linux-next/arch/powerpc/lib/feature-fixups.c

1021 lines
30 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright (C) 2001 Ben. Herrenschmidt (benh@kernel.crashing.org)
*
* Modifications for ppc64:
* Copyright (C) 2003 Dave Engebretsen <engebret@us.ibm.com>
*
* Copyright 2008 Michael Ellerman, IBM Corporation.
*/
powerpc: Fix feature-fixup tests for gcc 4.5 The feature-fixup test declare some extern void variables and then take their addresses. Fix this by declaring them as extern u8 instead. Fixes these warnings (treated as errors): CC arch/powerpc/lib/feature-fixups.o cc1: warnings being treated as errors arch/powerpc/lib/feature-fixups.c: In function 'test_cpu_macros': arch/powerpc/lib/feature-fixups.c:293:23: error: taking address of expression of type 'void' arch/powerpc/lib/feature-fixups.c:294:9: error: taking address of expression of type 'void' arch/powerpc/lib/feature-fixups.c:297:2: error: taking address of expression of type 'void' arch/powerpc/lib/feature-fixups.c:297:2: error: taking address of expression of type 'void' arch/powerpc/lib/feature-fixups.c: In function 'test_fw_macros': arch/powerpc/lib/feature-fixups.c:306:23: error: taking address of expression of type 'void' arch/powerpc/lib/feature-fixups.c:307:9: error: taking address of expression of type 'void' arch/powerpc/lib/feature-fixups.c:310:2: error: taking address of expression of type 'void' arch/powerpc/lib/feature-fixups.c:310:2: error: taking address of expression of type 'void' arch/powerpc/lib/feature-fixups.c: In function 'test_lwsync_macros': arch/powerpc/lib/feature-fixups.c:321:23: error: taking address of expression of type 'void' arch/powerpc/lib/feature-fixups.c:322:9: error: taking address of expression of type 'void' arch/powerpc/lib/feature-fixups.c:326:3: error: taking address of expression of type 'void' arch/powerpc/lib/feature-fixups.c:326:3: error: taking address of expression of type 'void' arch/powerpc/lib/feature-fixups.c:329:3: error: taking address of expression of type 'void' arch/powerpc/lib/feature-fixups.c:329:3: error: taking address of expression of type 'void' Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2010-06-28 21:08:29 +00:00
#include <linux/types.h>
#include <linux/jump_label.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/init.h>
#include <linux/sched/mm.h>
#include <linux/stop_machine.h>
#include <asm/cputable.h>
asm-generic: introduce text-patching.h Several architectures support text patching, but they name the header files that declare patching functions differently. Make all such headers consistently named text-patching.h and add an empty header in asm-generic for architectures that do not support text patching. Link: https://lkml.kernel.org/r/20241023162711.2579610-4-rppt@kernel.org Signed-off-by: Mike Rapoport (Microsoft) <rppt@kernel.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Acked-by: Geert Uytterhoeven <geert@linux-m68k.org> # m68k Acked-by: Arnd Bergmann <arnd@arndb.de> Reviewed-by: Luis Chamberlain <mcgrof@kernel.org> Tested-by: kdevops <kdevops@lists.linux.dev> Cc: Andreas Larsson <andreas@gaisler.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Ard Biesheuvel <ardb@kernel.org> Cc: Borislav Petkov (AMD) <bp@alien8.de> Cc: Brian Cain <bcain@quicinc.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Dinh Nguyen <dinguyen@kernel.org> Cc: Guo Ren <guoren@kernel.org> Cc: Helge Deller <deller@gmx.de> Cc: Huacai Chen <chenhuacai@kernel.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Johannes Berg <johannes@sipsolutions.net> Cc: John Paul Adrian Glaubitz <glaubitz@physik.fu-berlin.de> Cc: Kent Overstreet <kent.overstreet@linux.dev> Cc: Liam R. Howlett <Liam.Howlett@Oracle.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Masami Hiramatsu (Google) <mhiramat@kernel.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Michal Simek <monstr@monstr.eu> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Palmer Dabbelt <palmer@dabbelt.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Richard Weinberger <richard@nod.at> Cc: Russell King <linux@armlinux.org.uk> Cc: Song Liu <song@kernel.org> Cc: Stafford Horne <shorne@gmail.com> Cc: Steven Rostedt (Google) <rostedt@goodmis.org> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Uladzislau Rezki (Sony) <urezki@gmail.com> Cc: Vineet Gupta <vgupta@kernel.org> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-10-23 19:27:06 +03:00
#include <asm/text-patching.h>
#include <asm/interrupt.h>
#include <asm/page.h>
#include <asm/sections.h>
#include <asm/setup.h>
#include <asm/security_features.h>
#include <asm/firmware.h>
#include <asm/inst.h>
/*
* Used to generate warnings if mmu or cpu feature check functions that
* use static keys before they are initialized.
*/
bool static_key_feature_checks_initialized __read_mostly;
EXPORT_SYMBOL_GPL(static_key_feature_checks_initialized);
struct fixup_entry {
unsigned long mask;
unsigned long value;
long start_off;
long end_off;
powerpc: Introduce infrastructure for feature sections with alternatives The current feature section logic only supports nop'ing out code, this means if you want to choose at runtime between instruction sequences, one or both cases will have to execute the nop'ed out contents of the other section, eg: BEGIN_FTR_SECTION or 1,1,1 END_FTR_SECTION_IFSET(FOO) BEGIN_FTR_SECTION or 2,2,2 END_FTR_SECTION_IFCLR(FOO) and the resulting code will be either, or 1,1,1 nop or, nop or 2,2,2 For small code segments this is fine, but for larger code blocks and in performance criticial code segments, it would be nice to avoid the nops. This commit starts to implement logic to allow the following: BEGIN_FTR_SECTION or 1,1,1 FTR_SECTION_ELSE or 2,2,2 ALT_FTR_SECTION_END_IFSET(FOO) and the resulting code will be: or 1,1,1 or, or 2,2,2 We achieve this by extending the existing FTR macros. The current feature section semantic just becomes a special case, ie. if the else case is empty we nop out the default case. The key limitation is that the size of the else case must be less than or equal to the size of the default case. If the else case is smaller the remainder of the section is nop'ed. We let the linker put the else case code in with the rest of the text, so that relative branches from the else case are more likley to link, this has the disadvantage that we can't free the unused else cases. This commit introduces the required macro and linker script changes, but does not enable the patching of the alternative sections. We also need to update two hand-made section entries in reg.h and timex.h Signed-off-by: Michael Ellerman <michael@ellerman.id.au> Signed-off-by: Paul Mackerras <paulus@samba.org>
2008-06-24 11:32:54 +10:00
long alt_start_off;
long alt_end_off;
};
static u32 *calc_addr(struct fixup_entry *fcur, long offset)
{
/*
* We store the offset to the code as a negative offset from
* the start of the alt_entry, to support the VDSO. This
* routine converts that back into an actual address.
*/
return (u32 *)((unsigned long)fcur + offset);
}
static int patch_alt_instruction(u32 *src, u32 *dest, u32 *alt_start, u32 *alt_end)
{
int err;
ppc_inst_t instr;
instr = ppc_inst_read(src);
if (instr_is_relative_branch(ppc_inst_read(src))) {
u32 *target = (u32 *)branch_target(src);
/* Branch within the section doesn't need translating */
if (target < alt_start || target > alt_end) {
err = translate_branch(&instr, dest, src);
if (err)
return 1;
}
}
raw_patch_instruction(dest, instr);
return 0;
}
static int patch_feature_section_mask(unsigned long value, unsigned long mask,
struct fixup_entry *fcur)
{
u32 *start, *end, *alt_start, *alt_end, *src, *dest;
start = calc_addr(fcur, fcur->start_off);
end = calc_addr(fcur, fcur->end_off);
alt_start = calc_addr(fcur, fcur->alt_start_off);
alt_end = calc_addr(fcur, fcur->alt_end_off);
if ((alt_end - alt_start) > (end - start))
return 1;
if ((value & fcur->mask & mask) == (fcur->value & mask))
return 0;
src = alt_start;
dest = start;
for (; src < alt_end; src = ppc_inst_next(src, src),
dest = ppc_inst_next(dest, dest)) {
if (patch_alt_instruction(src, dest, alt_start, alt_end))
return 1;
}
for (; dest < end; dest++)
raw_patch_instruction(dest, ppc_inst(PPC_RAW_NOP()));
return 0;
}
static void do_feature_fixups_mask(unsigned long value, unsigned long mask,
void *fixup_start, void *fixup_end)
{
struct fixup_entry *fcur, *fend;
fcur = fixup_start;
fend = fixup_end;
for (; fcur < fend; fcur++) {
if (patch_feature_section_mask(value, mask, fcur)) {
WARN_ON(1);
printk("Unable to patch feature section at %p - %p" \
" with %p - %p\n",
calc_addr(fcur, fcur->start_off),
calc_addr(fcur, fcur->end_off),
calc_addr(fcur, fcur->alt_start_off),
calc_addr(fcur, fcur->alt_end_off));
}
}
}
void do_feature_fixups(unsigned long value, void *fixup_start, void *fixup_end)
{
do_feature_fixups_mask(value, ~0, fixup_start, fixup_end);
}
#ifdef CONFIG_PPC_BARRIER_NOSPEC
static bool is_fixup_addr_valid(void *dest, size_t size)
{
return system_state < SYSTEM_FREEING_INITMEM ||
!init_section_contains(dest, size);
}
static int do_patch_fixups(long *start, long *end, unsigned int *instrs, int num)
{
int i;
for (i = 0; start < end; start++, i++) {
int j;
unsigned int *dest = (void *)start + *start;
if (!is_fixup_addr_valid(dest, sizeof(*instrs) * num))
continue;
pr_devel("patching dest %lx\n", (unsigned long)dest);
for (j = 0; j < num; j++)
patch_instruction(dest + j, ppc_inst(instrs[j]));
}
return i;
}
#endif
powerpc/64s: Add support for RFI flush of L1-D cache On some CPUs we can prevent the Meltdown vulnerability by flushing the L1-D cache on exit from kernel to user mode, and from hypervisor to guest. This is known to be the case on at least Power7, Power8 and Power9. At this time we do not know the status of the vulnerability on other CPUs such as the 970 (Apple G5), pasemi CPUs (AmigaOne X1000) or Freescale CPUs. As more information comes to light we can enable this, or other mechanisms on those CPUs. The vulnerability occurs when the load of an architecturally inaccessible memory region (eg. userspace load of kernel memory) is speculatively executed to the point where its result can influence the address of a subsequent speculatively executed load. In order for that to happen, the first load must hit in the L1, because before the load is sent to the L2 the permission check is performed. Therefore if no kernel addresses hit in the L1 the vulnerability can not occur. We can ensure that is the case by flushing the L1 whenever we return to userspace. Similarly for hypervisor vs guest. In order to flush the L1-D cache on exit, we add a section of nops at each (h)rfi location that returns to a lower privileged context, and patch that with some sequence. Newer firmwares are able to advertise to us that there is a special nop instruction that flushes the L1-D. If we do not see that advertised, we fall back to doing a displacement flush in software. For guest kernels we support migration between some CPU versions, and different CPUs may use different flush instructions. So that we are prepared to migrate to a machine with a different flush instruction activated, we may have to patch more than one flush instruction at boot if the hypervisor tells us to. In the end this patch is mostly the work of Nicholas Piggin and Michael Ellerman. However a cast of thousands contributed to analysis of the issue, earlier versions of the patch, back ports testing etc. Many thanks to all of them. Tested-by: Jon Masters <jcm@redhat.com> Signed-off-by: Nicholas Piggin <npiggin@gmail.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2018-01-10 03:07:15 +11:00
#ifdef CONFIG_PPC_BOOK3S_64
static int do_patch_entry_fixups(long *start, long *end, unsigned int *instrs,
bool do_fallback, void *fallback)
{
int i;
for (i = 0; start < end; start++, i++) {
unsigned int *dest = (void *)start + *start;
if (!is_fixup_addr_valid(dest, sizeof(*instrs) * 3))
continue;
pr_devel("patching dest %lx\n", (unsigned long)dest);
// See comment in do_entry_flush_fixups() RE order of patching
if (do_fallback) {
patch_instruction(dest, ppc_inst(instrs[0]));
patch_instruction(dest + 2, ppc_inst(instrs[2]));
patch_branch(dest + 1, (unsigned long)fallback, BRANCH_SET_LINK);
} else {
patch_instruction(dest + 1, ppc_inst(instrs[1]));
patch_instruction(dest + 2, ppc_inst(instrs[2]));
patch_instruction(dest, ppc_inst(instrs[0]));
}
}
return i;
}
static void do_stf_entry_barrier_fixups(enum stf_barrier_type types)
{
unsigned int instrs[3];
long *start, *end;
int i;
start = PTRRELOC(&__start___stf_entry_barrier_fixup);
end = PTRRELOC(&__stop___stf_entry_barrier_fixup);
instrs[0] = PPC_RAW_NOP();
instrs[1] = PPC_RAW_NOP();
instrs[2] = PPC_RAW_NOP();
i = 0;
if (types & STF_BARRIER_FALLBACK) {
instrs[i++] = PPC_RAW_MFLR(_R10);
instrs[i++] = PPC_RAW_NOP(); /* branch patched below */
instrs[i++] = PPC_RAW_MTLR(_R10);
} else if (types & STF_BARRIER_EIEIO) {
instrs[i++] = PPC_RAW_EIEIO() | 0x02000000; /* eieio + bit 6 hint */
} else if (types & STF_BARRIER_SYNC_ORI) {
instrs[i++] = PPC_RAW_SYNC();
instrs[i++] = PPC_RAW_LD(_R10, _R13, 0);
instrs[i++] = PPC_RAW_ORI(_R31, _R31, 0); /* speculation barrier */
}
i = do_patch_entry_fixups(start, end, instrs, types & STF_BARRIER_FALLBACK,
&stf_barrier_fallback);
printk(KERN_DEBUG "stf-barrier: patched %d entry locations (%s barrier)\n", i,
(types == STF_BARRIER_NONE) ? "no" :
(types == STF_BARRIER_FALLBACK) ? "fallback" :
(types == STF_BARRIER_EIEIO) ? "eieio" :
(types == (STF_BARRIER_SYNC_ORI)) ? "hwsync"
: "unknown");
}
static void do_stf_exit_barrier_fixups(enum stf_barrier_type types)
{
unsigned int instrs[6];
long *start, *end;
int i;
start = PTRRELOC(&__start___stf_exit_barrier_fixup);
end = PTRRELOC(&__stop___stf_exit_barrier_fixup);
instrs[0] = PPC_RAW_NOP();
instrs[1] = PPC_RAW_NOP();
instrs[2] = PPC_RAW_NOP();
instrs[3] = PPC_RAW_NOP();
instrs[4] = PPC_RAW_NOP();
instrs[5] = PPC_RAW_NOP();
i = 0;
if (types & STF_BARRIER_FALLBACK || types & STF_BARRIER_SYNC_ORI) {
if (cpu_has_feature(CPU_FTR_HVMODE)) {
instrs[i++] = PPC_RAW_MTSPR(SPRN_HSPRG1, _R13);
instrs[i++] = PPC_RAW_MFSPR(_R13, SPRN_HSPRG0);
} else {
instrs[i++] = PPC_RAW_MTSPR(SPRN_SPRG2, _R13);
instrs[i++] = PPC_RAW_MFSPR(_R13, SPRN_SPRG1);
}
instrs[i++] = PPC_RAW_SYNC();
instrs[i++] = PPC_RAW_LD(_R13, _R13, 0);
instrs[i++] = PPC_RAW_ORI(_R31, _R31, 0); /* speculation barrier */
if (cpu_has_feature(CPU_FTR_HVMODE))
instrs[i++] = PPC_RAW_MFSPR(_R13, SPRN_HSPRG1);
else
instrs[i++] = PPC_RAW_MFSPR(_R13, SPRN_SPRG2);
} else if (types & STF_BARRIER_EIEIO) {
instrs[i++] = PPC_RAW_EIEIO() | 0x02000000; /* eieio + bit 6 hint */
}
i = do_patch_fixups(start, end, instrs, ARRAY_SIZE(instrs));
printk(KERN_DEBUG "stf-barrier: patched %d exit locations (%s barrier)\n", i,
(types == STF_BARRIER_NONE) ? "no" :
(types == STF_BARRIER_FALLBACK) ? "fallback" :
(types == STF_BARRIER_EIEIO) ? "eieio" :
(types == (STF_BARRIER_SYNC_ORI)) ? "hwsync"
: "unknown");
}
static bool stf_exit_reentrant = false;
static bool rfi_exit_reentrant = false;
static DEFINE_MUTEX(exit_flush_lock);
static int __do_stf_barrier_fixups(void *data)
{
enum stf_barrier_type *types = data;
do_stf_entry_barrier_fixups(*types);
do_stf_exit_barrier_fixups(*types);
return 0;
}
void do_stf_barrier_fixups(enum stf_barrier_type types)
{
/*
* The call to the fallback entry flush, and the fallback/sync-ori exit
* flush can not be safely patched in/out while other CPUs are
* executing them. So call __do_stf_barrier_fixups() on one CPU while
* all other CPUs spin in the stop machine core with interrupts hard
* disabled.
