linux-next/arch/arm64/kvm/handle_exit.c

463 lines
12 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2012,2013 - ARM Ltd
* Author: Marc Zyngier <marc.zyngier@arm.com>
*
* Derived from arch/arm/kvm/handle_exit.c:
* Copyright (C) 2012 - Virtual Open Systems and Columbia University
* Author: Christoffer Dall <c.dall@virtualopensystems.com>
*/
#include <linux/kvm.h>
#include <linux/kvm_host.h>
#include <asm/esr.h>
KVM: arm64: Handle RAS SErrors from EL2 on guest exit We expect to have firmware-first handling of RAS SErrors, with errors notified via an APEI method. For systems without firmware-first, add some minimal handling to KVM. There are two ways KVM can take an SError due to a guest, either may be a RAS error: we exit the guest due to an SError routed to EL2 by HCR_EL2.AMO, or we take an SError from EL2 when we unmask PSTATE.A from __guest_exit. The current SError from EL2 code unmasks SError and tries to fence any pending SError into a single instruction window. It then leaves SError unmasked. With the v8.2 RAS Extensions we may take an SError for a 'corrected' error, but KVM is only able to handle SError from EL2 if they occur during this single instruction window... The RAS Extensions give us a new instruction to synchronise and consume SErrors. The RAS Extensions document (ARM DDI0587), '2.4.1 ESB and Unrecoverable errors' describes ESB as synchronising SError interrupts generated by 'instructions, translation table walks, hardware updates to the translation tables, and instruction fetches on the same PE'. This makes ESB equivalent to KVMs existing 'dsb, mrs-daifclr, isb' sequence. Use the alternatives to synchronise and consume any SError using ESB instead of unmasking and taking the SError. Set ARM_EXIT_WITH_SERROR_BIT in the exit_code so that we can restart the vcpu if it turns out this SError has no impact on the vcpu. Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: James Morse <james.morse@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2018-01-15 19:39:05 +00:00
#include <asm/exception.h>
#include <asm/kvm_asm.h>
#include <asm/kvm_emulate.h>
#include <asm/kvm_mmu.h>
#include <asm/kvm_nested.h>
#include <asm/debug-monitors.h>
#include <asm/stacktrace/nvhe.h>
#include <asm/traps.h>
#include <kvm/arm_hypercalls.h>
#define CREATE_TRACE_POINTS
#include "trace_handle_exit.h"
typedef int (*exit_handle_fn)(struct kvm_vcpu *);
static void kvm_handle_guest_serror(struct kvm_vcpu *vcpu, u64 esr)
{
if (!arm64_is_ras_serror(esr) || arm64_is_fatal_ras_serror(NULL, esr))
kvm_inject_vabt(vcpu);
}
static int handle_hvc(struct kvm_vcpu *vcpu)
{
trace_kvm_hvc_arm64(*vcpu_pc(vcpu), vcpu_get_reg(vcpu, 0),
kvm_vcpu_hvc_get_imm(vcpu));
vcpu->stat.hvc_exit_stat++;
/* Forward hvc instructions to the virtual EL2 if the guest has EL2. */
if (vcpu_has_nv(vcpu)) {
if (vcpu_read_sys_reg(vcpu, HCR_EL2) & HCR_HCD)
kvm_inject_undefined(vcpu);
else
kvm_inject_nested_sync(vcpu, kvm_vcpu_get_esr(vcpu));
return 1;
}
return kvm_smccc_call_handler(vcpu);
}
static int handle_smc(struct kvm_vcpu *vcpu)
{
/*
* Forward this trapped smc instruction to the virtual EL2 if
* the guest has asked for it.
*/
if (forward_smc_trap(vcpu))
return 1;
/*
* "If an SMC instruction executed at Non-secure EL1 is
* trapped to EL2 because HCR_EL2.TSC is 1, the exception is a
* Trap exception, not a Secure Monitor Call exception [...]"
*
* We need to advance the PC after the trap, as it would
* otherwise return to the same address. Furthermore, pre-incrementing
* the PC before potentially exiting to userspace maintains the same
* abstraction for both SMCs and HVCs.
*/
kvm_incr_pc(vcpu);
/*
* SMCs with a nonzero immediate are reserved according to DEN0028E 2.9
* "SMC and HVC immediate value".
*/
if (kvm_vcpu_hvc_get_imm(vcpu)) {
vcpu_set_reg(vcpu, 0, ~0UL);
return 1;
}
/*
* If imm is zero then it is likely an SMCCC call.
*
* Note that on ARMv8.3, even if EL3 is not implemented, SMC executed
* at Non-secure EL1 is trapped to EL2 if HCR_EL2.TSC==1, rather than
* being treated as UNDEFINED.
*/
return kvm_smccc_call_handler(vcpu);
}
/*
* Guest access to FP/ASIMD registers are routed to this handler only
* when the system doesn't support FP/ASIMD.
*/
static int handle_no_fpsimd(struct kvm_vcpu *vcpu)
{
kvm_inject_undefined(vcpu);
return 1;
}
/**
* kvm_handle_wfx - handle a wait-for-interrupts or wait-for-event
* instruction executed by a guest
*
* @vcpu: the vcpu pointer
*
* WFE[T]: Yield the CPU and come back to this vcpu when the scheduler
* decides to.
* WFI: Simply call kvm_vcpu_halt(), which will halt execution of
* world-switches and schedule other host processes until there is an
* incoming IRQ or FIQ to the VM.
* WFIT: Same as WFI, with a timed wakeup implemented as a background timer
*
* WF{I,E}T can immediately return if the deadline has already expired.
