_header_generation(buf) ==
root->fs_info->running_transaction->transid) {
WARN_ON(!btrfs_tree_locked(buf));
clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
buf);
}
return 0;
}
static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
u32 stripesize, struct btrfs_root *root,
struct btrfs_fs_info *fs_info,
u64 objectid)
{
root->node = NULL;
root->inode = NULL;
root->commit_root = NULL;
root->ref_tree = NULL;
root->sectorsize = sectorsize;
root->nodesize = nodesize;
root->leafsize = leafsize;
root->stripesize = stripesize;
root->ref_cows = 0;
root->track_dirty = 0;
root->fs_info = fs_info;
root->objectid = objectid;
root->last_trans = 0;
root->highest_inode = 0;
root->last_inode_alloc = 0;
root->name = NULL;
root->in_sysfs = 0;
INIT_LIST_HEAD(&root->dirty_list);
INIT_LIST_HEAD(&root->orphan_list);
INIT_LIST_HEAD(&root->dead_list);
spin_lock_init(&root->node_lock);
spin_lock_init(&root->list_lock);
mutex_init(&root->objectid_mutex);
mutex_init(&root->log_mutex);
extent_io_tree_init(&root->dirty_log_pages,
fs_info->btree_inode->i_mapping, GFP_NOFS);
btrfs_leaf_ref_tree_init(&root->ref_tree_struct);
root->ref_tree = &root->ref_tree_struct;
memset(&root->root_key, 0, sizeof(root->root_key));
memset(&root->root_item, 0, sizeof(root->root_item));
memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
memset(&root->root_kobj, 0, sizeof(root->root_kobj));
root->defrag_trans_start = fs_info->generation;
init_completion(&root->kobj_unregister);
root->defrag_running = 0;
root->defrag_level = 0;
root->root_key.objectid = objectid;
return 0;
}
static int find_and_setup_root(struct btrfs_root *tree_root,
struct btrfs_fs_info *fs_info,
u64 objectid,
struct btrfs_root *root)
{
int ret;
u32 blocksize;
__setup_root(tree_root->nodesize, tree_root->leafsize,
tree_root->sectorsize, tree_root->stripesize,
root, fs_info, objectid);
ret = btrfs_find_last_root(tree_root, objectid,
&root->root_item, &root->root_key);
BUG_ON(ret);
blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
blocksize, 0);
BUG_ON(!root->node);
return 0;
}
int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
struct btrfs_fs_info *fs_info)
{
struct extent_buffer *eb;
struct btrfs_root *log_root_tree = fs_info->log_root_tree;
u64 start = 0;
u64 end = 0;
int ret;
if (!log_root_tree)
return 0;
while(1) {
ret = find_first_extent_bit(&log_root_tree->dirty_log_pages,
0, &start, &end, EXTENT_DIRTY);
if (ret)
break;
clear_extent_dirty(&log_root_tree->dirty_log_pages,
start, end, GFP_NOFS);
}
eb = fs_info->log_root_tree->node;
WARN_ON(btrfs_header_level(eb) != 0);
WARN_ON(btrfs_header_nritems(eb) != 0);
ret = btrfs_free_reserved_extent(fs_info->tree_root,
eb->start, eb->len);
BUG_ON(ret);
free_extent_buffer(eb);
kfree(fs_info->log_root_tree);
fs_info->log_root_tree = NULL;
return 0;
}
int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
struct btrfs_fs_info *fs_info)
{
struct btrfs_root *root;
struct btrfs_root *tree_root = fs_info->tree_root;
root = kzalloc(sizeof(*root), GFP_NOFS);
if (!root)
return -ENOMEM;
__setup_root(tree_root->nodesize, tree_root->leafsize,
tree_root->sectorsize, tree_root->stripesize,
root, fs_info, BTRFS_TREE_LOG_OBJECTID);
root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
root->root_key.type = BTRFS_ROOT_ITEM_KEY;
root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
root->ref_cows = 0;
root->node = btrfs_alloc_free_block(trans, root, root->leafsize,
0, BTRFS_TREE_LOG_OBJECTID,
trans->transid, 0, 0, 0);
btrfs_set_header_nritems(root->node, 0);
btrfs_set_header_level(root->node, 0);
btrfs_set_header_bytenr(root->node, root->node->start);
btrfs_set_header_generation(root->node, trans->transid);
btrfs_set_header_owner(root->node, BTRFS_TREE_LOG_OBJECTID);
write_extent_buffer(root->node, root->fs_info->fsid,
(unsigned long)btrfs_header_fsid(root->node),
BTRFS_FSID_SIZE);
btrfs_mark_buffer_dirty(root->node);
btrfs_tree_unlock(root->node);
fs_info->log_root_tree = root;
return 0;
}
struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
struct btrfs_key *location)
{
struct btrfs_root *root;
struct btrfs_fs_info *fs_info = tree_root->fs_info;
struct btrfs_path *path;
struct extent_buffer *l;
u64 highest_inode;
u32 blocksize;
int ret = 0;
root = kzalloc(sizeof(*root), GFP_NOFS);
if (!root)
return ERR_PTR(-ENOMEM);
if (location->offset == (u64)-1) {
ret = find_and_setup_root(tree_root, fs_info,