*
* The branch to mark interrupt exits non-reentrant is enabled first,
* then stop_machine runs which will ensure all CPUs are out of the
* low level interrupt exit code before patching. After the patching,
* if allowed, then flip the branch to allow fast exits.
*/
// Prevent static key update races with do_rfi_flush_fixups()
mutex_lock(&exit_flush_lock);
static_branch_enable(&interrupt_exit_not_reentrant);
stop_machine(__do_stf_barrier_fixups, &types, NULL);
if ((types & STF_BARRIER_FALLBACK) || (types & STF_BARRIER_SYNC_ORI))
stf_exit_reentrant = false;
else
stf_exit_reentrant = true;
if (stf_exit_reentrant && rfi_exit_reentrant)
static_branch_disable(&interrupt_exit_not_reentrant);
mutex_unlock(&exit_flush_lock);
}
void do_uaccess_flush_fixups(enum l1d_flush_type types)
{
unsigned int instrs[4];
long *start, *end;
int i;
start = PTRRELOC(&__start___uaccess_flush_fixup);
end = PTRRELOC(&__stop___uaccess_flush_fixup);
instrs[0] = PPC_RAW_NOP();
instrs[1] = PPC_RAW_NOP();
instrs[2] = PPC_RAW_NOP();
instrs[3] = PPC_RAW_BLR();
i = 0;
if (types == L1D_FLUSH_FALLBACK) {
instrs[3] = PPC_RAW_NOP();
/* fallthrough to fallback flush */
}
if (types & L1D_FLUSH_ORI) {
instrs[i++] = PPC_RAW_ORI(_R31, _R31, 0); /* speculation barrier */
instrs[i++] = PPC_RAW_ORI(_R30, _R30, 0); /* L1d flush */
}
if (types & L1D_FLUSH_MTTRIG)
instrs[i++] = PPC_RAW_MTSPR(SPRN_TRIG2, _R0);
i = do_patch_fixups(start, end, instrs, ARRAY_SIZE(instrs));
printk(KERN_DEBUG "uaccess-flush: patched %d locations (%s flush)\n", i,
(types == L1D_FLUSH_NONE) ? "no" :
(types == L1D_FLUSH_FALLBACK) ? "fallback displacement" :
(types & L1D_FLUSH_ORI) ? (types & L1D_FLUSH_MTTRIG)
? "ori+mttrig type"
: "ori type" :
(types & L1D_FLUSH_MTTRIG) ? "mttrig type"
: "unknown");
}
static int __do_entry_flush_fixups(void *data)
{
enum l1d_flush_type types = *(enum l1d_flush_type *)data;
unsigned int instrs[3];
long *start, *end;
int i;
instrs[0] = PPC_RAW_NOP();
instrs[1] = PPC_RAW_NOP();
instrs[2] = PPC_RAW_NOP();
i = 0;
if (types == L1D_FLUSH_FALLBACK) {
instrs[i++] = PPC_RAW_MFLR(_R10);
instrs[i++] = PPC_RAW_NOP(); /* branch patched below */
instrs[i++] = PPC_RAW_MTLR(_R10);
}
if (types & L1D_FLUSH_ORI) {
instrs[i++] = PPC_RAW_ORI(_R31, _R31, 0); /* speculation barrier */
instrs[i++] = PPC_RAW_ORI(_R30, _R30, 0); /* L1d flush */
}
if (types & L1D_FLUSH_MTTRIG)
instrs[i++] = PPC_RAW_MTSPR(SPRN_TRIG2, _R0);
powerpc/64s: Fix entry flush patching w/strict RWX & hash The entry flush mitigation can be enabled/disabled at runtime. When this happens it results in the kernel patching its own instructions to enable/disable the mitigation sequence. With strict kernel RWX enabled instruction patching happens via a secondary mapping of the kernel text, so that we don't have to make the primary mapping writable. With the hash MMU this leads to a hash fault, which causes us to execute the exception entry which contains the entry flush mitigation. This means we end up executing the entry flush in a semi-patched state, ie. after we have patched the first instruction but before we patch the second or third instruction of the sequence. On machines with updated firmware the entry flush is a series of special nops, and it's safe to to execute in a semi-patched state. However when using the fallback flush the sequence is mflr/branch/mtlr, and so it's not safe to execute if we have patched out the mflr but not the other two instructions. Doing so leads to us corrputing LR, leading to an oops, for example: # echo 0 > /sys/kernel/debug/powerpc/entry_flush kernel tried to execute exec-protected page (c000000002971000) - exploit attempt? (uid: 0) BUG: Unable to handle kernel instruction fetch Faulting instruction address: 0xc000000002971000 Oops: Kernel access of bad area, sig: 11 [#1] LE PAGE_SIZE=64K MMU=Hash SMP NR_CPUS=2048 NUMA pSeries CPU: 0 PID: 2215 Comm: bash Not tainted 5.13.0-rc1-00010-gda3bb206c9ce #1 NIP: c000000002971000 LR: c000000002971000 CTR: c000000000120c40 REGS: c000000013243840 TRAP: 0400 Not tainted (5.13.0-rc1-00010-gda3bb206c9ce) MSR: 8000000010009033 <SF,EE,ME,IR,DR,RI,LE> CR: 48428482 XER: 00000000 ... NIP 0xc000000002971000 LR 0xc000000002971000 Call Trace: do_patch_instruction+0xc4/0x340 (unreliable) do_entry_flush_fixups+0x100/0x3b0 entry_flush_set+0x50/0xe0 simple_attr_write+0x160/0x1a0 full_proxy_write+0x8c/0x110 vfs_write+0xf0/0x340 ksys_write+0x84/0x140 system_call_exception+0x164/0x2d0 system_call_common+0xec/0x278 The simplest fix is to change the order in which we patch the instructions, so that the sequence is always safe to execute. For the non-fallback flushes it doesn't matter what order we patch in. Fixes: bd573a81312f ("powerpc/mm/64s: Allow STRICT_KERNEL_RWX again") Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20210513140800.1391706-1-mpe@ellerman.id.au
2021-05-14 00:07:59 +10:00
/*
* If we're patching in or out the fallback flush we need to be careful about the
* order in which we patch instructions. That's because it's possible we could
* take a page fault after patching one instruction, so the sequence of
* instructions must be safe even in a half patched state.
*
* To make that work, when patching in the fallback flush we patch in this order:
* - the mflr (dest)
* - the mtlr (dest + 2)
* - the branch (dest + 1)
*
* That ensures the sequence is safe to execute at any point. In contrast if we
* patch the mtlr last, it's possible we could return from the branch and not
* restore LR, leading to a crash later.
*
* When patching out the fallback flush (either with nops or another flush type),
* we patch in this order:
* - the branch (dest + 1)
* - the mtlr (dest + 2)
* - the mflr (dest)
*
* Note we are protected by stop_machine() from other CPUs executing the code in a
* semi-patched state.
*/
start = PTRRELOC(&__start___entry_flush_fixup);
end = PTRRELOC(&__stop___entry_flush_fixup);
i = do_patch_entry_fixups(start, end, instrs, types == L1D_FLUSH_FALLBACK,
&entry_flush_fallback);
start = PTRRELOC(&__start___scv_entry_flush_fixup);
end = PTRRELOC(&__stop___scv_entry_flush_fixup);
i += do_patch_entry_fixups(start, end, instrs, types == L1D_FLUSH_FALLBACK,
&scv_entry_flush_fallback);
printk(KERN_DEBUG "entry-flush: patched %d locations (%s flush)\n", i,
(types == L1D_FLUSH_NONE) ? "no" :
(types == L1D_FLUSH_FALLBACK) ? "fallback displacement" :
(types & L1D_FLUSH_ORI) ? (types & L1D_FLUSH_MTTRIG)
? "ori+mttrig type"
: "ori type" :
(types & L1D_FLUSH_MTTRIG) ? "mttrig type"
: "unknown");
return 0;
}
void do_entry_flush_fixups(enum l1d_flush_type types)
{
/*
* The call to the fallback flush can not be safely patched in/out while
* other CPUs are executing it. So call __do_entry_flush_fixups() on one
* CPU while all other CPUs spin in the stop machine core with interrupts
* hard disabled.