*/
static int kvm_handle_wfx(struct kvm_vcpu *vcpu)
{
u64 esr = kvm_vcpu_get_esr(vcpu);
if (esr & ESR_ELx_WFx_ISS_WFE) {
trace_kvm_wfx_arm64(*vcpu_pc(vcpu), true);
vcpu->stat.wfe_exit_stat++;
} else {
trace_kvm_wfx_arm64(*vcpu_pc(vcpu), false);
vcpu->stat.wfi_exit_stat++;
}
if (esr & ESR_ELx_WFx_ISS_WFxT) {
if (esr & ESR_ELx_WFx_ISS_RV) {
u64 val, now;
now = kvm_arm_timer_get_reg(vcpu, KVM_REG_ARM_TIMER_CNT);
val = vcpu_get_reg(vcpu, kvm_vcpu_sys_get_rt(vcpu));
if (now >= val)
goto out;
} else {
/* Treat WFxT as WFx if RN is invalid */
esr &= ~ESR_ELx_WFx_ISS_WFxT;
}
}
if (esr & ESR_ELx_WFx_ISS_WFE) {
kvm_vcpu_on_spin(vcpu, vcpu_mode_priv(vcpu));
} else {
if (esr & ESR_ELx_WFx_ISS_WFxT)
vcpu_set_flag(vcpu, IN_WFIT);
KVM: arm64: Move vGIC v4 handling for WFI out arch callback hook Move the put and reload of the vGIC out of the block/unblock callbacks and into a dedicated WFI helper. Functionally, this is nearly a nop as the block hook is called at the very beginning of kvm_vcpu_block(), and the only code in kvm_vcpu_block() after the unblock hook is to update the halt-polling controls, i.e. can only affect the next WFI. Back when the arch (un)blocking hooks were added by commits 3217f7c25bca ("KVM: Add kvm_arch_vcpu_{un}blocking callbacks) and d35268da6687 ("arm/arm64: KVM: arch_timer: Only schedule soft timer on vcpu_block"), the hooks were invoked only when KVM was about to "block", i.e. schedule out the vCPU. The use case at the time was to schedule a timer in the host based on the earliest timer in the guest in order to wake the blocking vCPU when the emulated guest timer fired. Commit accb99bcd0ca ("KVM: arm/arm64: Simplify bg_timer programming") reworked the timer logic to be even more precise, by waiting until the vCPU was actually scheduled out, and so move the timer logic from the (un)blocking hooks to vcpu_load/put. In the meantime, the hooks gained usage for enabling vGIC v4 doorbells in commit df9ba95993b9 ("KVM: arm/arm64: GICv4: Use the doorbell interrupt as an unblocking source"), and added related logic for the VMCR in commit 5eeaf10eec39 ("KVM: arm/arm64: Sync ICH_VMCR_EL2 back when about to block"). Finally, commit 07ab0f8d9a12 ("KVM: Call kvm_arch_vcpu_blocking early into the blocking sequence") hoisted the (un)blocking hooks so that they wrapped KVM's halt-polling logic in addition to the core "block" logic. In other words, the original need for arch hooks to take action _only_ in the block path is long since gone. Cc: Oliver Upton <oupton@google.com> Cc: Marc Zyngier <maz@kernel.org> Signed-off-by: Sean Christopherson <seanjc@google.com> Message-Id: <20211009021236.4122790-11-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-08 19:12:03 -07:00
kvm_vcpu_wfi(vcpu);
}
out:
kvm_incr_pc(vcpu);
return 1;
}
/**
* kvm_handle_guest_debug - handle a debug exception instruction
*
* @vcpu: the vcpu pointer
*
* We route all debug exceptions through the same handler. If both the
* guest and host are using the same debug facilities it will be up to
* userspace to re-inject the correct exception for guest delivery.
*
* @return: 0 (while setting vcpu->run->exit_reason)
*/
static int kvm_handle_guest_debug(struct kvm_vcpu *vcpu)
{
struct kvm_run *run = vcpu->run;
u64 esr = kvm_vcpu_get_esr(vcpu);
run->exit_reason = KVM_EXIT_DEBUG;
run->debug.arch.hsr = lower_32_bits(esr);
KVM: arm64: uapi: Add kvm_debug_exit_arch.hsr_high When userspace is debugging a VM, the kvm_debug_exit_arch part of the kvm_run struct contains arm64 specific debug information: the ESR_EL2 value, encoded in the field "hsr", and the address of the instruction that caused the exception, encoded in the field "far". Linux has moved to treating ESR_EL2 as a 64-bit register, but unfortunately kvm_debug_exit_arch.hsr cannot be changed because that would change the memory layout of the struct on big endian machines: Current layout: | Layout with "hsr" extended to 64 bits: | offset 0: ESR_EL2[31:0] (hsr) | offset 0: ESR_EL2[61:32] (hsr[61:32]) offset 4: padding | offset 4: ESR_EL2[31:0] (hsr[31:0]) offset 8: FAR_EL2[61:0] (far) | offset 8: FAR_EL2[61:0] (far) which breaks existing code. The padding is inserted by the compiler because the "far" field must be aligned to 8 bytes (each field must be naturally aligned - aapcs64 [1], page 18), and the struct itself must be aligned to 8 bytes (the struct must be aligned to the maximum alignment of its fields - aapcs64, page 18), which means that "hsr" must be aligned to 8 bytes as it is the first field in the struct. To avoid changing the struct size and layout for the existing fields, add a new field, "hsr_high", which replaces the existing padding. "hsr_high" will be used to hold the ESR_EL2[61:32] bits of the register. The memory layout, both on big and little endian machine, becomes: offset 0: ESR_EL2[31:0] (hsr) offset 4: ESR_EL2[61:32] (hsr_high) offset 8: FAR_EL2[61:0] (far) The padding that the compiler inserts for the current struct layout is unitialized. To prevent an updated userspace running on an old kernel mistaking the padding for a valid "hsr_high" value, add a new flag, KVM_DEBUG_ARCH_HSR_HIGH_VALID, to kvm_run->flags to let userspace know that "hsr_high" holds a valid ESR_EL2[61:32] value. [1] https://github.com/ARM-software/abi-aa/releases/download/2021Q3/aapcs64.pdf Signed-off-by: Alexandru Elisei <alexandru.elisei@arm.com> Reviewed-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20220425114444.368693-6-alexandru.elisei@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2022-04-25 12:44:44 +01:00
run->debug.arch.hsr_high = upper_32_bits(esr);
run->flags = KVM_DEBUG_ARCH_HSR_HIGH_VALID;
switch (ESR_ELx_EC(esr)) {
case ESR_ELx_EC_WATCHPT_LOW:
run->debug.arch.far = vcpu->arch.fault.far_el2;
break;
case ESR_ELx_EC_SOFTSTP_LOW:
vcpu_clear_flag(vcpu, DBG_SS_ACTIVE_PENDING);
break;
}
return 0;
}
static int kvm_handle_unknown_ec(struct kvm_vcpu *vcpu)
{
u64 esr = kvm_vcpu_get_esr(vcpu);
kvm_pr_unimpl("Unknown exception class: esr: %#016llx -- %s\n",
esr, esr_get_class_string(esr));
kvm_inject_undefined(vcpu);
return 1;
}
/*
* Guest access to SVE registers should be routed to this handler only
* when the system doesn't support SVE.
*/
static int handle_sve(struct kvm_vcpu *vcpu)
{
kvm_inject_undefined(vcpu);
return 1;
}
/*
* Two possibilities to handle a trapping ptrauth instruction:
*
* - Guest usage of a ptrauth instruction (which the guest EL1 did not
* turn into a NOP). If we get here, it is because we didn't enable
* ptrauth for the guest. This results in an UNDEF, as it isn't
* supposed to use ptrauth without being told it could.
*
* - Running an L2 NV guest while L1 has left HCR_EL2.API==0, and for
* which we reinject the exception into L1.