location->objectid, root);
if (ret) {
kfree(root);
return ERR_PTR(ret);
}
goto insert;
}
__setup_root(tree_root->nodesize, tree_root->leafsize,
tree_root->sectorsize, tree_root->stripesize,
root, fs_info, location->objectid);
path = btrfs_alloc_path();
BUG_ON(!path);
ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
if (ret != 0) {
if (ret > 0)
ret = -ENOENT;
goto out;
}
l = path->nodes[0];
read_extent_buffer(l, &root->root_item,
btrfs_item_ptr_offset(l, path->slots[0]),
sizeof(root->root_item));
memcpy(&root->root_key, location, sizeof(*location));
ret = 0;
out:
btrfs_release_path(root, path);
btrfs_free_path(path);
if (ret) {
kfree(root);
return ERR_PTR(ret);
}
blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
blocksize, 0);
BUG_ON(!root->node);
insert:
if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
root->ref_cows = 1;
ret = btrfs_find_highest_inode(root, &highest_inode);
if (ret == 0) {
root->highest_inode = highest_inode;
root->last_inode_alloc = highest_inode;
}
}
return root;
}
struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
u64 root_objectid)
{
struct btrfs_root *root;
if (root_objectid == BTRFS_ROOT_TREE_OBJECTID)
return fs_info->tree_root;
if (root_objectid == BTRFS_EXTENT_TREE_OBJECTID)
return fs_info->extent_root;
root = radix_tree_lookup(&fs_info->fs_roots_radix,
(unsigned long)root_objectid);
return root;
}
struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
struct btrfs_key *location)
{
struct btrfs_root *root;
int ret;
if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
return fs_info->tree_root;
if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
return fs_info->extent_root;
if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
return fs_info->chunk_root;
if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
return fs_info->dev_root;
root = radix_tree_lookup(&fs_info->fs_roots_radix,
(unsigned long)location->objectid);
if (root)
return root;
root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
if (IS_ERR(root))
return root;
ret = radix_tree_insert(&fs_info->fs_roots_radix,
(unsigned long)root->root_key.objectid,
root);
if (ret) {
free_extent_buffer(root->node);
kfree(root);
return ERR_PTR(ret);
}
ret = btrfs_find_dead_roots(fs_info->tree_root,
root->root_key.objectid, root);
BUG_ON(ret);
return root;
}
struct btrfs_root *btrfs_read_fs_root(struct btrfs_fs_info *fs_info,
struct btrfs_key *location,
const char *name, int namelen)
{
struct btrfs_root *root;
int ret;
root = btrfs_read_fs_root_no_name(fs_info, location);
if (!root)
return NULL;
if (root->in_sysfs)
return root;
ret = btrfs_set_root_name(root, name, namelen);
if (ret) {
free_extent_buffer(root->node);
kfree(root);
return ERR_PTR(ret);
}
ret = btrfs_sysfs_add_root(root);
if (ret) {
free_extent_buffer(root->node);
kfree(root->name);
kfree(root);
return ERR_PTR(ret);
}
root->in_sysfs = 1;
return root;
}
#if 0
static int add_hasher(struct btrfs_fs_info *info, char *type) {
struct btrfs_hasher *hasher;
hasher = kmalloc(sizeof(*hasher), GFP_NOFS);
if (!hasher)
return -ENOMEM;
hasher->hash_tfm = crypto_alloc_hash(type, 0, CRYPTO_ALG_ASYNC);
if (!hasher->hash_tfm) {
kfree(hasher);
return -EINVAL;
}
spin_lock(&info->hash_lock);
list_add(&hasher->list, &info->hashers);
spin_unlock(&info->hash_lock);
return 0;
}
#endif
static int btrfs_congested_fn(void *congested_data, int bdi_bits)
{
struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
int ret = 0;
struct list_head *cur;
struct btrfs_device *device;
struct backing_dev_info *bdi;
if ((bdi_bits & (1 << BDI_write_congested)) &&
btrfs_congested_async(info, 0))
return 1;
list_for_each(cur, &info->fs_devices->devices) {
device = list_entry(cur, struct btrfs_device, dev_list);
if (!device->bdev)
continue;
bdi = blk_get_backing_dev_info(device->bdev);
if (bdi && bdi_congested(bdi, bdi_bits)) {
ret = 1;
break;
}
}
return ret;
}
/*
* this unplugs every device on the box, and it is only used when page
* is null
*/
static void __unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
{
struct list_head *cur;
struct btrfs_device *device;
struct btrfs_fs_info *info;
info = (struct btrfs_fs_info *)bdi->unplug_io_data;
list_for_each(cur, &info->fs_devices->devices) {
device = list_entry(cur, struct btrfs_device, dev_list);
bdi = blk_get_backing_dev_info(device->bdev);
if (bdi->unplug_io_fn) {
