linux-next/mm/hugetlb.c

2952 lines
76 KiB
C
Raw Normal View History

/*
* Generic hugetlb support.
* (C) William Irwin, April 2004
*/
#include <linux/list.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mm.h>
#include <linux/seq_file.h>
#include <linux/sysctl.h>
#include <linux/highmem.h>
mmu-notifiers: core With KVM/GFP/XPMEM there isn't just the primary CPU MMU pointing to pages. There are secondary MMUs (with secondary sptes and secondary tlbs) too. sptes in the kvm case are shadow pagetables, but when I say spte in mmu-notifier context, I mean "secondary pte". In GRU case there's no actual secondary pte and there's only a secondary tlb because the GRU secondary MMU has no knowledge about sptes and every secondary tlb miss event in the MMU always generates a page fault that has to be resolved by the CPU (this is not the case of KVM where the a secondary tlb miss will walk sptes in hardware and it will refill the secondary tlb transparently to software if the corresponding spte is present). The same way zap_page_range has to invalidate the pte before freeing the page, the spte (and secondary tlb) must also be invalidated before any page is freed and reused. Currently we take a page_count pin on every page mapped by sptes, but that means the pages can't be swapped whenever they're mapped by any spte because they're part of the guest working set. Furthermore a spte unmap event can immediately lead to a page to be freed when the pin is released (so requiring the same complex and relatively slow tlb_gather smp safe logic we have in zap_page_range and that can be avoided completely if the spte unmap event doesn't require an unpin of the page previously mapped in the secondary MMU). The mmu notifiers allow kvm/GRU/XPMEM to attach to the tsk->mm and know when the VM is swapping or freeing or doing anything on the primary MMU so that the secondary MMU code can drop sptes before the pages are freed, avoiding all page pinning and allowing 100% reliable swapping of guest physical address space. Furthermore it avoids the code that teardown the mappings of the secondary MMU, to implement a logic like tlb_gather in zap_page_range that would require many IPI to flush other cpu tlbs, for each fixed number of spte unmapped. To make an example: if what happens on the primary MMU is a protection downgrade (from writeable to wrprotect) the secondary MMU mappings will be invalidated, and the next secondary-mmu-page-fault will call get_user_pages and trigger a do_wp_page through get_user_pages if it called get_user_pages with write=1, and it'll re-establishing an updated spte or secondary-tlb-mapping on the copied page. Or it will setup a readonly spte or readonly tlb mapping if it's a guest-read, if it calls get_user_pages with write=0. This is just an example. This allows to map any page pointed by any pte (and in turn visible in the primary CPU MMU), into a secondary MMU (be it a pure tlb like GRU, or an full MMU with both sptes and secondary-tlb like the shadow-pagetable layer with kvm), or a remote DMA in software like XPMEM (hence needing of schedule in XPMEM code to send the invalidate to the remote node, while no need to schedule in kvm/gru as it's an immediate event like invalidating primary-mmu pte). At least for KVM without this patch it's impossible to swap guests reliably. And having this feature and removing the page pin allows several other optimizations that simplify life considerably. Dependencies: 1) mm_take_all_locks() to register the mmu notifier when the whole VM isn't doing anything with "mm". This allows mmu notifier users to keep track if the VM is in the middle of the invalidate_range_begin/end critical section with an atomic counter incraese in range_begin and decreased in range_end. No secondary MMU page fault is allowed to map any spte or secondary tlb reference, while the VM is in the middle of range_begin/end as any page returned by get_user_pages in that critical section could later immediately be freed without any further ->invalidate_page notification (invalidate_range_begin/end works on ranges and ->invalidate_page isn't called immediately before freeing the page). To stop all page freeing and pagetable overwrites the mmap_sem must be taken in write mode and all other anon_vma/i_mmap locks must be taken too. 2) It'd be a waste to add branches in the VM if nobody could possibly run KVM/GRU/XPMEM on the kernel, so mmu notifiers will only enabled if CONFIG_KVM=m/y. In the current kernel kvm won't yet take advantage of mmu notifiers, but this already allows to compile a KVM external module against a kernel with mmu notifiers enabled and from the next pull from kvm.git we'll start using them. And GRU/XPMEM will also be able to continue the development by enabling KVM=m in their config, until they submit all GRU/XPMEM GPLv2 code to the mainline kernel. Then they can also enable MMU_NOTIFIERS in the same way KVM does it (even if KVM=n). This guarantees nobody selects MMU_NOTIFIER=y if KVM and GRU and XPMEM are all =n. The mmu_notifier_register call can fail because mm_take_all_locks may be interrupted by a signal and return -EINTR. Because mmu_notifier_reigster is used when a driver startup, a failure can be gracefully handled. Here an example of the change applied to kvm to register the mmu notifiers. Usually when a driver startups other allocations are required anyway and -ENOMEM failure paths exists already. struct kvm *kvm_arch_create_vm(void) { struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL); + int err; if (!kvm) return ERR_PTR(-ENOMEM); INIT_LIST_HEAD(&kvm->arch.active_mmu_pages); + kvm->arch.mmu_notifier.ops = &kvm_mmu_notifier_ops; + err = mmu_notifier_register(&kvm->arch.mmu_notifier, current->mm); + if (err) { + kfree(kvm); + return ERR_PTR(err); + } + return kvm; } mmu_notifier_unregister returns void and it's reliable. The patch also adds a few needed but missing includes that would prevent kernel to compile after these changes on non-x86 archs (x86 didn't need them by luck). [akpm@linux-foundation.org: coding-style fixes] [akpm@linux-foundation.org: fix mm/filemap_xip.c build] [akpm@linux-foundation.org: fix mm/mmu_notifier.c build] Signed-off-by: Andrea Arcangeli <andrea@qumranet.com> Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Christoph Lameter <cl@linux-foundation.org> Cc: Jack Steiner <steiner@sgi.com> Cc: Robin Holt <holt@sgi.com> Cc: Nick Piggin <npiggin@suse.de> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Kanoj Sarcar <kanojsarcar@yahoo.com> Cc: Roland Dreier <rdreier@cisco.com> Cc: Steve Wise <swise@opengridcomputing.com> Cc: Avi Kivity <avi@qumranet.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Anthony Liguori <aliguori@us.ibm.com> Cc: Chris Wright <chrisw@redhat.com> Cc: Marcelo Tosatti <marcelo@kvack.org> Cc: Eric Dumazet <dada1@cosmosbay.com> Cc: "Paul E. McKenney" <paulmck@us.ibm.com> Cc: Izik Eidus <izike@qumranet.com> Cc: Anthony Liguori <aliguori@us.ibm.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-28 15:46:29 -07:00
#include <linux/mmu_notifier.h>
#include <linux/nodemask.h>
#include <linux/pagemap.h>
#include <linux/mempolicy.h>
#include <linux/cpuset.h>
[PATCH] hugepage: serialize hugepage allocation and instantiation Currently, no lock or mutex is held between allocating a hugepage and inserting it into the pagetables / page cache. When we do go to insert the page into pagetables or page cache, we recheck and may free the newly allocated hugepage. However, since the number of hugepages in the system is strictly limited, and it's usualy to want to use all of them, this can still lead to spurious allocation failures. For example, suppose two processes are both mapping (MAP_SHARED) the same hugepage file, large enough to consume the entire available hugepage pool. If they race instantiating the last page in the mapping, they will both attempt to allocate the last available hugepage. One will fail, of course, returning OOM from the fault and thus causing the process to be killed, despite the fact that the entire mapping can, in fact, be instantiated. The patch fixes this race by the simple method of adding a (sleeping) mutex to serialize the hugepage fault path between allocation and insertion into pagetables and/or page cache. It would be possible to avoid the serialization by catching the allocation failures, waiting on some condition, then rechecking to see if someone else has instantiated the page for us. Given the likely frequency of hugepage instantiations, it seems very doubtful it's worth the extra complexity. This patch causes no regression on the libhugetlbfs testsuite, and one test, which can trigger this race now passes where it previously failed. Actually, the test still sometimes fails, though less often and only as a shmat() failure, rather processes getting OOM killed by the VM. The dodgy heuristic tests in fs/hugetlbfs/inode.c for whether there's enough hugepage space aren't protected by the new mutex, and would be ugly to do so, so there's still a race there. Another patch to replace those tests with something saner for this reason as well as others coming... Signed-off-by: David Gibson <dwg@au1.ibm.com> Cc: William Lee Irwin III <wli@holomorphy.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-22 00:08:53 -08:00
#include <linux/mutex.h>
#include <linux/bootmem.h>
hugetlb: new sysfs interface Provide new hugepages user APIs that are more suited to multiple hstates in sysfs. There is a new directory, /sys/kernel/hugepages. Underneath that directory there will be a directory per-supported hugepage size, e.g.: /sys/kernel/hugepages/hugepages-64kB /sys/kernel/hugepages/hugepages-16384kB /sys/kernel/hugepages/hugepages-16777216kB corresponding to 64k, 16m and 16g respectively. Within each hugepages-size directory there are a number of files, corresponding to the tracked counters in the hstate, e.g.: /sys/kernel/hugepages/hugepages-64/nr_hugepages /sys/kernel/hugepages/hugepages-64/nr_overcommit_hugepages /sys/kernel/hugepages/hugepages-64/free_hugepages /sys/kernel/hugepages/hugepages-64/resv_hugepages /sys/kernel/hugepages/hugepages-64/surplus_hugepages Of these files, the first two are read-write and the latter three are read-only. The size of the hugepage being manipulated is trivially deducible from the enclosing directory and is always expressed in kB (to match meminfo). [dave@linux.vnet.ibm.com: fix build] [nacc@us.ibm.com: hugetlb: hang off of /sys/kernel/mm rather than /sys/kernel] [nacc@us.ibm.com: hugetlb: remove CONFIG_SYSFS dependency] Acked-by: Greg Kroah-Hartman <gregkh@suse.de> Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Dave Hansen <dave@linux.vnet.ibm.com> Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:44 -07:00
#include <linux/sysfs.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 17:04:11 +09:00
#include <linux/slab.h>
hugetlb, rmap: add reverse mapping for hugepage This patch adds reverse mapping feature for hugepage by introducing mapcount for shared/private-mapped hugepage and anon_vma for private-mapped hugepage. While hugepage is not currently swappable, reverse mapping can be useful for memory error handler. Without this patch, memory error handler cannot identify processes using the bad hugepage nor unmap it from them. That is: - for shared hugepage: we can collect processes using a hugepage through pagecache, but can not unmap the hugepage because of the lack of mapcount. - for privately mapped hugepage: we can neither collect processes nor unmap the hugepage. This patch solves these problems. This patch include the bug fix given by commit 23be7468e8, so reverts it. Dependency: "hugetlb: move definition of is_vm_hugetlb_page() to hugepage_inline.h" ChangeLog since May 24. - create hugetlb_inline.h and move is_vm_hugetlb_index() in it. - move functions setting up anon_vma for hugepage into mm/rmap.c. ChangeLog since May 13. - rebased to 2.6.34 - fix logic error (in case that private mapping and shared mapping coexist) - move is_vm_hugetlb_page() into include/linux/mm.h to use this function from linear_page_index() - define and use linear_hugepage_index() instead of compound_order() - use page_move_anon_rmap() in hugetlb_cow() - copy exclusive switch of __set_page_anon_rmap() into hugepage counterpart. - revert commit 24be7468 completely Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Larry Woodman <lwoodman@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com> Acked-by: Fengguang Wu <fengguang.wu@intel.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andi Kleen <ak@linux.intel.com>
2010-05-28 09:29:16 +09:00
#include <linux/rmap.h>
#include <linux/swap.h>
#include <linux/swapops.h>
#include <asm/page.h>
#include <asm/pgtable.h>
#include <asm/io.h>
#include <linux/hugetlb.h>
hugetlb: add per node hstate attributes Add the per huge page size control/query attributes to the per node sysdevs: /sys/devices/system/node/node<ID>/hugepages/hugepages-<size>/ nr_hugepages - r/w free_huge_pages - r/o surplus_huge_pages - r/o The patch attempts to re-use/share as much of the existing global hstate attribute initialization and handling, and the "nodes_allowed" constraint processing as possible. Calling set_max_huge_pages() with no node indicates a change to global hstate parameters. In this case, any non-default task mempolicy will be used to generate the nodes_allowed mask. A valid node id indicates an update to that node's hstate parameters, and the count argument specifies the target count for the specified node. From this info, we compute the target global count for the hstate and construct a nodes_allowed node mask contain only the specified node. Setting the node specific nr_hugepages via the per node attribute effectively ignores any task mempolicy or cpuset constraints. With this patch: (me):ls /sys/devices/system/node/node0/hugepages/hugepages-2048kB ./ ../ free_hugepages nr_hugepages surplus_hugepages Starting from: Node 0 HugePages_Total: 0 Node 0 HugePages_Free: 0 Node 0 HugePages_Surp: 0 Node 1 HugePages_Total: 0 Node 1 HugePages_Free: 0 Node 1 HugePages_Surp: 0 Node 2 HugePages_Total: 0 Node 2 HugePages_Free: 0 Node 2 HugePages_Surp: 0 Node 3 HugePages_Total: 0 Node 3 HugePages_Free: 0 Node 3 HugePages_Surp: 0 vm.nr_hugepages = 0 Allocate 16 persistent huge pages on node 2: (me):echo 16 >/sys/devices/system/node/node2/hugepages/hugepages-2048kB/nr_hugepages [Note that this is equivalent to: numactl -m 2 hugeadmin --pool-pages-min 2M:+16 ] Yields: Node 0 HugePages_Total: 0 Node 0 HugePages_Free: 0 Node 0 HugePages_Surp: 0 Node 1 HugePages_Total: 0 Node 1 HugePages_Free: 0 Node 1 HugePages_Surp: 0 Node 2 HugePages_Total: 16 Node 2 HugePages_Free: 16 Node 2 HugePages_Surp: 0 Node 3 HugePages_Total: 0 Node 3 HugePages_Free: 0 Node 3 HugePages_Surp: 0 vm.nr_hugepages = 16 Global controls work as expected--reduce pool to 8 persistent huge pages: (me):echo 8 >/sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages Node 0 HugePages_Total: 0 Node 0 HugePages_Free: 0 Node 0 HugePages_Surp: 0 Node 1 HugePages_Total: 0 Node 1 HugePages_Free: 0 Node 1 HugePages_Surp: 0 Node 2 HugePages_Total: 8 Node 2 HugePages_Free: 8 Node 2 HugePages_Surp: 0 Node 3 HugePages_Total: 0 Node 3 HugePages_Free: 0 Node 3 HugePages_Surp: 0 Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Reviewed-by: Andi Kleen <andi@firstfloor.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> Cc: Nishanth Aravamudan <nacc@us.ibm.com> Cc: David Rientjes <rientjes@google.com> Cc: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@canonical.com> Cc: Eric Whitney <eric.whitney@hp.com> Cc: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-14 17:58:25 -08:00
#include <linux/node.h>
#include "internal.h"
const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
unsigned long hugepages_treat_as_movable;
static int max_hstate;
unsigned int default_hstate_idx;
struct hstate hstates[HUGE_MAX_HSTATE];
__initdata LIST_HEAD(huge_boot_pages);
/* for command line parsing */
static struct hstate * __initdata parsed_hstate;
static unsigned long __initdata default_hstate_max_huge_pages;
static unsigned long __initdata default_hstate_size;
#define for_each_hstate(h) \
for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
[PATCH] hugepage: serialize hugepage allocation and instantiation Currently, no lock or mutex is held between allocating a hugepage and inserting it into the pagetables / page cache. When we do go to insert the page into pagetables or page cache, we recheck and may free the newly allocated hugepage. However, since the number of hugepages in the system is strictly limited, and it's usualy to want to use all of them, this can still lead to spurious allocation failures. For example, suppose two processes are both mapping (MAP_SHARED) the same hugepage file, large enough to consume the entire available hugepage pool. If they race instantiating the last page in the mapping, they will both attempt to allocate the last available hugepage. One will fail, of course, returning OOM from the fault and thus causing the process to be killed, despite the fact that the entire mapping can, in fact, be instantiated. The patch fixes this race by the simple method of adding a (sleeping) mutex to serialize the hugepage fault path between allocation and insertion into pagetables and/or page cache. It would be possible to avoid the serialization by catching the allocation failures, waiting on some condition, then rechecking to see if someone else has instantiated the page for us. Given the likely frequency of hugepage instantiations, it seems very doubtful it's worth the extra complexity. This patch causes no regression on the libhugetlbfs testsuite, and one test, which can trigger this race now passes where it previously failed. Actually, the test still sometimes fails, though less often and only as a shmat() failure, rather processes getting OOM killed by the VM. The dodgy heuristic tests in fs/hugetlbfs/inode.c for whether there's enough hugepage space aren't protected by the new mutex, and would be ugly to do so, so there's still a race there. Another patch to replace those tests with something saner for this reason as well as others coming... Signed-off-by: David Gibson <dwg@au1.ibm.com> Cc: William Lee Irwin III <wli@holomorphy.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-22 00:08:53 -08:00
/*
* Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
*/
static DEFINE_SPINLOCK(hugetlb_lock);
/*
* Region tracking -- allows tracking of reservations and instantiated pages
* across the pages in a mapping.
hugetlb reservations: fix hugetlb MAP_PRIVATE reservations across vma splits When a hugetlb mapping with a reservation is split, a new VMA is cloned from the original. This new VMA is a direct copy of the original including the reservation count. When this pair of VMAs are unmapped we will incorrect double account the unused reservation and the overall reservation count will be incorrect, in extreme cases it will wrap. The problem occurs when we split an existing VMA say to unmap a page in the middle. split_vma() will create a new VMA copying all fields from the original. As we are storing our reservation count in vm_private_data this is also copies, endowing the new VMA with a duplicate of the original VMA's reservation. Neither of the new VMAs can exhaust these reservations as they are too small, but when we unmap and close these VMAs we will incorrect credit the remainder twice and resv_huge_pages will become out of sync. This can lead to allocation failures on mappings with reservations and even to resv_huge_pages wrapping which prevents all subsequent hugepage allocations. The simple fix would be to correctly apportion the remaining reservation count when the split is made. However the only hook we have vm_ops->open only has the new VMA we do not know the identity of the preceeding VMA. Also even if we did have that VMA to hand we do not know how much of the reservation was consumed each side of the split. This patch therefore takes a different tack. We know that the whole of any private mapping (which has a reservation) has a reservation over its whole size. Any present pages represent consumed reservation. Therefore if we track the instantiated pages we can calculate the remaining reservation. This patch reuses the existing regions code to track the regions for which we have consumed reservation (ie. the instantiated pages), as each page is faulted in we record the consumption of reservation for the new page. When we need to return unused reservations at unmap time we simply count the consumed reservation region subtracting that from the whole of the map. During a VMA split the newly opened VMA will point to the same region map, as this map is offset oriented it remains valid for both of the split VMAs. This map is referenced counted so that it is removed when all VMAs which are part of the mmap are gone. Thanks to Adam Litke and Mel Gorman for their review feedback. Signed-off-by: Andy Whitcroft <apw@shadowen.org> Acked-by: Mel Gorman <mel@csn.ul.ie> Cc: Adam Litke <agl@us.ibm.com> Cc: Johannes Weiner <hannes@saeurebad.de> Cc: Andy Whitcroft <apw@shadowen.org> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Michael Kerrisk <mtk.manpages@googlemail.com> Cc: Jon Tollefson <kniht@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:32 -07:00
*
* The region data structures are protected by a combination of the mmap_sem
* and the hugetlb_instantion_mutex. To access or modify a region the caller
* must either hold the mmap_sem for write, or the mmap_sem for read and
* the hugetlb_instantiation mutex:
*
* down_write(&mm->mmap_sem);
* or
* down_read(&mm->mmap_sem);
* mutex_lock(&hugetlb_instantiation_mutex);
*/
struct file_region {
struct list_head link;
long from;
long to;
};
static long region_add(struct list_head *head, long f, long t)
{
struct file_region *rg, *nrg, *trg;
/* Locate the region we are either in or before. */
list_for_each_entry(rg, head, link)
if (f <= rg->to)
break;
/* Round our left edge to the current segment if it encloses us. */
if (f > rg->from)
f = rg->from;
/* Check for and consume any regions we now overlap with. */
nrg = rg;
list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
if (&rg->link == head)
break;
if (rg->from > t)
break;
/* If this area reaches higher then extend our area to
* include it completely. If this is not the first area
* which we intend to reuse, free it. */
if (rg->to > t)
t = rg->to;
if (rg != nrg) {
list_del(&rg->link);
kfree(rg);
}
}
nrg->from = f;
nrg->to = t;
return 0;
}
static long region_chg(struct list_head *head, long f, long t)
{
struct file_region *rg, *nrg;
long chg = 0;
/* Locate the region we are before or in. */
list_for_each_entry(rg, head, link)
if (f <= rg->to)
break;
/* If we are below the current region then a new region is required.