*/
stop_machine(__do_entry_flush_fixups, &types, NULL);
}
static int __do_rfi_flush_fixups(void *data)
powerpc/64s: Add support for RFI flush of L1-D cache On some CPUs we can prevent the Meltdown vulnerability by flushing the L1-D cache on exit from kernel to user mode, and from hypervisor to guest. This is known to be the case on at least Power7, Power8 and Power9. At this time we do not know the status of the vulnerability on other CPUs such as the 970 (Apple G5), pasemi CPUs (AmigaOne X1000) or Freescale CPUs. As more information comes to light we can enable this, or other mechanisms on those CPUs. The vulnerability occurs when the load of an architecturally inaccessible memory region (eg. userspace load of kernel memory) is speculatively executed to the point where its result can influence the address of a subsequent speculatively executed load. In order for that to happen, the first load must hit in the L1, because before the load is sent to the L2 the permission check is performed. Therefore if no kernel addresses hit in the L1 the vulnerability can not occur. We can ensure that is the case by flushing the L1 whenever we return to userspace. Similarly for hypervisor vs guest. In order to flush the L1-D cache on exit, we add a section of nops at each (h)rfi location that returns to a lower privileged context, and patch that with some sequence. Newer firmwares are able to advertise to us that there is a special nop instruction that flushes the L1-D. If we do not see that advertised, we fall back to doing a displacement flush in software. For guest kernels we support migration between some CPU versions, and different CPUs may use different flush instructions. So that we are prepared to migrate to a machine with a different flush instruction activated, we may have to patch more than one flush instruction at boot if the hypervisor tells us to. In the end this patch is mostly the work of Nicholas Piggin and Michael Ellerman. However a cast of thousands contributed to analysis of the issue, earlier versions of the patch, back ports testing etc. Many thanks to all of them. Tested-by: Jon Masters <jcm@redhat.com> Signed-off-by: Nicholas Piggin <npiggin@gmail.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2018-01-10 03:07:15 +11:00
{
enum l1d_flush_type types = *(enum l1d_flush_type *)data;
unsigned int instrs[3];
powerpc/64s: Add support for RFI flush of L1-D cache On some CPUs we can prevent the Meltdown vulnerability by flushing the L1-D cache on exit from kernel to user mode, and from hypervisor to guest. This is known to be the case on at least Power7, Power8 and Power9. At this time we do not know the status of the vulnerability on other CPUs such as the 970 (Apple G5), pasemi CPUs (AmigaOne X1000) or Freescale CPUs. As more information comes to light we can enable this, or other mechanisms on those CPUs. The vulnerability occurs when the load of an architecturally inaccessible memory region (eg. userspace load of kernel memory) is speculatively executed to the point where its result can influence the address of a subsequent speculatively executed load. In order for that to happen, the first load must hit in the L1, because before the load is sent to the L2 the permission check is performed. Therefore if no kernel addresses hit in the L1 the vulnerability can not occur. We can ensure that is the case by flushing the L1 whenever we return to userspace. Similarly for hypervisor vs guest. In order to flush the L1-D cache on exit, we add a section of nops at each (h)rfi location that returns to a lower privileged context, and patch that with some sequence. Newer firmwares are able to advertise to us that there is a special nop instruction that flushes the L1-D. If we do not see that advertised, we fall back to doing a displacement flush in software. For guest kernels we support migration between some CPU versions, and different CPUs may use different flush instructions. So that we are prepared to migrate to a machine with a different flush instruction activated, we may have to patch more than one flush instruction at boot if the hypervisor tells us to. In the end this patch is mostly the work of Nicholas Piggin and Michael Ellerman. However a cast of thousands contributed to analysis of the issue, earlier versions of the patch, back ports testing etc. Many thanks to all of them. Tested-by: Jon Masters <jcm@redhat.com> Signed-off-by: Nicholas Piggin <npiggin@gmail.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2018-01-10 03:07:15 +11:00
long *start, *end;
int i;
start = PTRRELOC(&__start___rfi_flush_fixup);
powerpc/64s: Add support for RFI flush of L1-D cache On some CPUs we can prevent the Meltdown vulnerability by flushing the L1-D cache on exit from kernel to user mode, and from hypervisor to guest. This is known to be the case on at least Power7, Power8 and Power9. At this time we do not know the status of the vulnerability on other CPUs such as the 970 (Apple G5), pasemi CPUs (AmigaOne X1000) or Freescale CPUs. As more information comes to light we can enable this, or other mechanisms on those CPUs. The vulnerability occurs when the load of an architecturally inaccessible memory region (eg. userspace load of kernel memory) is speculatively executed to the point where its result can influence the address of a subsequent speculatively executed load. In order for that to happen, the first load must hit in the L1, because before the load is sent to the L2 the permission check is performed. Therefore if no kernel addresses hit in the L1 the vulnerability can not occur. We can ensure that is the case by flushing the L1 whenever we return to userspace. Similarly for hypervisor vs guest. In order to flush the L1-D cache on exit, we add a section of nops at each (h)rfi location that returns to a lower privileged context, and patch that with some sequence. Newer firmwares are able to advertise to us that there is a special nop instruction that flushes the L1-D. If we do not see that advertised, we fall back to doing a displacement flush in software. For guest kernels we support migration between some CPU versions, and different CPUs may use different flush instructions. So that we are prepared to migrate to a machine with a different flush instruction activated, we may have to patch more than one flush instruction at boot if the hypervisor tells us to. In the end this patch is mostly the work of Nicholas Piggin and Michael Ellerman. However a cast of thousands contributed to analysis of the issue, earlier versions of the patch, back ports testing etc. Many thanks to all of them. Tested-by: Jon Masters <jcm@redhat.com> Signed-off-by: Nicholas Piggin <npiggin@gmail.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2018-01-10 03:07:15 +11:00
end = PTRRELOC(&__stop___rfi_flush_fixup);
instrs[0] = PPC_RAW_NOP();
instrs[1] = PPC_RAW_NOP();
instrs[2] = PPC_RAW_NOP();
powerpc/64s: Add support for RFI flush of L1-D cache On some CPUs we can prevent the Meltdown vulnerability by flushing the L1-D cache on exit from kernel to user mode, and from hypervisor to guest. This is known to be the case on at least Power7, Power8 and Power9. At this time we do not know the status of the vulnerability on other CPUs such as the 970 (Apple G5), pasemi CPUs (AmigaOne X1000) or Freescale CPUs. As more information comes to light we can enable this, or other mechanisms on those CPUs. The vulnerability occurs when the load of an architecturally inaccessible memory region (eg. userspace load of kernel memory) is speculatively executed to the point where its result can influence the address of a subsequent speculatively executed load. In order for that to happen, the first load must hit in the L1, because before the load is sent to the L2 the permission check is performed. Therefore if no kernel addresses hit in the L1 the vulnerability can not occur. We can ensure that is the case by flushing the L1 whenever we return to userspace. Similarly for hypervisor vs guest. In order to flush the L1-D cache on exit, we add a section of nops at each (h)rfi location that returns to a lower privileged context, and patch that with some sequence. Newer firmwares are able to advertise to us that there is a special nop instruction that flushes the L1-D. If we do not see that advertised, we fall back to doing a displacement flush in software. For guest kernels we support migration between some CPU versions, and different CPUs may use different flush instructions. So that we are prepared to migrate to a machine with a different flush instruction activated, we may have to patch more than one flush instruction at boot if the hypervisor tells us to. In the end this patch is mostly the work of Nicholas Piggin and Michael Ellerman. However a cast of thousands contributed to analysis of the issue, earlier versions of the patch, back ports testing etc. Many thanks to all of them. Tested-by: Jon Masters <jcm@redhat.com> Signed-off-by: Nicholas Piggin <npiggin@gmail.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2018-01-10 03:07:15 +11:00
if (types & L1D_FLUSH_FALLBACK)
/* b .+16 to fallback flush */
instrs[0] = PPC_RAW_BRANCH(16);
powerpc/64s: Add support for RFI flush of L1-D cache On some CPUs we can prevent the Meltdown vulnerability by flushing the L1-D cache on exit from kernel to user mode, and from hypervisor to guest. This is known to be the case on at least Power7, Power8 and Power9. At this time we do not know the status of the vulnerability on other CPUs such as the 970 (Apple G5), pasemi CPUs (AmigaOne X1000) or Freescale CPUs. As more information comes to light we can enable this, or other mechanisms on those CPUs. The vulnerability occurs when the load of an architecturally inaccessible memory region (eg. userspace load of kernel memory) is speculatively executed to the point where its result can influence the address of a subsequent speculatively executed load. In order for that to happen, the first load must hit in the L1, because before the load is sent to the L2 the permission check is performed. Therefore if no kernel addresses hit in the L1 the vulnerability can not occur. We can ensure that is the case by flushing the L1 whenever we return to userspace. Similarly for hypervisor vs guest. In order to flush the L1-D cache on exit, we add a section of nops at each (h)rfi location that returns to a lower privileged context, and patch that with some sequence. Newer firmwares are able to advertise to us that there is a special nop instruction that flushes the L1-D. If we do not see that advertised, we fall back to doing a displacement flush in software. For guest kernels we support migration between some CPU versions, and different CPUs may use different flush instructions. So that we are prepared to migrate to a machine with a different flush instruction activated, we may have to patch more than one flush instruction at boot if the hypervisor tells us to. In the end this patch is mostly the work of Nicholas Piggin and Michael Ellerman. However a cast of thousands contributed to analysis of the issue, earlier versions of the patch, back ports testing etc. Many thanks to all of them. Tested-by: Jon Masters <jcm@redhat.com> Signed-off-by: Nicholas Piggin <npiggin@gmail.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2018-01-10 03:07:15 +11:00
i = 0;
if (types & L1D_FLUSH_ORI) {
instrs[i++] = PPC_RAW_ORI(_R31, _R31, 0); /* speculation barrier */
instrs[i++] = PPC_RAW_ORI(_R30, _R30, 0); /* L1d flush */
powerpc/64s: Add support for RFI flush of L1-D cache On some CPUs we can prevent the Meltdown vulnerability by flushing the L1-D cache on exit from kernel to user mode, and from hypervisor to guest. This is known to be the case on at least Power7, Power8 and Power9. At this time we do not know the status of the vulnerability on other CPUs such as the 970 (Apple G5), pasemi CPUs (AmigaOne X1000) or Freescale CPUs. As more information comes to light we can enable this, or other mechanisms on those CPUs. The vulnerability occurs when the load of an architecturally inaccessible memory region (eg. userspace load of kernel memory) is speculatively executed to the point where its result can influence the address of a subsequent speculatively executed load. In order for that to happen, the first load must hit in the L1, because before the load is sent to the L2 the permission check is performed. Therefore if no kernel addresses hit in the L1 the vulnerability can not occur. We can ensure that is the case by flushing the L1 whenever we return to userspace. Similarly for hypervisor vs guest. In order to flush the L1-D cache on exit, we add a section of nops at each (h)rfi location that returns to a lower privileged context, and patch that with some sequence. Newer firmwares are able to advertise to us that there is a special nop instruction that flushes the L1-D. If we do not see that advertised, we fall back to doing a displacement flush in software. For guest kernels we support migration between some CPU versions, and different CPUs may use different flush instructions. So that we are prepared to migrate to a machine with a different flush instruction activated, we may have to patch more than one flush instruction at boot if the hypervisor tells us to. In the end this patch is mostly the work of Nicholas Piggin and Michael Ellerman. However a cast of thousands contributed to analysis of the issue, earlier versions of the patch, back ports testing etc. Many thanks to all of them. Tested-by: Jon Masters <jcm@redhat.com> Signed-off-by: Nicholas Piggin <npiggin@gmail.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2018-01-10 03:07:15 +11:00
}
if (types & L1D_FLUSH_MTTRIG)
instrs[i++] = PPC_RAW_MTSPR(SPRN_TRIG2, _R0);
powerpc/64s: Add support for RFI flush of L1-D cache On some CPUs we can prevent the Meltdown vulnerability by flushing the L1-D cache on exit from kernel to user mode, and from hypervisor to guest. This is known to be the case on at least Power7, Power8 and Power9. At this time we do not know the status of the vulnerability on other CPUs such as the 970 (Apple G5), pasemi CPUs (AmigaOne X1000) or Freescale CPUs. As more information comes to light we can enable this, or other mechanisms on those CPUs. The vulnerability occurs when the load of an architecturally inaccessible memory region (eg. userspace load of kernel memory) is speculatively executed to the point where its result can influence the address of a subsequent speculatively executed load. In order for that to happen, the first load must hit in the L1, because before the load is sent to the L2 the permission check is performed. Therefore if no kernel addresses hit in the L1 the vulnerability can not occur. We can ensure that is the case by flushing the L1 whenever we return to userspace. Similarly for hypervisor vs guest. In order to flush the L1-D cache on exit, we add a section of nops at each (h)rfi location that returns to a lower privileged context, and patch that with some sequence. Newer firmwares are able to advertise to us that there is a special nop instruction that flushes the L1-D. If we do not see that advertised, we fall back to doing a displacement flush in software. For guest kernels we support migration between some CPU versions, and different CPUs may use different flush instructions. So that we are prepared to migrate to a machine with a different flush instruction activated, we may have to patch more than one flush instruction at boot if the hypervisor tells us to. In the end this patch is mostly the work of Nicholas Piggin and Michael Ellerman. However a cast of thousands contributed to analysis of the issue, earlier versions of the patch, back ports testing etc. Many thanks to all of them. Tested-by: Jon Masters <jcm@redhat.com> Signed-off-by: Nicholas Piggin <npiggin@gmail.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2018-01-10 03:07:15 +11:00
i = do_patch_fixups(start, end, instrs, ARRAY_SIZE(instrs));
powerpc/64s: Add support for RFI flush of L1-D cache On some CPUs we can prevent the Meltdown vulnerability by flushing the L1-D cache on exit from kernel to user mode, and from hypervisor to guest. This is known to be the case on at least Power7, Power8 and Power9. At this time we do not know the status of the vulnerability on other CPUs such as the 970 (Apple G5), pasemi CPUs (AmigaOne X1000) or Freescale CPUs. As more information comes to light we can enable this, or other mechanisms on those CPUs. The vulnerability occurs when the load of an architecturally inaccessible memory region (eg. userspace load of kernel memory) is speculatively executed to the point where its result can influence the address of a subsequent speculatively executed load. In order for that to happen, the first load must hit in the L1, because before the load is sent to the L2 the permission check is performed. Therefore if no kernel addresses hit in the L1 the vulnerability can not occur. We can ensure that is the case by flushing the L1 whenever we return to userspace. Similarly for hypervisor vs guest. In order to flush the L1-D cache on exit, we add a section of nops at each (h)rfi location that returns to a lower privileged context, and patch that with some sequence. Newer firmwares are able to advertise to us that there is a special nop instruction that flushes the L1-D. If we do not see that advertised, we fall back to doing a displacement flush in software. For guest kernels we support migration between some CPU versions, and different CPUs may use different flush instructions. So that we are prepared to migrate to a machine with a different flush instruction activated, we may have to patch more than one flush instruction at boot if the hypervisor tells us to. In the end this patch is mostly the work of Nicholas Piggin and Michael Ellerman. However a cast of thousands contributed to analysis of the issue, earlier versions of the patch, back ports testing etc. Many thanks to all of them. Tested-by: Jon Masters <jcm@redhat.com> Signed-off-by: Nicholas Piggin <npiggin@gmail.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2018-01-10 03:07:15 +11:00
printk(KERN_DEBUG "rfi-flush: patched %d locations (%s flush)\n", i,
(types == L1D_FLUSH_NONE) ? "no" :
(types == L1D_FLUSH_FALLBACK) ? "fallback displacement" :
(types & L1D_FLUSH_ORI) ? (types & L1D_FLUSH_MTTRIG)
? "ori+mttrig type"
: "ori type" :
(types & L1D_FLUSH_MTTRIG) ? "mttrig type"
: "unknown");
return 0;
}
void do_rfi_flush_fixups(enum l1d_flush_type types)
{
/*
* stop_machine gets all CPUs out of the interrupt exit handler same
* as do_stf_barrier_fixups. do_rfi_flush_fixups patching can run
* without stop_machine, so this could be achieved with a broadcast
* IPI instead, but this matches the stf sequence.