*
* Anything else is an emulation bug (hence the WARN_ON + UNDEF).
*/
static int kvm_handle_ptrauth(struct kvm_vcpu *vcpu)
{
if (!vcpu_has_ptrauth(vcpu)) {
kvm_inject_undefined(vcpu);
return 1;
}
if (vcpu_has_nv(vcpu) && !is_hyp_ctxt(vcpu)) {
kvm_inject_nested_sync(vcpu, kvm_vcpu_get_esr(vcpu));
return 1;
}
/* Really shouldn't be here! */
WARN_ON_ONCE(1);
kvm_inject_undefined(vcpu);
return 1;
}
static int kvm_handle_eret(struct kvm_vcpu *vcpu)
{
if (esr_iss_is_eretax(kvm_vcpu_get_esr(vcpu)) &&
!vcpu_has_ptrauth(vcpu))
return kvm_handle_ptrauth(vcpu);
/*
* If we got here, two possibilities:
*
* - the guest is in EL2, and we need to fully emulate ERET
*
* - the guest is in EL1, and we need to reinject the
* exception into the L1 hypervisor.
*
* If KVM ever traps ERET for its own use, we'll have to
* revisit this.
*/
if (is_hyp_ctxt(vcpu))
kvm_emulate_nested_eret(vcpu);
else
kvm_inject_nested_sync(vcpu, kvm_vcpu_get_esr(vcpu));
return 1;
}
static int handle_svc(struct kvm_vcpu *vcpu)
{
/*
* So far, SVC traps only for NV via HFGITR_EL2. A SVC from a
* 32bit guest would be caught by vpcu_mode_is_bad_32bit(), so
* we should only have to deal with a 64 bit exception.
*/
kvm_inject_nested_sync(vcpu, kvm_vcpu_get_esr(vcpu));
return 1;
}
static exit_handle_fn arm_exit_handlers[] = {
[0 ... ESR_ELx_EC_MAX] = kvm_handle_unknown_ec,
[ESR_ELx_EC_WFx] = kvm_handle_wfx,
[ESR_ELx_EC_CP15_32] = kvm_handle_cp15_32,
[ESR_ELx_EC_CP15_64] = kvm_handle_cp15_64,
[ESR_ELx_EC_CP14_MR] = kvm_handle_cp14_32,
[ESR_ELx_EC_CP14_LS] = kvm_handle_cp14_load_store,
[ESR_ELx_EC_CP10_ID] = kvm_handle_cp10_id,
[ESR_ELx_EC_CP14_64] = kvm_handle_cp14_64,
[ESR_ELx_EC_HVC32] = handle_hvc,
[ESR_ELx_EC_SMC32] = handle_smc,
[ESR_ELx_EC_HVC64] = handle_hvc,
[ESR_ELx_EC_SMC64] = handle_smc,
[ESR_ELx_EC_SVC64] = handle_svc,
[ESR_ELx_EC_SYS64] = kvm_handle_sys_reg,
[ESR_ELx_EC_SVE] = handle_sve,
[ESR_ELx_EC_ERET] = kvm_handle_eret,
[ESR_ELx_EC_IABT_LOW] = kvm_handle_guest_abort,
[ESR_ELx_EC_DABT_LOW] = kvm_handle_guest_abort,
[ESR_ELx_EC_SOFTSTP_LOW]= kvm_handle_guest_debug,
[ESR_ELx_EC_WATCHPT_LOW]= kvm_handle_guest_debug,
[ESR_ELx_EC_BREAKPT_LOW]= kvm_handle_guest_debug,
[ESR_ELx_EC_BKPT32] = kvm_handle_guest_debug,
[ESR_ELx_EC_BRK64] = kvm_handle_guest_debug,
[ESR_ELx_EC_FP_ASIMD] = handle_no_fpsimd,
[ESR_ELx_EC_PAC] = kvm_handle_ptrauth,
};
static exit_handle_fn kvm_get_exit_handler(struct kvm_vcpu *vcpu)
{
u64 esr = kvm_vcpu_get_esr(vcpu);
u8 esr_ec = ESR_ELx_EC(esr);
return arm_exit_handlers[esr_ec];
}
/*
* We may be single-stepping an emulated instruction. If the emulation
* has been completed in the kernel, we can return to userspace with a
* KVM_EXIT_DEBUG, otherwise userspace needs to complete its
* emulation first.
*/
static int handle_trap_exceptions(struct kvm_vcpu *vcpu)
{
int handled;
/*
* See ARM ARM B1.14.1: "Hyp traps on instructions
* that fail their condition code check"
*/
if (!kvm_condition_valid(vcpu)) {
kvm_incr_pc(vcpu);
handled = 1;
} else {
exit_handle_fn exit_handler;
exit_handler = kvm_get_exit_handler(vcpu);
handled = exit_handler(vcpu);
}
return handled;
}
/*
* Return > 0 to return to guest, < 0 on error, 0 (and set exit_reason) on
* proper exit to userspace.
*/
int handle_exit(struct kvm_vcpu *vcpu, int exception_index)
{
struct kvm_run *run = vcpu->run;
if (ARM_SERROR_PENDING(exception_index)) {
/*
* The SError is handled by handle_exit_early(). If the guest
* survives it will re-execute the original instruction.
*/
return 1;
}
exception_index = ARM_EXCEPTION_CODE(exception_index);
switch (exception_index) {
case ARM_EXCEPTION_IRQ:
return 1;
case ARM_EXCEPTION_EL1_SERROR:
return 1;
case ARM_EXCEPTION_TRAP:
return handle_trap_exceptions(vcpu);
case ARM_EXCEPTION_HYP_GONE:
/*
* EL2 has been reset to the hyp-stub. This happens when a guest
* is pre-emptied by kvm_reboot()'s shutdown call.
*/
run->exit_reason = KVM_EXIT_FAIL_ENTRY;
return 0;
case ARM_EXCEPTION_IL:
/*
* We attempted an illegal exception return. Guest state must
* have been corrupted somehow. Give up.