bdi->unplug_io_fn(bdi, page);
}
}
}
void btrfs_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
{
struct inode *inode;
struct extent_map_tree *em_tree;
struct extent_map *em;
struct address_space *mapping;
u64 offset;
/* the generic O_DIRECT read code does this */
if (!page) {
__unplug_io_fn(bdi, page);
return;
}
/*
* page->mapping may change at any time. Get a consistent copy
* and use that for everything below
*/
smp_mb();
mapping = page->mapping;
if (!mapping)
return;
inode = mapping->host;
offset = page_offset(page);
em_tree = &BTRFS_I(inode)->extent_tree;
spin_lock(&em_tree->lock);
em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
spin_unlock(&em_tree->lock);
if (!em) {
__unplug_io_fn(bdi, page);
return;
}
if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
free_extent_map(em);
__unplug_io_fn(bdi, page);
return;
}
offset = offset - em->start;
btrfs_unplug_page(&BTRFS_I(inode)->root->fs_info->mapping_tree,
em->block_start + offset, page);
free_extent_map(em);
}
static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
{
bdi_init(bdi);
bdi->ra_pages = default_backing_dev_info.ra_pages;
bdi->state = 0;
bdi->capabilities = default_backing_dev_info.capabilities;
bdi->unplug_io_fn = btrfs_unplug_io_fn;
bdi->unplug_io_data = info;
bdi->congested_fn = btrfs_congested_fn;
bdi->congested_data = info;
return 0;
}
static int bio_ready_for_csum(struct bio *bio)
{
u64 length = 0;
u64 buf_len = 0;
u64 start = 0;
struct page *page;
struct extent_io_tree *io_tree = NULL;
struct btrfs_fs_info *info = NULL;
struct bio_vec *bvec;
int i;
int ret;
bio_for_each_segment(bvec, bio, i) {
page = bvec->bv_page;
if (page->private == EXTENT_PAGE_PRIVATE) {
length += bvec->bv_len;
continue;
}
if (!page->private) {
length += bvec->bv_len;
continue;
}
length = bvec->bv_len;
buf_len = page->private >> 2;
start = page_offset(page) + bvec->bv_offset;
io_tree = &BTRFS_I(page->mapping->host)->io_tree;
info = BTRFS_I(page->mapping->host)->root->fs_info;
}
/* are we fully contained in this bio? */
if (buf_len <= length)
return 1;
ret = extent_range_uptodate(io_tree, start + length,
start + buf_len - 1);
if (ret == 1)
return ret;
return ret;
}
/*
* called by the kthread helper functions to finally call the bio end_io
* functions. This is where read checksum verification actually happens
*/
static void end_workqueue_fn(struct btrfs_work *work)
{
struct bio *bio;
struct end_io_wq *end_io_wq;
struct btrfs_fs_info *fs_info;
int error;
end_io_wq = container_of(work, struct end_io_wq, work);
bio = end_io_wq->bio;
fs_info = end_io_wq->info;
/* metadata bios are special because the whole tree block must
* be checksummed at once. This makes sure the entire block is in
* ram and up to date before trying to verify things. For
* blocksize <= pagesize, it is basically a noop
*/
if (end_io_wq->metadata && !bio_ready_for_csum(bio)) {
btrfs_queue_worker(&fs_info->endio_workers,
&end_io_wq->work);
return;
}
error = end_io_wq->error;
bio->bi_private = end_io_wq->private;
bio->bi_end_io = end_io_wq->end_io;
kfree(end_io_wq);
bio_endio(bio, error);
}
static int cleaner_kthread(void *arg)
{
struct btrfs_root *root = arg;
do {
smp_mb();
if (root->fs_info->closing)
break;
vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
mutex_lock(&root->fs_info->cleaner_mutex);
btrfs_clean_old_snapshots(root);
mutex_unlock(&root->fs_info->cleaner_mutex);
if (freezing(current)) {
refrigerator();
} else {
smp_mb();
if (root->fs_info->closing)
break;
set_current_state(TASK_INTERRUPTIBLE);
schedule();
__set_current_state(TASK_RUNNING);
}
} while (!kthread_should_stop());
return 0;
}
static int transaction_kthread(void *arg)
{
struct btrfs_root *root = arg;
struct btrfs_trans_handle *trans;
struct btrfs_transaction *cur;
unsigned long now;
unsigned long delay;
int ret;
do {
smp_mb();
if (root->fs_info->closing)
break;
delay = HZ * 30;
vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
mutex_lock(&root->fs_info->transaction_kthread_mutex);
if (root->fs_info->total_ref_cache_size > 20 * 1024 * 1024) {
printk("btrfs: total reference cache size %Lu\n",
root->fs_info->total_ref_cache_size);
}
mutex_lock(&root->fs_info->trans_mutex);
cur = root->fs_info->running_transaction;
if (!cur) {
mutex_unlock(&root->fs_info->trans_mutex);
goto sleep;
}
now = get_seconds();
if (now < cur->start_time || now - cur->start_time < 30) {