*/
// Prevent static key update races with do_stf_barrier_fixups()
mutex_lock(&exit_flush_lock);
static_branch_enable(&interrupt_exit_not_reentrant);
stop_machine(__do_rfi_flush_fixups, &types, NULL);
if (types & L1D_FLUSH_FALLBACK)
rfi_exit_reentrant = false;
else
rfi_exit_reentrant = true;
if (stf_exit_reentrant && rfi_exit_reentrant)
static_branch_disable(&interrupt_exit_not_reentrant);
mutex_unlock(&exit_flush_lock);
powerpc/64s: Add support for RFI flush of L1-D cache On some CPUs we can prevent the Meltdown vulnerability by flushing the L1-D cache on exit from kernel to user mode, and from hypervisor to guest. This is known to be the case on at least Power7, Power8 and Power9. At this time we do not know the status of the vulnerability on other CPUs such as the 970 (Apple G5), pasemi CPUs (AmigaOne X1000) or Freescale CPUs. As more information comes to light we can enable this, or other mechanisms on those CPUs. The vulnerability occurs when the load of an architecturally inaccessible memory region (eg. userspace load of kernel memory) is speculatively executed to the point where its result can influence the address of a subsequent speculatively executed load. In order for that to happen, the first load must hit in the L1, because before the load is sent to the L2 the permission check is performed. Therefore if no kernel addresses hit in the L1 the vulnerability can not occur. We can ensure that is the case by flushing the L1 whenever we return to userspace. Similarly for hypervisor vs guest. In order to flush the L1-D cache on exit, we add a section of nops at each (h)rfi location that returns to a lower privileged context, and patch that with some sequence. Newer firmwares are able to advertise to us that there is a special nop instruction that flushes the L1-D. If we do not see that advertised, we fall back to doing a displacement flush in software. For guest kernels we support migration between some CPU versions, and different CPUs may use different flush instructions. So that we are prepared to migrate to a machine with a different flush instruction activated, we may have to patch more than one flush instruction at boot if the hypervisor tells us to. In the end this patch is mostly the work of Nicholas Piggin and Michael Ellerman. However a cast of thousands contributed to analysis of the issue, earlier versions of the patch, back ports testing etc. Many thanks to all of them. Tested-by: Jon Masters <jcm@redhat.com> Signed-off-by: Nicholas Piggin <npiggin@gmail.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2018-01-10 03:07:15 +11:00
}
void do_barrier_nospec_fixups_range(bool enable, void *fixup_start, void *fixup_end)
{
unsigned int instr;
long *start, *end;
int i;
start = fixup_start;
end = fixup_end;
instr = PPC_RAW_NOP();
if (enable) {
pr_info("barrier-nospec: using ORI speculation barrier\n");
instr = PPC_RAW_ORI(_R31, _R31, 0); /* speculation barrier */
}
i = do_patch_fixups(start, end, &instr, 1);
printk(KERN_DEBUG "barrier-nospec: patched %d locations\n", i);
}
#endif /* CONFIG_PPC_BOOK3S_64 */
#ifdef CONFIG_PPC_BARRIER_NOSPEC
void do_barrier_nospec_fixups(bool enable)
{
void *start, *end;
start = PTRRELOC(&__start___barrier_nospec_fixup);
end = PTRRELOC(&__stop___barrier_nospec_fixup);
do_barrier_nospec_fixups_range(enable, start, end);
}
#endif /* CONFIG_PPC_BARRIER_NOSPEC */
powerpc/64s: Add support for RFI flush of L1-D cache On some CPUs we can prevent the Meltdown vulnerability by flushing the L1-D cache on exit from kernel to user mode, and from hypervisor to guest. This is known to be the case on at least Power7, Power8 and Power9. At this time we do not know the status of the vulnerability on other CPUs such as the 970 (Apple G5), pasemi CPUs (AmigaOne X1000) or Freescale CPUs. As more information comes to light we can enable this, or other mechanisms on those CPUs. The vulnerability occurs when the load of an architecturally inaccessible memory region (eg. userspace load of kernel memory) is speculatively executed to the point where its result can influence the address of a subsequent speculatively executed load. In order for that to happen, the first load must hit in the L1, because before the load is sent to the L2 the permission check is performed. Therefore if no kernel addresses hit in the L1 the vulnerability can not occur. We can ensure that is the case by flushing the L1 whenever we return to userspace. Similarly for hypervisor vs guest. In order to flush the L1-D cache on exit, we add a section of nops at each (h)rfi location that returns to a lower privileged context, and patch that with some sequence. Newer firmwares are able to advertise to us that there is a special nop instruction that flushes the L1-D. If we do not see that advertised, we fall back to doing a displacement flush in software. For guest kernels we support migration between some CPU versions, and different CPUs may use different flush instructions. So that we are prepared to migrate to a machine with a different flush instruction activated, we may have to patch more than one flush instruction at boot if the hypervisor tells us to. In the end this patch is mostly the work of Nicholas Piggin and Michael Ellerman. However a cast of thousands contributed to analysis of the issue, earlier versions of the patch, back ports testing etc. Many thanks to all of them. Tested-by: Jon Masters <jcm@redhat.com> Signed-off-by: Nicholas Piggin <npiggin@gmail.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2018-01-10 03:07:15 +11:00
#ifdef CONFIG_PPC_E500
void do_barrier_nospec_fixups_range(bool enable, void *fixup_start, void *fixup_end)
{
unsigned int instr[2];
long *start, *end;
int i;
start = fixup_start;
end = fixup_end;
instr[0] = PPC_RAW_NOP();
instr[1] = PPC_RAW_NOP();
if (enable) {
pr_info("barrier-nospec: using isync; sync as speculation barrier\n");
instr[0] = PPC_RAW_ISYNC();
instr[1] = PPC_RAW_SYNC();
}
i = do_patch_fixups(start, end, instr, ARRAY_SIZE(instr));
printk(KERN_DEBUG "barrier-nospec: patched %d locations\n", i);
}
static void __init patch_btb_flush_section(long *curr)
{
unsigned int *start, *end;
start = (void *)curr + *curr;
end = (void *)curr + *(curr + 1);
for (; start < end; start++) {
pr_devel("patching dest %lx\n", (unsigned long)start);
patch_instruction(start, ppc_inst(PPC_RAW_NOP()));
}
}
void __init do_btb_flush_fixups(void)
{
long *start, *end;
start = PTRRELOC(&__start__btb_flush_fixup);
end = PTRRELOC(&__stop__btb_flush_fixup);
for (; start < end; start += 2)
patch_btb_flush_section(start);
}
#endif /* CONFIG_PPC_E500 */
void do_lwsync_fixups(unsigned long value, void *fixup_start, void *fixup_end)
{
long *start, *end;
u32 *dest;
if (!(value & CPU_FTR_LWSYNC))
return ;
start = fixup_start;
end = fixup_end;
for (; start < end; start++) {
dest = (void *)start + *start;
raw_patch_instruction(dest, ppc_inst(PPC_INST_LWSYNC));
}
}
static void __init do_final_fixups(void)
{
#if defined(CONFIG_PPC64) && defined(CONFIG_RELOCATABLE)
ppc_inst_t inst;
u32 *src, *dest, *end;
if (PHYSICAL_START == 0)
return;
src = (u32 *)(KERNELBASE + PHYSICAL_START);
dest = (u32 *)KERNELBASE;
end = (void *)src + (__end_interrupts - _stext);
while (src < end) {
inst = ppc_inst_read(src);
raw_patch_instruction(dest, inst);
src = ppc_inst_next(src, src);
dest = ppc_inst_next(dest, dest);
}
#endif
}
static unsigned long __initdata saved_cpu_features;
static unsigned int __initdata saved_mmu_features;
#ifdef CONFIG_PPC64
static unsigned long __initdata saved_firmware_features;
#endif
void __init apply_feature_fixups(void)
{
struct cpu_spec *spec = PTRRELOC(*PTRRELOC(&cur_cpu_spec));
*PTRRELOC(&saved_cpu_features) = spec->cpu_features;
*PTRRELOC(&saved_mmu_features) = spec->mmu_features;
/*
* Apply the CPU-specific and firmware specific fixups to kernel text
* (nop out sections not relevant to this CPU or this firmware).
*/
do_feature_fixups(spec->cpu_features,
PTRRELOC(&__start___ftr_fixup),
PTRRELOC(&__stop___ftr_fixup));
do_feature_fixups(spec->mmu_features,
PTRRELOC(&__start___mmu_ftr_fixup),
PTRRELOC(&__stop___mmu_ftr_fixup));
do_lwsync_fixups(spec->cpu_features,
PTRRELOC(&__start___lwsync_fixup),
PTRRELOC(&__stop___lwsync_fixup));
#ifdef CONFIG_PPC64
saved_firmware_features = powerpc_firmware_features;
do_feature_fixups(powerpc_firmware_features,
&__start___fw_ftr_fixup, &__stop___fw_ftr_fixup);
#endif
do_final_fixups();
}
void __init update_mmu_feature_fixups(unsigned long mask)
{
saved_mmu_features &= ~mask;
saved_mmu_features |= cur_cpu_spec->mmu_features & mask;
do_feature_fixups_mask(cur_cpu_spec->mmu_features, mask,
PTRRELOC(&__start___mmu_ftr_fixup),
PTRRELOC(&__stop___mmu_ftr_fixup));
mmu_feature_keys_init();
}
void __init setup_feature_keys(void)
{
/*
* Initialise jump label. This causes all the cpu/mmu_has_feature()
* checks to take on their correct polarity based on the current set of
* CPU/MMU features.
*/
jump_label_init();
cpu_feature_keys_init();
mmu_feature_keys_init();
static_key_feature_checks_initialized = true;
}
static int __init check_features(void)
{
WARN(saved_cpu_features != cur_cpu_spec->cpu_features,
"CPU features changed after feature patching!\n");
WARN(saved_mmu_features != cur_cpu_spec->mmu_features,
"MMU features changed after feature patching!\n");
#ifdef CONFIG_PPC64
WARN(saved_firmware_features != powerpc_firmware_features,
"Firmware features changed after feature patching!\n");
#endif
return 0;
}
late_initcall(check_features);
#ifdef CONFIG_FTR_FIXUP_SELFTEST
#define check(x) \
if (!(x)) printk("feature-fixups: test failed at line %d\n", __LINE__);
static int patch_feature_section(unsigned long value, struct fixup_entry *fcur)
{
return patch_feature_section_mask(value, ~0, fcur);
}
/* This must be after the text it fixes up, vmlinux.lds.S enforces that atm */
static struct fixup_entry fixup;
static long __init calc_offset(struct fixup_entry *entry, unsigned int *p)
{
return (unsigned long)p - (unsigned long)entry;
}
static void __init test_basic_patching(void)
{
powerpc: make feature-fixup tests fortify-safe Testing the fortified string functions[1] would cause a kernel panic on boot in test_feature_fixups() due to a buffer overflow in memcmp. This boils down to things like this: extern unsigned int ftr_fixup_test1; extern unsigned int ftr_fixup_test1_orig; check(memcmp(&ftr_fixup_test1, &ftr_fixup_test1_orig, size) == 0); We know that these are asm labels so it is safe to read up to 'size' bytes at those addresses. However, because we have passed the address of a single unsigned int to memcmp, the compiler believes the underlying object is in fact a single unsigned int. So if size > sizeof(unsigned int), there will be a panic at runtime. We can fix this by changing the types: instead of calling the asm labels unsigned ints, call them unsigned int[]s. Therefore the size isn't incorrectly determined at compile time and we get a regular unsafe memcmp and no panic. [1] http://openwall.com/lists/kernel-hardening/2017/05/09/2 Link: http://lkml.kernel.org/r/1497903987-21002-7-git-send-email-keescook@chromium.org Signed-off-by: Daniel Axtens <dja@axtens.net> Signed-off-by: Kees Cook <keescook@chromium.org> Suggested-by: Michael Ellerman <mpe@ellerman.id.au> Tested-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com> Reviewed-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com> Cc: Kees Cook <keescook@chromium.org> Cc: Daniel Micay <danielmicay@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-12 14:36:07 -07:00
extern unsigned int ftr_fixup_test1[];
extern unsigned int end_ftr_fixup_test1[];
extern unsigned int ftr_fixup_test1_orig[];
extern unsigned int ftr_fixup_test1_expected[];
int size = 4 * (end_ftr_fixup_test1 - ftr_fixup_test1);
fixup.value = fixup.mask = 8;
powerpc: make feature-fixup tests fortify-safe Testing the fortified string functions[1] would cause a kernel panic on boot in test_feature_fixups() due to a buffer overflow in memcmp. This boils down to things like this: extern unsigned int ftr_fixup_test1; extern unsigned int ftr_fixup_test1_orig; check(memcmp(&ftr_fixup_test1, &ftr_fixup_test1_orig, size) == 0); We know that these are asm labels so it is safe to read up to 'size' bytes at those addresses. However, because we have passed the address of a single unsigned int to memcmp, the compiler believes the underlying object is in fact a single unsigned int. So if size > sizeof(unsigned int), there will be a panic at runtime. We can fix this by changing the types: instead of calling the asm labels unsigned ints, call them unsigned int[]s. Therefore the size isn't incorrectly determined at compile time and we get a regular unsafe memcmp and no panic. [1] http://openwall.com/lists/kernel-hardening/2017/05/09/2 Link: http://lkml.kernel.org/r/1497903987-21002-7-git-send-email-keescook@chromium.org Signed-off-by: Daniel Axtens <dja@axtens.net> Signed-off-by: Kees Cook <keescook@chromium.org> Suggested-by: Michael Ellerman <mpe@ellerman.id.au> Tested-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com> Reviewed-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com> Cc: Kees Cook <keescook@chromium.org> Cc: Daniel Micay <danielmicay@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-12 14:36:07 -07:00
fixup.start_off = calc_offset(&fixup, ftr_fixup_test1 + 1);
fixup.end_off = calc_offset(&fixup, ftr_fixup_test1 + 2);
fixup.alt_start_off = fixup.alt_end_off = 0;
/* Sanity check */
powerpc: make feature-fixup tests fortify-safe Testing the fortified string functions[1] would cause a kernel panic on boot in test_feature_fixups() due to a buffer overflow in memcmp. This boils down to things like this: extern unsigned int ftr_fixup_test1; extern unsigned int ftr_fixup_test1_orig; check(memcmp(&ftr_fixup_test1, &ftr_fixup_test1_orig, size) == 0); We know that these are asm labels so it is safe to read up to 'size' bytes at those addresses. However, because we have passed the address of a single unsigned int to memcmp, the compiler believes the underlying object is in fact a single unsigned int. So if size > sizeof(unsigned int), there will be a panic at runtime. We can fix this by changing the types: instead of calling the asm labels unsigned ints, call them unsigned int[]s. Therefore the size isn't incorrectly determined at compile time and we get a regular unsafe memcmp and no panic. [1] http://openwall.com/lists/kernel-hardening/2017/05/09/2 Link: http://lkml.kernel.org/r/1497903987-21002-7-git-send-email-keescook@chromium.org Signed-off-by: Daniel Axtens <dja@axtens.net> Signed-off-by: Kees Cook <keescook@chromium.org> Suggested-by: Michael Ellerman <mpe@ellerman.id.au> Tested-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com> Reviewed-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com> Cc: Kees Cook <keescook@chromium.org> Cc: Daniel Micay <danielmicay@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-12 14:36:07 -07:00
check(memcmp(ftr_fixup_test1, ftr_fixup_test1_orig, size) == 0);
/* Check we don't patch if the value matches */
patch_feature_section(8, &fixup);