* Subtle, allocate a new region at the position but make it zero
* size such that we can guarantee to record the reservation. */
if (&rg->link == head || t < rg->from) {
nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
if (!nrg)
return -ENOMEM;
nrg->from = f;
nrg->to = f;
INIT_LIST_HEAD(&nrg->link);
list_add(&nrg->link, rg->link.prev);
return t - f;
}
/* Round our left edge to the current segment if it encloses us. */
if (f > rg->from)
f = rg->from;
chg = t - f;
/* Check for and consume any regions we now overlap with. */
list_for_each_entry(rg, rg->link.prev, link) {
if (&rg->link == head)
break;
if (rg->from > t)
return chg;
/* We overlap with this area, if it extends further than
* us then we must extend ourselves. Account for its
* existing reservation. */
if (rg->to > t) {
chg += rg->to - t;
t = rg->to;
}
chg -= rg->to - rg->from;
}
return chg;
}
static long region_truncate(struct list_head *head, long end)
{
struct file_region *rg, *trg;
long chg = 0;
/* Locate the region we are either in or before. */
list_for_each_entry(rg, head, link)
if (end <= rg->to)
break;
if (&rg->link == head)
return 0;
/* If we are in the middle of a region then adjust it. */
if (end > rg->from) {
chg = rg->to - end;
rg->to = end;
rg = list_entry(rg->link.next, typeof(*rg), link);
}
/* Drop any remaining regions. */
list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
if (&rg->link == head)
break;
chg += rg->to - rg->from;
list_del(&rg->link);
kfree(rg);
}
return chg;
}
hugetlb reservations: fix hugetlb MAP_PRIVATE reservations across vma splits When a hugetlb mapping with a reservation is split, a new VMA is cloned from the original. This new VMA is a direct copy of the original including the reservation count. When this pair of VMAs are unmapped we will incorrect double account the unused reservation and the overall reservation count will be incorrect, in extreme cases it will wrap. The problem occurs when we split an existing VMA say to unmap a page in the middle. split_vma() will create a new VMA copying all fields from the original. As we are storing our reservation count in vm_private_data this is also copies, endowing the new VMA with a duplicate of the original VMA's reservation. Neither of the new VMAs can exhaust these reservations as they are too small, but when we unmap and close these VMAs we will incorrect credit the remainder twice and resv_huge_pages will become out of sync. This can lead to allocation failures on mappings with reservations and even to resv_huge_pages wrapping which prevents all subsequent hugepage allocations. The simple fix would be to correctly apportion the remaining reservation count when the split is made. However the only hook we have vm_ops->open only has the new VMA we do not know the identity of the preceeding VMA. Also even if we did have that VMA to hand we do not know how much of the reservation was consumed each side of the split. This patch therefore takes a different tack. We know that the whole of any private mapping (which has a reservation) has a reservation over its whole size. Any present pages represent consumed reservation. Therefore if we track the instantiated pages we can calculate the remaining reservation. This patch reuses the existing regions code to track the regions for which we have consumed reservation (ie. the instantiated pages), as each page is faulted in we record the consumption of reservation for the new page. When we need to return unused reservations at unmap time we simply count the consumed reservation region subtracting that from the whole of the map. During a VMA split the newly opened VMA will point to the same region map, as this map is offset oriented it remains valid for both of the split VMAs. This map is referenced counted so that it is removed when all VMAs which are part of the mmap are gone. Thanks to Adam Litke and Mel Gorman for their review feedback. Signed-off-by: Andy Whitcroft <apw@shadowen.org> Acked-by: Mel Gorman <mel@csn.ul.ie> Cc: Adam Litke <agl@us.ibm.com> Cc: Johannes Weiner <hannes@saeurebad.de> Cc: Andy Whitcroft <apw@shadowen.org> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Michael Kerrisk <mtk.manpages@googlemail.com> Cc: Jon Tollefson <kniht@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:32 -07:00
static long region_count(struct list_head *head, long f, long t)
{
struct file_region *rg;
long chg = 0;
/* Locate each segment we overlap with, and count that overlap. */
list_for_each_entry(rg, head, link) {
int seg_from;
int seg_to;
if (rg->to <= f)
continue;
if (rg->from >= t)
break;
seg_from = max(rg->from, f);
seg_to = min(rg->to, t);
chg += seg_to - seg_from;
}
return chg;
}
/*
* Convert the address within this vma to the page offset within
* the mapping, in pagecache page units; huge pages here.
*/
static pgoff_t vma_hugecache_offset(struct hstate *h,
struct vm_area_struct *vma, unsigned long address)
{
return ((address - vma->vm_start) >> huge_page_shift(h)) +
(vma->vm_pgoff >> huge_page_order(h));
}
hugetlb, rmap: add reverse mapping for hugepage This patch adds reverse mapping feature for hugepage by introducing mapcount for shared/private-mapped hugepage and anon_vma for private-mapped hugepage. While hugepage is not currently swappable, reverse mapping can be useful for memory error handler. Without this patch, memory error handler cannot identify processes using the bad hugepage nor unmap it from them. That is: - for shared hugepage: we can collect processes using a hugepage through pagecache, but can not unmap the hugepage because of the lack of mapcount. - for privately mapped hugepage: we can neither collect processes nor unmap the hugepage. This patch solves these problems. This patch include the bug fix given by commit 23be7468e8, so reverts it. Dependency: "hugetlb: move definition of is_vm_hugetlb_page() to hugepage_inline.h" ChangeLog since May 24. - create hugetlb_inline.h and move is_vm_hugetlb_index() in it. - move functions setting up anon_vma for hugepage into mm/rmap.c. ChangeLog since May 13. - rebased to 2.6.34 - fix logic error (in case that private mapping and shared mapping coexist) - move is_vm_hugetlb_page() into include/linux/mm.h to use this function from linear_page_index() - define and use linear_hugepage_index() instead of compound_order() - use page_move_anon_rmap() in hugetlb_cow() - copy exclusive switch of __set_page_anon_rmap() into hugepage counterpart. - revert commit 24be7468 completely Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Larry Woodman <lwoodman@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com> Acked-by: Fengguang Wu <fengguang.wu@intel.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andi Kleen <ak@linux.intel.com>
2010-05-28 09:29:16 +09:00
pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
unsigned long address)
{
return vma_hugecache_offset(hstate_vma(vma), vma, address);
}
/*
* Return the size of the pages allocated when backing a VMA. In the majority
* cases this will be same size as used by the page table entries.
*/
unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
{
struct hstate *hstate;
if (!is_vm_hugetlb_page(vma))
return PAGE_SIZE;
hstate = hstate_vma(vma);
return 1UL << (hstate->order + PAGE_SHIFT);
}
EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
/*
* Return the page size being used by the MMU to back a VMA. In the majority
* of cases, the page size used by the kernel matches the MMU size. On
* architectures where it differs, an architecture-specific version of this
* function is required.
*/
#ifndef vma_mmu_pagesize
unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
{
return vma_kernel_pagesize(vma);
}
#endif
hugetlb reservations: fix hugetlb MAP_PRIVATE reservations across vma splits When a hugetlb mapping with a reservation is split, a new VMA is cloned from the original. This new VMA is a direct copy of the original including the reservation count. When this pair of VMAs are unmapped we will incorrect double account the unused reservation and the overall reservation count will be incorrect, in extreme cases it will wrap. The problem occurs when we split an existing VMA say to unmap a page in the middle. split_vma() will create a new VMA copying all fields from the original. As we are storing our reservation count in vm_private_data this is also copies, endowing the new VMA with a duplicate of the original VMA's reservation. Neither of the new VMAs can exhaust these reservations as they are too small, but when we unmap and close these VMAs we will incorrect credit the remainder twice and resv_huge_pages will become out of sync. This can lead to allocation failures on mappings with reservations and even to resv_huge_pages wrapping which prevents all subsequent hugepage allocations. The simple fix would be to correctly apportion the remaining reservation count when the split is made. However the only hook we have vm_ops->open only has the new VMA we do not know the identity of the preceeding VMA. Also even if we did have that VMA to hand we do not know how much of the reservation was consumed each side of the split. This patch therefore takes a different tack. We know that the whole of any private mapping (which has a reservation) has a reservation over its whole size. Any present pages represent consumed reservation. Therefore if we track the instantiated pages we can calculate the remaining reservation. This patch reuses the existing regions code to track the regions for which we have consumed reservation (ie. the instantiated pages), as each page is faulted in we record the consumption of reservation for the new page. When we need to return unused reservations at unmap time we simply count the consumed reservation region subtracting that from the whole of the map. During a VMA split the newly opened VMA will point to the same region map, as this map is offset oriented it remains valid for both of the split VMAs. This map is referenced counted so that it is removed when all VMAs which are part of the mmap are gone. Thanks to Adam Litke and Mel Gorman for their review feedback. Signed-off-by: Andy Whitcroft <apw@shadowen.org> Acked-by: Mel Gorman <mel@csn.ul.ie> Cc: Adam Litke <agl@us.ibm.com> Cc: Johannes Weiner <hannes@saeurebad.de> Cc: Andy Whitcroft <apw@shadowen.org> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Michael Kerrisk <mtk.manpages@googlemail.com> Cc: Jon Tollefson <kniht@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:32 -07:00
/*
* Flags for MAP_PRIVATE reservations. These are stored in the bottom
* bits of the reservation map pointer, which are always clear due to
* alignment.
*/
#define HPAGE_RESV_OWNER (1UL << 0)
#define HPAGE_RESV_UNMAPPED (1UL << 1)
hugetlb: guarantee that COW faults for a process that called mmap(MAP_PRIVATE) on hugetlbfs will succeed After patch 2 in this series, a process that successfully calls mmap() for a MAP_PRIVATE mapping will be guaranteed to successfully fault until a process calls fork(). At that point, the next write fault from the parent could fail due to COW if the child still has a reference. We only reserve pages for the parent but a copy must be made to avoid leaking data from the parent to the child after fork(). Reserves could be taken for both parent and child at fork time to guarantee faults but if the mapping is large it is highly likely we will not have sufficient pages for the reservation, and it is common to fork only to exec() immediatly after. A failure here would be very undesirable. Note that the current behaviour of mainline with MAP_PRIVATE pages is pretty bad. The following situation is allowed to occur today. 1. Process calls mmap(MAP_PRIVATE) 2. Process calls mlock() to fault all pages and makes sure it succeeds 3. Process forks() 4. Process writes to MAP_PRIVATE mapping while child still exists 5. If the COW fails at this point, the process gets SIGKILLed even though it had taken care to ensure the pages existed This patch improves the situation by guaranteeing the reliability of the process that successfully calls mmap(). When the parent performs COW, it will try to satisfy the allocation without using reserves. If that fails the parent will steal the page leaving any children without a page. Faults from the child after that point will result in failure. If the child COW happens first, an attempt will be made to allocate the page without reserves and the child will get SIGKILLed on failure. To summarise the new behaviour: 1. If the original mapper performs COW on a private mapping with multiple references, it will attempt to allocate a hugepage from the pool or the buddy allocator without using the existing reserves. On fail, VMAs mapping the same area are traversed and the page being COW'd is unmapped where found. It will then steal the original page as the last mapper in the normal way. 2. The VMAs the pages were unmapped from are flagged to note that pages with data no longer exist. Future no-page faults on those VMAs will terminate the process as otherwise it would appear that data was corrupted. A warning is printed to the console that this situation occured. 2. If the child performs COW first, it will attempt to satisfy the COW from the pool if there are enough pages or via the buddy allocator if overcommit is allowed and the buddy allocator can satisfy the request. If it fails, the child will be killed. If the pool is large enough, existing applications will not notice that the reserves were a factor. Existing applications depending on the no-reserves been set are unlikely to exist as for much of the history of hugetlbfs, pages were prefaulted at mmap(), allocating the pages at that point or failing the mmap(). [npiggin@suse.de: fix CONFIG_HUGETLB=n build] Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@shadowen.org> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:25 -07:00
#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
hugetlb reservations: fix hugetlb MAP_PRIVATE reservations across vma splits When a hugetlb mapping with a reservation is split, a new VMA is cloned from the original. This new VMA is a direct copy of the original including the reservation count. When this pair of VMAs are unmapped we will incorrect double account the unused reservation and the overall reservation count will be incorrect, in extreme cases it will wrap. The problem occurs when we split an existing VMA say to unmap a page in the middle. split_vma() will create a new VMA copying all fields from the original. As we are storing our reservation count in vm_private_data this is also copies, endowing the new VMA with a duplicate of the original VMA's reservation. Neither of the new VMAs can exhaust these reservations as they are too small, but when we unmap and close these VMAs we will incorrect credit the remainder twice and resv_huge_pages will become out of sync. This can lead to allocation failures on mappings with reservations and even to resv_huge_pages wrapping which prevents all subsequent hugepage allocations. The simple fix would be to correctly apportion the remaining reservation count when the split is made. However the only hook we have vm_ops->open only has the new VMA we do not know the identity of the preceeding VMA. Also even if we did have that VMA to hand we do not know how much of the reservation was consumed each side of the split. This patch therefore takes a different tack. We know that the whole of any private mapping (which has a reservation) has a reservation over its whole size. Any present pages represent consumed reservation. Therefore if we track the instantiated pages we can calculate the remaining reservation. This patch reuses the existing regions code to track the regions for which we have consumed reservation (ie. the instantiated pages), as each page is faulted in we record the consumption of reservation for the new page. When we need to return unused reservations at unmap time we simply count the consumed reservation region subtracting that from the whole of the map. During a VMA split the newly opened VMA will point to the same region map, as this map is offset oriented it remains valid for both of the split VMAs. This map is referenced counted so that it is removed when all VMAs which are part of the mmap are gone. Thanks to Adam Litke and Mel Gorman for their review feedback. Signed-off-by: Andy Whitcroft <apw@shadowen.org> Acked-by: Mel Gorman <mel@csn.ul.ie> Cc: Adam Litke <agl@us.ibm.com> Cc: Johannes Weiner <hannes@saeurebad.de> Cc: Andy Whitcroft <apw@shadowen.org> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Michael Kerrisk <mtk.manpages@googlemail.com> Cc: Jon Tollefson <kniht@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:32 -07:00
hugetlb: reserve huge pages for reliable MAP_PRIVATE hugetlbfs mappings until fork() This patch reserves huge pages at mmap() time for MAP_PRIVATE mappings in a similar manner to the reservations taken for MAP_SHARED mappings. The reserve count is accounted both globally and on a per-VMA basis for private mappings. This guarantees that a process that successfully calls mmap() will successfully fault all pages in the future unless fork() is called. The characteristics of private mappings of hugetlbfs files behaviour after this patch are; 1. The process calling mmap() is guaranteed to succeed all future faults until it forks(). 2. On fork(), the parent may die due to SIGKILL on writes to the private mapping if enough pages are not available for the COW. For reasonably reliable behaviour in the face of a small huge page pool, children of hugepage-aware processes should not reference the mappings; such as might occur when fork()ing to exec(). 3. On fork(), the child VMAs inherit no reserves. Reads on pages already faulted by the parent will succeed. Successful writes will depend on enough huge pages being free in the pool. 4. Quotas of the hugetlbfs mount are checked at reserve time for the mapper and at fault time otherwise. Before this patch, all reads or writes in the child potentially needs page allocations that can later lead to the death of the parent. This applies to reads and writes of uninstantiated pages as well as COW. After the patch it is only a write to an instantiated page that causes problems. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@shadowen.org> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:23 -07:00
/*
* These helpers are used to track how many pages are reserved for
* faults in a MAP_PRIVATE mapping. Only the process that called mmap()
* is guaranteed to have their future faults succeed.