mutex_unlock(&root->fs_info->trans_mutex);
delay = HZ * 5;
goto sleep;
}
mutex_unlock(&root->fs_info->trans_mutex);
trans = btrfs_start_transaction(root, 1);
ret = btrfs_commit_transaction(trans, root);
sleep:
wake_up_process(root->fs_info->cleaner_kthread);
mutex_unlock(&root->fs_info->transaction_kthread_mutex);
if (freezing(current)) {
refrigerator();
} else {
if (root->fs_info->closing)
break;
set_current_state(TASK_INTERRUPTIBLE);
schedule_timeout(delay);
__set_current_state(TASK_RUNNING);
}
} while (!kthread_should_stop());
return 0;
}
struct btrfs_root *open_ctree(struct super_block *sb,
struct btrfs_fs_devices *fs_devices,
char *options)
{
u32 sectorsize;
u32 nodesize;
u32 leafsize;
u32 blocksize;
u32 stripesize;
struct buffer_head *bh;
struct btrfs_root *extent_root = kzalloc(sizeof(struct btrfs_root),
GFP_NOFS);
struct btrfs_root *tree_root = kzalloc(sizeof(struct btrfs_root),
GFP_NOFS);
struct btrfs_fs_info *fs_info = kzalloc(sizeof(*fs_info),
GFP_NOFS);
struct btrfs_root *chunk_root = kzalloc(sizeof(struct btrfs_root),
GFP_NOFS);
struct btrfs_root *dev_root = kzalloc(sizeof(struct btrfs_root),
GFP_NOFS);
struct btrfs_root *log_tree_root;
int ret;
int err = -EINVAL;
struct btrfs_super_block *disk_super;
if (!extent_root || !tree_root || !fs_info ||
!chunk_root || !dev_root) {
err = -ENOMEM;
goto fail;
}
INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_NOFS);
INIT_LIST_HEAD(&fs_info->trans_list);
INIT_LIST_HEAD(&fs_info->dead_roots);
INIT_LIST_HEAD(&fs_info->hashers);
INIT_LIST_HEAD(&fs_info->delalloc_inodes);
spin_lock_init(&fs_info->hash_lock);
spin_lock_init(&fs_info->delalloc_lock);
spin_lock_init(&fs_info->new_trans_lock);
spin_lock_init(&fs_info->ref_cache_lock);
init_completion(&fs_info->kobj_unregister);
fs_info->tree_root = tree_root;
fs_info->extent_root = extent_root;
fs_info->chunk_root = chunk_root;
fs_info->dev_root = dev_root;
fs_info->fs_devices = fs_devices;
INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
INIT_LIST_HEAD(&fs_info->space_info);
btrfs_mapping_init(&fs_info->mapping_tree);
atomic_set(&fs_info->nr_async_submits, 0);
atomic_set(&fs_info->async_submit_draining, 0);
atomic_set(&fs_info->nr_async_bios, 0);
atomic_set(&fs_info->throttles, 0);
atomic_set(&fs_info->throttle_gen, 0);
fs_info->sb = sb;
fs_info->max_extent = (u64)-1;
fs_info->max_inline = 8192 * 1024;
setup_bdi(fs_info, &fs_info->bdi);
fs_info->btree_inode = new_inode(sb);
fs_info->btree_inode->i_ino = 1;
fs_info->btree_inode->i_nlink = 1;
fs_info->thread_pool_size = min(num_online_cpus() + 2, 8);
INIT_LIST_HEAD(&fs_info->ordered_extents);
spin_lock_init(&fs_info->ordered_extent_lock);
sb->s_blocksize = 4096;
sb->s_blocksize_bits = blksize_bits(4096);
/*
* we set the i_size on the btree inode to the max possible int.
* the real end of the address space is determined by all of
* the devices in the system
*/
fs_info->btree_inode->i_size = OFFSET_MAX;
fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
fs_info->btree_inode->i_mapping,
GFP_NOFS);
extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree,
GFP_NOFS);
BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
Btrfs: free space accounting redo 1) replace the per fs_info extent_io_tree that tracked free space with two rb-trees per block group to track free space areas via offset and size. The reason to do this is because most allocations come with a hint byte where to start, so we can usually find a chunk of free space at that hint byte to satisfy the allocation and get good space packing. If we cannot find free space at or after the given offset we fall back on looking for a chunk of the given size as close to that given offset as possible. When we fall back on the size search we also try to find a slot as close to the size we want as possible, to avoid breaking small chunks off of huge areas if possible. 2) remove the extent_io_tree that tracked the block group cache from fs_info and replaced it with an rb-tree thats tracks block group cache via offset. also added a per space_info list that tracks the block group cache for the particular space so we can lookup related block groups easily. 3) cleaned up the allocation code to make it a little easier to read and a little less complicated. Basically there are 3 steps, first look from our provided hint. If we couldn't find from that given hint, start back at our original search start and look for space from there. If that fails try to allocate space if we can and start looking again. If not we're screwed and need to start over again. 