*/
run->exit_reason = KVM_EXIT_FAIL_ENTRY;
return -EINVAL;
default:
kvm_pr_unimpl("Unsupported exception type: %d",
exception_index);
run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
return 0;
}
}
/* For exit types that need handling before we can be preempted */
void handle_exit_early(struct kvm_vcpu *vcpu, int exception_index)
{
KVM: arm64: Handle RAS SErrors from EL2 on guest exit We expect to have firmware-first handling of RAS SErrors, with errors notified via an APEI method. For systems without firmware-first, add some minimal handling to KVM. There are two ways KVM can take an SError due to a guest, either may be a RAS error: we exit the guest due to an SError routed to EL2 by HCR_EL2.AMO, or we take an SError from EL2 when we unmask PSTATE.A from __guest_exit. The current SError from EL2 code unmasks SError and tries to fence any pending SError into a single instruction window. It then leaves SError unmasked. With the v8.2 RAS Extensions we may take an SError for a 'corrected' error, but KVM is only able to handle SError from EL2 if they occur during this single instruction window... The RAS Extensions give us a new instruction to synchronise and consume SErrors. The RAS Extensions document (ARM DDI0587), '2.4.1 ESB and Unrecoverable errors' describes ESB as synchronising SError interrupts generated by 'instructions, translation table walks, hardware updates to the translation tables, and instruction fetches on the same PE'. This makes ESB equivalent to KVMs existing 'dsb, mrs-daifclr, isb' sequence. Use the alternatives to synchronise and consume any SError using ESB instead of unmasking and taking the SError. Set ARM_EXIT_WITH_SERROR_BIT in the exit_code so that we can restart the vcpu if it turns out this SError has no impact on the vcpu. Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: James Morse <james.morse@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2018-01-15 19:39:05 +00:00
if (ARM_SERROR_PENDING(exception_index)) {
if (this_cpu_has_cap(ARM64_HAS_RAS_EXTN)) {
u64 disr = kvm_vcpu_get_disr(vcpu);
kvm_handle_guest_serror(vcpu, disr_to_esr(disr));
} else {
kvm_inject_vabt(vcpu);
}
return;
}
exception_index = ARM_EXCEPTION_CODE(exception_index);
if (exception_index == ARM_EXCEPTION_EL1_SERROR)
kvm_handle_guest_serror(vcpu, kvm_vcpu_get_esr(vcpu));
}
KVM: arm64: Log source when panicking from nVHE hyp To aid with debugging, add details of the source of a panic from nVHE hyp. This is done by having nVHE hyp exit to nvhe_hyp_panic_handler() rather than directly to panic(). The handler will then add the extra details for debugging before panicking the kernel. If the panic was due to a BUG(), look up the metadata to log the file and line, if available, otherwise log an address that can be looked up in vmlinux. The hyp offset is also logged to allow other hyp VAs to be converted, similar to how the kernel offset is logged during a panic. __hyp_panic_string is now inlined since it no longer needs to be referenced as a symbol and the message is free to diverge between VHE and nVHE. The following is an example of the logs generated by a BUG in nVHE hyp. [ 46.754840] kvm [307]: nVHE hyp BUG at: arch/arm64/kvm/hyp/nvhe/switch.c:242! [ 46.755357] kvm [307]: Hyp Offset: 0xfffea6c58e1e0000 [ 46.755824] Kernel panic - not syncing: HYP panic: [ 46.755824] PS:400003c9 PC:0000d93a82c705ac ESR:f2000800 [ 46.755824] FAR:0000000080080000 HPFAR:0000000000800800 PAR:0000000000000000 [ 46.755824] VCPU:0000d93a880d0000 [ 46.756960] CPU: 3 PID: 307 Comm: kvm-vcpu-0 Not tainted 5.12.0-rc3-00005-gc572b99cf65b-dirty #133 [ 46.757459] Hardware name: QEMU QEMU Virtual Machine, BIOS 0.0.0 02/06/2015 [ 46.758366] Call trace: [ 46.758601] dump_backtrace+0x0/0x1b0 [ 46.758856] show_stack+0x18/0x70 [ 46.759057] dump_stack+0xd0/0x12c [ 46.759236] panic+0x16c/0x334 [ 46.759426] arm64_kernel_unmapped_at_el0+0x0/0x30 [ 46.759661] kvm_arch_vcpu_ioctl_run+0x134/0x750 [ 46.759936] kvm_vcpu_ioctl+0x2f0/0x970 [ 46.760156] __arm64_sys_ioctl+0xa8/0xec [ 46.760379] el0_svc_common.constprop.0+0x60/0x120 [ 46.760627] do_el0_svc+0x24/0x90 [ 46.760766] el0_svc+0x2c/0x54 [ 46.760915] el0_sync_handler+0x1a4/0x1b0 [ 46.761146] el0_sync+0x170/0x180 [ 46.761889] SMP: stopping secondary CPUs [ 46.762786] Kernel Offset: 0x3e1cd2820000 from 0xffff800010000000 [ 46.763142] PHYS_OFFSET: 0xffffa9f680000000 [ 46.763359] CPU features: 0x00240022,61806008 [ 46.763651] Memory Limit: none [ 46.813867] ---[ end Kernel panic - not syncing: HYP panic: [ 46.813867] PS:400003c9 PC:0000d93a82c705ac ESR:f2000800 [ 46.813867] FAR:0000000080080000 HPFAR:0000000000800800 PAR:0000000000000000 [ 46.813867] VCPU:0000d93a880d0000 ]--- Signed-off-by: Andrew Scull <ascull@google.com> Signed-off-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20210318143311.839894-6-ascull@google.com
2021-03-18 14:33:11 +00:00
void __noreturn __cold nvhe_hyp_panic_handler(u64 esr, u64 spsr,
u64 elr_virt, u64 elr_phys,