*
* With the exception of reset_vma_resv_huge_pages() which is called at fork(),
* the reserve counters are updated with the hugetlb_lock held. It is safe
* to reset the VMA at fork() time as it is not in use yet and there is no
* chance of the global counters getting corrupted as a result of the values.
hugetlb reservations: fix hugetlb MAP_PRIVATE reservations across vma splits When a hugetlb mapping with a reservation is split, a new VMA is cloned from the original. This new VMA is a direct copy of the original including the reservation count. When this pair of VMAs are unmapped we will incorrect double account the unused reservation and the overall reservation count will be incorrect, in extreme cases it will wrap. The problem occurs when we split an existing VMA say to unmap a page in the middle. split_vma() will create a new VMA copying all fields from the original. As we are storing our reservation count in vm_private_data this is also copies, endowing the new VMA with a duplicate of the original VMA's reservation. Neither of the new VMAs can exhaust these reservations as they are too small, but when we unmap and close these VMAs we will incorrect credit the remainder twice and resv_huge_pages will become out of sync. This can lead to allocation failures on mappings with reservations and even to resv_huge_pages wrapping which prevents all subsequent hugepage allocations. The simple fix would be to correctly apportion the remaining reservation count when the split is made. However the only hook we have vm_ops->open only has the new VMA we do not know the identity of the preceeding VMA. Also even if we did have that VMA to hand we do not know how much of the reservation was consumed each side of the split. This patch therefore takes a different tack. We know that the whole of any private mapping (which has a reservation) has a reservation over its whole size. Any present pages represent consumed reservation. Therefore if we track the instantiated pages we can calculate the remaining reservation. This patch reuses the existing regions code to track the regions for which we have consumed reservation (ie. the instantiated pages), as each page is faulted in we record the consumption of reservation for the new page. When we need to return unused reservations at unmap time we simply count the consumed reservation region subtracting that from the whole of the map. During a VMA split the newly opened VMA will point to the same region map, as this map is offset oriented it remains valid for both of the split VMAs. This map is referenced counted so that it is removed when all VMAs which are part of the mmap are gone. Thanks to Adam Litke and Mel Gorman for their review feedback. Signed-off-by: Andy Whitcroft <apw@shadowen.org> Acked-by: Mel Gorman <mel@csn.ul.ie> Cc: Adam Litke <agl@us.ibm.com> Cc: Johannes Weiner <hannes@saeurebad.de> Cc: Andy Whitcroft <apw@shadowen.org> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Michael Kerrisk <mtk.manpages@googlemail.com> Cc: Jon Tollefson <kniht@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:32 -07:00
*
* The private mapping reservation is represented in a subtly different
* manner to a shared mapping. A shared mapping has a region map associated
* with the underlying file, this region map represents the backing file
* pages which have ever had a reservation assigned which this persists even
* after the page is instantiated. A private mapping has a region map
* associated with the original mmap which is attached to all VMAs which
* reference it, this region map represents those offsets which have consumed
* reservation ie. where pages have been instantiated.
hugetlb: reserve huge pages for reliable MAP_PRIVATE hugetlbfs mappings until fork() This patch reserves huge pages at mmap() time for MAP_PRIVATE mappings in a similar manner to the reservations taken for MAP_SHARED mappings. The reserve count is accounted both globally and on a per-VMA basis for private mappings. This guarantees that a process that successfully calls mmap() will successfully fault all pages in the future unless fork() is called. The characteristics of private mappings of hugetlbfs files behaviour after this patch are; 1. The process calling mmap() is guaranteed to succeed all future faults until it forks(). 2. On fork(), the parent may die due to SIGKILL on writes to the private mapping if enough pages are not available for the COW. For reasonably reliable behaviour in the face of a small huge page pool, children of hugepage-aware processes should not reference the mappings; such as might occur when fork()ing to exec(). 3. On fork(), the child VMAs inherit no reserves. Reads on pages already faulted by the parent will succeed. Successful writes will depend on enough huge pages being free in the pool. 4. Quotas of the hugetlbfs mount are checked at reserve time for the mapper and at fault time otherwise. Before this patch, all reads or writes in the child potentially needs page allocations that can later lead to the death of the parent. This applies to reads and writes of uninstantiated pages as well as COW. After the patch it is only a write to an instantiated page that causes problems. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@shadowen.org> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:23 -07:00
*/
static unsigned long get_vma_private_data(struct vm_area_struct *vma)
{
return (unsigned long)vma->vm_private_data;
}
static void set_vma_private_data(struct vm_area_struct *vma,
unsigned long value)
{
vma->vm_private_data = (void *)value;
}
hugetlb reservations: fix hugetlb MAP_PRIVATE reservations across vma splits When a hugetlb mapping with a reservation is split, a new VMA is cloned from the original. This new VMA is a direct copy of the original including the reservation count. When this pair of VMAs are unmapped we will incorrect double account the unused reservation and the overall reservation count will be incorrect, in extreme cases it will wrap. The problem occurs when we split an existing VMA say to unmap a page in the middle. split_vma() will create a new VMA copying all fields from the original. As we are storing our reservation count in vm_private_data this is also copies, endowing the new VMA with a duplicate of the original VMA's reservation. Neither of the new VMAs can exhaust these reservations as they are too small, but when we unmap and close these VMAs we will incorrect credit the remainder twice and resv_huge_pages will become out of sync. This can lead to allocation failures on mappings with reservations and even to resv_huge_pages wrapping which prevents all subsequent hugepage allocations. The simple fix would be to correctly apportion the remaining reservation count when the split is made. However the only hook we have vm_ops->open only has the new VMA we do not know the identity of the preceeding VMA. Also even if we did have that VMA to hand we do not know how much of the reservation was consumed each side of the split. This patch therefore takes a different tack. We know that the whole of any private mapping (which has a reservation) has a reservation over its whole size. Any present pages represent consumed reservation. Therefore if we track the instantiated pages we can calculate the remaining reservation. This patch reuses the existing regions code to track the regions for which we have consumed reservation (ie. the instantiated pages), as each page is faulted in we record the consumption of reservation for the new page. When we need to return unused reservations at unmap time we simply count the consumed reservation region subtracting that from the whole of the map. During a VMA split the newly opened VMA will point to the same region map, as this map is offset oriented it remains valid for both of the split VMAs. This map is referenced counted so that it is removed when all VMAs which are part of the mmap are gone. Thanks to Adam Litke and Mel Gorman for their review feedback. Signed-off-by: Andy Whitcroft <apw@shadowen.org> Acked-by: Mel Gorman <mel@csn.ul.ie> Cc: Adam Litke <agl@us.ibm.com> Cc: Johannes Weiner <hannes@saeurebad.de> Cc: Andy Whitcroft <apw@shadowen.org> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Michael Kerrisk <mtk.manpages@googlemail.com> Cc: Jon Tollefson <kniht@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:32 -07:00
struct resv_map {
struct kref refs;
struct list_head regions;
};
static struct resv_map *resv_map_alloc(void)
hugetlb reservations: fix hugetlb MAP_PRIVATE reservations across vma splits When a hugetlb mapping with a reservation is split, a new VMA is cloned from the original. This new VMA is a direct copy of the original including the reservation count. When this pair of VMAs are unmapped we will incorrect double account the unused reservation and the overall reservation count will be incorrect, in extreme cases it will wrap. The problem occurs when we split an existing VMA say to unmap a page in the middle. split_vma() will create a new VMA copying all fields from the original. As we are storing our reservation count in vm_private_data this is also copies, endowing the new VMA with a duplicate of the original VMA's reservation. Neither of the new VMAs can exhaust these reservations as they are too small, but when we unmap and close these VMAs we will incorrect credit the remainder twice and resv_huge_pages will become out of sync. This can lead to allocation failures on mappings with reservations and even to resv_huge_pages wrapping which prevents all subsequent hugepage allocations. The simple fix would be to correctly apportion the remaining reservation count when the split is made. However the only hook we have vm_ops->open only has the new VMA we do not know the identity of the preceeding VMA. Also even if we did have that VMA to hand we do not know how much of the reservation was consumed each side of the split. This patch therefore takes a different tack. We know that the whole of any private mapping (which has a reservation) has a reservation over its whole size. Any present pages represent consumed reservation. Therefore if we track the instantiated pages we can calculate the remaining reservation. This patch reuses the existing regions code to track the regions for which we have consumed reservation (ie. the instantiated pages), as each page is faulted in we record the consumption of reservation for the new page. When we need to return unused reservations at unmap time we simply count the consumed reservation region subtracting that from the whole of the map. During a VMA split the newly opened VMA will point to the same region map, as this map is offset oriented it remains valid for both of the split VMAs. This map is referenced counted so that it is removed when all VMAs which are part of the mmap are gone. Thanks to Adam Litke and Mel Gorman for their review feedback. Signed-off-by: Andy Whitcroft <apw@shadowen.org> Acked-by: Mel Gorman <mel@csn.ul.ie> Cc: Adam Litke <agl@us.ibm.com> Cc: Johannes Weiner <hannes@saeurebad.de> Cc: Andy Whitcroft <apw@shadowen.org> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Michael Kerrisk <mtk.manpages@googlemail.com> Cc: Jon Tollefson <kniht@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:32 -07:00
{
struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
if (!resv_map)
return NULL;
kref_init(&resv_map->refs);
INIT_LIST_HEAD(&resv_map->regions);
return resv_map;
}
static void resv_map_release(struct kref *ref)
hugetlb reservations: fix hugetlb MAP_PRIVATE reservations across vma splits When a hugetlb mapping with a reservation is split, a new VMA is cloned from the original. This new VMA is a direct copy of the original including the reservation count. When this pair of VMAs are unmapped we will incorrect double account the unused reservation and the overall reservation count will be incorrect, in extreme cases it will wrap. The problem occurs when we split an existing VMA say to unmap a page in the middle. split_vma() will create a new VMA copying all fields from the original. As we are storing our reservation count in vm_private_data this is also copies, endowing the new VMA with a duplicate of the original VMA's reservation. Neither of the new VMAs can exhaust these reservations as they are too small, but when we unmap and close these VMAs we will incorrect credit the remainder twice and resv_huge_pages will become out of sync. This can lead to allocation failures on mappings with reservations and even to resv_huge_pages wrapping which prevents all subsequent hugepage allocations. The simple fix would be to correctly apportion the remaining reservation count when the split is made. However the only hook we have vm_ops->open only has the new VMA we do not know the identity of the preceeding VMA. Also even if we did have that VMA to hand we do not know how much of the reservation was consumed each side of the split. This patch therefore takes a different tack. We know that the whole of any private mapping (which has a reservation) has a reservation over its whole size. Any present pages represent consumed reservation. Therefore if we track the instantiated pages we can calculate the remaining reservation. This patch reuses the existing regions code to track the regions for which we have consumed reservation (ie. the instantiated pages), as each page is faulted in we record the consumption of reservation for the new page. When we need to return unused reservations at unmap time we simply count the consumed reservation region subtracting that from the whole of the map. During a VMA split the newly opened VMA will point to the same region map, as this map is offset oriented it remains valid for both of the split VMAs. This map is referenced counted so that it is removed when all VMAs which are part of the mmap are gone. Thanks to Adam Litke and Mel Gorman for their review feedback. Signed-off-by: Andy Whitcroft <apw@shadowen.org> Acked-by: Mel Gorman <mel@csn.ul.ie> Cc: Adam Litke <agl@us.ibm.com> Cc: Johannes Weiner <hannes@saeurebad.de> Cc: Andy Whitcroft <apw@shadowen.org> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Michael Kerrisk <mtk.manpages@googlemail.com> Cc: Jon Tollefson <kniht@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:32 -07:00
{
struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
/* Clear out any active regions before we release the map. */
region_truncate(&resv_map->regions, 0);
kfree(resv_map);
}
static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
hugetlb: reserve huge pages for reliable MAP_PRIVATE hugetlbfs mappings until fork() This patch reserves huge pages at mmap() time for MAP_PRIVATE mappings in a similar manner to the reservations taken for MAP_SHARED mappings. The reserve count is accounted both globally and on a per-VMA basis for private mappings. This guarantees that a process that successfully calls mmap() will successfully fault all pages in the future unless fork() is called. The characteristics of private mappings of hugetlbfs files behaviour after this patch are; 1. The process calling mmap() is guaranteed to succeed all future faults until it forks(). 2. On fork(), the parent may die due to SIGKILL on writes to the private mapping if enough pages are not available for the COW. For reasonably reliable behaviour in the face of a small huge page pool, children of hugepage-aware processes should not reference the mappings; such as might occur when fork()ing to exec(). 3. On fork(), the child VMAs inherit no reserves. Reads on pages already faulted by the parent will succeed. Successful writes will depend on enough huge pages being free in the pool. 4. Quotas of the hugetlbfs mount are checked at reserve time for the mapper and at fault time otherwise. Before this patch, all reads or writes in the child potentially needs page allocations that can later lead to the death of the parent. This applies to reads and writes of uninstantiated pages as well as COW. After the patch it is only a write to an instantiated page that causes problems. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@shadowen.org> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:23 -07:00
{
VM_BUG_ON(!is_vm_hugetlb_page(vma));
mm: account for MAP_SHARED mappings using VM_MAYSHARE and not VM_SHARED in hugetlbfs Addresses http://bugzilla.kernel.org/show_bug.cgi?id=13302 hugetlbfs reserves huge pages but does not fault them at mmap() time to ensure that future faults succeed. The reservation behaviour differs depending on whether the mapping was mapped MAP_SHARED or MAP_PRIVATE. For MAP_SHARED mappings, hugepages are reserved when mmap() is first called and are tracked based on information associated with the inode. Other processes mapping MAP_SHARED use the same reservation. MAP_PRIVATE track the reservations based on the VMA created as part of the mmap() operation. Each process mapping MAP_PRIVATE must make its own reservation. hugetlbfs currently checks if a VMA is MAP_SHARED with the VM_SHARED flag and not VM_MAYSHARE. For file-backed mappings, such as hugetlbfs, VM_SHARED is set only if the mapping is MAP_SHARED and the file was opened read-write. If a shared memory mapping was mapped shared-read-write for populating of data and mapped shared-read-only by other processes, then hugetlbfs would account for the mapping as if it was MAP_PRIVATE. This causes processes to fail to map the file MAP_SHARED even though it should succeed as the reservation is there. This patch alters mm/hugetlb.c and replaces VM_SHARED with VM_MAYSHARE when the intent of the code was to check whether the VMA was mapped MAP_SHARED or MAP_PRIVATE. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: Ingo Molnar <mingo@elte.hu> Cc: <stable@kernel.org> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: <starlight@binnacle.cx> Cc: Eric B Munson <ebmunson@us.ibm.com> Cc: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@canonical.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-05-28 14:34:40 -07:00
if (!(vma->vm_flags & VM_MAYSHARE))
hugetlb reservations: fix hugetlb MAP_PRIVATE reservations across vma splits When a hugetlb mapping with a reservation is split, a new VMA is cloned from the original. This new VMA is a direct copy of the original including the reservation count. When this pair of VMAs are unmapped we will incorrect double account the unused reservation and the overall reservation count will be incorrect, in extreme cases it will wrap. The problem occurs when we split an existing VMA say to unmap a page in the middle. split_vma() will create a new VMA copying all fields from the original. As we are storing our reservation count in vm_private_data this is also copies, endowing the new VMA with a duplicate of the original VMA's reservation. Neither of the new VMAs can exhaust these reservations as they are too small, but when we unmap and close these VMAs we will incorrect credit the remainder twice and resv_huge_pages will become out of sync. This can lead to allocation failures on mappings with reservations and even to resv_huge_pages wrapping which prevents all subsequent hugepage allocations. The simple fix would be to correctly apportion the remaining reservation count when the split is made. However the only hook we have vm_ops->open only has the new VMA we do not know the identity of the preceeding VMA. Also even if we did have that VMA to hand we do not know how much of the reservation was consumed each side of the split. This patch therefore takes a different tack. We know that the whole of any private mapping (which has a reservation) has a reservation over its whole size. Any present pages represent consumed reservation. Therefore if we track the instantiated pages we can calculate the remaining reservation. This patch reuses the existing regions code to track the regions for which we have consumed reservation (ie. the instantiated pages), as each page is faulted in we record the consumption of reservation for the new page. When we need to return unused reservations at unmap time we simply count the consumed reservation region subtracting that from the whole of the map. During a VMA split the newly opened VMA will point to the same region map, as this map is offset oriented it remains valid for both of the split VMAs. This map is referenced counted so that it is removed when all VMAs which are part of the mmap are gone. Thanks to Adam Litke and Mel Gorman for their review feedback. Signed-off-by: Andy Whitcroft <apw@shadowen.org> Acked-by: Mel Gorman <mel@csn.ul.ie> Cc: Adam Litke <agl@us.ibm.com> Cc: Johannes Weiner <hannes@saeurebad.de> Cc: Andy Whitcroft <apw@shadowen.org> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Michael Kerrisk <mtk.manpages@googlemail.com> Cc: Jon Tollefson <kniht@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:32 -07:00
return (struct resv_map *)(get_vma_private_data(vma) &
~HPAGE_RESV_MASK);
return NULL;
hugetlb: reserve huge pages for reliable MAP_PRIVATE hugetlbfs mappings until fork() This patch reserves huge pages at mmap() time for MAP_PRIVATE mappings in a similar manner to the reservations taken for MAP_SHARED mappings. The reserve count is accounted both globally and on a per-VMA basis for private mappings. This guarantees that a process that successfully calls mmap() will successfully fault all pages in the future unless fork() is called. The characteristics of private mappings of hugetlbfs files behaviour after this patch are; 1. The process calling mmap() is guaranteed to succeed all future faults until it forks(). 2. On fork(), the parent may die due to SIGKILL on writes to the private mapping if enough pages are not available for the COW. For reasonably reliable behaviour in the face of a small huge page pool, children of hugepage-aware processes should not reference the mappings; such as might occur when fork()ing to exec(). 3. On fork(), the child VMAs inherit no reserves. Reads on pages already faulted by the parent will succeed. Successful writes will depend on enough huge pages being free in the pool. 4. Quotas of the hugetlbfs mount are checked at reserve time for the mapper and at fault time otherwise. Before this patch, all reads or writes in the child potentially needs page allocations that can later lead to the death of the parent. This applies to reads and writes of uninstantiated pages as well as COW. After the patch it is only a write to an instantiated page that causes problems. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@shadowen.org> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:23 -07:00
}
hugetlb reservations: fix hugetlb MAP_PRIVATE reservations across vma splits When a hugetlb mapping with a reservation is split, a new VMA is cloned from the original. This new VMA is a direct copy of the original including the reservation count. When this pair of VMAs are unmapped we will incorrect double account the unused reservation and the overall reservation count will be incorrect, in extreme cases it will wrap. The problem occurs when we split an existing VMA say to unmap a page in the middle. split_vma() will create a new VMA copying all fields from the original. As we are storing our reservation count in vm_private_data this is also copies, endowing the new VMA with a duplicate of the original VMA's reservation. Neither of the new VMAs can exhaust these reservations as they are too small, but when we unmap and close these VMAs we will incorrect credit the remainder twice and resv_huge_pages will become out of sync. This can lead to allocation failures on mappings with reservations and even to resv_huge_pages wrapping which prevents all subsequent hugepage allocations. The simple fix would be to correctly apportion the remaining reservation count when the split is made. However the only hook we have vm_ops->open only has the new VMA we do not know the identity of the preceeding VMA. Also even if we did have that VMA to hand we do not know how much of the reservation was consumed each side of the split. This patch therefore takes a different tack. We know that the whole of any private mapping (which has a reservation) has a reservation over its whole size. Any present pages represent consumed reservation. Therefore if we track the instantiated pages we can calculate the remaining reservation. This patch reuses the existing regions code to track the regions for which we have consumed reservation (ie. the instantiated pages), as each page is faulted in we record the consumption of reservation for the new page. When we need to return unused reservations at unmap time we simply count the consumed reservation region subtracting that from the whole of the map. During a VMA split the newly opened VMA will point to the same region map, as this map is offset oriented it remains valid for both of the split VMAs. This map is referenced counted so that it is removed when all VMAs which are part of the mmap are gone. Thanks to Adam Litke and Mel Gorman for their review feedback. Signed-off-by: Andy Whitcroft <apw@shadowen.org> Acked-by: Mel Gorman <mel@csn.ul.ie> Cc: Adam Litke <agl@us.ibm.com> Cc: Johannes Weiner <hannes@saeurebad.de> Cc: Andy Whitcroft <apw@shadowen.org> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Michael Kerrisk <mtk.manpages@googlemail.com> Cc: Jon Tollefson <kniht@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:32 -07:00
static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
hugetlb: reserve huge pages for reliable MAP_PRIVATE hugetlbfs mappings until fork() This patch reserves huge pages at mmap() time for MAP_PRIVATE mappings in a similar manner to the reservations taken for MAP_SHARED mappings. The reserve count is accounted both globally and on a per-VMA basis for private mappings. This guarantees that a process that successfully calls mmap() will successfully fault all pages in the future unless fork() is called. The characteristics of private mappings of hugetlbfs files behaviour after this patch are; 1. The process calling mmap() is guaranteed to succeed all future faults until it forks(). 2. On fork(), the parent may die due to SIGKILL on writes to the private mapping if enough pages are not available for the COW. For reasonably reliable behaviour in the face of a small huge page pool, children of hugepage-aware processes should not reference the mappings; such as might occur when fork()ing to exec(). 3. On fork(), the child VMAs inherit no reserves. Reads on pages already faulted by the parent will succeed. Successful writes will depend on enough huge pages being free in the pool. 4. Quotas of the hugetlbfs mount are checked at reserve time for the mapper and at fault time otherwise. Before this patch, all reads or writes in the child potentially needs page allocations that can later lead to the death of the parent. This applies to reads and writes of uninstantiated pages as well as COW. After the patch it is only a write to an instantiated page that causes problems. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@shadowen.org> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:23 -07:00