4) small fixes. there were some issues in volumes.c where we wouldn't allocate the rest of the disk. fixed cow_file_range to actually pass the alloc_hint, which has helped a good bit in making the fs_mark test I run have semi-normal results as we run out of space. Generally with data allocations we don't track where we last allocated from, so everytime we did a data allocation we'd search through every block group that we have looking for free space. Now searching a block group with no free space isn't terribly time consuming, it was causing a slight degradation as we got more data block groups. The alloc_hint has fixed this slight degredation and made things semi-normal. There is still one nagging problem I'm working on where we will get ENOSPC when there is definitely plenty of space. This only happens with metadata allocations, and only when we are almost full. So you generally hit the 85% mark first, but sometimes you'll hit the BUG before you hit the 85% wall. I'm still tracking it down, but until then this seems to be pretty stable and make a significant performance gain. Signed-off-by: Chris Mason <chris.mason@oracle.com>
2008-09-23 13:14:11 -04:00
spin_lock_init(&fs_info->block_group_cache_lock);
fs_info->block_group_cache_tree.rb_node = NULL;
extent_io_tree_init(&fs_info->pinned_extents,
fs_info->btree_inode->i_mapping, GFP_NOFS);
extent_io_tree_init(&fs_info->pending_del,
fs_info->btree_inode->i_mapping, GFP_NOFS);
extent_io_tree_init(&fs_info->extent_ins,
fs_info->btree_inode->i_mapping, GFP_NOFS);
fs_info->do_barriers = 1;
2008-09-26 10:09:34 -04:00
extent_io_tree_init(&fs_info->reloc_mapping_tree,
fs_info->btree_inode->i_mapping, GFP_NOFS);
INIT_LIST_HEAD(&fs_info->dead_reloc_roots);
btrfs_leaf_ref_tree_init(&fs_info->reloc_ref_tree);
btrfs_leaf_ref_tree_init(&fs_info->shared_ref_tree);
BTRFS_I(fs_info->btree_inode)->root = tree_root;
memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
sizeof(struct btrfs_key));
insert_inode_hash(fs_info->btree_inode);
mutex_init(&fs_info->trans_mutex);
mutex_init(&fs_info->tree_log_mutex);
mutex_init(&fs_info->drop_mutex);
mutex_init(&fs_info->alloc_mutex);
mutex_init(&fs_info->chunk_mutex);
mutex_init(&fs_info->transaction_kthread_mutex);
mutex_init(&fs_info->cleaner_mutex);
mutex_init(&fs_info->volume_mutex);
2008-09-26 10:09:34 -04:00
mutex_init(&fs_info->tree_reloc_mutex);
init_waitqueue_head(&fs_info->transaction_throttle);
init_waitqueue_head(&fs_info->transaction_wait);
init_waitqueue_head(&fs_info->async_submit_wait);
init_waitqueue_head(&fs_info->tree_log_wait);
atomic_set(&fs_info->tree_log_commit, 0);
atomic_set(&fs_info->tree_log_writers, 0);
fs_info->tree_log_transid = 0;
#if 0
ret = add_hasher(fs_info, "crc32c");
if (ret) {
printk("btrfs: failed hash setup, modprobe cryptomgr?\n");
err = -ENOMEM;
goto fail_iput;
}
#endif
__setup_root(4096, 4096, 4096, 4096, tree_root,
fs_info, BTRFS_ROOT_TREE_OBJECTID);
bh = __bread(fs_devices->latest_bdev,
BTRFS_SUPER_INFO_OFFSET / 4096, 4096);
if (!bh)
goto fail_iput;
memcpy(&fs_info->super_copy, bh->b_data, sizeof(fs_info->super_copy));
brelse(bh);
memcpy(fs_info->fsid, fs_info->super_copy.fsid, BTRFS_FSID_SIZE);
disk_super = &fs_info->super_copy;
if (!btrfs_super_root(disk_super))
goto fail_sb_buffer;
err = btrfs_parse_options(tree_root, options);
if (err)
goto fail_sb_buffer;
/*
* we need to start all the end_io workers up front because the
* queue work function gets called at interrupt time, and so it
* cannot dynamically grow.
*/
btrfs_init_workers(&fs_info->workers, "worker",
fs_info->thread_pool_size);
btrfs_init_workers(&fs_info->submit_workers, "submit",
min_t(u64, fs_devices->num_devices,
fs_info->thread_pool_size));
/* a higher idle thresh on the submit workers makes it much more
* likely that bios will be send down in a sane order to the
* devices
*/
fs_info->submit_workers.idle_thresh = 64;
/* fs_info->workers is responsible for checksumming file data
* blocks and metadata. Using a larger idle thresh allows each
* worker thread to operate on things in roughly the order they
* were sent by the writeback daemons, improving overall locality
* of the IO going down the pipe.