powerpc: make feature-fixup tests fortify-safe Testing the fortified string functions[1] would cause a kernel panic on boot in test_feature_fixups() due to a buffer overflow in memcmp. This boils down to things like this: extern unsigned int ftr_fixup_test1; extern unsigned int ftr_fixup_test1_orig; check(memcmp(&ftr_fixup_test1, &ftr_fixup_test1_orig, size) == 0); We know that these are asm labels so it is safe to read up to 'size' bytes at those addresses. However, because we have passed the address of a single unsigned int to memcmp, the compiler believes the underlying object is in fact a single unsigned int. So if size > sizeof(unsigned int), there will be a panic at runtime. We can fix this by changing the types: instead of calling the asm labels unsigned ints, call them unsigned int[]s. Therefore the size isn't incorrectly determined at compile time and we get a regular unsafe memcmp and no panic. [1] http://openwall.com/lists/kernel-hardening/2017/05/09/2 Link: http://lkml.kernel.org/r/1497903987-21002-7-git-send-email-keescook@chromium.org Signed-off-by: Daniel Axtens <dja@axtens.net> Signed-off-by: Kees Cook <keescook@chromium.org> Suggested-by: Michael Ellerman <mpe@ellerman.id.au> Tested-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com> Reviewed-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com> Cc: Kees Cook <keescook@chromium.org> Cc: Daniel Micay <danielmicay@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-12 14:36:07 -07:00
check(memcmp(ftr_fixup_test1, ftr_fixup_test1_orig, size) == 0);
/* Check we do patch if the value doesn't match */
patch_feature_section(0, &fixup);
powerpc: make feature-fixup tests fortify-safe Testing the fortified string functions[1] would cause a kernel panic on boot in test_feature_fixups() due to a buffer overflow in memcmp. This boils down to things like this: extern unsigned int ftr_fixup_test1; extern unsigned int ftr_fixup_test1_orig; check(memcmp(&ftr_fixup_test1, &ftr_fixup_test1_orig, size) == 0); We know that these are asm labels so it is safe to read up to 'size' bytes at those addresses. However, because we have passed the address of a single unsigned int to memcmp, the compiler believes the underlying object is in fact a single unsigned int. So if size > sizeof(unsigned int), there will be a panic at runtime. We can fix this by changing the types: instead of calling the asm labels unsigned ints, call them unsigned int[]s. Therefore the size isn't incorrectly determined at compile time and we get a regular unsafe memcmp and no panic. [1] http://openwall.com/lists/kernel-hardening/2017/05/09/2 Link: http://lkml.kernel.org/r/1497903987-21002-7-git-send-email-keescook@chromium.org Signed-off-by: Daniel Axtens <dja@axtens.net> Signed-off-by: Kees Cook <keescook@chromium.org> Suggested-by: Michael Ellerman <mpe@ellerman.id.au> Tested-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com> Reviewed-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com> Cc: Kees Cook <keescook@chromium.org> Cc: Daniel Micay <danielmicay@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-12 14:36:07 -07:00
check(memcmp(ftr_fixup_test1, ftr_fixup_test1_expected, size) == 0);
/* Check we do patch if the mask doesn't match */
powerpc: make feature-fixup tests fortify-safe Testing the fortified string functions[1] would cause a kernel panic on boot in test_feature_fixups() due to a buffer overflow in memcmp. This boils down to things like this: extern unsigned int ftr_fixup_test1; extern unsigned int ftr_fixup_test1_orig; check(memcmp(&ftr_fixup_test1, &ftr_fixup_test1_orig, size) == 0); We know that these are asm labels so it is safe to read up to 'size' bytes at those addresses. However, because we have passed the address of a single unsigned int to memcmp, the compiler believes the underlying object is in fact a single unsigned int. So if size > sizeof(unsigned int), there will be a panic at runtime. We can fix this by changing the types: instead of calling the asm labels unsigned ints, call them unsigned int[]s. Therefore the size isn't incorrectly determined at compile time and we get a regular unsafe memcmp and no panic. [1] http://openwall.com/lists/kernel-hardening/2017/05/09/2 Link: http://lkml.kernel.org/r/1497903987-21002-7-git-send-email-keescook@chromium.org Signed-off-by: Daniel Axtens <dja@axtens.net> Signed-off-by: Kees Cook <keescook@chromium.org> Suggested-by: Michael Ellerman <mpe@ellerman.id.au> Tested-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com> Reviewed-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com> Cc: Kees Cook <keescook@chromium.org> Cc: Daniel Micay <danielmicay@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-12 14:36:07 -07:00
memcpy(ftr_fixup_test1, ftr_fixup_test1_orig, size);
check(memcmp(ftr_fixup_test1, ftr_fixup_test1_orig, size) == 0);
patch_feature_section(~8, &fixup);
powerpc: make feature-fixup tests fortify-safe Testing the fortified string functions[1] would cause a kernel panic on boot in test_feature_fixups() due to a buffer overflow in memcmp. This boils down to things like this: extern unsigned int ftr_fixup_test1; extern unsigned int ftr_fixup_test1_orig; check(memcmp(&ftr_fixup_test1, &ftr_fixup_test1_orig, size) == 0); We know that these are asm labels so it is safe to read up to 'size' bytes at those addresses. However, because we have passed the address of a single unsigned int to memcmp, the compiler believes the underlying object is in fact a single unsigned int. So if size > sizeof(unsigned int), there will be a panic at runtime. We can fix this by changing the types: instead of calling the asm labels unsigned ints, call them unsigned int[]s. Therefore the size isn't incorrectly determined at compile time and we get a regular unsafe memcmp and no panic. [1] http://openwall.com/lists/kernel-hardening/2017/05/09/2 Link: http://lkml.kernel.org/r/1497903987-21002-7-git-send-email-keescook@chromium.org Signed-off-by: Daniel Axtens <dja@axtens.net> Signed-off-by: Kees Cook <keescook@chromium.org> Suggested-by: Michael Ellerman <mpe@ellerman.id.au> Tested-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com> Reviewed-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com> Cc: Kees Cook <keescook@chromium.org> Cc: Daniel Micay <danielmicay@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-12 14:36:07 -07:00
check(memcmp(ftr_fixup_test1, ftr_fixup_test1_expected, size) == 0);
}
static void __init test_alternative_patching(void)
{
powerpc: make feature-fixup tests fortify-safe Testing the fortified string functions[1] would cause a kernel panic on boot in test_feature_fixups() due to a buffer overflow in memcmp. This boils down to things like this: extern unsigned int ftr_fixup_test1; extern unsigned int ftr_fixup_test1_orig; check(memcmp(&ftr_fixup_test1, &ftr_fixup_test1_orig, size) == 0); We know that these are asm labels so it is safe to read up to 'size' bytes at those addresses. However, because we have passed the address of a single unsigned int to memcmp, the compiler believes the underlying object is in fact a single unsigned int. So if size > sizeof(unsigned int), there will be a panic at runtime. We can fix this by changing the types: instead of calling the asm labels unsigned ints, call them unsigned int[]s. Therefore the size isn't incorrectly determined at compile time and we get a regular unsafe memcmp and no panic. [1] http://openwall.com/lists/kernel-hardening/2017/05/09/2 Link: http://lkml.kernel.org/r/1497903987-21002-7-git-send-email-keescook@chromium.org Signed-off-by: Daniel Axtens <dja@axtens.net> Signed-off-by: Kees Cook <keescook@chromium.org> Suggested-by: Michael Ellerman <mpe@ellerman.id.au> Tested-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com> Reviewed-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com> Cc: Kees Cook <keescook@chromium.org> Cc: Daniel Micay <danielmicay@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-12 14:36:07 -07:00
extern unsigned int ftr_fixup_test2[];
extern unsigned int end_ftr_fixup_test2[];
extern unsigned int ftr_fixup_test2_orig[];
extern unsigned int ftr_fixup_test2_alt[];
extern unsigned int ftr_fixup_test2_expected[];
int size = 4 * (end_ftr_fixup_test2 - ftr_fixup_test2);
fixup.value = fixup.mask = 0xF;
powerpc: make feature-fixup tests fortify-safe Testing the fortified string functions[1] would cause a kernel panic on boot in test_feature_fixups() due to a buffer overflow in memcmp. This boils down to things like this: extern unsigned int ftr_fixup_test1; extern unsigned int ftr_fixup_test1_orig; check(memcmp(&ftr_fixup_test1, &ftr_fixup_test1_orig, size) == 0); We know that these are asm labels so it is safe to read up to 'size' bytes at those addresses. However, because we have passed the address of a single unsigned int to memcmp, the compiler believes the underlying object is in fact a single unsigned int. So if size > sizeof(unsigned int), there will be a panic at runtime. We can fix this by changing the types: instead of calling the asm labels unsigned ints, call them unsigned int[]s. Therefore the size isn't incorrectly determined at compile time and we get a regular unsafe memcmp and no panic. [1] http://openwall.com/lists/kernel-hardening/2017/05/09/2 Link: http://lkml.kernel.org/r/1497903987-21002-7-git-send-email-keescook@chromium.org Signed-off-by: Daniel Axtens <dja@axtens.net> Signed-off-by: Kees Cook <keescook@chromium.org> Suggested-by: Michael Ellerman <mpe@ellerman.id.au> Tested-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com> Reviewed-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com> Cc: Kees Cook <keescook@chromium.org> Cc: Daniel Micay <danielmicay@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-12 14:36:07 -07:00
fixup.start_off = calc_offset(&fixup, ftr_fixup_test2 + 1);
fixup.end_off = calc_offset(&fixup, ftr_fixup_test2 + 2);
fixup.alt_start_off = calc_offset(&fixup, ftr_fixup_test2_alt);
fixup.alt_end_off = calc_offset(&fixup, ftr_fixup_test2_alt + 1);
/* Sanity check */
powerpc: make feature-fixup tests fortify-safe Testing the fortified string functions[1] would cause a kernel panic on boot in test_feature_fixups() due to a buffer overflow in memcmp. This boils down to things like this: extern unsigned int ftr_fixup_test1; extern unsigned int ftr_fixup_test1_orig; check(memcmp(&ftr_fixup_test1, &ftr_fixup_test1_orig, size) == 0); We know that these are asm labels so it is safe to read up to 'size' bytes at those addresses. However, because we have passed the address of a single unsigned int to memcmp, the compiler believes the underlying object is in fact a single unsigned int. So if size > sizeof(unsigned int), there will be a panic at runtime. We can fix this by changing the types: instead of calling the asm labels unsigned ints, call them unsigned int[]s. Therefore the size isn't incorrectly determined at compile time and we get a regular unsafe memcmp and no panic. [1] http://openwall.com/lists/kernel-hardening/2017/05/09/2 Link: http://lkml.kernel.org/r/1497903987-21002-7-git-send-email-keescook@chromium.org Signed-off-by: Daniel Axtens <dja@axtens.net> Signed-off-by: Kees Cook <keescook@chromium.org> Suggested-by: Michael Ellerman <mpe@ellerman.id.au> Tested-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com> Reviewed-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com> Cc: Kees Cook <keescook@chromium.org> Cc: Daniel Micay <danielmicay@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-12 14:36:07 -07:00
check(memcmp(ftr_fixup_test2, ftr_fixup_test2_orig, size) == 0);
/* Check we don't patch if the value matches */
patch_feature_section(0xF, &fixup);
powerpc: make feature-fixup tests fortify-safe Testing the fortified string functions[1] would cause a kernel panic on boot in test_feature_fixups() due to a buffer overflow in memcmp. This boils down to things like this: extern unsigned int ftr_fixup_test1; extern unsigned int ftr_fixup_test1_orig; check(memcmp(&ftr_fixup_test1, &ftr_fixup_test1_orig, size) == 0); We know that these are asm labels so it is safe to read up to 'size' bytes at those addresses. However, because we have passed the address of a single unsigned int to memcmp, the compiler believes the underlying object is in fact a single unsigned int. So if size > sizeof(unsigned int), there will be a panic at runtime. We can fix this by changing the types: instead of calling the asm labels unsigned ints, call them unsigned int[]s. Therefore the size isn't incorrectly determined at compile time and we get a regular unsafe memcmp and no panic. [1] http://openwall.com/lists/kernel-hardening/2017/05/09/2 Link: http://lkml.kernel.org/r/1497903987-21002-7-git-send-email-keescook@chromium.org Signed-off-by: Daniel Axtens <dja@axtens.net> Signed-off-by: Kees Cook <keescook@chromium.org> Suggested-by: Michael Ellerman <mpe@ellerman.id.au> Tested-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com> Reviewed-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com> Cc: Kees Cook <keescook@chromium.org> Cc: Daniel Micay <danielmicay@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-12 14:36:07 -07:00
check(memcmp(ftr_fixup_test2, ftr_fixup_test2_orig, size) == 0);
/* Check we do patch if the value doesn't match */
patch_feature_section(0, &fixup);
powerpc: make feature-fixup tests fortify-safe Testing the fortified string functions[1] would cause a kernel panic on boot in test_feature_fixups() due to a buffer overflow in memcmp. This boils down to things like this: extern unsigned int ftr_fixup_test1; extern unsigned int ftr_fixup_test1_orig; check(memcmp(&ftr_fixup_test1, &ftr_fixup_test1_orig, size) == 0); We know that these are asm labels so it is safe to read up to 'size' bytes at those addresses. However, because we have passed the address of a single unsigned int to memcmp, the compiler believes the underlying object is in fact a single unsigned int. So if size > sizeof(unsigned int), there will be a panic at runtime. We can fix this by changing the types: instead of calling the asm labels unsigned ints, call them unsigned int[]s. Therefore the size isn't incorrectly determined at compile time and we get a regular unsafe memcmp and no panic. [1] http://openwall.com/lists/kernel-hardening/2017/05/09/2 Link: http://lkml.kernel.org/r/1497903987-21002-7-git-send-email-keescook@chromium.org Signed-off-by: Daniel Axtens <dja@axtens.net> Signed-off-by: Kees Cook <keescook@chromium.org> Suggested-by: Michael Ellerman <mpe@ellerman.id.au> Tested-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com> Reviewed-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com> Cc: Kees Cook <keescook@chromium.org> Cc: Daniel Micay <danielmicay@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-12 14:36:07 -07:00
check(memcmp(ftr_fixup_test2, ftr_fixup_test2_expected, size) == 0);
/* Check we do patch if the mask doesn't match */
powerpc: make feature-fixup tests fortify-safe Testing the fortified string functions[1] would cause a kernel panic on boot in test_feature_fixups() due to a buffer overflow in memcmp. This boils down to things like this: extern unsigned int ftr_fixup_test1; extern unsigned int ftr_fixup_test1_orig; check(memcmp(&ftr_fixup_test1, &ftr_fixup_test1_orig, size) == 0); We know that these are asm labels so it is safe to read up to 'size' bytes at those addresses. However, because we have passed the address of a single unsigned int to memcmp, the compiler believes the underlying object is in fact a single unsigned int. So if size > sizeof(unsigned int), there will be a panic at runtime. We can fix this by changing the types: instead of calling the asm labels unsigned ints, call them unsigned int[]s. Therefore the size isn't incorrectly determined at compile time and we get a regular unsafe memcmp and no panic. [1] http://openwall.com/lists/kernel-hardening/2017/05/09/2 Link: http://lkml.kernel.org/r/1497903987-21002-7-git-send-email-keescook@chromium.org Signed-off-by: Daniel Axtens <dja@axtens.net> Signed-off-by: Kees Cook <keescook@chromium.org> Suggested-by: Michael Ellerman <mpe@ellerman.id.au> Tested-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com> Reviewed-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com> Cc: Kees Cook <keescook@chromium.org> Cc: Daniel Micay <danielmicay@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-12 14:36:07 -07:00