{
VM_BUG_ON(!is_vm_hugetlb_page(vma));
mm: account for MAP_SHARED mappings using VM_MAYSHARE and not VM_SHARED in hugetlbfs Addresses http://bugzilla.kernel.org/show_bug.cgi?id=13302 hugetlbfs reserves huge pages but does not fault them at mmap() time to ensure that future faults succeed. The reservation behaviour differs depending on whether the mapping was mapped MAP_SHARED or MAP_PRIVATE. For MAP_SHARED mappings, hugepages are reserved when mmap() is first called and are tracked based on information associated with the inode. Other processes mapping MAP_SHARED use the same reservation. MAP_PRIVATE track the reservations based on the VMA created as part of the mmap() operation. Each process mapping MAP_PRIVATE must make its own reservation. hugetlbfs currently checks if a VMA is MAP_SHARED with the VM_SHARED flag and not VM_MAYSHARE. For file-backed mappings, such as hugetlbfs, VM_SHARED is set only if the mapping is MAP_SHARED and the file was opened read-write. If a shared memory mapping was mapped shared-read-write for populating of data and mapped shared-read-only by other processes, then hugetlbfs would account for the mapping as if it was MAP_PRIVATE. This causes processes to fail to map the file MAP_SHARED even though it should succeed as the reservation is there. This patch alters mm/hugetlb.c and replaces VM_SHARED with VM_MAYSHARE when the intent of the code was to check whether the VMA was mapped MAP_SHARED or MAP_PRIVATE. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: Ingo Molnar <mingo@elte.hu> Cc: <stable@kernel.org> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: <starlight@binnacle.cx> Cc: Eric B Munson <ebmunson@us.ibm.com> Cc: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@canonical.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-05-28 14:34:40 -07:00
VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
hugetlb: reserve huge pages for reliable MAP_PRIVATE hugetlbfs mappings until fork() This patch reserves huge pages at mmap() time for MAP_PRIVATE mappings in a similar manner to the reservations taken for MAP_SHARED mappings. The reserve count is accounted both globally and on a per-VMA basis for private mappings. This guarantees that a process that successfully calls mmap() will successfully fault all pages in the future unless fork() is called. The characteristics of private mappings of hugetlbfs files behaviour after this patch are; 1. The process calling mmap() is guaranteed to succeed all future faults until it forks(). 2. On fork(), the parent may die due to SIGKILL on writes to the private mapping if enough pages are not available for the COW. For reasonably reliable behaviour in the face of a small huge page pool, children of hugepage-aware processes should not reference the mappings; such as might occur when fork()ing to exec(). 3. On fork(), the child VMAs inherit no reserves. Reads on pages already faulted by the parent will succeed. Successful writes will depend on enough huge pages being free in the pool. 4. Quotas of the hugetlbfs mount are checked at reserve time for the mapper and at fault time otherwise. Before this patch, all reads or writes in the child potentially needs page allocations that can later lead to the death of the parent. This applies to reads and writes of uninstantiated pages as well as COW. After the patch it is only a write to an instantiated page that causes problems. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@shadowen.org> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:23 -07:00
hugetlb reservations: fix hugetlb MAP_PRIVATE reservations across vma splits When a hugetlb mapping with a reservation is split, a new VMA is cloned from the original. This new VMA is a direct copy of the original including the reservation count. When this pair of VMAs are unmapped we will incorrect double account the unused reservation and the overall reservation count will be incorrect, in extreme cases it will wrap. The problem occurs when we split an existing VMA say to unmap a page in the middle. split_vma() will create a new VMA copying all fields from the original. As we are storing our reservation count in vm_private_data this is also copies, endowing the new VMA with a duplicate of the original VMA's reservation. Neither of the new VMAs can exhaust these reservations as they are too small, but when we unmap and close these VMAs we will incorrect credit the remainder twice and resv_huge_pages will become out of sync. This can lead to allocation failures on mappings with reservations and even to resv_huge_pages wrapping which prevents all subsequent hugepage allocations. The simple fix would be to correctly apportion the remaining reservation count when the split is made. However the only hook we have vm_ops->open only has the new VMA we do not know the identity of the preceeding VMA. Also even if we did have that VMA to hand we do not know how much of the reservation was consumed each side of the split. This patch therefore takes a different tack. We know that the whole of any private mapping (which has a reservation) has a reservation over its whole size. Any present pages represent consumed reservation. Therefore if we track the instantiated pages we can calculate the remaining reservation. This patch reuses the existing regions code to track the regions for which we have consumed reservation (ie. the instantiated pages), as each page is faulted in we record the consumption of reservation for the new page. When we need to return unused reservations at unmap time we simply count the consumed reservation region subtracting that from the whole of the map. During a VMA split the newly opened VMA will point to the same region map, as this map is offset oriented it remains valid for both of the split VMAs. This map is referenced counted so that it is removed when all VMAs which are part of the mmap are gone. Thanks to Adam Litke and Mel Gorman for their review feedback. Signed-off-by: Andy Whitcroft <apw@shadowen.org> Acked-by: Mel Gorman <mel@csn.ul.ie> Cc: Adam Litke <agl@us.ibm.com> Cc: Johannes Weiner <hannes@saeurebad.de> Cc: Andy Whitcroft <apw@shadowen.org> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Michael Kerrisk <mtk.manpages@googlemail.com> Cc: Jon Tollefson <kniht@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:32 -07:00
set_vma_private_data(vma, (get_vma_private_data(vma) &
HPAGE_RESV_MASK) | (unsigned long)map);
hugetlb: guarantee that COW faults for a process that called mmap(MAP_PRIVATE) on hugetlbfs will succeed After patch 2 in this series, a process that successfully calls mmap() for a MAP_PRIVATE mapping will be guaranteed to successfully fault until a process calls fork(). At that point, the next write fault from the parent could fail due to COW if the child still has a reference. We only reserve pages for the parent but a copy must be made to avoid leaking data from the parent to the child after fork(). Reserves could be taken for both parent and child at fork time to guarantee faults but if the mapping is large it is highly likely we will not have sufficient pages for the reservation, and it is common to fork only to exec() immediatly after. A failure here would be very undesirable. Note that the current behaviour of mainline with MAP_PRIVATE pages is pretty bad. The following situation is allowed to occur today. 1. Process calls mmap(MAP_PRIVATE) 2. Process calls mlock() to fault all pages and makes sure it succeeds 3. Process forks() 4. Process writes to MAP_PRIVATE mapping while child still exists 5. If the COW fails at this point, the process gets SIGKILLed even though it had taken care to ensure the pages existed This patch improves the situation by guaranteeing the reliability of the process that successfully calls mmap(). When the parent performs COW, it will try to satisfy the allocation without using reserves. If that fails the parent will steal the page leaving any children without a page. Faults from the child after that point will result in failure. If the child COW happens first, an attempt will be made to allocate the page without reserves and the child will get SIGKILLed on failure. To summarise the new behaviour: 1. If the original mapper performs COW on a private mapping with multiple references, it will attempt to allocate a hugepage from the pool or the buddy allocator without using the existing reserves. On fail, VMAs mapping the same area are traversed and the page being COW'd is unmapped where found. It will then steal the original page as the last mapper in the normal way. 2. The VMAs the pages were unmapped from are flagged to note that pages with data no longer exist. Future no-page faults on those VMAs will terminate the process as otherwise it would appear that data was corrupted. A warning is printed to the console that this situation occured. 2. If the child performs COW first, it will attempt to satisfy the COW from the pool if there are enough pages or via the buddy allocator if overcommit is allowed and the buddy allocator can satisfy the request. If it fails, the child will be killed. If the pool is large enough, existing applications will not notice that the reserves were a factor. Existing applications depending on the no-reserves been set are unlikely to exist as for much of the history of hugetlbfs, pages were prefaulted at mmap(), allocating the pages at that point or failing the mmap(). [npiggin@suse.de: fix CONFIG_HUGETLB=n build] Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@shadowen.org> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:25 -07:00
}
static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
{
VM_BUG_ON(!is_vm_hugetlb_page(vma));
mm: account for MAP_SHARED mappings using VM_MAYSHARE and not VM_SHARED in hugetlbfs Addresses http://bugzilla.kernel.org/show_bug.cgi?id=13302 hugetlbfs reserves huge pages but does not fault them at mmap() time to ensure that future faults succeed. The reservation behaviour differs depending on whether the mapping was mapped MAP_SHARED or MAP_PRIVATE. For MAP_SHARED mappings, hugepages are reserved when mmap() is first called and are tracked based on information associated with the inode. Other processes mapping MAP_SHARED use the same reservation. MAP_PRIVATE track the reservations based on the VMA created as part of the mmap() operation. Each process mapping MAP_PRIVATE must make its own reservation. hugetlbfs currently checks if a VMA is MAP_SHARED with the VM_SHARED flag and not VM_MAYSHARE. For file-backed mappings, such as hugetlbfs, VM_SHARED is set only if the mapping is MAP_SHARED and the file was opened read-write. If a shared memory mapping was mapped shared-read-write for populating of data and mapped shared-read-only by other processes, then hugetlbfs would account for the mapping as if it was MAP_PRIVATE. This causes processes to fail to map the file MAP_SHARED even though it should succeed as the reservation is there. This patch alters mm/hugetlb.c and replaces VM_SHARED with VM_MAYSHARE when the intent of the code was to check whether the VMA was mapped MAP_SHARED or MAP_PRIVATE. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: Ingo Molnar <mingo@elte.hu> Cc: <stable@kernel.org> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: <starlight@binnacle.cx> Cc: Eric B Munson <ebmunson@us.ibm.com> Cc: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@canonical.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-05-28 14:34:40 -07:00
VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
set_vma_private_data(vma, get_vma_private_data(vma) | flags);
hugetlb: guarantee that COW faults for a process that called mmap(MAP_PRIVATE) on hugetlbfs will succeed After patch 2 in this series, a process that successfully calls mmap() for a MAP_PRIVATE mapping will be guaranteed to successfully fault until a process calls fork(). At that point, the next write fault from the parent could fail due to COW if the child still has a reference. We only reserve pages for the parent but a copy must be made to avoid leaking data from the parent to the child after fork(). Reserves could be taken for both parent and child at fork time to guarantee faults but if the mapping is large it is highly likely we will not have sufficient pages for the reservation, and it is common to fork only to exec() immediatly after. A failure here would be very undesirable. Note that the current behaviour of mainline with MAP_PRIVATE pages is pretty bad. The following situation is allowed to occur today. 1. Process calls mmap(MAP_PRIVATE) 2. Process calls mlock() to fault all pages and makes sure it succeeds 3. Process forks() 4. Process writes to MAP_PRIVATE mapping while child still exists 5. If the COW fails at this point, the process gets SIGKILLed even though it had taken care to ensure the pages existed This patch improves the situation by guaranteeing the reliability of the process that successfully calls mmap(). When the parent performs COW, it will try to satisfy the allocation without using reserves. If that fails the parent will steal the page leaving any children without a page. Faults from the child after that point will result in failure. If the child COW happens first, an attempt will be made to allocate the page without reserves and the child will get SIGKILLed on failure. To summarise the new behaviour: 1. If the original mapper performs COW on a private mapping with multiple references, it will attempt to allocate a hugepage from the pool or the buddy allocator without using the existing reserves. On fail, VMAs mapping the same area are traversed and the page being COW'd is unmapped where found. It will then steal the original page as the last mapper in the normal way. 2. The VMAs the pages were unmapped from are flagged to note that pages with data no longer exist. Future no-page faults on those VMAs will terminate the process as otherwise it would appear that data was corrupted. A warning is printed to the console that this situation occured. 2. If the child performs COW first, it will attempt to satisfy the COW from the pool if there are enough pages or via the buddy allocator if overcommit is allowed and the buddy allocator can satisfy the request. If it fails, the child will be killed. If the pool is large enough, existing applications will not notice that the reserves were a factor. Existing applications depending on the no-reserves been set are unlikely to exist as for much of the history of hugetlbfs, pages were prefaulted at mmap(), allocating the pages at that point or failing the mmap(). [npiggin@suse.de: fix CONFIG_HUGETLB=n build] Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@shadowen.org> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:25 -07:00
}
static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
{
VM_BUG_ON(!is_vm_hugetlb_page(vma));
return (get_vma_private_data(vma) & flag) != 0;
hugetlb: reserve huge pages for reliable MAP_PRIVATE hugetlbfs mappings until fork() This patch reserves huge pages at mmap() time for MAP_PRIVATE mappings in a similar manner to the reservations taken for MAP_SHARED mappings. The reserve count is accounted both globally and on a per-VMA basis for private mappings. This guarantees that a process that successfully calls mmap() will successfully fault all pages in the future unless fork() is called. The characteristics of private mappings of hugetlbfs files behaviour after this patch are; 1. The process calling mmap() is guaranteed to succeed all future faults until it forks(). 2. On fork(), the parent may die due to SIGKILL on writes to the private mapping if enough pages are not available for the COW. For reasonably reliable behaviour in the face of a small huge page pool, children of hugepage-aware processes should not reference the mappings; such as might occur when fork()ing to exec(). 3. On fork(), the child VMAs inherit no reserves. Reads on pages already faulted by the parent will succeed. Successful writes will depend on enough huge pages being free in the pool. 4. Quotas of the hugetlbfs mount are checked at reserve time for the mapper and at fault time otherwise. Before this patch, all reads or writes in the child potentially needs page allocations that can later lead to the death of the parent. This applies to reads and writes of uninstantiated pages as well as COW. After the patch it is only a write to an instantiated page that causes problems. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@shadowen.org> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:23 -07:00
}
/* Decrement the reserved pages in the hugepage pool by one */
static void decrement_hugepage_resv_vma(struct hstate *h,
struct vm_area_struct *vma)
hugetlb: reserve huge pages for reliable MAP_PRIVATE hugetlbfs mappings until fork() This patch reserves huge pages at mmap() time for MAP_PRIVATE mappings in a similar manner to the reservations taken for MAP_SHARED mappings. The reserve count is accounted both globally and on a per-VMA basis for private mappings. This guarantees that a process that successfully calls mmap() will successfully fault all pages in the future unless fork() is called. The characteristics of private mappings of hugetlbfs files behaviour after this patch are; 1. The process calling mmap() is guaranteed to succeed all future faults until it forks(). 2. On fork(), the parent may die due to SIGKILL on writes to the private mapping if enough pages are not available for the COW. For reasonably reliable behaviour in the face of a small huge page pool, children of hugepage-aware processes should not reference the mappings; such as might occur when fork()ing to exec(). 3. On fork(), the child VMAs inherit no reserves. Reads on pages already faulted by the parent will succeed. Successful writes will depend on enough huge pages being free in the pool. 4. Quotas of the hugetlbfs mount are checked at reserve time for the mapper and at fault time otherwise. Before this patch, all reads or writes in the child potentially needs page allocations that can later lead to the death of the parent. This applies to reads and writes of uninstantiated pages as well as COW. After the patch it is only a write to an instantiated page that causes problems. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@shadowen.org> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:23 -07:00
{
if (vma->vm_flags & VM_NORESERVE)
return;
mm: account for MAP_SHARED mappings using VM_MAYSHARE and not VM_SHARED in hugetlbfs Addresses http://bugzilla.kernel.org/show_bug.cgi?id=13302 hugetlbfs reserves huge pages but does not fault them at mmap() time to ensure that future faults succeed. The reservation behaviour differs depending on whether the mapping was mapped MAP_SHARED or MAP_PRIVATE. For MAP_SHARED mappings, hugepages are reserved when mmap() is first called and are tracked based on information associated with the inode. Other processes mapping MAP_SHARED use the same reservation. MAP_PRIVATE track the reservations based on the VMA created as part of the mmap() operation. Each process mapping MAP_PRIVATE must make its own reservation. hugetlbfs currently checks if a VMA is MAP_SHARED with the VM_SHARED flag and not VM_MAYSHARE. For file-backed mappings, such as hugetlbfs, VM_SHARED is set only if the mapping is MAP_SHARED and the file was opened read-write. If a shared memory mapping was mapped shared-read-write for populating of data and mapped shared-read-only by other processes, then hugetlbfs would account for the mapping as if it was MAP_PRIVATE. This causes processes to fail to map the file MAP_SHARED even though it should succeed as the reservation is there. This patch alters mm/hugetlb.c and replaces VM_SHARED with VM_MAYSHARE when the intent of the code was to check whether the VMA was mapped MAP_SHARED or MAP_PRIVATE. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: Ingo Molnar <mingo@elte.hu> Cc: <stable@kernel.org> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: <starlight@binnacle.cx> Cc: Eric B Munson <ebmunson@us.ibm.com> Cc: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@canonical.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-05-28 14:34:40 -07:00
if (vma->vm_flags & VM_MAYSHARE) {
hugetlb: reserve huge pages for reliable MAP_PRIVATE hugetlbfs mappings until fork() This patch reserves huge pages at mmap() time for MAP_PRIVATE mappings in a similar manner to the reservations taken for MAP_SHARED mappings. The reserve count is accounted both globally and on a per-VMA basis for private mappings. This guarantees that a process that successfully calls mmap() will successfully fault all pages in the future unless fork() is called. The characteristics of private mappings of hugetlbfs files behaviour after this patch are; 1. The process calling mmap() is guaranteed to succeed all future faults until it forks(). 2. On fork(), the parent may die due to SIGKILL on writes to the private mapping if enough pages are not available for the COW. For reasonably reliable behaviour in the face of a small huge page pool, children of hugepage-aware processes should not reference the mappings; such as might occur when fork()ing to exec(). 3. On fork(), the child VMAs inherit no reserves. Reads on pages already faulted by the parent will succeed. Successful writes will depend on enough huge pages being free in the pool. 4. Quotas of the hugetlbfs mount are checked at reserve time for the mapper and at fault time otherwise. Before this patch, all reads or writes in the child potentially needs page allocations that can later lead to the death of the parent. This applies to reads and writes of uninstantiated pages as well as COW. After the patch it is only a write to an instantiated page that causes problems. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@shadowen.org> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:23 -07:00
/* Shared mappings always use reserves */
h->resv_huge_pages--;
hugetlb reservations: fix hugetlb MAP_PRIVATE reservations across vma splits When a hugetlb mapping with a reservation is split, a new VMA is cloned from the original. This new VMA is a direct copy of the original including the reservation count. When this pair of VMAs are unmapped we will incorrect double account the unused reservation and the overall reservation count will be incorrect, in extreme cases it will wrap. The problem occurs when we split an existing VMA say to unmap a page in the middle. split_vma() will create a new VMA copying all fields from the original. As we are storing our reservation count in vm_private_data this is also copies, endowing the new VMA with a duplicate of the original VMA's reservation. Neither of the new VMAs can exhaust these reservations as they are too small, but when we unmap and close these VMAs we will incorrect credit the remainder twice and resv_huge_pages will become out of sync. This can lead to allocation failures on mappings with reservations and even to resv_huge_pages wrapping which prevents all subsequent hugepage allocations. The simple fix would be to correctly apportion the remaining reservation count when the split is made. However the only hook we have vm_ops->open only has the new VMA we do not know the identity of the preceeding VMA. Also even if we did have that VMA to hand we do not know how much of the reservation was consumed each side of the split. This patch therefore takes a different tack. We know that the whole of any private mapping (which has a reservation) has a reservation over its whole size. Any present pages represent consumed reservation. Therefore if we track the instantiated pages we can calculate the remaining reservation. This patch reuses the existing regions code to track the regions for which we have consumed reservation (ie. the instantiated pages), as each page is faulted in we record the consumption of reservation for the new page. When we need to return unused reservations at unmap time we simply count the consumed reservation region subtracting that from the whole of the map. During a VMA split the newly opened VMA will point to the same region map, as this map is offset oriented it remains valid for both of the split VMAs. This map is referenced counted so that it is removed when all VMAs which are part of the mmap are gone. Thanks to Adam Litke and Mel Gorman for their review feedback. Signed-off-by: Andy Whitcroft <apw@shadowen.org> Acked-by: Mel Gorman <mel@csn.ul.ie> Cc: Adam Litke <agl@us.ibm.com> Cc: Johannes Weiner <hannes@saeurebad.de> Cc: Andy Whitcroft <apw@shadowen.org> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Michael Kerrisk <mtk.manpages@googlemail.com> Cc: Jon Tollefson <kniht@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:32 -07:00
} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
hugetlb: reserve huge pages for reliable MAP_PRIVATE hugetlbfs mappings until fork() This patch reserves huge pages at mmap() time for MAP_PRIVATE mappings in a similar manner to the reservations taken for MAP_SHARED mappings. The reserve count is accounted both globally and on a per-VMA basis for private mappings. This guarantees that a process that successfully calls mmap() will successfully fault all pages in the future unless fork() is called. The characteristics of private mappings of hugetlbfs files behaviour after this patch are; 1. The process calling mmap() is guaranteed to succeed all future faults until it forks(). 2. On fork(), the parent may die due to SIGKILL on writes to the private mapping if enough pages are not available for the COW. For reasonably reliable behaviour in the face of a small huge page pool, children of hugepage-aware processes should not reference the mappings; such as might occur when fork()ing to exec(). 3. On fork(), the child VMAs inherit no reserves. Reads on pages already faulted by the parent will succeed. Successful writes will depend on enough huge pages being free in the pool. 4. Quotas of the hugetlbfs mount are checked at reserve time for the mapper and at fault time otherwise. Before this patch, all reads or writes in the child potentially needs page allocations that can later lead to the death of the parent. This applies to reads and writes of uninstantiated pages as well as COW. After the patch it is only a write to an instantiated page that causes problems. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@shadowen.org> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:23 -07:00
/*
* Only the process that called mmap() has reserves for
* private mappings.