*/
fs_info->workers.idle_thresh = 128;
btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1);
btrfs_init_workers(&fs_info->endio_workers, "endio",
fs_info->thread_pool_size);
btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
fs_info->thread_pool_size);
/*
* endios are largely parallel and should have a very
* low idle thresh
*/
fs_info->endio_workers.idle_thresh = 4;
fs_info->endio_write_workers.idle_thresh = 64;
btrfs_start_workers(&fs_info->workers, 1);
btrfs_start_workers(&fs_info->submit_workers, 1);
btrfs_start_workers(&fs_info->fixup_workers, 1);
btrfs_start_workers(&fs_info->endio_workers, fs_info->thread_pool_size);
btrfs_start_workers(&fs_info->endio_write_workers,
fs_info->thread_pool_size);
err = -EINVAL;
if (btrfs_super_num_devices(disk_super) > fs_devices->open_devices) {
printk("Btrfs: wanted %llu devices, but found %llu\n",
(unsigned long long)btrfs_super_num_devices(disk_super),
(unsigned long long)fs_devices->open_devices);
if (btrfs_test_opt(tree_root, DEGRADED))
printk("continuing in degraded mode\n");
else {
goto fail_sb_buffer;
}
}
fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
nodesize = btrfs_super_nodesize(disk_super);
leafsize = btrfs_super_leafsize(disk_super);
sectorsize = btrfs_super_sectorsize(disk_super);
stripesize = btrfs_super_stripesize(disk_super);
tree_root->nodesize = nodesize;
tree_root->leafsize = leafsize;
tree_root->sectorsize = sectorsize;
tree_root->stripesize = stripesize;
sb->s_blocksize = sectorsize;
sb->s_blocksize_bits = blksize_bits(sectorsize);
if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
sizeof(disk_super->magic))) {
printk("btrfs: valid FS not found on %s\n", sb->s_id);
goto fail_sb_buffer;
}
mutex_lock(&fs_info->chunk_mutex);
ret = btrfs_read_sys_array(tree_root);
mutex_unlock(&fs_info->chunk_mutex);
if (ret) {
printk("btrfs: failed to read the system array on %s\n",
sb->s_id);
goto fail_sys_array;
}
blocksize = btrfs_level_size(tree_root,
btrfs_super_chunk_root_level(disk_super));
__setup_root(nodesize, leafsize, sectorsize, stripesize,
chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
chunk_root->node = read_tree_block(chunk_root,
btrfs_super_chunk_root(disk_super),
blocksize, 0);
BUG_ON(!chunk_root->node);
read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
(unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
BTRFS_UUID_SIZE);
mutex_lock(&fs_info->chunk_mutex);
ret = btrfs_read_chunk_tree(chunk_root);
mutex_unlock(&fs_info->chunk_mutex);
BUG_ON(ret);
btrfs_close_extra_devices(fs_devices);
blocksize = btrfs_level_size(tree_root,
btrfs_super_root_level(disk_super));
tree_root->node = read_tree_block(tree_root,
btrfs_super_root(disk_super),
blocksize, 0);
if (!tree_root->node)
goto fail_sb_buffer;
ret = find_and_setup_root(tree_root, fs_info,
BTRFS_EXTENT_TREE_OBJECTID, extent_root);
if (ret)
goto fail_tree_root;
extent_root->track_dirty = 1;
ret = find_and_setup_root(tree_root, fs_info,
BTRFS_DEV_TREE_OBJECTID, dev_root);
dev_root->track_dirty = 1;
if (ret)
goto fail_extent_root;
btrfs_read_block_groups(extent_root);
fs_info->generation = btrfs_super_generation(disk_super) + 1;
fs_info->data_alloc_profile = (u64)-1;
fs_info->metadata_alloc_profile = (u64)-1;
fs_info->system_alloc_profile = fs_info->metadata_alloc_profile;
fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
"btrfs-cleaner");
if (!fs_info->cleaner_kthread)
goto fail_extent_root;
fs_info->transaction_kthread = kthread_run(transaction_kthread,
tree_root,
"btrfs-transaction");
if (!fs_info->transaction_kthread)
goto fail_cleaner;
if (btrfs_super_log_root(disk_super) != 0) {
u32 blocksize;
u64 bytenr = btrfs_super_log_root(disk_super);
blocksize =
btrfs_level_size(tree_root,
btrfs_super_log_root_level(disk_super));
log_tree_root = kzalloc(sizeof(struct btrfs_root),
GFP_NOFS);
__setup_root(nodesize, leafsize, sectorsize, stripesize,
log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
log_tree_root->node = read_tree_block(tree_root, bytenr,
blocksize, 0);
ret = btrfs_recover_log_trees(log_tree_root);
BUG_ON(ret);
}
2008-09-26 10:09:34 -04:00
ret = btrfs_cleanup_reloc_trees(tree_root);
BUG_ON(ret);
fs_info->last_trans_committed = btrfs_super_generation(disk_super);
return tree_root;
fail_cleaner:
kthread_stop(fs_info->cleaner_kthread);
fail_extent_root:
free_extent_buffer(extent_root->node);
fail_tree_root:
free_extent_buffer(tree_root->node);
fail_sys_array:
fail_sb_buffer:
btrfs_stop_workers(&fs_info->fixup_workers);
btrfs_stop_workers(&fs_info->workers);
btrfs_stop_workers(&fs_info->endio_workers);
btrfs_stop_workers(&fs_info->endio_write_workers);