memcpy(ftr_fixup_test2, ftr_fixup_test2_orig, size);
check(memcmp(ftr_fixup_test2, ftr_fixup_test2_orig, size) == 0);
patch_feature_section(~0xF, &fixup);
powerpc: make feature-fixup tests fortify-safe Testing the fortified string functions[1] would cause a kernel panic on boot in test_feature_fixups() due to a buffer overflow in memcmp. This boils down to things like this: extern unsigned int ftr_fixup_test1; extern unsigned int ftr_fixup_test1_orig; check(memcmp(&ftr_fixup_test1, &ftr_fixup_test1_orig, size) == 0); We know that these are asm labels so it is safe to read up to 'size' bytes at those addresses. However, because we have passed the address of a single unsigned int to memcmp, the compiler believes the underlying object is in fact a single unsigned int. So if size > sizeof(unsigned int), there will be a panic at runtime. We can fix this by changing the types: instead of calling the asm labels unsigned ints, call them unsigned int[]s. Therefore the size isn't incorrectly determined at compile time and we get a regular unsafe memcmp and no panic. [1] http://openwall.com/lists/kernel-hardening/2017/05/09/2 Link: http://lkml.kernel.org/r/1497903987-21002-7-git-send-email-keescook@chromium.org Signed-off-by: Daniel Axtens <dja@axtens.net> Signed-off-by: Kees Cook <keescook@chromium.org> Suggested-by: Michael Ellerman <mpe@ellerman.id.au> Tested-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com> Reviewed-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com> Cc: Kees Cook <keescook@chromium.org> Cc: Daniel Micay <danielmicay@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-12 14:36:07 -07:00
check(memcmp(ftr_fixup_test2, ftr_fixup_test2_expected, size) == 0);
}
static void __init test_alternative_case_too_big(void)
{
powerpc: make feature-fixup tests fortify-safe Testing the fortified string functions[1] would cause a kernel panic on boot in test_feature_fixups() due to a buffer overflow in memcmp. This boils down to things like this: extern unsigned int ftr_fixup_test1; extern unsigned int ftr_fixup_test1_orig; check(memcmp(&ftr_fixup_test1, &ftr_fixup_test1_orig, size) == 0); We know that these are asm labels so it is safe to read up to 'size' bytes at those addresses. However, because we have passed the address of a single unsigned int to memcmp, the compiler believes the underlying object is in fact a single unsigned int. So if size > sizeof(unsigned int), there will be a panic at runtime. We can fix this by changing the types: instead of calling the asm labels unsigned ints, call them unsigned int[]s. Therefore the size isn't incorrectly determined at compile time and we get a regular unsafe memcmp and no panic. [1] http://openwall.com/lists/kernel-hardening/2017/05/09/2 Link: http://lkml.kernel.org/r/1497903987-21002-7-git-send-email-keescook@chromium.org Signed-off-by: Daniel Axtens <dja@axtens.net> Signed-off-by: Kees Cook <keescook@chromium.org> Suggested-by: Michael Ellerman <mpe@ellerman.id.au> Tested-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com> Reviewed-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com> Cc: Kees Cook <keescook@chromium.org> Cc: Daniel Micay <danielmicay@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-12 14:36:07 -07:00
extern unsigned int ftr_fixup_test3[];
extern unsigned int end_ftr_fixup_test3[];
extern unsigned int ftr_fixup_test3_orig[];
extern unsigned int ftr_fixup_test3_alt[];
int size = 4 * (end_ftr_fixup_test3 - ftr_fixup_test3);
fixup.value = fixup.mask = 0xC;
powerpc: make feature-fixup tests fortify-safe Testing the fortified string functions[1] would cause a kernel panic on boot in test_feature_fixups() due to a buffer overflow in memcmp. This boils down to things like this: extern unsigned int ftr_fixup_test1; extern unsigned int ftr_fixup_test1_orig; check(memcmp(&ftr_fixup_test1, &ftr_fixup_test1_orig, size) == 0); We know that these are asm labels so it is safe to read up to 'size' bytes at those addresses. However, because we have passed the address of a single unsigned int to memcmp, the compiler believes the underlying object is in fact a single unsigned int. So if size > sizeof(unsigned int), there will be a panic at runtime. We can fix this by changing the types: instead of calling the asm labels unsigned ints, call them unsigned int[]s. Therefore the size isn't incorrectly determined at compile time and we get a regular unsafe memcmp and no panic. [1] http://openwall.com/lists/kernel-hardening/2017/05/09/2 Link: http://lkml.kernel.org/r/1497903987-21002-7-git-send-email-keescook@chromium.org Signed-off-by: Daniel Axtens <dja@axtens.net> Signed-off-by: Kees Cook <keescook@chromium.org> Suggested-by: Michael Ellerman <mpe@ellerman.id.au> Tested-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com> Reviewed-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com> Cc: Kees Cook <keescook@chromium.org> Cc: Daniel Micay <danielmicay@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-12 14:36:07 -07:00
fixup.start_off = calc_offset(&fixup, ftr_fixup_test3 + 1);
fixup.end_off = calc_offset(&fixup, ftr_fixup_test3 + 2);
fixup.alt_start_off = calc_offset(&fixup, ftr_fixup_test3_alt);
fixup.alt_end_off = calc_offset(&fixup, ftr_fixup_test3_alt + 2);
/* Sanity check */
powerpc: make feature-fixup tests fortify-safe Testing the fortified string functions[1] would cause a kernel panic on boot in test_feature_fixups() due to a buffer overflow in memcmp. This boils down to things like this: extern unsigned int ftr_fixup_test1; extern unsigned int ftr_fixup_test1_orig; check(memcmp(&ftr_fixup_test1, &ftr_fixup_test1_orig, size) == 0); We know that these are asm labels so it is safe to read up to 'size' bytes at those addresses. However, because we have passed the address of a single unsigned int to memcmp, the compiler believes the underlying object is in fact a single unsigned int. So if size > sizeof(unsigned int), there will be a panic at runtime. We can fix this by changing the types: instead of calling the asm labels unsigned ints, call them unsigned int[]s. Therefore the size isn't incorrectly determined at compile time and we get a regular unsafe memcmp and no panic. [1] http://openwall.com/lists/kernel-hardening/2017/05/09/2 Link: http://lkml.kernel.org/r/1497903987-21002-7-git-send-email-keescook@chromium.org Signed-off-by: Daniel Axtens <dja@axtens.net> Signed-off-by: Kees Cook <keescook@chromium.org> Suggested-by: Michael Ellerman <mpe@ellerman.id.au> Tested-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com> Reviewed-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com> Cc: Kees Cook <keescook@chromium.org> Cc: Daniel Micay <danielmicay@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-12 14:36:07 -07:00
check(memcmp(ftr_fixup_test3, ftr_fixup_test3_orig, size) == 0);
/* Expect nothing to be patched, and the error returned to us */
check(patch_feature_section(0xF, &fixup) == 1);
powerpc: make feature-fixup tests fortify-safe Testing the fortified string functions[1] would cause a kernel panic on boot in test_feature_fixups() due to a buffer overflow in memcmp. This boils down to things like this: extern unsigned int ftr_fixup_test1; extern unsigned int ftr_fixup_test1_orig; check(memcmp(&ftr_fixup_test1, &ftr_fixup_test1_orig, size) == 0); We know that these are asm labels so it is safe to read up to 'size' bytes at those addresses. However, because we have passed the address of a single unsigned int to memcmp, the compiler believes the underlying object is in fact a single unsigned int. So if size > sizeof(unsigned int), there will be a panic at runtime. We can fix this by changing the types: instead of calling the asm labels unsigned ints, call them unsigned int[]s. Therefore the size isn't incorrectly determined at compile time and we get a regular unsafe memcmp and no panic. [1] http://openwall.com/lists/kernel-hardening/2017/05/09/2 Link: http://lkml.kernel.org/r/1497903987-21002-7-git-send-email-keescook@chromium.org Signed-off-by: Daniel Axtens <dja@axtens.net> Signed-off-by: Kees Cook <keescook@chromium.org> Suggested-by: Michael Ellerman <mpe@ellerman.id.au> Tested-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com> Reviewed-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com> Cc: Kees Cook <keescook@chromium.org> Cc: Daniel Micay <danielmicay@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-12 14:36:07 -07:00
check(memcmp(ftr_fixup_test3, ftr_fixup_test3_orig, size) == 0);
check(patch_feature_section(0, &fixup) == 1);
powerpc: make feature-fixup tests fortify-safe Testing the fortified string functions[1] would cause a kernel panic on boot in test_feature_fixups() due to a buffer overflow in memcmp. This boils down to things like this: extern unsigned int ftr_fixup_test1; extern unsigned int ftr_fixup_test1_orig; check(memcmp(&ftr_fixup_test1, &ftr_fixup_test1_orig, size) == 0); We know that these are asm labels so it is safe to read up to 'size' bytes at those addresses. However, because we have passed the address of a single unsigned int to memcmp, the compiler believes the underlying object is in fact a single unsigned int. So if size > sizeof(unsigned int), there will be a panic at runtime. We can fix this by changing the types: instead of calling the asm labels unsigned ints, call them unsigned int[]s. Therefore the size isn't incorrectly determined at compile time and we get a regular unsafe memcmp and no panic. [1] http://openwall.com/lists/kernel-hardening/2017/05/09/2 Link: http://lkml.kernel.org/r/1497903987-21002-7-git-send-email-keescook@chromium.org Signed-off-by: Daniel Axtens <dja@axtens.net> Signed-off-by: Kees Cook <keescook@chromium.org> Suggested-by: Michael Ellerman <mpe@ellerman.id.au> Tested-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com> Reviewed-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com> Cc: Kees Cook <keescook@chromium.org> Cc: Daniel Micay <danielmicay@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-12 14:36:07 -07:00
check(memcmp(ftr_fixup_test3, ftr_fixup_test3_orig, size) == 0);
check(patch_feature_section(~0xF, &fixup) == 1);
powerpc: make feature-fixup tests fortify-safe Testing the fortified string functions[1] would cause a kernel panic on boot in test_feature_fixups() due to a buffer overflow in memcmp. This boils down to things like this: extern unsigned int ftr_fixup_test1; extern unsigned int ftr_fixup_test1_orig; check(memcmp(&ftr_fixup_test1, &ftr_fixup_test1_orig, size) == 0); We know that these are asm labels so it is safe to read up to 'size' bytes at those addresses. However, because we have passed the address of a single unsigned int to memcmp, the compiler believes the underlying object is in fact a single unsigned int. So if size > sizeof(unsigned int), there will be a panic at runtime. We can fix this by changing the types: instead of calling the asm labels unsigned ints, call them unsigned int[]s. Therefore the size isn't incorrectly determined at compile time and we get a regular unsafe memcmp and no panic. [1] http://openwall.com/lists/kernel-hardening/2017/05/09/2 Link: http://lkml.kernel.org/r/1497903987-21002-7-git-send-email-keescook@chromium.org Signed-off-by: Daniel Axtens <dja@axtens.net> Signed-off-by: Kees Cook <keescook@chromium.org> Suggested-by: Michael Ellerman <mpe@ellerman.id.au> Tested-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com> Reviewed-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com> Cc: Kees Cook <keescook@chromium.org> Cc: Daniel Micay <danielmicay@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-12 14:36:07 -07:00
check(memcmp(ftr_fixup_test3, ftr_fixup_test3_orig, size) == 0);
}
static void __init test_alternative_case_too_small(void)
{
powerpc: make feature-fixup tests fortify-safe Testing the fortified string functions[1] would cause a kernel panic on boot in test_feature_fixups() due to a buffer overflow in memcmp. This boils down to things like this: extern unsigned int ftr_fixup_test1; extern unsigned int ftr_fixup_test1_orig; check(memcmp(&ftr_fixup_test1, &ftr_fixup_test1_orig, size) == 0); We know that these are asm labels so it is safe to read up to 'size' bytes at those addresses. However, because we have passed the address of a single unsigned int to memcmp, the compiler believes the underlying object is in fact a single unsigned int. So if size > sizeof(unsigned int), there will be a panic at runtime. We can fix this by changing the types: instead of calling the asm labels unsigned ints, call them unsigned int[]s. Therefore the size isn't incorrectly determined at compile time and we get a regular unsafe memcmp and no panic. [1] http://openwall.com/lists/kernel-hardening/2017/05/09/2 Link: http://lkml.kernel.org/r/1497903987-21002-7-git-send-email-keescook@chromium.org Signed-off-by: Daniel Axtens <dja@axtens.net> Signed-off-by: Kees Cook <keescook@chromium.org> Suggested-by: Michael Ellerman <mpe@ellerman.id.au> Tested-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com> Reviewed-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com> Cc: Kees Cook <keescook@chromium.org> Cc: Daniel Micay <danielmicay@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-12 14:36:07 -07:00
extern unsigned int ftr_fixup_test4[];
extern unsigned int end_ftr_fixup_test4[];
extern unsigned int ftr_fixup_test4_orig[];
extern unsigned int ftr_fixup_test4_alt[];
extern unsigned int ftr_fixup_test4_expected[];
int size = 4 * (end_ftr_fixup_test4 - ftr_fixup_test4);
unsigned long flag;
/* Check a high-bit flag */
flag = 1UL << ((sizeof(unsigned long) - 1) * 8);
fixup.value = fixup.mask = flag;
powerpc: make feature-fixup tests fortify-safe Testing the fortified string functions[1] would cause a kernel panic on boot in test_feature_fixups() due to a buffer overflow in memcmp. This boils down to things like this: extern unsigned int ftr_fixup_test1; extern unsigned int ftr_fixup_test1_orig; check(memcmp(&ftr_fixup_test1, &ftr_fixup_test1_orig, size) == 0); We know that these are asm labels so it is safe to read up to 'size' bytes at those addresses. However, because we have passed the address of a single unsigned int to memcmp, the compiler believes the underlying object is in fact a single unsigned int. So if size > sizeof(unsigned int), there will be a panic at runtime. We can fix this by changing the types: instead of calling the asm labels unsigned ints, call them unsigned int[]s. Therefore the size isn't incorrectly determined at compile time and we get a regular unsafe memcmp and no panic. [1] http://openwall.com/lists/kernel-hardening/2017/05/09/2 Link: http://lkml.kernel.org/r/1497903987-21002-7-git-send-email-keescook@chromium.org Signed-off-by: Daniel Axtens <dja@axtens.net> Signed-off-by: Kees Cook <keescook@chromium.org> Suggested-by: Michael Ellerman <mpe@ellerman.id.au> Tested-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com> Reviewed-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com> Cc: Kees Cook <keescook@chromium.org> Cc: Daniel Micay <danielmicay@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-12 14:36:07 -07:00