KVM: arm64: Log source when panicking from nVHE hyp To aid with debugging, add details of the source of a panic from nVHE hyp. This is done by having nVHE hyp exit to nvhe_hyp_panic_handler() rather than directly to panic(). The handler will then add the extra details for debugging before panicking the kernel. If the panic was due to a BUG(), look up the metadata to log the file and line, if available, otherwise log an address that can be looked up in vmlinux. The hyp offset is also logged to allow other hyp VAs to be converted, similar to how the kernel offset is logged during a panic. __hyp_panic_string is now inlined since it no longer needs to be referenced as a symbol and the message is free to diverge between VHE and nVHE. The following is an example of the logs generated by a BUG in nVHE hyp. [ 46.754840] kvm [307]: nVHE hyp BUG at: arch/arm64/kvm/hyp/nvhe/switch.c:242! [ 46.755357] kvm [307]: Hyp Offset: 0xfffea6c58e1e0000 [ 46.755824] Kernel panic - not syncing: HYP panic: [ 46.755824] PS:400003c9 PC:0000d93a82c705ac ESR:f2000800 [ 46.755824] FAR:0000000080080000 HPFAR:0000000000800800 PAR:0000000000000000 [ 46.755824] VCPU:0000d93a880d0000 [ 46.756960] CPU: 3 PID: 307 Comm: kvm-vcpu-0 Not tainted 5.12.0-rc3-00005-gc572b99cf65b-dirty #133 [ 46.757459] Hardware name: QEMU QEMU Virtual Machine, BIOS 0.0.0 02/06/2015 [ 46.758366] Call trace: [ 46.758601] dump_backtrace+0x0/0x1b0 [ 46.758856] show_stack+0x18/0x70 [ 46.759057] dump_stack+0xd0/0x12c [ 46.759236] panic+0x16c/0x334 [ 46.759426] arm64_kernel_unmapped_at_el0+0x0/0x30 [ 46.759661] kvm_arch_vcpu_ioctl_run+0x134/0x750 [ 46.759936] kvm_vcpu_ioctl+0x2f0/0x970 [ 46.760156] __arm64_sys_ioctl+0xa8/0xec [ 46.760379] el0_svc_common.constprop.0+0x60/0x120 [ 46.760627] do_el0_svc+0x24/0x90 [ 46.760766] el0_svc+0x2c/0x54 [ 46.760915] el0_sync_handler+0x1a4/0x1b0 [ 46.761146] el0_sync+0x170/0x180 [ 46.761889] SMP: stopping secondary CPUs [ 46.762786] Kernel Offset: 0x3e1cd2820000 from 0xffff800010000000 [ 46.763142] PHYS_OFFSET: 0xffffa9f680000000 [ 46.763359] CPU features: 0x00240022,61806008 [ 46.763651] Memory Limit: none [ 46.813867] ---[ end Kernel panic - not syncing: HYP panic: [ 46.813867] PS:400003c9 PC:0000d93a82c705ac ESR:f2000800 [ 46.813867] FAR:0000000080080000 HPFAR:0000000000800800 PAR:0000000000000000 [ 46.813867] VCPU:0000d93a880d0000 ]--- Signed-off-by: Andrew Scull <ascull@google.com> Signed-off-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20210318143311.839894-6-ascull@google.com
2021-03-18 14:33:11 +00:00
u64 par, uintptr_t vcpu,
u64 far, u64 hpfar) {
u64 elr_in_kimg = __phys_to_kimg(elr_phys);
u64 hyp_offset = elr_in_kimg - kaslr_offset() - elr_virt;
KVM: arm64: Log source when panicking from nVHE hyp To aid with debugging, add details of the source of a panic from nVHE hyp. This is done by having nVHE hyp exit to nvhe_hyp_panic_handler() rather than directly to panic(). The handler will then add the extra details for debugging before panicking the kernel. If the panic was due to a BUG(), look up the metadata to log the file and line, if available, otherwise log an address that can be looked up in vmlinux. The hyp offset is also logged to allow other hyp VAs to be converted, similar to how the kernel offset is logged during a panic. __hyp_panic_string is now inlined since it no longer needs to be referenced as a symbol and the message is free to diverge between VHE and nVHE. The following is an example of the logs generated by a BUG in nVHE hyp. [ 46.754840] kvm [307]: nVHE hyp BUG at: arch/arm64/kvm/hyp/nvhe/switch.c:242! [ 46.755357] kvm [307]: Hyp Offset: 0xfffea6c58e1e0000 [ 46.755824] Kernel panic - not syncing: HYP panic: [ 46.755824] PS:400003c9 PC:0000d93a82c705ac ESR:f2000800 [ 46.755824] FAR:0000000080080000 HPFAR:0000000000800800 PAR:0000000000000000 [ 46.755824] VCPU:0000d93a880d0000 [ 46.756960] CPU: 3 PID: 307 Comm: kvm-vcpu-0 Not tainted 5.12.0-rc3-00005-gc572b99cf65b-dirty #133 [ 46.757459] Hardware name: QEMU QEMU Virtual Machine, BIOS 0.0.0 02/06/2015 [ 46.758366] Call trace: [ 46.758601] dump_backtrace+0x0/0x1b0 [ 46.758856] show_stack+0x18/0x70 [ 46.759057] dump_stack+0xd0/0x12c [ 46.759236] panic+0x16c/0x334 [ 46.759426] arm64_kernel_unmapped_at_el0+0x0/0x30 [ 46.759661] kvm_arch_vcpu_ioctl_run+0x134/0x750 [ 46.759936] kvm_vcpu_ioctl+0x2f0/0x970 [ 46.760156] __arm64_sys_ioctl+0xa8/0xec [ 46.760379] el0_svc_common.constprop.0+0x60/0x120 [ 46.760627] do_el0_svc+0x24/0x90 [ 46.760766] el0_svc+0x2c/0x54 [ 46.760915] el0_sync_handler+0x1a4/0x1b0 [ 46.761146] el0_sync+0x170/0x180 [ 46.761889] SMP: stopping secondary CPUs [ 46.762786] Kernel Offset: 0x3e1cd2820000 from 0xffff800010000000 [ 46.763142] PHYS_OFFSET: 0xffffa9f680000000 [ 46.763359] CPU features: 0x00240022,61806008 [ 46.763651] Memory Limit: none [ 46.813867] ---[ end Kernel panic - not syncing: HYP panic: [ 46.813867] PS:400003c9 PC:0000d93a82c705ac ESR:f2000800 [ 46.813867] FAR:0000000080080000 HPFAR:0000000000800800 PAR:0000000000000000 [ 46.813867] VCPU:0000d93a880d0000 ]--- Signed-off-by: Andrew Scull <ascull@google.com> Signed-off-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20210318143311.839894-6-ascull@google.com
2021-03-18 14:33:11 +00:00
u64 mode = spsr & PSR_MODE_MASK;
u64 panic_addr = elr_virt + hyp_offset;