btrfs_stop_workers(&fs_info->submit_workers);
fail_iput:
iput(fs_info->btree_inode);
fail:
btrfs_close_devices(fs_info->fs_devices);
btrfs_mapping_tree_free(&fs_info->mapping_tree);
kfree(extent_root);
kfree(tree_root);
bdi_destroy(&fs_info->bdi);
kfree(fs_info);
kfree(chunk_root);
kfree(dev_root);
return ERR_PTR(err);
}
static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
{
char b[BDEVNAME_SIZE];
if (uptodate) {
set_buffer_uptodate(bh);
} else {
if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
printk(KERN_WARNING "lost page write due to "
"I/O error on %s\n",
bdevname(bh->b_bdev, b));
}
/* note, we dont' set_buffer_write_io_error because we have
* our own ways of dealing with the IO errors
*/
clear_buffer_uptodate(bh);
}
unlock_buffer(bh);
put_bh(bh);
}
int write_all_supers(struct btrfs_root *root)
{
struct list_head *cur;
struct list_head *head = &root->fs_info->fs_devices->devices;
struct btrfs_device *dev;
struct btrfs_super_block *sb;
struct btrfs_dev_item *dev_item;
struct buffer_head *bh;
int ret;
int do_barriers;
int max_errors;
int total_errors = 0;
u32 crc;
u64 flags;
max_errors = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
do_barriers = !btrfs_test_opt(root, NOBARRIER);
sb = &root->fs_info->super_for_commit;
dev_item = &sb->dev_item;
list_for_each(cur, head) {
dev = list_entry(cur, struct btrfs_device, dev_list);
if (!dev->bdev) {
total_errors++;
continue;
}
if (!dev->in_fs_metadata)
continue;
btrfs_set_stack_device_type(dev_item, dev->type);
btrfs_set_stack_device_id(dev_item, dev->devid);
btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
btrfs_set_stack_device_io_align(dev_item, dev->io_align);
btrfs_set_stack_device_io_width(dev_item, dev->io_width);
btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
flags = btrfs_super_flags(sb);
btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
crc = ~(u32)0;
crc = btrfs_csum_data(root, (char *)sb + BTRFS_CSUM_SIZE, crc,
BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
btrfs_csum_final(crc, sb->csum);
bh = __getblk(dev->bdev, BTRFS_SUPER_INFO_OFFSET / 4096,
BTRFS_SUPER_INFO_SIZE);
memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
dev->pending_io = bh;
get_bh(bh);
set_buffer_uptodate(bh);
lock_buffer(bh);
bh->b_end_io = btrfs_end_buffer_write_sync;
if (do_barriers && dev->barriers) {
ret = submit_bh(WRITE_BARRIER, bh);
if (ret == -EOPNOTSUPP) {
printk("btrfs: disabling barriers on dev %s\n",
dev->name);
set_buffer_uptodate(bh);
dev->barriers = 0;
get_bh(bh);
lock_buffer(bh);
ret = submit_bh(WRITE, bh);
}
} else {
ret = submit_bh(WRITE, bh);
}
if (ret)
total_errors++;
}
if (total_errors > max_errors) {
printk("btrfs: %d errors while writing supers\n", total_errors);
BUG();
}
total_errors = 0;
list_for_each(cur, head) {
dev = list_entry(cur, struct btrfs_device, dev_list);
if (!dev->bdev)
continue;
if (!dev->in_fs_metadata)
continue;
BUG_ON(!dev->pending_io);
bh = dev->pending_io;
wait_on_buffer(bh);
if (!buffer_uptodate(dev->pending_io)) {
if (do_barriers && dev->barriers) {
printk("btrfs: disabling barriers on dev %s\n",
dev->name);
set_buffer_uptodate(bh);
get_bh(bh);
lock_buffer(bh);
dev->barriers = 0;
ret = submit_bh(WRITE, bh);
BUG_ON(ret);
wait_on_buffer(bh);
if (!buffer_uptodate(bh))
total_errors++;
} else {
total_errors++;
}
}
dev->pending_io = NULL;
brelse(bh);
}
if (total_errors > max_errors) {
printk("btrfs: %d errors while writing supers\n", total_errors);
BUG();
}
return 0;
}
int write_ctree_super(struct btrfs_trans_handle *trans, struct btrfs_root
*root)
{
int ret;
ret = write_all_supers(root);
return ret;
}
int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
{
radix_tree_delete(&fs_info->fs_roots_radix,
(unsigned long)root->root_key.objectid);
if (root->in_sysfs)
btrfs_sysfs_del_root(root);
if (root->inode)
iput(root->inode);
if (root->node)
free_extent_buffer(root->node);
if (root->commit_root)
free_extent_buffer(root->commit_root);
if (root->name)
kfree(root->name);
kfree(root);
return 0;
}
static int del_fs_roots(struct btrfs_fs_info *fs_info)
{
int ret;
struct btrfs_root *gang[8];
int i;
while(1) {
ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
(void **)gang, 0,
ARRAY_SIZE(gang));
if (!ret)
break;
for (i = 0; i < ret; i++)
btrfs_free_fs_root(fs_info, gang[i]);
}
return 0;
}
int close_ctree(struct btrfs_root *root)
{
int ret;
struct btrfs_trans_handle *trans;
struct btrfs_fs_info *fs_info = root->fs_info;
fs_info->closing = 1;
smp_mb();
kthread_stop(root->fs_info->transaction_kthread);
kthread_stop(root->fs_info->cleaner_kthread);
btrfs_clean_old_snapshots(root);
trans = btrfs_start_transaction(root, 1);