fixup.start_off = calc_offset(&fixup, ftr_fixup_test4 + 1);
fixup.end_off = calc_offset(&fixup, ftr_fixup_test4 + 5);
fixup.alt_start_off = calc_offset(&fixup, ftr_fixup_test4_alt);
fixup.alt_end_off = calc_offset(&fixup, ftr_fixup_test4_alt + 2);
/* Sanity check */
powerpc: make feature-fixup tests fortify-safe Testing the fortified string functions[1] would cause a kernel panic on boot in test_feature_fixups() due to a buffer overflow in memcmp. This boils down to things like this: extern unsigned int ftr_fixup_test1; extern unsigned int ftr_fixup_test1_orig; check(memcmp(&ftr_fixup_test1, &ftr_fixup_test1_orig, size) == 0); We know that these are asm labels so it is safe to read up to 'size' bytes at those addresses. However, because we have passed the address of a single unsigned int to memcmp, the compiler believes the underlying object is in fact a single unsigned int. So if size > sizeof(unsigned int), there will be a panic at runtime. We can fix this by changing the types: instead of calling the asm labels unsigned ints, call them unsigned int[]s. Therefore the size isn't incorrectly determined at compile time and we get a regular unsafe memcmp and no panic. [1] http://openwall.com/lists/kernel-hardening/2017/05/09/2 Link: http://lkml.kernel.org/r/1497903987-21002-7-git-send-email-keescook@chromium.org Signed-off-by: Daniel Axtens <dja@axtens.net> Signed-off-by: Kees Cook <keescook@chromium.org> Suggested-by: Michael Ellerman <mpe@ellerman.id.au> Tested-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com> Reviewed-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com> Cc: Kees Cook <keescook@chromium.org> Cc: Daniel Micay <danielmicay@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-12 14:36:07 -07:00
check(memcmp(ftr_fixup_test4, ftr_fixup_test4_orig, size) == 0);
/* Check we don't patch if the value matches */
patch_feature_section(flag, &fixup);
powerpc: make feature-fixup tests fortify-safe Testing the fortified string functions[1] would cause a kernel panic on boot in test_feature_fixups() due to a buffer overflow in memcmp. This boils down to things like this: extern unsigned int ftr_fixup_test1; extern unsigned int ftr_fixup_test1_orig; check(memcmp(&ftr_fixup_test1, &ftr_fixup_test1_orig, size) == 0); We know that these are asm labels so it is safe to read up to 'size' bytes at those addresses. However, because we have passed the address of a single unsigned int to memcmp, the compiler believes the underlying object is in fact a single unsigned int. So if size > sizeof(unsigned int), there will be a panic at runtime. We can fix this by changing the types: instead of calling the asm labels unsigned ints, call them unsigned int[]s. Therefore the size isn't incorrectly determined at compile time and we get a regular unsafe memcmp and no panic. [1] http://openwall.com/lists/kernel-hardening/2017/05/09/2 Link: http://lkml.kernel.org/r/1497903987-21002-7-git-send-email-keescook@chromium.org Signed-off-by: Daniel Axtens <dja@axtens.net> Signed-off-by: Kees Cook <keescook@chromium.org> Suggested-by: Michael Ellerman <mpe@ellerman.id.au> Tested-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com> Reviewed-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com> Cc: Kees Cook <keescook@chromium.org> Cc: Daniel Micay <danielmicay@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-12 14:36:07 -07:00
check(memcmp(ftr_fixup_test4, ftr_fixup_test4_orig, size) == 0);
/* Check we do patch if the value doesn't match */
patch_feature_section(0, &fixup);
powerpc: make feature-fixup tests fortify-safe Testing the fortified string functions[1] would cause a kernel panic on boot in test_feature_fixups() due to a buffer overflow in memcmp. This boils down to things like this: extern unsigned int ftr_fixup_test1; extern unsigned int ftr_fixup_test1_orig; check(memcmp(&ftr_fixup_test1, &ftr_fixup_test1_orig, size) == 0); We know that these are asm labels so it is safe to read up to 'size' bytes at those addresses. However, because we have passed the address of a single unsigned int to memcmp, the compiler believes the underlying object is in fact a single unsigned int. So if size > sizeof(unsigned int), there will be a panic at runtime. We can fix this by changing the types: instead of calling the asm labels unsigned ints, call them unsigned int[]s. Therefore the size isn't incorrectly determined at compile time and we get a regular unsafe memcmp and no panic. [1] http://openwall.com/lists/kernel-hardening/2017/05/09/2 Link: http://lkml.kernel.org/r/1497903987-21002-7-git-send-email-keescook@chromium.org Signed-off-by: Daniel Axtens <dja@axtens.net> Signed-off-by: Kees Cook <keescook@chromium.org> Suggested-by: Michael Ellerman <mpe@ellerman.id.au> Tested-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com> Reviewed-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com> Cc: Kees Cook <keescook@chromium.org> Cc: Daniel Micay <danielmicay@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-12 14:36:07 -07:00
check(memcmp(ftr_fixup_test4, ftr_fixup_test4_expected, size) == 0);
/* Check we do patch if the mask doesn't match */
powerpc: make feature-fixup tests fortify-safe Testing the fortified string functions[1] would cause a kernel panic on boot in test_feature_fixups() due to a buffer overflow in memcmp. This boils down to things like this: extern unsigned int ftr_fixup_test1; extern unsigned int ftr_fixup_test1_orig; check(memcmp(&ftr_fixup_test1, &ftr_fixup_test1_orig, size) == 0); We know that these are asm labels so it is safe to read up to 'size' bytes at those addresses. However, because we have passed the address of a single unsigned int to memcmp, the compiler believes the underlying object is in fact a single unsigned int. So if size > sizeof(unsigned int), there will be a panic at runtime. We can fix this by changing the types: instead of calling the asm labels unsigned ints, call them unsigned int[]s. Therefore the size isn't incorrectly determined at compile time and we get a regular unsafe memcmp and no panic. [1] http://openwall.com/lists/kernel-hardening/2017/05/09/2 Link: http://lkml.kernel.org/r/1497903987-21002-7-git-send-email-keescook@chromium.org Signed-off-by: Daniel Axtens <dja@axtens.net> Signed-off-by: Kees Cook <keescook@chromium.org> Suggested-by: Michael Ellerman <mpe@ellerman.id.au> Tested-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com> Reviewed-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com> Cc: Kees Cook <keescook@chromium.org> Cc: Daniel Micay <danielmicay@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-12 14:36:07 -07:00
memcpy(ftr_fixup_test4, ftr_fixup_test4_orig, size);
check(memcmp(ftr_fixup_test4, ftr_fixup_test4_orig, size) == 0);
patch_feature_section(~flag, &fixup);
powerpc: make feature-fixup tests fortify-safe Testing the fortified string functions[1] would cause a kernel panic on boot in test_feature_fixups() due to a buffer overflow in memcmp. This boils down to things like this: extern unsigned int ftr_fixup_test1; extern unsigned int ftr_fixup_test1_orig; check(memcmp(&ftr_fixup_test1, &ftr_fixup_test1_orig, size) == 0); We know that these are asm labels so it is safe to read up to 'size' bytes at those addresses. However, because we have passed the address of a single unsigned int to memcmp, the compiler believes the underlying object is in fact a single unsigned int. So if size > sizeof(unsigned int), there will be a panic at runtime. We can fix this by changing the types: instead of calling the asm labels unsigned ints, call them unsigned int[]s. Therefore the size isn't incorrectly determined at compile time and we get a regular unsafe memcmp and no panic. [1] http://openwall.com/lists/kernel-hardening/2017/05/09/2 Link: http://lkml.kernel.org/r/1497903987-21002-7-git-send-email-keescook@chromium.org Signed-off-by: Daniel Axtens <dja@axtens.net> Signed-off-by: Kees Cook <keescook@chromium.org> Suggested-by: Michael Ellerman <mpe@ellerman.id.au> Tested-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com> Reviewed-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com> Cc: Kees Cook <keescook@chromium.org> Cc: Daniel Micay <danielmicay@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-12 14:36:07 -07:00
check(memcmp(ftr_fixup_test4, ftr_fixup_test4_expected, size) == 0);
}
static void test_alternative_case_with_branch(void)
{
powerpc: make feature-fixup tests fortify-safe Testing the fortified string functions[1] would cause a kernel panic on boot in test_feature_fixups() due to a buffer overflow in memcmp. This boils down to things like this: extern unsigned int ftr_fixup_test1; extern unsigned int ftr_fixup_test1_orig; check(memcmp(&ftr_fixup_test1, &ftr_fixup_test1_orig, size) == 0); We know that these are asm labels so it is safe to read up to 'size' bytes at those addresses. However, because we have passed the address of a single unsigned int to memcmp, the compiler believes the underlying object is in fact a single unsigned int. So if size > sizeof(unsigned int), there will be a panic at runtime. We can fix this by changing the types: instead of calling the asm labels unsigned ints, call them unsigned int[]s. Therefore the size isn't incorrectly determined at compile time and we get a regular unsafe memcmp and no panic. [1] http://openwall.com/lists/kernel-hardening/2017/05/09/2 Link: http://lkml.kernel.org/r/1497903987-21002-7-git-send-email-keescook@chromium.org Signed-off-by: Daniel Axtens <dja@axtens.net> Signed-off-by: Kees Cook <keescook@chromium.org> Suggested-by: Michael Ellerman <mpe@ellerman.id.au> Tested-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com> Reviewed-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com> Cc: Kees Cook <keescook@chromium.org> Cc: Daniel Micay <danielmicay@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-12 14:36:07 -07:00
extern unsigned int ftr_fixup_test5[];
extern unsigned int end_ftr_fixup_test5[];
extern unsigned int ftr_fixup_test5_expected[];
int size = 4 * (end_ftr_fixup_test5 - ftr_fixup_test5);
powerpc: make feature-fixup tests fortify-safe Testing the fortified string functions[1] would cause a kernel panic on boot in test_feature_fixups() due to a buffer overflow in memcmp. This boils down to things like this: extern unsigned int ftr_fixup_test1; extern unsigned int ftr_fixup_test1_orig; check(memcmp(&ftr_fixup_test1, &ftr_fixup_test1_orig, size) == 0); We know that these are asm labels so it is safe to read up to 'size' bytes at those addresses. However, because we have passed the address of a single unsigned int to memcmp, the compiler believes the underlying object is in fact a single unsigned int. So if size > sizeof(unsigned int), there will be a panic at runtime. We can fix this by changing the types: instead of calling the asm labels unsigned ints, call them unsigned int[]s. Therefore the size isn't incorrectly determined at compile time and we get a regular unsafe memcmp and no panic. [1] http://openwall.com/lists/kernel-hardening/2017/05/09/2 Link: http://lkml.kernel.org/r/1497903987-21002-7-git-send-email-keescook@chromium.org Signed-off-by: Daniel Axtens <dja@axtens.net> Signed-off-by: Kees Cook <keescook@chromium.org> Suggested-by: Michael Ellerman <mpe@ellerman.id.au> Tested-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com> Reviewed-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com> Cc: Kees Cook <keescook@chromium.org> Cc: Daniel Micay <danielmicay@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-12 14:36:07 -07:00
check(memcmp(ftr_fixup_test5, ftr_fixup_test5_expected, size) == 0);
}
static void __init test_alternative_case_with_external_branch(void)
{
powerpc: make feature-fixup tests fortify-safe Testing the fortified string functions[1] would cause a kernel panic on boot in test_feature_fixups() due to a buffer overflow in memcmp. This boils down to things like this: extern unsigned int ftr_fixup_test1; extern unsigned int ftr_fixup_test1_orig; check(memcmp(&ftr_fixup_test1, &ftr_fixup_test1_orig, size) == 0); We know that these are asm labels so it is safe to read up to 'size' bytes at those addresses. However, because we have passed the address of a single unsigned int to memcmp, the compiler believes the underlying object is in fact a single unsigned int. So if size > sizeof(unsigned int), there will be a panic at runtime. We can fix this by changing the types: instead of calling the asm labels unsigned ints, call them unsigned int[]s. Therefore the size isn't incorrectly determined at compile time and we get a regular unsafe memcmp and no panic. [1] http://openwall.com/lists/kernel-hardening/2017/05/09/2 Link: http://lkml.kernel.org/r/1497903987-21002-7-git-send-email-keescook@chromium.org Signed-off-by: Daniel Axtens <dja@axtens.net> Signed-off-by: Kees Cook <keescook@chromium.org> Suggested-by: Michael Ellerman <mpe@ellerman.id.au> Tested-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com> Reviewed-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com> Cc: Kees Cook <keescook@chromium.org> Cc: Daniel Micay <danielmicay@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-12 14:36:07 -07:00
extern unsigned int ftr_fixup_test6[];
extern unsigned int end_ftr_fixup_test6[];
extern unsigned int ftr_fixup_test6_expected[];
int size = 4 * (end_ftr_fixup_test6 - ftr_fixup_test6);
powerpc: make feature-fixup tests fortify-safe Testing the fortified string functions[1] would cause a kernel panic on boot in test_feature_fixups() due to a buffer overflow in memcmp. This boils down to things like this: extern unsigned int ftr_fixup_test1; extern unsigned int ftr_fixup_test1_orig; check(memcmp(&ftr_fixup_test1, &ftr_fixup_test1_orig, size) == 0); We know that these are asm labels so it is safe to read up to 'size' bytes at those addresses. However, because we have passed the address of a single unsigned int to memcmp, the compiler believes the underlying object is in fact a single unsigned int. So if size > sizeof(unsigned int), there will be a panic at runtime. We can fix this by changing the types: instead of calling the asm labels unsigned ints, call them unsigned int[]s. Therefore the size isn't incorrectly determined at compile time and we get a regular unsafe memcmp and no panic. [1] http://openwall.com/lists/kernel-hardening/2017/05/09/2 Link: http://lkml.kernel.org/r/1497903987-21002-7-git-send-email-keescook@chromium.org Signed-off-by: Daniel Axtens <dja@axtens.net> Signed-off-by: Kees Cook <keescook@chromium.org> Suggested-by: Michael Ellerman <mpe@ellerman.id.au> Tested-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com> Reviewed-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com> Cc: Kees Cook <keescook@chromium.org> Cc: Daniel Micay <danielmicay@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-12 14:36:07 -07:00
check(memcmp(ftr_fixup_test6, ftr_fixup_test6_expected, size) == 0);
}
static void __init test_alternative_case_with_branch_to_end(void)
{