KVM: arm64: Log source when panicking from nVHE hyp To aid with debugging, add details of the source of a panic from nVHE hyp. This is done by having nVHE hyp exit to nvhe_hyp_panic_handler() rather than directly to panic(). The handler will then add the extra details for debugging before panicking the kernel. If the panic was due to a BUG(), look up the metadata to log the file and line, if available, otherwise log an address that can be looked up in vmlinux. The hyp offset is also logged to allow other hyp VAs to be converted, similar to how the kernel offset is logged during a panic. __hyp_panic_string is now inlined since it no longer needs to be referenced as a symbol and the message is free to diverge between VHE and nVHE. The following is an example of the logs generated by a BUG in nVHE hyp. [ 46.754840] kvm [307]: nVHE hyp BUG at: arch/arm64/kvm/hyp/nvhe/switch.c:242! [ 46.755357] kvm [307]: Hyp Offset: 0xfffea6c58e1e0000 [ 46.755824] Kernel panic - not syncing: HYP panic: [ 46.755824] PS:400003c9 PC:0000d93a82c705ac ESR:f2000800 [ 46.755824] FAR:0000000080080000 HPFAR:0000000000800800 PAR:0000000000000000 [ 46.755824] VCPU:0000d93a880d0000 [ 46.756960] CPU: 3 PID: 307 Comm: kvm-vcpu-0 Not tainted 5.12.0-rc3-00005-gc572b99cf65b-dirty #133 [ 46.757459] Hardware name: QEMU QEMU Virtual Machine, BIOS 0.0.0 02/06/2015 [ 46.758366] Call trace: [ 46.758601] dump_backtrace+0x0/0x1b0 [ 46.758856] show_stack+0x18/0x70 [ 46.759057] dump_stack+0xd0/0x12c [ 46.759236] panic+0x16c/0x334 [ 46.759426] arm64_kernel_unmapped_at_el0+0x0/0x30 [ 46.759661] kvm_arch_vcpu_ioctl_run+0x134/0x750 [ 46.759936] kvm_vcpu_ioctl+0x2f0/0x970 [ 46.760156] __arm64_sys_ioctl+0xa8/0xec [ 46.760379] el0_svc_common.constprop.0+0x60/0x120 [ 46.760627] do_el0_svc+0x24/0x90 [ 46.760766] el0_svc+0x2c/0x54 [ 46.760915] el0_sync_handler+0x1a4/0x1b0 [ 46.761146] el0_sync+0x170/0x180 [ 46.761889] SMP: stopping secondary CPUs [ 46.762786] Kernel Offset: 0x3e1cd2820000 from 0xffff800010000000 [ 46.763142] PHYS_OFFSET: 0xffffa9f680000000 [ 46.763359] CPU features: 0x00240022,61806008 [ 46.763651] Memory Limit: none [ 46.813867] ---[ end Kernel panic - not syncing: HYP panic: [ 46.813867] PS:400003c9 PC:0000d93a82c705ac ESR:f2000800 [ 46.813867] FAR:0000000080080000 HPFAR:0000000000800800 PAR:0000000000000000 [ 46.813867] VCPU:0000d93a880d0000 ]--- Signed-off-by: Andrew Scull <ascull@google.com> Signed-off-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20210318143311.839894-6-ascull@google.com
2021-03-18 14:33:11 +00:00
if (mode != PSR_MODE_EL2t && mode != PSR_MODE_EL2h) {
kvm_err("Invalid host exception to nVHE hyp!\n");
} else if (ESR_ELx_EC(esr) == ESR_ELx_EC_BRK64 &&
(esr & ESR_ELx_BRK64_ISS_COMMENT_MASK) == BUG_BRK_IMM) {
const char *file = NULL;
unsigned int line = 0;
/* All hyp bugs, including warnings, are treated as fatal. */
if (!is_protected_kvm_enabled() ||
IS_ENABLED(CONFIG_NVHE_EL2_DEBUG)) {
struct bug_entry *bug = find_bug(elr_in_kimg);
if (bug)
bug_get_file_line(bug, &file, &line);
}
KVM: arm64: Log source when panicking from nVHE hyp To aid with debugging, add details of the source of a panic from nVHE hyp. This is done by having nVHE hyp exit to nvhe_hyp_panic_handler() rather than directly to panic(). The handler will then add the extra details for debugging before panicking the kernel. If the panic was due to a BUG(), look up the metadata to log the file and line, if available, otherwise log an address that can be looked up in vmlinux. The hyp offset is also logged to allow other hyp VAs to be converted, similar to how the kernel offset is logged during a panic. __hyp_panic_string is now inlined since it no longer needs to be referenced as a symbol and the message is free to diverge between VHE and nVHE. The following is an example of the logs generated by a BUG in nVHE hyp. [ 46.754840] kvm [307]: nVHE hyp BUG at: arch/arm64/kvm/hyp/nvhe/switch.c:242! [ 46.755357] kvm [307]: Hyp Offset: 0xfffea6c58e1e0000 [ 46.755824] Kernel panic - not syncing: HYP panic: [ 46.755824] PS:400003c9 PC:0000d93a82c705ac ESR:f2000800 [ 46.755824] FAR:0000000080080000 HPFAR:0000000000800800 PAR:0000000000000000 [ 46.755824] VCPU:0000d93a880d0000 [ 46.756960] CPU: 3 PID: 307 Comm: kvm-vcpu-0 Not tainted 5.12.0-rc3-00005-gc572b99cf65b-dirty #133 [ 46.757459] Hardware name: QEMU QEMU Virtual Machine, BIOS 0.0.0 02/06/2015 [ 46.758366] Call trace: [ 46.758601] dump_backtrace+0x0/0x1b0 [ 46.758856] show_stack+0x18/0x70 [ 46.759057] dump_stack+0xd0/0x12c [ 46.759236] panic+0x16c/0x334 [ 46.759426] arm64_kernel_unmapped_at_el0+0x0/0x30 [ 46.759661] kvm_arch_vcpu_ioctl_run+0x134/0x750 [ 46.759936] kvm_vcpu_ioctl+0x2f0/0x970 [ 46.760156] __arm64_sys_ioctl+0xa8/0xec [ 46.760379] el0_svc_common.constprop.0+0x60/0x120 [ 46.760627] do_el0_svc+0x24/0x90 [ 46.760766] el0_svc+0x2c/0x54 [ 46.760915] el0_sync_handler+0x1a4/0x1b0 [ 46.761146] el0_sync+0x170/0x180 [ 46.761889] SMP: stopping secondary CPUs [ 46.762786] Kernel Offset: 0x3e1cd2820000 from 0xffff800010000000 [ 46.763142] PHYS_OFFSET: 0xffffa9f680000000 [ 46.763359] CPU features: 0x00240022,61806008 [ 46.763651] Memory Limit: none [ 46.813867] ---[ end Kernel panic - not syncing: HYP panic: [ 46.813867] PS:400003c9 PC:0000d93a82c705ac ESR:f2000800 [ 46.813867] FAR:0000000080080000 HPFAR:0000000000800800 PAR:0000000000000000 [ 46.813867] VCPU:0000d93a880d0000 ]--- Signed-off-by: Andrew Scull <ascull@google.com> Signed-off-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20210318143311.839894-6-ascull@google.com
2021-03-18 14:33:11 +00:00
if (file)
kvm_err("nVHE hyp BUG at: %s:%u!\n", file, line);
else
kvm_err("nVHE hyp BUG at: [<%016llx>] %pB!\n", panic_addr,
(void *)(panic_addr + kaslr_offset()));