ret = btrfs_commit_transaction(trans, root);
/* run commit again to drop the original snapshot */
trans = btrfs_start_transaction(root, 1);
btrfs_commit_transaction(trans, root);
ret = btrfs_write_and_wait_transaction(NULL, root);
BUG_ON(ret);
write_ctree_super(NULL, root);
if (fs_info->delalloc_bytes) {
printk("btrfs: at unmount delalloc count %Lu\n",
fs_info->delalloc_bytes);
}
if (fs_info->total_ref_cache_size) {
printk("btrfs: at umount reference cache size %Lu\n",
fs_info->total_ref_cache_size);
}
if (fs_info->extent_root->node)
free_extent_buffer(fs_info->extent_root->node);
if (fs_info->tree_root->node)
free_extent_buffer(fs_info->tree_root->node);
if (root->fs_info->chunk_root->node);
free_extent_buffer(root->fs_info->chunk_root->node);
if (root->fs_info->dev_root->node);
free_extent_buffer(root->fs_info->dev_root->node);
btrfs_free_block_groups(root->fs_info);
fs_info->closing = 2;
del_fs_roots(fs_info);
filemap_write_and_wait(fs_info->btree_inode->i_mapping);
truncate_inode_pages(fs_info->btree_inode->i_mapping, 0);
btrfs_stop_workers(&fs_info->fixup_workers);
btrfs_stop_workers(&fs_info->workers);
btrfs_stop_workers(&fs_info->endio_workers);
btrfs_stop_workers(&fs_info->endio_write_workers);
btrfs_stop_workers(&fs_info->submit_workers);
iput(fs_info->btree_inode);
#if 0
while(!list_empty(&fs_info->hashers)) {
struct btrfs_hasher *hasher;
hasher = list_entry(fs_info->hashers.next, struct btrfs_hasher,
hashers);
list_del(&hasher->hashers);
crypto_free_hash(&fs_info->hash_tfm);
kfree(hasher);
}
#endif
btrfs_close_devices(fs_info->fs_devices);
btrfs_mapping_tree_free(&fs_info->mapping_tree);
bdi_destroy(&fs_info->bdi);
kfree(fs_info->extent_root);
kfree(fs_info->tree_root);
kfree(fs_info->chunk_root);
kfree(fs_info->dev_root);
return 0;
}
int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
{
int ret;
struct inode *btree_inode = buf->first_page->mapping->host;
ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf);
if (!ret)
return ret;
ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
parent_transid);
return !ret;
}
int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
{
struct inode *btree_inode = buf->first_page->mapping->host;
return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
buf);
}
void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
{
struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
u64 transid = btrfs_header_generation(buf);
struct inode *btree_inode = root->fs_info->btree_inode;
WARN_ON(!btrfs_tree_locked(buf));
if (transid != root->fs_info->generation) {
printk(KERN_CRIT "transid mismatch buffer %llu, found %Lu running %Lu\n",
(unsigned long long)buf->start,
transid, root->fs_info->generation);
WARN_ON(1);
}
set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree, buf);
}
void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
{
/*
* looks as though older kernels can get into trouble with
* this code, they end up stuck in balance_dirty_pages forever
*/
struct extent_io_tree *tree;
u64 num_dirty;
u64 start = 0;
unsigned long thresh = 96 * 1024 * 1024;
tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
if (current_is_pdflush() || current->flags & PF_MEMALLOC)
return;
num_dirty = count_range_bits(tree, &start, (u64)-1,
thresh, EXTENT_DIRTY);
if (num_dirty > thresh) {
balance_dirty_pages_ratelimited_nr(
root->fs_info->btree_inode->i_mapping, 1);
}
return;
}
int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
{
struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
int ret;
ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
if (ret == 0) {
buf->flags |= EXTENT_UPTODATE;
}
return ret;
}
int btree_lock_page_hook(struct page *page)
{
struct inode *inode = page->mapping->host;
struct btrfs_root *root = BTRFS_I(inode)->root;
struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
struct extent_buffer *eb;
unsigned long len;
u64 bytenr = page_offset(page);
if (page->private == EXTENT_PAGE_PRIVATE)
goto out;
len = page->private >> 2;
eb = find_extent_buffer(io_tree, bytenr, len, GFP_NOFS);
if (!eb)
goto out;
btrfs_tree_lock(eb);
spin_lock(&root->fs_info->hash_lock);
btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
spin_unlock(&root->fs_info->hash_lock);
btrfs_tree_unlock(eb);
free_extent_buffer(eb);
out:
lock_page(page);
return 0;
}
static struct extent_io_ops btree_extent_io_ops = {
.write_cache_pages_lock_hook = btree_lock_page_hook,
.readpage_end_io_hook = btree_readpage_end_io_hook,
.submit_bio_hook = btree_submit_bio_hook,
/* note we're sharing with inode.c for the merge bio hook */
.merge_bio_hook = btrfs_merge_bio_hook,
};