*/
h->resv_huge_pages--;
hugetlb: reserve huge pages for reliable MAP_PRIVATE hugetlbfs mappings until fork() This patch reserves huge pages at mmap() time for MAP_PRIVATE mappings in a similar manner to the reservations taken for MAP_SHARED mappings. The reserve count is accounted both globally and on a per-VMA basis for private mappings. This guarantees that a process that successfully calls mmap() will successfully fault all pages in the future unless fork() is called. The characteristics of private mappings of hugetlbfs files behaviour after this patch are; 1. The process calling mmap() is guaranteed to succeed all future faults until it forks(). 2. On fork(), the parent may die due to SIGKILL on writes to the private mapping if enough pages are not available for the COW. For reasonably reliable behaviour in the face of a small huge page pool, children of hugepage-aware processes should not reference the mappings; such as might occur when fork()ing to exec(). 3. On fork(), the child VMAs inherit no reserves. Reads on pages already faulted by the parent will succeed. Successful writes will depend on enough huge pages being free in the pool. 4. Quotas of the hugetlbfs mount are checked at reserve time for the mapper and at fault time otherwise. Before this patch, all reads or writes in the child potentially needs page allocations that can later lead to the death of the parent. This applies to reads and writes of uninstantiated pages as well as COW. After the patch it is only a write to an instantiated page that causes problems. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@shadowen.org> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:23 -07:00
}
}
hugetlb: guarantee that COW faults for a process that called mmap(MAP_PRIVATE) on hugetlbfs will succeed After patch 2 in this series, a process that successfully calls mmap() for a MAP_PRIVATE mapping will be guaranteed to successfully fault until a process calls fork(). At that point, the next write fault from the parent could fail due to COW if the child still has a reference. We only reserve pages for the parent but a copy must be made to avoid leaking data from the parent to the child after fork(). Reserves could be taken for both parent and child at fork time to guarantee faults but if the mapping is large it is highly likely we will not have sufficient pages for the reservation, and it is common to fork only to exec() immediatly after. A failure here would be very undesirable. Note that the current behaviour of mainline with MAP_PRIVATE pages is pretty bad. The following situation is allowed to occur today. 1. Process calls mmap(MAP_PRIVATE) 2. Process calls mlock() to fault all pages and makes sure it succeeds 3. Process forks() 4. Process writes to MAP_PRIVATE mapping while child still exists 5. If the COW fails at this point, the process gets SIGKILLed even though it had taken care to ensure the pages existed This patch improves the situation by guaranteeing the reliability of the process that successfully calls mmap(). When the parent performs COW, it will try to satisfy the allocation without using reserves. If that fails the parent will steal the page leaving any children without a page. Faults from the child after that point will result in failure. If the child COW happens first, an attempt will be made to allocate the page without reserves and the child will get SIGKILLed on failure. To summarise the new behaviour: 1. If the original mapper performs COW on a private mapping with multiple references, it will attempt to allocate a hugepage from the pool or the buddy allocator without using the existing reserves. On fail, VMAs mapping the same area are traversed and the page being COW'd is unmapped where found. It will then steal the original page as the last mapper in the normal way. 2. The VMAs the pages were unmapped from are flagged to note that pages with data no longer exist. Future no-page faults on those VMAs will terminate the process as otherwise it would appear that data was corrupted. A warning is printed to the console that this situation occured. 2. If the child performs COW first, it will attempt to satisfy the COW from the pool if there are enough pages or via the buddy allocator if overcommit is allowed and the buddy allocator can satisfy the request. If it fails, the child will be killed. If the pool is large enough, existing applications will not notice that the reserves were a factor. Existing applications depending on the no-reserves been set are unlikely to exist as for much of the history of hugetlbfs, pages were prefaulted at mmap(), allocating the pages at that point or failing the mmap(). [npiggin@suse.de: fix CONFIG_HUGETLB=n build] Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@shadowen.org> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:25 -07:00
/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
hugetlb: reserve huge pages for reliable MAP_PRIVATE hugetlbfs mappings until fork() This patch reserves huge pages at mmap() time for MAP_PRIVATE mappings in a similar manner to the reservations taken for MAP_SHARED mappings. The reserve count is accounted both globally and on a per-VMA basis for private mappings. This guarantees that a process that successfully calls mmap() will successfully fault all pages in the future unless fork() is called. The characteristics of private mappings of hugetlbfs files behaviour after this patch are; 1. The process calling mmap() is guaranteed to succeed all future faults until it forks(). 2. On fork(), the parent may die due to SIGKILL on writes to the private mapping if enough pages are not available for the COW. For reasonably reliable behaviour in the face of a small huge page pool, children of hugepage-aware processes should not reference the mappings; such as might occur when fork()ing to exec(). 3. On fork(), the child VMAs inherit no reserves. Reads on pages already faulted by the parent will succeed. Successful writes will depend on enough huge pages being free in the pool. 4. Quotas of the hugetlbfs mount are checked at reserve time for the mapper and at fault time otherwise. Before this patch, all reads or writes in the child potentially needs page allocations that can later lead to the death of the parent. This applies to reads and writes of uninstantiated pages as well as COW. After the patch it is only a write to an instantiated page that causes problems. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@shadowen.org> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:23 -07:00
void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
{
VM_BUG_ON(!is_vm_hugetlb_page(vma));
mm: account for MAP_SHARED mappings using VM_MAYSHARE and not VM_SHARED in hugetlbfs Addresses http://bugzilla.kernel.org/show_bug.cgi?id=13302 hugetlbfs reserves huge pages but does not fault them at mmap() time to ensure that future faults succeed. The reservation behaviour differs depending on whether the mapping was mapped MAP_SHARED or MAP_PRIVATE. For MAP_SHARED mappings, hugepages are reserved when mmap() is first called and are tracked based on information associated with the inode. Other processes mapping MAP_SHARED use the same reservation. MAP_PRIVATE track the reservations based on the VMA created as part of the mmap() operation. Each process mapping MAP_PRIVATE must make its own reservation. hugetlbfs currently checks if a VMA is MAP_SHARED with the VM_SHARED flag and not VM_MAYSHARE. For file-backed mappings, such as hugetlbfs, VM_SHARED is set only if the mapping is MAP_SHARED and the file was opened read-write. If a shared memory mapping was mapped shared-read-write for populating of data and mapped shared-read-only by other processes, then hugetlbfs would account for the mapping as if it was MAP_PRIVATE. This causes processes to fail to map the file MAP_SHARED even though it should succeed as the reservation is there. This patch alters mm/hugetlb.c and replaces VM_SHARED with VM_MAYSHARE when the intent of the code was to check whether the VMA was mapped MAP_SHARED or MAP_PRIVATE. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: Ingo Molnar <mingo@elte.hu> Cc: <stable@kernel.org> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: <starlight@binnacle.cx> Cc: Eric B Munson <ebmunson@us.ibm.com> Cc: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@canonical.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-05-28 14:34:40 -07:00
if (!(vma->vm_flags & VM_MAYSHARE))
hugetlb: reserve huge pages for reliable MAP_PRIVATE hugetlbfs mappings until fork() This patch reserves huge pages at mmap() time for MAP_PRIVATE mappings in a similar manner to the reservations taken for MAP_SHARED mappings. The reserve count is accounted both globally and on a per-VMA basis for private mappings. This guarantees that a process that successfully calls mmap() will successfully fault all pages in the future unless fork() is called. The characteristics of private mappings of hugetlbfs files behaviour after this patch are; 1. The process calling mmap() is guaranteed to succeed all future faults until it forks(). 2. On fork(), the parent may die due to SIGKILL on writes to the private mapping if enough pages are not available for the COW. For reasonably reliable behaviour in the face of a small huge page pool, children of hugepage-aware processes should not reference the mappings; such as might occur when fork()ing to exec(). 3. On fork(), the child VMAs inherit no reserves. Reads on pages already faulted by the parent will succeed. Successful writes will depend on enough huge pages being free in the pool. 4. Quotas of the hugetlbfs mount are checked at reserve time for the mapper and at fault time otherwise. Before this patch, all reads or writes in the child potentially needs page allocations that can later lead to the death of the parent. This applies to reads and writes of uninstantiated pages as well as COW. After the patch it is only a write to an instantiated page that causes problems. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@shadowen.org> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:23 -07:00
vma->vm_private_data = (void *)0;
}
/* Returns true if the VMA has associated reserve pages */
static int vma_has_reserves(struct vm_area_struct *vma)
hugetlb: reserve huge pages for reliable MAP_PRIVATE hugetlbfs mappings until fork() This patch reserves huge pages at mmap() time for MAP_PRIVATE mappings in a similar manner to the reservations taken for MAP_SHARED mappings. The reserve count is accounted both globally and on a per-VMA basis for private mappings. This guarantees that a process that successfully calls mmap() will successfully fault all pages in the future unless fork() is called. The characteristics of private mappings of hugetlbfs files behaviour after this patch are; 1. The process calling mmap() is guaranteed to succeed all future faults until it forks(). 2. On fork(), the parent may die due to SIGKILL on writes to the private mapping if enough pages are not available for the COW. For reasonably reliable behaviour in the face of a small huge page pool, children of hugepage-aware processes should not reference the mappings; such as might occur when fork()ing to exec(). 3. On fork(), the child VMAs inherit no reserves. Reads on pages already faulted by the parent will succeed. Successful writes will depend on enough huge pages being free in the pool. 4. Quotas of the hugetlbfs mount are checked at reserve time for the mapper and at fault time otherwise. Before this patch, all reads or writes in the child potentially needs page allocations that can later lead to the death of the parent. This applies to reads and writes of uninstantiated pages as well as COW. After the patch it is only a write to an instantiated page that causes problems. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@shadowen.org> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:23 -07:00
{
mm: account for MAP_SHARED mappings using VM_MAYSHARE and not VM_SHARED in hugetlbfs Addresses http://bugzilla.kernel.org/show_bug.cgi?id=13302 hugetlbfs reserves huge pages but does not fault them at mmap() time to ensure that future faults succeed. The reservation behaviour differs depending on whether the mapping was mapped MAP_SHARED or MAP_PRIVATE. For MAP_SHARED mappings, hugepages are reserved when mmap() is first called and are tracked based on information associated with the inode. Other processes mapping MAP_SHARED use the same reservation. MAP_PRIVATE track the reservations based on the VMA created as part of the mmap() operation. Each process mapping MAP_PRIVATE must make its own reservation. hugetlbfs currently checks if a VMA is MAP_SHARED with the VM_SHARED flag and not VM_MAYSHARE. For file-backed mappings, such as hugetlbfs, VM_SHARED is set only if the mapping is MAP_SHARED and the file was opened read-write. If a shared memory mapping was mapped shared-read-write for populating of data and mapped shared-read-only by other processes, then hugetlbfs would account for the mapping as if it was MAP_PRIVATE. This causes processes to fail to map the file MAP_SHARED even though it should succeed as the reservation is there. This patch alters mm/hugetlb.c and replaces VM_SHARED with VM_MAYSHARE when the intent of the code was to check whether the VMA was mapped MAP_SHARED or MAP_PRIVATE. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: Ingo Molnar <mingo@elte.hu> Cc: <stable@kernel.org> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: <starlight@binnacle.cx> Cc: Eric B Munson <ebmunson@us.ibm.com> Cc: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@canonical.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-05-28 14:34:40 -07:00
if (vma->vm_flags & VM_MAYSHARE)
return 1;
if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
return 1;
return 0;
hugetlb: reserve huge pages for reliable MAP_PRIVATE hugetlbfs mappings until fork() This patch reserves huge pages at mmap() time for MAP_PRIVATE mappings in a similar manner to the reservations taken for MAP_SHARED mappings. The reserve count is accounted both globally and on a per-VMA basis for private mappings. This guarantees that a process that successfully calls mmap() will successfully fault all pages in the future unless fork() is called. The characteristics of private mappings of hugetlbfs files behaviour after this patch are; 1. The process calling mmap() is guaranteed to succeed all future faults until it forks(). 2. On fork(), the parent may die due to SIGKILL on writes to the private mapping if enough pages are not available for the COW. For reasonably reliable behaviour in the face of a small huge page pool, children of hugepage-aware processes should not reference the mappings; such as might occur when fork()ing to exec(). 3. On fork(), the child VMAs inherit no reserves. Reads on pages already faulted by the parent will succeed. Successful writes will depend on enough huge pages being free in the pool. 4. Quotas of the hugetlbfs mount are checked at reserve time for the mapper and at fault time otherwise. Before this patch, all reads or writes in the child potentially needs page allocations that can later lead to the death of the parent. This applies to reads and writes of uninstantiated pages as well as COW. After the patch it is only a write to an instantiated page that causes problems. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@shadowen.org> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:23 -07:00
}
static void copy_gigantic_page(struct page *dst, struct page *src)
{
int i;
struct hstate *h = page_hstate(src);
struct page *dst_base = dst;
struct page *src_base = src;
for (i = 0; i < pages_per_huge_page(h); ) {
cond_resched();
copy_highpage(dst, src);
i++;
dst = mem_map_next(dst, dst_base, i);
src = mem_map_next(src, src_base, i);
}
}
void copy_huge_page(struct page *dst, struct page *src)
{
int i;
struct hstate *h = page_hstate(src);
if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
copy_gigantic_page(dst, src);
return;
}
might_sleep();
for (i = 0; i < pages_per_huge_page(h); i++) {
cond_resched();
copy_highpage(dst + i, src + i);
}
}
static void enqueue_huge_page(struct hstate *h, struct page *page)
{
int nid = page_to_nid(page);
list_add(&page->lru, &h->hugepage_freelists[nid]);
h->free_huge_pages++;
h->free_huge_pages_node[nid]++;
}
static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
{
struct page *page;
if (list_empty(&h->hugepage_freelists[nid]))
return NULL;
page = list_entry(h->hugepage_freelists[nid].next, struct page, lru);
list_del(&page->lru);
set_page_refcounted(page);
h->free_huge_pages--;
h->free_huge_pages_node[nid]--;
return page;
}
static struct page *dequeue_huge_page_vma(struct hstate *h,
struct vm_area_struct *vma,
hugetlb: guarantee that COW faults for a process that called mmap(MAP_PRIVATE) on hugetlbfs will succeed After patch 2 in this series, a process that successfully calls mmap() for a MAP_PRIVATE mapping will be guaranteed to successfully fault until a process calls fork(). At that point, the next write fault from the parent could fail due to COW if the child still has a reference. We only reserve pages for the parent but a copy must be made to avoid leaking data from the parent to the child after fork(). Reserves could be taken for both parent and child at fork time to guarantee faults but if the mapping is large it is highly likely we will not have sufficient pages for the reservation, and it is common to fork only to exec() immediatly after. A failure here would be very undesirable. Note that the current behaviour of mainline with MAP_PRIVATE pages is pretty bad. The following situation is allowed to occur today. 1. Process calls mmap(MAP_PRIVATE) 2. Process calls mlock() to fault all pages and makes sure it succeeds 3. Process forks() 4. Process writes to MAP_PRIVATE mapping while child still exists 5. If the COW fails at this point, the process gets SIGKILLed even though it had taken care to ensure the pages existed This patch improves the situation by guaranteeing the reliability of the process that successfully calls mmap(). When the parent performs COW, it will try to satisfy the allocation without using reserves. If that fails the parent will steal the page leaving any children without a page. Faults from the child after that point will result in failure. If the child COW happens first, an attempt will be made to allocate the page without reserves and the child will get SIGKILLed on failure. To summarise the new behaviour: 1. If the original mapper performs COW on a private mapping with multiple references, it will attempt to allocate a hugepage from the pool or the buddy allocator without using the existing reserves. On fail, VMAs mapping the same area are traversed and the page being COW'd is unmapped where found. It will then steal the original page as the last mapper in the normal way. 2. The VMAs the pages were unmapped from are flagged to note that pages with data no longer exist. Future no-page faults on those VMAs will terminate the process as otherwise it would appear that data was corrupted. A warning is printed to the console that this situation occured. 2. If the child performs COW first, it will attempt to satisfy the COW from the pool if there are enough pages or via the buddy allocator if overcommit is allowed and the buddy allocator can satisfy the request. If it fails, the child will be killed. If the pool is large enough, existing applications will not notice that the reserves were a factor. Existing applications depending on the no-reserves been set are unlikely to exist as for much of the history of hugetlbfs, pages were prefaulted at mmap(), allocating the pages at that point or failing the mmap(). [npiggin@suse.de: fix CONFIG_HUGETLB=n build] Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@shadowen.org> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:25 -07:00
unsigned long address, int avoid_reserve)
{
struct page *page = NULL;
Fix NUMA Memory Policy Reference Counting This patch proposes fixes to the reference counting of memory policy in the page allocation paths and in show_numa_map(). Extracted from my "Memory Policy Cleanups and Enhancements" series as stand-alone. Shared policy lookup [shmem] has always added a reference to the policy, but this was never unrefed after page allocation or after formatting the numa map data. Default system policy should not require additional ref counting, nor should the current task's task policy. However, show_numa_map() calls get_vma_policy() to examine what may be [likely is] another task's policy. The latter case needs protection against freeing of the policy. This patch adds a reference count to a mempolicy returned by get_vma_policy() when the policy is a vma policy or another task's mempolicy. Again, shared policy is already reference counted on lookup. A matching "unref" [__mpol_free()] is performed in alloc_page_vma() for shared and vma policies, and in show_numa_map() for shared and another task's mempolicy. We can call __mpol_free() directly, saving an admittedly inexpensive inline NULL test, because we know we have a non-NULL policy. Handling policy ref counts for hugepages is a bit trickier. huge_zonelist() returns a zone list that might come from a shared or vma 'BIND policy. In this case, we should hold the reference until after the huge page allocation in dequeue_hugepage(). The patch modifies huge_zonelist() to return a pointer to the mempolicy if it needs to be unref'd after allocation. Kernel Build [16cpu, 32GB, ia64] - average of 10 runs: w/o patch w/ refcount patch Avg Std Devn Avg Std Devn Real: 100.59 0.38 100.63 0.43 User: 1209.60 0.37 1209.91 0.31 System: 81.52 0.42 81.64 0.34 Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Acked-by: Andi Kleen <ak@suse.de> Cc: Christoph Lameter <clameter@sgi.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-09-18 22:46:47 -07:00