KVM: arm64: Log source when panicking from nVHE hyp To aid with debugging, add details of the source of a panic from nVHE hyp. This is done by having nVHE hyp exit to nvhe_hyp_panic_handler() rather than directly to panic(). The handler will then add the extra details for debugging before panicking the kernel. If the panic was due to a BUG(), look up the metadata to log the file and line, if available, otherwise log an address that can be looked up in vmlinux. The hyp offset is also logged to allow other hyp VAs to be converted, similar to how the kernel offset is logged during a panic. __hyp_panic_string is now inlined since it no longer needs to be referenced as a symbol and the message is free to diverge between VHE and nVHE. The following is an example of the logs generated by a BUG in nVHE hyp. [ 46.754840] kvm [307]: nVHE hyp BUG at: arch/arm64/kvm/hyp/nvhe/switch.c:242! [ 46.755357] kvm [307]: Hyp Offset: 0xfffea6c58e1e0000 [ 46.755824] Kernel panic - not syncing: HYP panic: [ 46.755824] PS:400003c9 PC:0000d93a82c705ac ESR:f2000800 [ 46.755824] FAR:0000000080080000 HPFAR:0000000000800800 PAR:0000000000000000 [ 46.755824] VCPU:0000d93a880d0000 [ 46.756960] CPU: 3 PID: 307 Comm: kvm-vcpu-0 Not tainted 5.12.0-rc3-00005-gc572b99cf65b-dirty #133 [ 46.757459] Hardware name: QEMU QEMU Virtual Machine, BIOS 0.0.0 02/06/2015 [ 46.758366] Call trace: [ 46.758601] dump_backtrace+0x0/0x1b0 [ 46.758856] show_stack+0x18/0x70 [ 46.759057] dump_stack+0xd0/0x12c [ 46.759236] panic+0x16c/0x334 [ 46.759426] arm64_kernel_unmapped_at_el0+0x0/0x30 [ 46.759661] kvm_arch_vcpu_ioctl_run+0x134/0x750 [ 46.759936] kvm_vcpu_ioctl+0x2f0/0x970 [ 46.760156] __arm64_sys_ioctl+0xa8/0xec [ 46.760379] el0_svc_common.constprop.0+0x60/0x120 [ 46.760627] do_el0_svc+0x24/0x90 [ 46.760766] el0_svc+0x2c/0x54 [ 46.760915] el0_sync_handler+0x1a4/0x1b0 [ 46.761146] el0_sync+0x170/0x180 [ 46.761889] SMP: stopping secondary CPUs [ 46.762786] Kernel Offset: 0x3e1cd2820000 from 0xffff800010000000 [ 46.763142] PHYS_OFFSET: 0xffffa9f680000000 [ 46.763359] CPU features: 0x00240022,61806008 [ 46.763651] Memory Limit: none [ 46.813867] ---[ end Kernel panic - not syncing: HYP panic: [ 46.813867] PS:400003c9 PC:0000d93a82c705ac ESR:f2000800 [ 46.813867] FAR:0000000080080000 HPFAR:0000000000800800 PAR:0000000000000000 [ 46.813867] VCPU:0000d93a880d0000 ]--- Signed-off-by: Andrew Scull <ascull@google.com> Signed-off-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20210318143311.839894-6-ascull@google.com
2021-03-18 14:33:11 +00:00
} else {
kvm_err("nVHE hyp panic at: [<%016llx>] %pB!\n", panic_addr,
(void *)(panic_addr + kaslr_offset()));
KVM: arm64: Log source when panicking from nVHE hyp To aid with debugging, add details of the source of a panic from nVHE hyp. This is done by having nVHE hyp exit to nvhe_hyp_panic_handler() rather than directly to panic(). The handler will then add the extra details for debugging before panicking the kernel. If the panic was due to a BUG(), look up the metadata to log the file and line, if available, otherwise log an address that can be looked up in vmlinux. The hyp offset is also logged to allow other hyp VAs to be converted, similar to how the kernel offset is logged during a panic. __hyp_panic_string is now inlined since it no longer needs to be referenced as a symbol and the message is free to diverge between VHE and nVHE. The following is an example of the logs generated by a BUG in nVHE hyp. [ 46.754840] kvm [307]: nVHE hyp BUG at: arch/arm64/kvm/hyp/nvhe/switch.c:242! [ 46.755357] kvm [307]: Hyp Offset: 0xfffea6c58e1e0000 [ 46.755824] Kernel panic - not syncing: HYP panic: [ 46.755824] PS:400003c9 PC:0000d93a82c705ac ESR:f2000800 [ 46.755824] FAR:0000000080080000 HPFAR:0000000000800800 PAR:0000000000000000 [ 46.755824] VCPU:0000d93a880d0000 [ 46.756960] CPU: 3 PID: 307 Comm: kvm-vcpu-0 Not tainted 5.12.0-rc3-00005-gc572b99cf65b-dirty #133 [ 46.757459] Hardware name: QEMU QEMU Virtual Machine, BIOS 0.0.0 02/06/2015 [ 46.758366] Call trace: [ 46.758601] dump_backtrace+0x0/0x1b0 [ 46.758856] show_stack+0x18/0x70 [ 46.759057] dump_stack+0xd0/0x12c [ 46.759236] panic+0x16c/0x334 [ 46.759426] arm64_kernel_unmapped_at_el0+0x0/0x30 [ 46.759661] kvm_arch_vcpu_ioctl_run+0x134/0x750 [ 46.759936] kvm_vcpu_ioctl+0x2f0/0x970 [ 46.760156] __arm64_sys_ioctl+0xa8/0xec [ 46.760379] el0_svc_common.constprop.0+0x60/0x120 [ 46.760627] do_el0_svc+0x24/0x90 [ 46.760766] el0_svc+0x2c/0x54 [ 46.760915] el0_sync_handler+0x1a4/0x1b0 [ 46.761146] el0_sync+0x170/0x180 [ 46.761889] SMP: stopping secondary CPUs [ 46.762786] Kernel Offset: 0x3e1cd2820000 from 0xffff800010000000 [ 46.763142] PHYS_OFFSET: 0xffffa9f680000000 [ 46.763359] CPU features: 0x00240022,61806008 [ 46.763651] Memory Limit: none [ 46.813867] ---[ end Kernel panic - not syncing: HYP panic: [ 46.813867] PS:400003c9 PC:0000d93a82c705ac ESR:f2000800 [ 46.813867] FAR:0000000080080000 HPFAR:0000000000800800 PAR:0000000000000000 [ 46.813867] VCPU:0000d93a880d0000 ]--- Signed-off-by: Andrew Scull <ascull@google.com> Signed-off-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20210318143311.839894-6-ascull@google.com
2021-03-18 14:33:11 +00:00
}
/* Dump the nVHE hypervisor backtrace */
kvm_nvhe_dump_backtrace(hyp_offset);