extern unsigned int ftr_fixup_test7[];
extern unsigned int end_ftr_fixup_test7[];
extern unsigned int ftr_fixup_test7_expected[];
int size = 4 * (end_ftr_fixup_test7 - ftr_fixup_test7);
check(memcmp(ftr_fixup_test7, ftr_fixup_test7_expected, size) == 0);
}
static void __init test_cpu_macros(void)
{
powerpc: make feature-fixup tests fortify-safe Testing the fortified string functions[1] would cause a kernel panic on boot in test_feature_fixups() due to a buffer overflow in memcmp. This boils down to things like this: extern unsigned int ftr_fixup_test1; extern unsigned int ftr_fixup_test1_orig; check(memcmp(&ftr_fixup_test1, &ftr_fixup_test1_orig, size) == 0); We know that these are asm labels so it is safe to read up to 'size' bytes at those addresses. However, because we have passed the address of a single unsigned int to memcmp, the compiler believes the underlying object is in fact a single unsigned int. So if size > sizeof(unsigned int), there will be a panic at runtime. We can fix this by changing the types: instead of calling the asm labels unsigned ints, call them unsigned int[]s. Therefore the size isn't incorrectly determined at compile time and we get a regular unsafe memcmp and no panic. [1] http://openwall.com/lists/kernel-hardening/2017/05/09/2 Link: http://lkml.kernel.org/r/1497903987-21002-7-git-send-email-keescook@chromium.org Signed-off-by: Daniel Axtens <dja@axtens.net> Signed-off-by: Kees Cook <keescook@chromium.org> Suggested-by: Michael Ellerman <mpe@ellerman.id.au> Tested-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com> Reviewed-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com> Cc: Kees Cook <keescook@chromium.org> Cc: Daniel Micay <danielmicay@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-12 14:36:07 -07:00
extern u8 ftr_fixup_test_FTR_macros[];
extern u8 ftr_fixup_test_FTR_macros_expected[];
unsigned long size = ftr_fixup_test_FTR_macros_expected -
ftr_fixup_test_FTR_macros;
/* The fixups have already been done for us during boot */
powerpc: make feature-fixup tests fortify-safe Testing the fortified string functions[1] would cause a kernel panic on boot in test_feature_fixups() due to a buffer overflow in memcmp. This boils down to things like this: extern unsigned int ftr_fixup_test1; extern unsigned int ftr_fixup_test1_orig; check(memcmp(&ftr_fixup_test1, &ftr_fixup_test1_orig, size) == 0); We know that these are asm labels so it is safe to read up to 'size' bytes at those addresses. However, because we have passed the address of a single unsigned int to memcmp, the compiler believes the underlying object is in fact a single unsigned int. So if size > sizeof(unsigned int), there will be a panic at runtime. We can fix this by changing the types: instead of calling the asm labels unsigned ints, call them unsigned int[]s. Therefore the size isn't incorrectly determined at compile time and we get a regular unsafe memcmp and no panic. [1] http://openwall.com/lists/kernel-hardening/2017/05/09/2 Link: http://lkml.kernel.org/r/1497903987-21002-7-git-send-email-keescook@chromium.org Signed-off-by: Daniel Axtens <dja@axtens.net> Signed-off-by: Kees Cook <keescook@chromium.org> Suggested-by: Michael Ellerman <mpe@ellerman.id.au> Tested-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com> Reviewed-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com> Cc: Kees Cook <keescook@chromium.org> Cc: Daniel Micay <danielmicay@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-12 14:36:07 -07:00
check(memcmp(ftr_fixup_test_FTR_macros,
ftr_fixup_test_FTR_macros_expected, size) == 0);
}
static void __init test_fw_macros(void)
{
#ifdef CONFIG_PPC64
powerpc: make feature-fixup tests fortify-safe Testing the fortified string functions[1] would cause a kernel panic on boot in test_feature_fixups() due to a buffer overflow in memcmp. This boils down to things like this: extern unsigned int ftr_fixup_test1; extern unsigned int ftr_fixup_test1_orig; check(memcmp(&ftr_fixup_test1, &ftr_fixup_test1_orig, size) == 0); We know that these are asm labels so it is safe to read up to 'size' bytes at those addresses. However, because we have passed the address of a single unsigned int to memcmp, the compiler believes the underlying object is in fact a single unsigned int. So if size > sizeof(unsigned int), there will be a panic at runtime. We can fix this by changing the types: instead of calling the asm labels unsigned ints, call them unsigned int[]s. Therefore the size isn't incorrectly determined at compile time and we get a regular unsafe memcmp and no panic. [1] http://openwall.com/lists/kernel-hardening/2017/05/09/2 Link: http://lkml.kernel.org/r/1497903987-21002-7-git-send-email-keescook@chromium.org Signed-off-by: Daniel Axtens <dja@axtens.net> Signed-off-by: Kees Cook <keescook@chromium.org> Suggested-by: Michael Ellerman <mpe@ellerman.id.au> Tested-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com> Reviewed-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com> Cc: Kees Cook <keescook@chromium.org> Cc: Daniel Micay <danielmicay@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-12 14:36:07 -07:00
extern u8 ftr_fixup_test_FW_FTR_macros[];
extern u8 ftr_fixup_test_FW_FTR_macros_expected[];
unsigned long size = ftr_fixup_test_FW_FTR_macros_expected -
ftr_fixup_test_FW_FTR_macros;
/* The fixups have already been done for us during boot */
powerpc: make feature-fixup tests fortify-safe Testing the fortified string functions[1] would cause a kernel panic on boot in test_feature_fixups() due to a buffer overflow in memcmp. This boils down to things like this: extern unsigned int ftr_fixup_test1; extern unsigned int ftr_fixup_test1_orig; check(memcmp(&ftr_fixup_test1, &ftr_fixup_test1_orig, size) == 0); We know that these are asm labels so it is safe to read up to 'size' bytes at those addresses. However, because we have passed the address of a single unsigned int to memcmp, the compiler believes the underlying object is in fact a single unsigned int. So if size > sizeof(unsigned int), there will be a panic at runtime. We can fix this by changing the types: instead of calling the asm labels unsigned ints, call them unsigned int[]s. Therefore the size isn't incorrectly determined at compile time and we get a regular unsafe memcmp and no panic. [1] http://openwall.com/lists/kernel-hardening/2017/05/09/2 Link: http://lkml.kernel.org/r/1497903987-21002-7-git-send-email-keescook@chromium.org Signed-off-by: Daniel Axtens <dja@axtens.net> Signed-off-by: Kees Cook <keescook@chromium.org> Suggested-by: Michael Ellerman <mpe@ellerman.id.au> Tested-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com> Reviewed-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com> Cc: Kees Cook <keescook@chromium.org> Cc: Daniel Micay <danielmicay@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-12 14:36:07 -07:00
check(memcmp(ftr_fixup_test_FW_FTR_macros,
ftr_fixup_test_FW_FTR_macros_expected, size) == 0);
#endif
}
static void __init test_lwsync_macros(void)
{
powerpc: make feature-fixup tests fortify-safe Testing the fortified string functions[1] would cause a kernel panic on boot in test_feature_fixups() due to a buffer overflow in memcmp. This boils down to things like this: extern unsigned int ftr_fixup_test1; extern unsigned int ftr_fixup_test1_orig; check(memcmp(&ftr_fixup_test1, &ftr_fixup_test1_orig, size) == 0); We know that these are asm labels so it is safe to read up to 'size' bytes at those addresses. However, because we have passed the address of a single unsigned int to memcmp, the compiler believes the underlying object is in fact a single unsigned int. So if size > sizeof(unsigned int), there will be a panic at runtime. We can fix this by changing the types: instead of calling the asm labels unsigned ints, call them unsigned int[]s. Therefore the size isn't incorrectly determined at compile time and we get a regular unsafe memcmp and no panic. [1] http://openwall.com/lists/kernel-hardening/2017/05/09/2 Link: http://lkml.kernel.org/r/1497903987-21002-7-git-send-email-keescook@chromium.org Signed-off-by: Daniel Axtens <dja@axtens.net> Signed-off-by: Kees Cook <keescook@chromium.org> Suggested-by: Michael Ellerman <mpe@ellerman.id.au> Tested-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com> Reviewed-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com> Cc: Kees Cook <keescook@chromium.org> Cc: Daniel Micay <danielmicay@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-12 14:36:07 -07:00
extern u8 lwsync_fixup_test[];
extern u8 end_lwsync_fixup_test[];
extern u8 lwsync_fixup_test_expected_LWSYNC[];
extern u8 lwsync_fixup_test_expected_SYNC[];
unsigned long size = end_lwsync_fixup_test -
lwsync_fixup_test;
/* The fixups have already been done for us during boot */
if (cur_cpu_spec->cpu_features & CPU_FTR_LWSYNC) {
powerpc: make feature-fixup tests fortify-safe Testing the fortified string functions[1] would cause a kernel panic on boot in test_feature_fixups() due to a buffer overflow in memcmp. This boils down to things like this: extern unsigned int ftr_fixup_test1; extern unsigned int ftr_fixup_test1_orig; check(memcmp(&ftr_fixup_test1, &ftr_fixup_test1_orig, size) == 0); We know that these are asm labels so it is safe to read up to 'size' bytes at those addresses. However, because we have passed the address of a single unsigned int to memcmp, the compiler believes the underlying object is in fact a single unsigned int. So if size > sizeof(unsigned int), there will be a panic at runtime. We can fix this by changing the types: instead of calling the asm labels unsigned ints, call them unsigned int[]s. Therefore the size isn't incorrectly determined at compile time and we get a regular unsafe memcmp and no panic. [1] http://openwall.com/lists/kernel-hardening/2017/05/09/2 Link: http://lkml.kernel.org/r/1497903987-21002-7-git-send-email-keescook@chromium.org Signed-off-by: Daniel Axtens <dja@axtens.net> Signed-off-by: Kees Cook <keescook@chromium.org> Suggested-by: Michael Ellerman <mpe@ellerman.id.au> Tested-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com> Reviewed-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com> Cc: Kees Cook <keescook@chromium.org> Cc: Daniel Micay <danielmicay@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-12 14:36:07 -07:00
check(memcmp(lwsync_fixup_test,
lwsync_fixup_test_expected_LWSYNC, size) == 0);
} else {
powerpc: make feature-fixup tests fortify-safe Testing the fortified string functions[1] would cause a kernel panic on boot in test_feature_fixups() due to a buffer overflow in memcmp. This boils down to things like this: extern unsigned int ftr_fixup_test1; extern unsigned int ftr_fixup_test1_orig; check(memcmp(&ftr_fixup_test1, &ftr_fixup_test1_orig, size) == 0); We know that these are asm labels so it is safe to read up to 'size' bytes at those addresses. However, because we have passed the address of a single unsigned int to memcmp, the compiler believes the underlying object is in fact a single unsigned int. So if size > sizeof(unsigned int), there will be a panic at runtime. We can fix this by changing the types: instead of calling the asm labels unsigned ints, call them unsigned int[]s. Therefore the size isn't incorrectly determined at compile time and we get a regular unsafe memcmp and no panic. [1] http://openwall.com/lists/kernel-hardening/2017/05/09/2 Link: http://lkml.kernel.org/r/1497903987-21002-7-git-send-email-keescook@chromium.org Signed-off-by: Daniel Axtens <dja@axtens.net> Signed-off-by: Kees Cook <keescook@chromium.org> Suggested-by: Michael Ellerman <mpe@ellerman.id.au> Tested-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com> Reviewed-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com> Cc: Kees Cook <keescook@chromium.org> Cc: Daniel Micay <danielmicay@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-12 14:36:07 -07:00
check(memcmp(lwsync_fixup_test,
lwsync_fixup_test_expected_SYNC, size) == 0);
}
}
#ifdef CONFIG_PPC64
static void __init test_prefix_patching(void)
{
extern unsigned int ftr_fixup_prefix1[];
extern unsigned int end_ftr_fixup_prefix1[];
extern unsigned int ftr_fixup_prefix1_orig[];
extern unsigned int ftr_fixup_prefix1_expected[];
int size = sizeof(unsigned int) * (end_ftr_fixup_prefix1 - ftr_fixup_prefix1);
fixup.value = fixup.mask = 8;
fixup.start_off = calc_offset(&fixup, ftr_fixup_prefix1 + 1);
fixup.end_off = calc_offset(&fixup, ftr_fixup_prefix1 + 3);
fixup.alt_start_off = fixup.alt_end_off = 0;
/* Sanity check */
check(memcmp(ftr_fixup_prefix1, ftr_fixup_prefix1_orig, size) == 0);
patch_feature_section(0, &fixup);
check(memcmp(ftr_fixup_prefix1, ftr_fixup_prefix1_expected, size) == 0);
check(memcmp(ftr_fixup_prefix1, ftr_fixup_prefix1_orig, size) != 0);
}
static void __init test_prefix_alt_patching(void)
{
extern unsigned int ftr_fixup_prefix2[];
extern unsigned int end_ftr_fixup_prefix2[];
extern unsigned int ftr_fixup_prefix2_orig[];
extern unsigned int ftr_fixup_prefix2_expected[];
extern unsigned int ftr_fixup_prefix2_alt[];
int size = sizeof(unsigned int) * (end_ftr_fixup_prefix2 - ftr_fixup_prefix2);
fixup.value = fixup.mask = 8;
fixup.start_off = calc_offset(&fixup, ftr_fixup_prefix2 + 1);
fixup.end_off = calc_offset(&fixup, ftr_fixup_prefix2 + 3);
fixup.alt_start_off = calc_offset(&fixup, ftr_fixup_prefix2_alt);
fixup.alt_end_off = calc_offset(&fixup, ftr_fixup_prefix2_alt + 2);
/* Sanity check */
check(memcmp(ftr_fixup_prefix2, ftr_fixup_prefix2_orig, size) == 0);
patch_feature_section(0, &fixup);
check(memcmp(ftr_fixup_prefix2, ftr_fixup_prefix2_expected, size) == 0);
check(memcmp(ftr_fixup_prefix2, ftr_fixup_prefix2_orig, size) != 0);
}
static void __init test_prefix_word_alt_patching(void)
{
extern unsigned int ftr_fixup_prefix3[];
extern unsigned int end_ftr_fixup_prefix3[];
extern unsigned int ftr_fixup_prefix3_orig[];
extern unsigned int ftr_fixup_prefix3_expected[];
extern unsigned int ftr_fixup_prefix3_alt[];
int size = sizeof(unsigned int) * (end_ftr_fixup_prefix3 - ftr_fixup_prefix3);
fixup.value = fixup.mask = 8;
fixup.start_off = calc_offset(&fixup, ftr_fixup_prefix3 + 1);
fixup.end_off = calc_offset(&fixup, ftr_fixup_prefix3 + 4);
fixup.alt_start_off = calc_offset(&fixup, ftr_fixup_prefix3_alt);
fixup.alt_end_off = calc_offset(&fixup, ftr_fixup_prefix3_alt + 3);
/* Sanity check */
check(memcmp(ftr_fixup_prefix3, ftr_fixup_prefix3_orig, size) == 0);
patch_feature_section(0, &fixup);
check(memcmp(ftr_fixup_prefix3, ftr_fixup_prefix3_expected, size) == 0);
patch_feature_section(0, &fixup);
check(memcmp(ftr_fixup_prefix3, ftr_fixup_prefix3_orig, size) != 0);
}
#else
static inline void test_prefix_patching(void) {}
static inline void test_prefix_alt_patching(void) {}
static inline void test_prefix_word_alt_patching(void) {}
#endif /* CONFIG_PPC64 */
static int __init test_feature_fixups(void)
{
printk(KERN_DEBUG "Running feature fixup self-tests ...\n");
test_basic_patching();
test_alternative_patching();
test_alternative_case_too_big();
test_alternative_case_too_small();
test_alternative_case_with_branch();
test_alternative_case_with_external_branch();
test_alternative_case_with_branch_to_end();
test_cpu_macros();
test_fw_macros();
test_lwsync_macros();
test_prefix_patching();
test_prefix_alt_patching();
test_prefix_word_alt_patching();
return 0;
}
late_initcall(test_feature_fixups);
#endif /* CONFIG_FTR_FIXUP_SELFTEST */