struct mempolicy *mpol;
nodemask_t *nodemask;
cpuset,mm: fix no node to alloc memory when changing cpuset's mems Before applying this patch, cpuset updates task->mems_allowed and mempolicy by setting all new bits in the nodemask first, and clearing all old unallowed bits later. But in the way, the allocator may find that there is no node to alloc memory. The reason is that cpuset rebinds the task's mempolicy, it cleans the nodes which the allocater can alloc pages on, for example: (mpol: mempolicy) task1 task1's mpol task2 alloc page 1 alloc on node0? NO 1 1 change mems from 1 to 0 1 rebind task1's mpol 0-1 set new bits 0 clear disallowed bits alloc on node1? NO 0 ... can't alloc page goto oom This patch fixes this problem by expanding the nodes range first(set newly allowed bits) and shrink it lazily(clear newly disallowed bits). So we use a variable to tell the write-side task that read-side task is reading nodemask, and the write-side task clears newly disallowed nodes after read-side task ends the current memory allocation. [akpm@linux-foundation.org: fix spello] Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Cc: Nick Piggin <npiggin@suse.de> Cc: Paul Menage <menage@google.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: Ravikiran Thirumalai <kiran@scalex86.org> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Andi Kleen <andi@firstfloor.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-05-24 14:32:08 -07:00
struct zonelist *zonelist;
mm: have zonelist contains structs with both a zone pointer and zone_idx Filtering zonelists requires very frequent use of zone_idx(). This is costly as it involves a lookup of another structure and a substraction operation. As the zone_idx is often required, it should be quickly accessible. The node idx could also be stored here if it was found that accessing zone->node is significant which may be the case on workloads where nodemasks are heavily used. This patch introduces a struct zoneref to store a zone pointer and a zone index. The zonelist then consists of an array of these struct zonerefs which are looked up as necessary. Helpers are given for accessing the zone index as well as the node index. [kamezawa.hiroyu@jp.fujitsu.com: Suggested struct zoneref instead of embedding information in pointers] [hugh@veritas.com: mm-have-zonelist: fix memcg ooms] [hugh@veritas.com: just return do_try_to_free_pages] [hugh@veritas.com: do_try_to_free_pages gfp_mask redundant] Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Christoph Lameter <clameter@sgi.com> Acked-by: David Rientjes <rientjes@google.com> Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Christoph Lameter <clameter@sgi.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 02:12:17 -07:00
struct zone *zone;
struct zoneref *z;
cpuset,mm: fix no node to alloc memory when changing cpuset's mems Before applying this patch, cpuset updates task->mems_allowed and mempolicy by setting all new bits in the nodemask first, and clearing all old unallowed bits later. But in the way, the allocator may find that there is no node to alloc memory. The reason is that cpuset rebinds the task's mempolicy, it cleans the nodes which the allocater can alloc pages on, for example: (mpol: mempolicy) task1 task1's mpol task2 alloc page 1 alloc on node0? NO 1 1 change mems from 1 to 0 1 rebind task1's mpol 0-1 set new bits 0 clear disallowed bits alloc on node1? NO 0 ... can't alloc page goto oom This patch fixes this problem by expanding the nodes range first(set newly allowed bits) and shrink it lazily(clear newly disallowed bits). So we use a variable to tell the write-side task that read-side task is reading nodemask, and the write-side task clears newly disallowed nodes after read-side task ends the current memory allocation. [akpm@linux-foundation.org: fix spello] Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Cc: Nick Piggin <npiggin@suse.de> Cc: Paul Menage <menage@google.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: Ravikiran Thirumalai <kiran@scalex86.org> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Andi Kleen <andi@firstfloor.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-05-24 14:32:08 -07:00
get_mems_allowed();
zonelist = huge_zonelist(vma, address,
htlb_alloc_mask, &mpol, &nodemask);
hugetlb: reserve huge pages for reliable MAP_PRIVATE hugetlbfs mappings until fork() This patch reserves huge pages at mmap() time for MAP_PRIVATE mappings in a similar manner to the reservations taken for MAP_SHARED mappings. The reserve count is accounted both globally and on a per-VMA basis for private mappings. This guarantees that a process that successfully calls mmap() will successfully fault all pages in the future unless fork() is called. The characteristics of private mappings of hugetlbfs files behaviour after this patch are; 1. The process calling mmap() is guaranteed to succeed all future faults until it forks(). 2. On fork(), the parent may die due to SIGKILL on writes to the private mapping if enough pages are not available for the COW. For reasonably reliable behaviour in the face of a small huge page pool, children of hugepage-aware processes should not reference the mappings; such as might occur when fork()ing to exec(). 3. On fork(), the child VMAs inherit no reserves. Reads on pages already faulted by the parent will succeed. Successful writes will depend on enough huge pages being free in the pool. 4. Quotas of the hugetlbfs mount are checked at reserve time for the mapper and at fault time otherwise. Before this patch, all reads or writes in the child potentially needs page allocations that can later lead to the death of the parent. This applies to reads and writes of uninstantiated pages as well as COW. After the patch it is only a write to an instantiated page that causes problems. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@shadowen.org> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:23 -07:00
/*
* A child process with MAP_PRIVATE mappings created by their parent
* have no page reserves. This check ensures that reservations are
* not "stolen". The child may still get SIGKILLed
*/
if (!vma_has_reserves(vma) &&
h->free_huge_pages - h->resv_huge_pages == 0)
cpuset,mm: fix no node to alloc memory when changing cpuset's mems Before applying this patch, cpuset updates task->mems_allowed and mempolicy by setting all new bits in the nodemask first, and clearing all old unallowed bits later. But in the way, the allocator may find that there is no node to alloc memory. The reason is that cpuset rebinds the task's mempolicy, it cleans the nodes which the allocater can alloc pages on, for example: (mpol: mempolicy) task1 task1's mpol task2 alloc page 1 alloc on node0? NO 1 1 change mems from 1 to 0 1 rebind task1's mpol 0-1 set new bits 0 clear disallowed bits alloc on node1? NO 0 ... can't alloc page goto oom This patch fixes this problem by expanding the nodes range first(set newly allowed bits) and shrink it lazily(clear newly disallowed bits). So we use a variable to tell the write-side task that read-side task is reading nodemask, and the write-side task clears newly disallowed nodes after read-side task ends the current memory allocation. [akpm@linux-foundation.org: fix spello] Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Cc: Nick Piggin <npiggin@suse.de> Cc: Paul Menage <menage@google.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: Ravikiran Thirumalai <kiran@scalex86.org> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Andi Kleen <andi@firstfloor.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-05-24 14:32:08 -07:00
goto err;
hugetlb: reserve huge pages for reliable MAP_PRIVATE hugetlbfs mappings until fork() This patch reserves huge pages at mmap() time for MAP_PRIVATE mappings in a similar manner to the reservations taken for MAP_SHARED mappings. The reserve count is accounted both globally and on a per-VMA basis for private mappings. This guarantees that a process that successfully calls mmap() will successfully fault all pages in the future unless fork() is called. The characteristics of private mappings of hugetlbfs files behaviour after this patch are; 1. The process calling mmap() is guaranteed to succeed all future faults until it forks(). 2. On fork(), the parent may die due to SIGKILL on writes to the private mapping if enough pages are not available for the COW. For reasonably reliable behaviour in the face of a small huge page pool, children of hugepage-aware processes should not reference the mappings; such as might occur when fork()ing to exec(). 3. On fork(), the child VMAs inherit no reserves. Reads on pages already faulted by the parent will succeed. Successful writes will depend on enough huge pages being free in the pool. 4. Quotas of the hugetlbfs mount are checked at reserve time for the mapper and at fault time otherwise. Before this patch, all reads or writes in the child potentially needs page allocations that can later lead to the death of the parent. This applies to reads and writes of uninstantiated pages as well as COW. After the patch it is only a write to an instantiated page that causes problems. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@shadowen.org> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:23 -07:00
hugetlb: guarantee that COW faults for a process that called mmap(MAP_PRIVATE) on hugetlbfs will succeed After patch 2 in this series, a process that successfully calls mmap() for a MAP_PRIVATE mapping will be guaranteed to successfully fault until a process calls fork(). At that point, the next write fault from the parent could fail due to COW if the child still has a reference. We only reserve pages for the parent but a copy must be made to avoid leaking data from the parent to the child after fork(). Reserves could be taken for both parent and child at fork time to guarantee faults but if the mapping is large it is highly likely we will not have sufficient pages for the reservation, and it is common to fork only to exec() immediatly after. A failure here would be very undesirable. Note that the current behaviour of mainline with MAP_PRIVATE pages is pretty bad. The following situation is allowed to occur today. 1. Process calls mmap(MAP_PRIVATE) 2. Process calls mlock() to fault all pages and makes sure it succeeds 3. Process forks() 4. Process writes to MAP_PRIVATE mapping while child still exists 5. If the COW fails at this point, the process gets SIGKILLed even though it had taken care to ensure the pages existed This patch improves the situation by guaranteeing the reliability of the process that successfully calls mmap(). When the parent performs COW, it will try to satisfy the allocation without using reserves. If that fails the parent will steal the page leaving any children without a page. Faults from the child after that point will result in failure. If the child COW happens first, an attempt will be made to allocate the page without reserves and the child will get SIGKILLed on failure. To summarise the new behaviour: 1. If the original mapper performs COW on a private mapping with multiple references, it will attempt to allocate a hugepage from the pool or the buddy allocator without using the existing reserves. On fail, VMAs mapping the same area are traversed and the page being COW'd is unmapped where found. It will then steal the original page as the last mapper in the normal way. 2. The VMAs the pages were unmapped from are flagged to note that pages with data no longer exist. Future no-page faults on those VMAs will terminate the process as otherwise it would appear that data was corrupted. A warning is printed to the console that this situation occured. 2. If the child performs COW first, it will attempt to satisfy the COW from the pool if there are enough pages or via the buddy allocator if overcommit is allowed and the buddy allocator can satisfy the request. If it fails, the child will be killed. If the pool is large enough, existing applications will not notice that the reserves were a factor. Existing applications depending on the no-reserves been set are unlikely to exist as for much of the history of hugetlbfs, pages were prefaulted at mmap(), allocating the pages at that point or failing the mmap(). [npiggin@suse.de: fix CONFIG_HUGETLB=n build] Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@shadowen.org> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:25 -07:00
/* If reserves cannot be used, ensure enough pages are in the pool */
if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
goto err;
hugetlb: guarantee that COW faults for a process that called mmap(MAP_PRIVATE) on hugetlbfs will succeed After patch 2 in this series, a process that successfully calls mmap() for a MAP_PRIVATE mapping will be guaranteed to successfully fault until a process calls fork(). At that point, the next write fault from the parent could fail due to COW if the child still has a reference. We only reserve pages for the parent but a copy must be made to avoid leaking data from the parent to the child after fork(). Reserves could be taken for both parent and child at fork time to guarantee faults but if the mapping is large it is highly likely we will not have sufficient pages for the reservation, and it is common to fork only to exec() immediatly after. A failure here would be very undesirable. Note that the current behaviour of mainline with MAP_PRIVATE pages is pretty bad. The following situation is allowed to occur today. 1. Process calls mmap(MAP_PRIVATE) 2. Process calls mlock() to fault all pages and makes sure it succeeds 3. Process forks() 4. Process writes to MAP_PRIVATE mapping while child still exists 5. If the COW fails at this point, the process gets SIGKILLed even though it had taken care to ensure the pages existed This patch improves the situation by guaranteeing the reliability of the process that successfully calls mmap(). When the parent performs COW, it will try to satisfy the allocation without using reserves. If that fails the parent will steal the page leaving any children without a page. Faults from the child after that point will result in failure. If the child COW happens first, an attempt will be made to allocate the page without reserves and the child will get SIGKILLed on failure. To summarise the new behaviour: 1. If the original mapper performs COW on a private mapping with multiple references, it will attempt to allocate a hugepage from the pool or the buddy allocator without using the existing reserves. On fail, VMAs mapping the same area are traversed and the page being COW'd is unmapped where found. It will then steal the original page as the last mapper in the normal way. 2. The VMAs the pages were unmapped from are flagged to note that pages with data no longer exist. Future no-page faults on those VMAs will terminate the process as otherwise it would appear that data was corrupted. A warning is printed to the console that this situation occured. 2. If the child performs COW first, it will attempt to satisfy the COW from the pool if there are enough pages or via the buddy allocator if overcommit is allowed and the buddy allocator can satisfy the request. If it fails, the child will be killed. If the pool is large enough, existing applications will not notice that the reserves were a factor. Existing applications depending on the no-reserves been set are unlikely to exist as for much of the history of hugetlbfs, pages were prefaulted at mmap(), allocating the pages at that point or failing the mmap(). [npiggin@suse.de: fix CONFIG_HUGETLB=n build] Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@shadowen.org> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:25 -07:00
for_each_zone_zonelist_nodemask(zone, z, zonelist,
MAX_NR_ZONES - 1, nodemask) {
if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) {
page = dequeue_huge_page_node(h, zone_to_nid(zone));
if (page) {
if (!avoid_reserve)
decrement_hugepage_resv_vma(h, vma);
break;
}
}
}
cpuset,mm: fix no node to alloc memory when changing cpuset's mems Before applying this patch, cpuset updates task->mems_allowed and mempolicy by setting all new bits in the nodemask first, and clearing all old unallowed bits later. But in the way, the allocator may find that there is no node to alloc memory. The reason is that cpuset rebinds the task's mempolicy, it cleans the nodes which the allocater can alloc pages on, for example: (mpol: mempolicy) task1 task1's mpol task2 alloc page 1 alloc on node0? NO 1 1 change mems from 1 to 0 1 rebind task1's mpol 0-1 set new bits 0 clear disallowed bits alloc on node1? NO 0 ... can't alloc page goto oom This patch fixes this problem by expanding the nodes range first(set newly allowed bits) and shrink it lazily(clear newly disallowed bits). So we use a variable to tell the write-side task that read-side task is reading nodemask, and the write-side task clears newly disallowed nodes after read-side task ends the current memory allocation. [akpm@linux-foundation.org: fix spello] Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Cc: Nick Piggin <npiggin@suse.de> Cc: Paul Menage <menage@google.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: Ravikiran Thirumalai <kiran@scalex86.org> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Andi Kleen <andi@firstfloor.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-05-24 14:32:08 -07:00
err:
mempolicy: rework mempolicy Reference Counting [yet again] After further discussion with Christoph Lameter, it has become clear that my earlier attempts to clean up the mempolicy reference counting were a bit of overkill in some areas, resulting in superflous ref/unref in what are usually fast paths. In other areas, further inspection reveals that I botched the unref for interleave policies. A separate patch, suitable for upstream/stable trees, fixes up the known errors in the previous attempt to fix reference counting. This patch reworks the memory policy referencing counting and, one hopes, simplifies the code. Maybe I'll get it right this time. See the update to the numa_memory_policy.txt document for a discussion of memory policy reference counting that motivates this patch. Summary: Lookup of mempolicy, based on (vma, address) need only add a reference for shared policy, and we need only unref the policy when finished for shared policies. So, this patch backs out all of the unneeded extra reference counting added by my previous attempt. It then unrefs only shared policies when we're finished with them, using the mpol_cond_put() [conditional put] helper function introduced by this patch. Note that shmem_swapin() calls read_swap_cache_async() with a dummy vma containing just the policy. read_swap_cache_async() can call alloc_page_vma() multiple times, so we can't let alloc_page_vma() unref the shared policy in this case. To avoid this, we make a copy of any non-null shared policy and remove the MPOL_F_SHARED flag from the copy. This copy occurs before reading a page [or multiple pages] from swap, so the overhead should not be an issue here. I introduced a new static inline function "mpol_cond_copy()" to copy the shared policy to an on-stack policy and remove the flags that would require a conditional free. The current implementation of mpol_cond_copy() assumes that the struct mempolicy contains no pointers to dynamically allocated structures that must be duplicated or reference counted during copy. Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 02:13:16 -07:00
mpol_cond_put(mpol);
cpuset,mm: fix no node to alloc memory when changing cpuset's mems Before applying this patch, cpuset updates task->mems_allowed and mempolicy by setting all new bits in the nodemask first, and clearing all old unallowed bits later. But in the way, the allocator may find that there is no node to alloc memory. The reason is that cpuset rebinds the task's mempolicy, it cleans the nodes which the allocater can alloc pages on, for example: (mpol: mempolicy) task1 task1's mpol task2 alloc page 1 alloc on node0? NO 1 1 change mems from 1 to 0 1 rebind task1's mpol 0-1 set new bits 0 clear disallowed bits alloc on node1? NO 0 ... can't alloc page goto oom This patch fixes this problem by expanding the nodes range first(set newly allowed bits) and shrink it lazily(clear newly disallowed bits). So we use a variable to tell the write-side task that read-side task is reading nodemask, and the write-side task clears newly disallowed nodes after read-side task ends the current memory allocation. [akpm@linux-foundation.org: fix spello] Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Cc: Nick Piggin <npiggin@suse.de> Cc: Paul Menage <menage@google.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: Ravikiran Thirumalai <kiran@scalex86.org> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Andi Kleen <andi@firstfloor.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-05-24 14:32:08 -07:00