KVM: arm64: Log source when panicking from nVHE hyp To aid with debugging, add details of the source of a panic from nVHE hyp. This is done by having nVHE hyp exit to nvhe_hyp_panic_handler() rather than directly to panic(). The handler will then add the extra details for debugging before panicking the kernel. If the panic was due to a BUG(), look up the metadata to log the file and line, if available, otherwise log an address that can be looked up in vmlinux. The hyp offset is also logged to allow other hyp VAs to be converted, similar to how the kernel offset is logged during a panic. __hyp_panic_string is now inlined since it no longer needs to be referenced as a symbol and the message is free to diverge between VHE and nVHE. The following is an example of the logs generated by a BUG in nVHE hyp. [ 46.754840] kvm [307]: nVHE hyp BUG at: arch/arm64/kvm/hyp/nvhe/switch.c:242! [ 46.755357] kvm [307]: Hyp Offset: 0xfffea6c58e1e0000 [ 46.755824] Kernel panic - not syncing: HYP panic: [ 46.755824] PS:400003c9 PC:0000d93a82c705ac ESR:f2000800 [ 46.755824] FAR:0000000080080000 HPFAR:0000000000800800 PAR:0000000000000000 [ 46.755824] VCPU:0000d93a880d0000 [ 46.756960] CPU: 3 PID: 307 Comm: kvm-vcpu-0 Not tainted 5.12.0-rc3-00005-gc572b99cf65b-dirty #133 [ 46.757459] Hardware name: QEMU QEMU Virtual Machine, BIOS 0.0.0 02/06/2015 [ 46.758366] Call trace: [ 46.758601] dump_backtrace+0x0/0x1b0 [ 46.758856] show_stack+0x18/0x70 [ 46.759057] dump_stack+0xd0/0x12c [ 46.759236] panic+0x16c/0x334 [ 46.759426] arm64_kernel_unmapped_at_el0+0x0/0x30 [ 46.759661] kvm_arch_vcpu_ioctl_run+0x134/0x750 [ 46.759936] kvm_vcpu_ioctl+0x2f0/0x970 [ 46.760156] __arm64_sys_ioctl+0xa8/0xec [ 46.760379] el0_svc_common.constprop.0+0x60/0x120 [ 46.760627] do_el0_svc+0x24/0x90 [ 46.760766] el0_svc+0x2c/0x54 [ 46.760915] el0_sync_handler+0x1a4/0x1b0 [ 46.761146] el0_sync+0x170/0x180 [ 46.761889] SMP: stopping secondary CPUs [ 46.762786] Kernel Offset: 0x3e1cd2820000 from 0xffff800010000000 [ 46.763142] PHYS_OFFSET: 0xffffa9f680000000 [ 46.763359] CPU features: 0x00240022,61806008 [ 46.763651] Memory Limit: none [ 46.813867] ---[ end Kernel panic - not syncing: HYP panic: [ 46.813867] PS:400003c9 PC:0000d93a82c705ac ESR:f2000800 [ 46.813867] FAR:0000000080080000 HPFAR:0000000000800800 PAR:0000000000000000 [ 46.813867] VCPU:0000d93a880d0000 ]--- Signed-off-by: Andrew Scull <ascull@google.com> Signed-off-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20210318143311.839894-6-ascull@google.com
2021-03-18 14:33:11 +00:00
/*
* Hyp has panicked and we're going to handle that by panicking the
* kernel. The kernel offset will be revealed in the panic so we're
* also safe to reveal the hyp offset as a debugging aid for translating
* hyp VAs to vmlinux addresses.
*/
kvm_err("Hyp Offset: 0x%llx\n", hyp_offset);
panic("HYP panic:\nPS:%08llx PC:%016llx ESR:%016llx\nFAR:%016llx HPFAR:%016llx PAR:%016llx\nVCPU:%016lx\n",
spsr, elr_virt, esr, far, hpfar, par, vcpu);
KVM: arm64: Log source when panicking from nVHE hyp To aid with debugging, add details of the source of a panic from nVHE hyp. This is done by having nVHE hyp exit to nvhe_hyp_panic_handler() rather than directly to panic(). The handler will then add the extra details for debugging before panicking the kernel. If the panic was due to a BUG(), look up the metadata to log the file and line, if available, otherwise log an address that can be looked up in vmlinux. The hyp offset is also logged to allow other hyp VAs to be converted, similar to how the kernel offset is logged during a panic. __hyp_panic_string is now inlined since it no longer needs to be referenced as a symbol and the message is free to diverge between VHE and nVHE. The following is an example of the logs generated by a BUG in nVHE hyp. [ 46.754840] kvm [307]: nVHE hyp BUG at: arch/arm64/kvm/hyp/nvhe/switch.c:242! [ 46.755357] kvm [307]: Hyp Offset: 0xfffea6c58e1e0000 [ 46.755824] Kernel panic - not syncing: HYP panic: [ 46.755824] PS:400003c9 PC:0000d93a82c705ac ESR:f2000800 [ 46.755824] FAR:0000000080080000 HPFAR:0000000000800800 PAR:0000000000000000 [ 46.755824] VCPU:0000d93a880d0000 [ 46.756960] CPU: 3 PID: 307 Comm: kvm-vcpu-0 Not tainted 5.12.0-rc3-00005-gc572b99cf65b-dirty #133 [ 46.757459] Hardware name: QEMU QEMU Virtual Machine, BIOS 0.0.0 02/06/2015 [ 46.758366] Call trace: [ 46.758601] dump_backtrace+0x0/0x1b0 [ 46.758856] show_stack+0x18/0x70 [ 46.759057] dump_stack+0xd0/0x12c [ 46.759236] panic+0x16c/0x334 [ 46.759426] arm64_kernel_unmapped_at_el0+0x0/0x30 [ 46.759661] kvm_arch_vcpu_ioctl_run+0x134/0x750 [ 46.759936] kvm_vcpu_ioctl+0x2f0/0x970 [ 46.760156] __arm64_sys_ioctl+0xa8/0xec [ 46.760379] el0_svc_common.constprop.0+0x60/0x120 [ 46.760627] do_el0_svc+0x24/0x90 [ 46.760766] el0_svc+0x2c/0x54 [ 46.760915] el0_sync_handler+0x1a4/0x1b0 [ 46.761146] el0_sync+0x170/0x180 [ 46.761889] SMP: stopping secondary CPUs [ 46.762786] Kernel Offset: 0x3e1cd2820000 from 0xffff800010000000 [ 46.763142] PHYS_OFFSET: 0xffffa9f680000000 [ 46.763359] CPU features: 0x00240022,61806008 [ 46.763651] Memory Limit: none [ 46.813867] ---[ end Kernel panic - not syncing: HYP panic: [ 46.813867] PS:400003c9 PC:0000d93a82c705ac ESR:f2000800 [ 46.813867] FAR:0000000080080000 HPFAR:0000000000800800 PAR:0000000000000000 [ 46.813867] VCPU:0000d93a880d0000 ]--- Signed-off-by: Andrew Scull <ascull@google.com> Signed-off-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20210318143311.839894-6-ascull@google.com
2021-03-18 14:33:11 +00:00
}