put_mems_allowed();
return page;
}
static void update_and_free_page(struct hstate *h, struct page *page)
hugetlb: Move update_and_free_page Dynamic huge page pool resizing. In most real-world scenarios, configuring the size of the hugetlb pool correctly is a difficult task. If too few pages are allocated to the pool, applications using MAP_SHARED may fail to mmap() a hugepage region and applications using MAP_PRIVATE may receive SIGBUS. Isolating too much memory in the hugetlb pool means it is not available for other uses, especially those programs not using huge pages. The obvious answer is to let the hugetlb pool grow and shrink in response to the runtime demand for huge pages. The work Mel Gorman has been doing to establish a memory zone for movable memory allocations makes dynamically resizing the hugetlb pool reliable within the limits of that zone. This patch series implements dynamic pool resizing for private and shared mappings while being careful to maintain existing semantics. Please reply with your comments and feedback; even just to say whether it would be a useful feature to you. Thanks. How it works ============ Upon depletion of the hugetlb pool, rather than reporting an error immediately, first try and allocate the needed huge pages directly from the buddy allocator. Care must be taken to avoid unbounded growth of the hugetlb pool, so the hugetlb filesystem quota is used to limit overall pool size. The real work begins when we decide there is a shortage of huge pages. What happens next depends on whether the pages are for a private or shared mapping. Private mappings are straightforward. At fault time, if alloc_huge_page() fails, we allocate a page from the buddy allocator and increment the source node's surplus_huge_pages counter. When free_huge_page() is called for a page on a node with a surplus, the page is freed directly to the buddy allocator instead of the hugetlb pool. Because shared mappings require all of the pages to be reserved up front, some additional work must be done at mmap() to support them. We determine the reservation shortage and allocate the required number of pages all at once. These pages are then added to the hugetlb pool and marked reserved. Where that is not possible the mmap() will fail. As with private mappings, the appropriate surplus counters are updated. Since reserved huge pages won't necessarily be used by the process, we can't be sure that free_huge_page() will always be called to return surplus pages to the buddy allocator. To prevent the huge page pool from bloating, we must free unused surplus pages when their reservation has ended. Controlling it ============== With the entire patch series applied, pool resizing is off by default so unless specific action is taken, the semantics are unchanged. To take advantage of the flexibility afforded by this patch series one must tolerate a change in semantics. To control hugetlb pool growth, the following techniques can be employed: * A sysctl tunable to enable/disable the feature entirely * The size= mount option for hugetlbfs filesystems to limit pool size Performance =========== When contiguous memory is readily available, it is expected that the cost of dynamicly resizing the pool will be small. This series has been performance tested with 'stream' to measure this cost. Stream (http://www.cs.virginia.edu/stream/) was linked with libhugetlbfs to enable remapping of the text and data/bss segments into huge pages. Stream with small array ----------------------- Baseline: nr_hugepages = 0, No libhugetlbfs segment remapping Preallocated: nr_hugepages = 5, Text and data/bss remapping Dynamic: nr_hugepages = 0, Text and data/bss remapping Rate (MB/s) Function Baseline Preallocated Dynamic Copy: 4695.6266 5942.8371 5982.2287 Scale: 4451.5776 5017.1419 5658.7843 Add: 5815.8849 7927.7827 8119.3552 Triad: 5949.4144 8527.6492 8110.6903 Stream with large array ----------------------- Baseline: nr_hugepages = 0, No libhugetlbfs segment remapping Preallocated: nr_hugepages = 67, Text and data/bss remapping Dynamic: nr_hugepages = 0, Text and data/bss remapping Rate (MB/s) Function Baseline Preallocated Dynamic Copy: 2227.8281 2544.2732 2546.4947 Scale: 2136.3208 2430.7294 2421.2074 Add: 2773.1449 4004.0021 3999.4331 Triad: 2748.4502 3777.0109 3773.4970 * All numbers are averages taken from 10 consecutive runs with a maximum standard deviation of 1.3 percent noted. This patch: Simply move update_and_free_page() so that it can be reused later in this patch series. The implementation is not changed. Signed-off-by: Adam Litke <agl@us.ibm.com> Acked-by: Andy Whitcroft <apw@shadowen.org> Acked-by: Dave McCracken <dave.mccracken@oracle.com> Acked-by: William Irwin <bill.irwin@oracle.com> Cc: David Gibson <david@gibson.dropbear.id.au> Cc: Ken Chen <kenchen@google.com> Cc: Badari Pulavarty <pbadari@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 01:26:16 -07:00
{
int i;
VM_BUG_ON(h->order >= MAX_ORDER);
h->nr_huge_pages--;
h->nr_huge_pages_node[page_to_nid(page)]--;
for (i = 0; i < pages_per_huge_page(h); i++) {
hugetlb: Move update_and_free_page Dynamic huge page pool resizing. In most real-world scenarios, configuring the size of the hugetlb pool correctly is a difficult task. If too few pages are allocated to the pool, applications using MAP_SHARED may fail to mmap() a hugepage region and applications using MAP_PRIVATE may receive SIGBUS. Isolating too much memory in the hugetlb pool means it is not available for other uses, especially those programs not using huge pages. The obvious answer is to let the hugetlb pool grow and shrink in response to the runtime demand for huge pages. The work Mel Gorman has been doing to establish a memory zone for movable memory allocations makes dynamically resizing the hugetlb pool reliable within the limits of that zone. This patch series implements dynamic pool resizing for private and shared mappings while being careful to maintain existing semantics. Please reply with your comments and feedback; even just to say whether it would be a useful feature to you. Thanks. How it works ============ Upon depletion of the hugetlb pool, rather than reporting an error immediately, first try and allocate the needed huge pages directly from the buddy allocator. Care must be taken to avoid unbounded growth of the hugetlb pool, so the hugetlb filesystem quota is used to limit overall pool size. The real work begins when we decide there is a shortage of huge pages. What happens next depends on whether the pages are for a private or shared mapping. Private mappings are straightforward. At fault time, if alloc_huge_page() fails, we allocate a page from the buddy allocator and increment the source node's surplus_huge_pages counter. When free_huge_page() is called for a page on a node with a surplus, the page is freed directly to the buddy allocator instead of the hugetlb pool. Because shared mappings require all of the pages to be reserved up front, some additional work must be done at mmap() to support them. We determine the reservation shortage and allocate the required number of pages all at once. These pages are then added to the hugetlb pool and marked reserved. Where that is not possible the mmap() will fail. As with private mappings, the appropriate surplus counters are updated. Since reserved huge pages won't necessarily be used by the process, we can't be sure that free_huge_page() will always be called to return surplus pages to the buddy allocator. To prevent the huge page pool from bloating, we must free unused surplus pages when their reservation has ended. Controlling it ============== With the entire patch series applied, pool resizing is off by default so unless specific action is taken, the semantics are unchanged. To take advantage of the flexibility afforded by this patch series one must tolerate a change in semantics. To control hugetlb pool growth, the following techniques can be employed: * A sysctl tunable to enable/disable the feature entirely * The size= mount option for hugetlbfs filesystems to limit pool size Performance =========== When contiguous memory is readily available, it is expected that the cost of dynamicly resizing the pool will be small. This series has been performance tested with 'stream' to measure this cost. Stream (http://www.cs.virginia.edu/stream/) was linked with libhugetlbfs to enable remapping of the text and data/bss segments into huge pages. Stream with small array ----------------------- Baseline: nr_hugepages = 0, No libhugetlbfs segment remapping Preallocated: nr_hugepages = 5, Text and data/bss remapping Dynamic: nr_hugepages = 0, Text and data/bss remapping Rate (MB/s) Function Baseline Preallocated Dynamic Copy: 4695.6266 5942.8371 5982.2287 Scale: 4451.5776 5017.1419 5658.7843 Add: 5815.8849 7927.7827 8119.3552 Triad: 5949.4144 8527.6492 8110.6903 Stream with large array ----------------------- Baseline: nr_hugepages = 0, No libhugetlbfs segment remapping Preallocated: nr_hugepages = 67, Text and data/bss remapping Dynamic: nr_hugepages = 0, Text and data/bss remapping Rate (MB/s) Function Baseline Preallocated Dynamic Copy: 2227.8281 2544.2732 2546.4947 Scale: 2136.3208 2430.7294 2421.2074 Add: 2773.1449 4004.0021 3999.4331 Triad: 2748.4502 3777.0109 3773.4970 * All numbers are averages taken from 10 consecutive runs with a maximum standard deviation of 1.3 percent noted. This patch: Simply move update_and_free_page() so that it can be reused later in this patch series. The implementation is not changed. Signed-off-by: Adam Litke <agl@us.ibm.com> Acked-by: Andy Whitcroft <apw@shadowen.org> Acked-by: Dave McCracken <dave.mccracken@oracle.com> Acked-by: William Irwin <bill.irwin@oracle.com> Cc: David Gibson <david@gibson.dropbear.id.au> Cc: Ken Chen <kenchen@google.com> Cc: Badari Pulavarty <pbadari@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 01:26:16 -07:00
page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
1 << PG_private | 1<< PG_writeback);
}
set_compound_page_dtor(page, NULL);
set_page_refcounted(page);
arch_release_hugepage(page);
__free_pages(page, huge_page_order(h));
hugetlb: Move update_and_free_page Dynamic huge page pool resizing. In most real-world scenarios, configuring the size of the hugetlb pool correctly is a difficult task. If too few pages are allocated to the pool, applications using MAP_SHARED may fail to mmap() a hugepage region and applications using MAP_PRIVATE may receive SIGBUS. Isolating too much memory in the hugetlb pool means it is not available for other uses, especially those programs not using huge pages. The obvious answer is to let the hugetlb pool grow and shrink in response to the runtime demand for huge pages. The work Mel Gorman has been doing to establish a memory zone for movable memory allocations makes dynamically resizing the hugetlb pool reliable within the limits of that zone. This patch series implements dynamic pool resizing for private and shared mappings while being careful to maintain existing semantics. Please reply with your comments and feedback; even just to say whether it would be a useful feature to you. Thanks. How it works ============ Upon depletion of the hugetlb pool, rather than reporting an error immediately, first try and allocate the needed huge pages directly from the buddy allocator. Care must be taken to avoid unbounded growth of the hugetlb pool, so the hugetlb filesystem quota is used to limit overall pool size. The real work begins when we decide there is a shortage of huge pages. What happens next depends on whether the pages are for a private or shared mapping. Private mappings are straightforward. At fault time, if alloc_huge_page() fails, we allocate a page from the buddy allocator and increment the source node's surplus_huge_pages counter. When free_huge_page() is called for a page on a node with a surplus, the page is freed directly to the buddy allocator instead of the hugetlb pool. Because shared mappings require all of the pages to be reserved up front, some additional work must be done at mmap() to support them. We determine the reservation shortage and allocate the required number of pages all at once. These pages are then added to the hugetlb pool and marked reserved. Where that is not possible the mmap() will fail. As with private mappings, the appropriate surplus counters are updated. Since reserved huge pages won't necessarily be used by the process, we can't be sure that free_huge_page() will always be called to return surplus pages to the buddy allocator. To prevent the huge page pool from bloating, we must free unused surplus pages when their reservation has ended. Controlling it ============== With the entire patch series applied, pool resizing is off by default so unless specific action is taken, the semantics are unchanged. To take advantage of the flexibility afforded by this patch series one must tolerate a change in semantics. To control hugetlb pool growth, the following techniques can be employed: * A sysctl tunable to enable/disable the feature entirely * The size= mount option for hugetlbfs filesystems to limit pool size Performance =========== When contiguous memory is readily available, it is expected that the cost of dynamicly resizing the pool will be small. This series has been performance tested with 'stream' to measure this cost. Stream (http://www.cs.virginia.edu/stream/) was linked with libhugetlbfs to enable remapping of the text and data/bss segments into huge pages. Stream with small array ----------------------- Baseline: nr_hugepages = 0, No libhugetlbfs segment remapping Preallocated: nr_hugepages = 5, Text and data/bss remapping Dynamic: nr_hugepages = 0, Text and data/bss remapping Rate (MB/s) Function Baseline Preallocated Dynamic Copy: 4695.6266 5942.8371 5982.2287 Scale: 4451.5776 5017.1419 5658.7843 Add: 5815.8849 7927.7827 8119.3552 Triad: 5949.4144 8527.6492 8110.6903 Stream with large array ----------------------- Baseline: nr_hugepages = 0, No libhugetlbfs segment remapping Preallocated: nr_hugepages = 67, Text and data/bss remapping Dynamic: nr_hugepages = 0, Text and data/bss remapping Rate (MB/s) Function Baseline Preallocated Dynamic Copy: 2227.8281 2544.2732 2546.4947 Scale: 2136.3208 2430.7294 2421.2074 Add: 2773.1449 4004.0021 3999.4331 Triad: 2748.4502 3777.0109 3773.4970 * All numbers are averages taken from 10 consecutive runs with a maximum standard deviation of 1.3 percent noted. This patch: Simply move update_and_free_page() so that it can be reused later in this patch series. The implementation is not changed. Signed-off-by: Adam Litke <agl@us.ibm.com> Acked-by: Andy Whitcroft <apw@shadowen.org> Acked-by: Dave McCracken <dave.mccracken@oracle.com> Acked-by: William Irwin <bill.irwin@oracle.com> Cc: David Gibson <david@gibson.dropbear.id.au> Cc: Ken Chen <kenchen@google.com> Cc: Badari Pulavarty <pbadari@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 01:26:16 -07:00
}
struct hstate *size_to_hstate(unsigned long size)
{
struct hstate *h;
for_each_hstate(h) {
if (huge_page_size(h) == size)
return h;
}
return NULL;
}
static void free_huge_page(struct page *page)
{
/*
* Can't pass hstate in here because it is called from the
* compound page destructor.
*/
struct hstate *h = page_hstate(page);
int nid = page_to_nid(page);
struct address_space *mapping;
mapping = (struct address_space *) page_private(page);
set_page_private(page, 0);
page->mapping = NULL;
BUG_ON(page_count(page));
hugetlb, rmap: add reverse mapping for hugepage This patch adds reverse mapping feature for hugepage by introducing mapcount for shared/private-mapped hugepage and anon_vma for private-mapped hugepage. While hugepage is not currently swappable, reverse mapping can be useful for memory error handler. Without this patch, memory error handler cannot identify processes using the bad hugepage nor unmap it from them. That is: - for shared hugepage: we can collect processes using a hugepage through pagecache, but can not unmap the hugepage because of the lack of mapcount. - for privately mapped hugepage: we can neither collect processes nor unmap the hugepage. This patch solves these problems. This patch include the bug fix given by commit 23be7468e8, so reverts it. Dependency: "hugetlb: move definition of is_vm_hugetlb_page() to hugepage_inline.h" ChangeLog since May 24. - create hugetlb_inline.h and move is_vm_hugetlb_index() in it. - move functions setting up anon_vma for hugepage into mm/rmap.c. ChangeLog since May 13. - rebased to 2.6.34 - fix logic error (in case that private mapping and shared mapping coexist) - move is_vm_hugetlb_page() into include/linux/mm.h to use this function from linear_page_index() - define and use linear_hugepage_index() instead of compound_order() - use page_move_anon_rmap() in hugetlb_cow() - copy exclusive switch of __set_page_anon_rmap() into hugepage counterpart. - revert commit 24be7468 completely Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Larry Woodman <lwoodman@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com> Acked-by: Fengguang Wu <fengguang.wu@intel.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andi Kleen <ak@linux.intel.com>
2010-05-28 09:29:16 +09:00
BUG_ON(page_mapcount(page));
INIT_LIST_HEAD(&page->lru);
spin_lock(&hugetlb_lock);
if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
update_and_free_page(h, page);
h->surplus_huge_pages--;
h->surplus_huge_pages_node[nid]--;
} else {
enqueue_huge_page(h, page);
}
spin_unlock(&hugetlb_lock);
if (mapping)
hugetlb_put_quota(mapping, 1);
}
static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
{
set_compound_page_dtor(page, free_huge_page);
spin_lock(&hugetlb_lock);
h->nr_huge_pages++;
h->nr_huge_pages_node[nid]++;
spin_unlock(&hugetlb_lock);
put_page(page); /* free it into the hugepage allocator */
}
mm: introduce PageHuge() for testing huge/gigantic pages A series of patches to enhance the /proc/pagemap interface and to add a userspace executable which can be used to present the pagemap data. Export 10 more flags to end users (and more for kernel developers): 11. KPF_MMAP (pseudo flag) memory mapped page 12. KPF_ANON (pseudo flag) memory mapped page (anonymous) 13. KPF_SWAPCACHE page is in swap cache 14. KPF_SWAPBACKED page is swap/RAM backed 15. KPF_COMPOUND_HEAD (*) 16. KPF_COMPOUND_TAIL (*) 17. KPF_HUGE hugeTLB pages 18. KPF_UNEVICTABLE page is in the unevictable LRU list 19. KPF_HWPOISON hardware detected corruption 20. KPF_NOPAGE (pseudo flag) no page frame at the address (*) For compound pages, exporting _both_ head/tail info enables users to tell where a compound page starts/ends, and its order. a simple demo of the page-types tool # ./page-types -h page-types [options] -r|--raw Raw mode, for kernel developers -a|--addr addr-spec Walk a range of pages -b|--bits bits-spec Walk pages with specified bits -l|--list Show page details in ranges -L|--list-each Show page details one by one -N|--no-summary Don't show summay info -h|--help Show this usage message addr-spec: N one page at offset N (unit: pages) N+M pages range from N to N+M-1 N,M pages range from N to M-1 N, pages range from N to end ,M pages range from 0 to M bits-spec: bit1,bit2 (flags & (bit1|bit2)) != 0 bit1,bit2=bit1 (flags & (bit1|bit2)) == bit1 bit1,~bit2 (flags & (bit1|bit2)) == bit1 =bit1,bit2 flags == (bit1|bit2) bit-names: locked error referenced uptodate dirty lru active slab writeback reclaim buddy mmap anonymous swapcache swapbacked compound_head compound_tail huge unevictable hwpoison nopage reserved(r) mlocked(r) mappedtodisk(r) private(r) private_2(r) owner_private(r) arch(r) uncached(r) readahead(o) slob_free(o) slub_frozen(o) slub_debug(o) (r) raw mode bits (o) overloaded bits # ./page-types flags page-count MB symbolic-flags long-symbolic-flags 0x0000000000000000 487369 1903 _________________________________ 0x0000000000000014 5 0 __R_D____________________________ referenced,dirty 0x0000000000000020 1 0 _____l___________________________ lru 0x0000000000000024 34 0 __R__l___________________________ referenced,lru 0x0000000000000028 3838 14 ___U_l___________________________ uptodate,lru 0x0001000000000028 48 0 ___U_l_______________________I___ uptodate,lru,readahead 0x000000000000002c 6478 25 __RU_l___________________________ referenced,uptodate,lru 0x000100000000002c 47 0 __RU_l_______________________I___ referenced,uptodate,lru,readahead 0x0000000000000040 8344 32 ______A__________________________ active 0x0000000000000060 1 0 _____lA__________________________ lru,active 0x0000000000000068 348 1 ___U_lA__________________________ uptodate,lru,active 0x0001000000000068 12 0 ___U_lA______________________I___ uptodate,lru,active,readahead 0x000000000000006c 988 3 __RU_lA__________________________ referenced,uptodate,lru,active 0x000100000000006c 48 0 __RU_lA______________________I___ referenced,uptodate,lru,active,readahead 0x0000000000004078 1 0 ___UDlA_______b__________________ uptodate,dirty,lru,active,swapbacked 0x000000000000407c 34 0 __RUDlA_______b__________________ referenced,uptodate,dirty,lru,active,swapbacked 0x0000000000000400 503 1 __________B______________________ buddy 0x0000000000000804 1 0 __R________M_____________________ referenced,mmap 0x0000000000000828 1029 4 ___U_l_____M_____________________ uptodate,lru,mmap 0x0001000000000828 43 0 ___U_l_____M_________________I___ uptodate,lru,mmap,readahead 0x000000000000082c 382 1 __RU_l_____M_____________________ referenced,uptodate,lru,mmap 0x000100000000082c 12 0 __RU_l_____M_________________I___ referenced,uptodate,lru,mmap,readahead 0x0000000000000868 192 0 ___U_lA____M_____________________ uptodate,lru,active,mmap 0x0001000000000868 12 0 ___U_lA____M_________________I___ uptodate,lru,active,mmap,readahead 0x000000000000086c 800 3 __RU_lA____M_____________________ referenced,uptodate,lru,active,mmap 0x000100000000086c 31 0 __RU_lA____M_________________I___ referenced,uptodate,lru,active,mmap,readahead 0x0000000000004878 2 0 ___UDlA____M__b__________________ uptodate,dirty,lru,active,mmap,swapbacked 0x0000000000001000 492 1 ____________a____________________ anonymous 0x0000000000005808 4 0 ___U_______Ma_b__________________ uptodate,mmap,anonymous,swapbacked 0x0000000000005868 2839 11 ___U_lA____Ma_b__________________ uptodate,lru,active,mmap,anonymous,swapbacked 0x000000000000586c 30 0 __RU_lA____Ma_b__________________ referenced,uptodate,lru,active,mmap,anonymous,swapbacked total 513968 2007 # ./page-types -r flags page-count MB symbolic-flags long-symbolic-flags 0x0000000000000000 468002 1828 _________________________________ 0x0000000100000000 19102 74 _____________________r___________ reserved 0x0000000000008000 41 0 _______________H_________________ compound_head 0x0000000000010000 188 0 ________________T________________ compound_tail 0x0000000000008014 1 0 __R_D__________H_________________ referenced,dirty,compound_head 0x0000000000010014 4 0 __R_D___________T________________ referenced,dirty,compound_tail 0x0000000000000020 1 0 _____l___________________________ lru 0x0000000800000024 34 0 __R__l__________________P________ referenced,lru,private 0x0000000000000028 3794 14 ___U_l___________________________ uptodate,lru 0x0001000000000028 46 0 ___U_l_______________________I___ uptodate,lru,readahead 0x0000000400000028 44 0 ___U_l_________________d_________ uptodate,lru,mappedtodisk 0x0001000400000028 2 0 ___U_l_________________d_____I___ uptodate,lru,mappedtodisk,readahead 0x000000000000002c 6434 25 __RU_l___________________________ referenced,uptodate,lru 0x000100000000002c 47 0 __RU_l_______________________I___ referenced,uptodate,lru,readahead 0x000000040000002c 14 0 __RU_l_________________d_________ referenced,uptodate,lru,mappedtodisk 0x000000080000002c 30 0 __RU_l__________________P________ referenced,uptodate,lru,private 0x0000000800000040 8124 31 ______A_________________P________ active,private 0x0000000000000040 219 0 ______A__________________________ active 0x0000000800000060 1 0 _____lA_________________P________ lru,active,private 0x0000000000000068 322 1 ___U_lA__________________________ uptodate,lru,active 0x0001000000000068 12 0 ___U_lA______________________I___ uptodate,lru,active,readahead 0x0000000400000068 13 0 ___U_lA________________d_________ uptodate,lru,active,mappedtodisk 0x0000000800000068 12 0 ___U_lA_________________P________ uptodate,lru,active,private 0x000000000000006c 977 3 __RU_lA__________________________ referenced,uptodate,lru,active 0x000100000000006c 48 0 __RU_lA______________________I___ referenced,uptodate,lru,active,readahead 0x000000040000006c 5 0 __RU_lA________________d_________ referenced,uptodate,lru,active,mappedtodisk 0x000000080000006c 3 0 __RU_lA_________________P________ referenced,uptodate,lru,active,private 0x0000000c0000006c 3 0 __RU_lA________________dP________ referenced,uptodate,lru,active,mappedtodisk,private 0x0000000c00000068 1 0 ___U_lA________________dP________ uptodate,lru,active,mappedtodisk,private 0x0000000000004078 1 0 ___UDlA_______b__________________ uptodate,dirty,lru,active,swapbacked 0x000000000000407c 34 0 __RUDlA_______b__________________ referenced,uptodate,dirty,lru,active,swapbacked 0x0000000000000400 538 2 __________B______________________ buddy 0x0000000000000804 1 0 __R________M_____________________ referenced,mmap 0x0000000000000828 1029 4 ___U_l_____M_____________________ uptodate,lru,mmap 0x0001000000000828 43 0 ___U_l_____M_________________I___ uptodate,lru,mmap,readahead 0x000000000000082c 382 1 __RU_l_____M_____________________ referenced,uptodate,lru,mmap 0x000100000000082c 12 0 __RU_l_____M_________________I___ referenced,uptodate,lru,mmap,readahead 0x0000000000000868 192 0 ___U_lA____M_____________________ uptodate,lru,active,mmap 0x0001000000000868 12 0 ___U_lA____M_________________I___ uptodate,lru,active,mmap,readahead 0x000000000000086c 800 3 __RU_lA____M_____________________ referenced,uptodate,lru,active,mmap 0x000100000000086c 31 0 __RU_lA____M_________________I___ referenced,uptodate,lru,active,mmap,readahead 0x0000000000004878 2 0 ___UDlA____M__b__________________ uptodate,dirty,lru,active,mmap,swapbacked 0x0000000000001000 492 1 ____________a____________________ anonymous 0x0000000000005008 2 0 ___U________a_b__________________ uptodate,anonymous,swapbacked 0x0000000000005808 4 0 ___U_______Ma_b__________________ uptodate,mmap,anonymous,swapbacked 0x000000000000580c 1 0 __RU_______Ma_b__________________ referenced,uptodate,mmap,anonymous,swapbacked 0x0000000000005868 2839 11 ___U_lA____Ma_b__________________ uptodate,lru,active,mmap,anonymous,swapbacked 0x000000000000586c 29 0 __RU_lA____Ma_b__________________ referenced,uptodate,lru,active,mmap,anonymous,swapbacked total 513968 2007 # ./page-types --raw --list --no-summary --bits reserved offset count flags 0 15 _____________________r___________ 31 4 _____________________r___________ 159 97 _____________________r___________ 4096 2067 _____________________r___________ 6752 2390 _____________________r___________ 9355 3 _____________________r___________ 9728 14526 _____________________r___________ This patch: Introduce PageHuge(), which identifies huge/gigantic pages by their dedicated compound destructor functions. Also move prep_compound_gigantic_page() to hugetlb.c and make __free_pages_ok() non-static. Signed-off-by: Wu Fengguang <fengguang.wu@intel.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Matt Mackall <mpm@selenic.com> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-06-16 15:32:22 -07:00
static void prep_compound_gigantic_page(struct page *page, unsigned long order)
{
int i;
int nr_pages = 1 << order;
struct page *p = page + 1;
/* we rely on prep_new_huge_page to set the destructor */
set_compound_order(page, order);
__SetPageHead(page);
for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
__SetPageTail(p);
p->first_page = page;
}
}
int PageHuge(struct page *page)
{
compound_page_dtor *dtor;
if (!PageCompound(page))
return 0;
page = compound_head(page);
dtor = get_compound_page_dtor(page);
return dtor == free_huge_page;
}
EXPORT_SYMBOL_GPL(PageHuge);
static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
{
struct page *page;
if (h->order >= MAX_ORDER)
return NULL;
page = alloc_pages_exact_node(nid,
page allocator: explicitly retry hugepage allocations Add __GFP_REPEAT to hugepage allocations. Do so to not necessitate userspace putting pressure on the VM by repeated echo's into /proc/sys/vm/nr_hugepages to grow the pool. With the previous patch to allow for large-order __GFP_REPEAT attempts to loop for a bit (as opposed to indefinitely), this increases the likelihood of getting hugepages when the system experiences (or recently experienced) load. Mel tested the patchset on an x86_32 laptop. With the patches, it was easier to use the proc interface to grow the hugepage pool. The following is the output of a script that grows the pool as much as possible running on 2.6.25-rc9. Allocating hugepages test ------------------------- Disabling OOM Killer for current test process Starting page count: 0 Attempt 1: 57 pages Progress made with 57 pages Attempt 2: 73 pages Progress made with 16 pages Attempt 3: 74 pages Progress made with 1 pages Attempt 4: 75 pages Progress made with 1 pages Attempt 5: 77 pages Progress made with 2 pages 77 pages was the most it allocated but it took 5 attempts from userspace to get it. With the 3 patches in this series applied, Allocating hugepages test ------------------------- Disabling OOM Killer for current test process Starting page count: 0 Attempt 1: 75 pages Progress made with 75 pages Attempt 2: 76 pages Progress made with 1 pages Attempt 3: 79 pages Progress made with 3 pages And 79 pages was the most it got. Your patches were able to allocate the bulk of possible pages on the first attempt. Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Cc: Andy Whitcroft <apw@shadowen.org> Tested-by: Mel Gorman <mel@csn.ul.ie> Cc: Dave Hansen <haveblue@us.ibm.com> Cc: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-29 00:58:26 -07:00
htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
__GFP_REPEAT|__GFP_NOWARN,
huge_page_order(h));
if (page) {
if (arch_prepare_hugepage(page)) {
__free_pages(page, huge_page_order(h));
return NULL;
}
prep_new_huge_page(h, page, nid);
}
hugetlb: fix hugepage allocation with memoryless nodes Anton found a problem with the hugetlb pool allocation when some nodes have no memory (http://marc.info/?l=linux-mm&m=118133042025995&w=2). Lee worked on versions that tried to fix it, but none were accepted. Christoph has created a set of patches which allow for GFP_THISNODE allocations to fail if the node has no memory. Currently, alloc_fresh_huge_page() returns NULL when it is not able to allocate a huge page on the current node, as specified by its custom interleave variable. The callers of this function, though, assume that a failure in alloc_fresh_huge_page() indicates no hugepages can be allocated on the system period. This might not be the case, for instance, if we have an uneven NUMA system, and we happen to try to allocate a hugepage on a node with less memory and fail, while there is still plenty of free memory on the other nodes. To correct this, make alloc_fresh_huge_page() search through all online nodes before deciding no hugepages can be allocated. Add a helper function for actually allocating the hugepage. Use a new global nid iterator to control which nid to allocate on. Note: we expect particular semantics for __GFP_THISNODE, which are now enforced even for memoryless nodes. That is, there is should be no fallback to other nodes. Therefore, we rely on the nid passed into alloc_pages_node() to be the nid the page comes from. If this is incorrect, accounting will break. Tested on x86 !NUMA, x86 NUMA, x86_64 NUMA and ppc64 NUMA (with 2 memoryless nodes). Before on the ppc64 box: Trying to clear the hugetlb pool Done. 0 free Trying to resize the pool to 100 Node 0 HugePages_Free: 25 Node 1 HugePages_Free: 75 Node 2 HugePages_Free: 0 Node 3 HugePages_Free: 0 Done. Initially 100 free Trying to resize the pool to 200 Node 0 HugePages_Free: 50 Node 1 HugePages_Free: 150 Node 2 HugePages_Free: 0 Node 3 HugePages_Free: 0 Done. 200 free After: Trying to clear the hugetlb pool Done. 0 free Trying to resize the pool to 100 Node 0 HugePages_Free: 50 Node 1 HugePages_Free: 50 Node 2 HugePages_Free: 0 Node 3 HugePages_Free: 0 Done. Initially 100 free Trying to resize the pool to 200 Node 0 HugePages_Free: 100 Node 1 HugePages_Free: 100 Node 2 HugePages_Free: 0 Node 3 HugePages_Free: 0 Done. 200 free Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Acked-by: Christoph Lameter <clameter@sgi.com> Cc: Adam Litke <agl@us.ibm.com> Cc: David Gibson <hermes@gibson.dropbear.id.au> Cc: Badari Pulavarty <pbadari@us.ibm.com> Cc: Ken Chen <kenchen@google.com> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 01:26:24 -07:00
return page;
}
/*
hugetlb: add nodemask arg to huge page alloc, free and surplus adjust functions In preparation for constraining huge page allocation and freeing by the controlling task's numa mempolicy, add a "nodes_allowed" nodemask pointer to the allocate, free and surplus adjustment functions. For now, pass NULL to indicate default behavior--i.e., use node_online_map. A subsqeuent patch will derive a non-default mask from the controlling task's numa mempolicy. Note that this method of updating the global hstate nr_hugepages under the constraint of a nodemask simplifies keeping the global state consistent--especially the number of persistent and surplus pages relative to reservations and overcommit limits. There are undoubtedly other ways to do this, but this works for both interfaces: mempolicy and per node attributes. [rientjes@google.com: fix HIGHMEM compile error] Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Reviewed-by: Mel Gorman <mel@csn.ul.ie> Acked-by: David Rientjes <rientjes@google.com> Reviewed-by: Andi Kleen <andi@firstfloor.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> Cc: Nishanth Aravamudan <nacc@us.ibm.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@canonical.com> Cc: Eric Whitney <eric.whitney@hp.com> Cc: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-14 17:58:16 -08:00
* common helper functions for hstate_next_node_to_{alloc|free}.
* We may have allocated or freed a huge page based on a different
* nodes_allowed previously, so h->next_node_to_{alloc|free} might
* be outside of *nodes_allowed. Ensure that we use an allowed
* node for alloc or free.
*/
hugetlb: add nodemask arg to huge page alloc, free and surplus adjust functions In preparation for constraining huge page allocation and freeing by the controlling task's numa mempolicy, add a "nodes_allowed" nodemask pointer to the allocate, free and surplus adjustment functions. For now, pass NULL to indicate default behavior--i.e., use node_online_map. A subsqeuent patch will derive a non-default mask from the controlling task's numa mempolicy. Note that this method of updating the global hstate nr_hugepages under the constraint of a nodemask simplifies keeping the global state consistent--especially the number of persistent and surplus pages relative to reservations and overcommit limits. There are undoubtedly other ways to do this, but this works for both interfaces: mempolicy and per node attributes. [rientjes@google.com: fix HIGHMEM compile error] Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Reviewed-by: Mel Gorman <mel@csn.ul.ie> Acked-by: David Rientjes <rientjes@google.com> Reviewed-by: Andi Kleen <andi@firstfloor.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> Cc: Nishanth Aravamudan <nacc@us.ibm.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@canonical.com> Cc: Eric Whitney <eric.whitney@hp.com> Cc: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-14 17:58:16 -08:00
static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
{
hugetlb: add nodemask arg to huge page alloc, free and surplus adjust functions In preparation for constraining huge page allocation and freeing by the controlling task's numa mempolicy, add a "nodes_allowed" nodemask pointer to the allocate, free and surplus adjustment functions. For now, pass NULL to indicate default behavior--i.e., use node_online_map. A subsqeuent patch will derive a non-default mask from the controlling task's numa mempolicy. Note that this method of updating the global hstate nr_hugepages under the constraint of a nodemask simplifies keeping the global state consistent--especially the number of persistent and surplus pages relative to reservations and overcommit limits. There are undoubtedly other ways to do this, but this works for both interfaces: mempolicy and per node attributes. [rientjes@google.com: fix HIGHMEM compile error] Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Reviewed-by: Mel Gorman <mel@csn.ul.ie> Acked-by: David Rientjes <rientjes@google.com> Reviewed-by: Andi Kleen <andi@firstfloor.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> Cc: Nishanth Aravamudan <nacc@us.ibm.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@canonical.com> Cc: Eric Whitney <eric.whitney@hp.com> Cc: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-14 17:58:16 -08:00
nid = next_node(nid, *nodes_allowed);
if (nid == MAX_NUMNODES)
hugetlb: add nodemask arg to huge page alloc, free and surplus adjust functions In preparation for constraining huge page allocation and freeing by the controlling task's numa mempolicy, add a "nodes_allowed" nodemask pointer to the allocate, free and surplus adjustment functions. For now, pass NULL to indicate default behavior--i.e., use node_online_map. A subsqeuent patch will derive a non-default mask from the controlling task's numa mempolicy. Note that this method of updating the global hstate nr_hugepages under the constraint of a nodemask simplifies keeping the global state consistent--especially the number of persistent and surplus pages relative to reservations and overcommit limits. There are undoubtedly other ways to do this, but this works for both interfaces: mempolicy and per node attributes. [rientjes@google.com: fix HIGHMEM compile error] Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Reviewed-by: Mel Gorman <mel@csn.ul.ie> Acked-by: David Rientjes <rientjes@google.com> Reviewed-by: Andi Kleen <andi@firstfloor.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> Cc: Nishanth Aravamudan <nacc@us.ibm.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@canonical.com> Cc: Eric Whitney <eric.whitney@hp.com> Cc: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-14 17:58:16 -08:00
nid = first_node(*nodes_allowed);
VM_BUG_ON(nid >= MAX_NUMNODES);
return nid;
}
hugetlb: add nodemask arg to huge page alloc, free and surplus adjust functions In preparation for constraining huge page allocation and freeing by the controlling task's numa mempolicy, add a "nodes_allowed" nodemask pointer to the allocate, free and surplus adjustment functions. For now, pass NULL to indicate default behavior--i.e., use node_online_map. A subsqeuent patch will derive a non-default mask from the controlling task's numa mempolicy. Note that this method of updating the global hstate nr_hugepages under the constraint of a nodemask simplifies keeping the global state consistent--especially the number of persistent and surplus pages relative to reservations and overcommit limits. There are undoubtedly other ways to do this, but this works for both interfaces: mempolicy and per node attributes. [rientjes@google.com: fix HIGHMEM compile error] Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Reviewed-by: Mel Gorman <mel@csn.ul.ie> Acked-by: David Rientjes <rientjes@google.com> Reviewed-by: Andi Kleen <andi@firstfloor.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> Cc: Nishanth Aravamudan <nacc@us.ibm.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@canonical.com> Cc: Eric Whitney <eric.whitney@hp.com> Cc: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-14 17:58:16 -08:00
static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
{
if (!node_isset(nid, *nodes_allowed))
nid = next_node_allowed(nid, nodes_allowed);
return nid;
}
/*
hugetlb: add nodemask arg to huge page alloc, free and surplus adjust functions In preparation for constraining huge page allocation and freeing by the controlling task's numa mempolicy, add a "nodes_allowed" nodemask pointer to the allocate, free and surplus adjustment functions. For now, pass NULL to indicate default behavior--i.e., use node_online_map. A subsqeuent patch will derive a non-default mask from the controlling task's numa mempolicy. Note that this method of updating the global hstate nr_hugepages under the constraint of a nodemask simplifies keeping the global state consistent--especially the number of persistent and surplus pages relative to reservations and overcommit limits. There are undoubtedly other ways to do this, but this works for both interfaces: mempolicy and per node attributes. [rientjes@google.com: fix HIGHMEM compile error] Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Reviewed-by: Mel Gorman <mel@csn.ul.ie> Acked-by: David Rientjes <rientjes@google.com> Reviewed-by: Andi Kleen <andi@firstfloor.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> Cc: Nishanth Aravamudan <nacc@us.ibm.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@canonical.com> Cc: Eric Whitney <eric.whitney@hp.com> Cc: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-14 17:58:16 -08:00
* returns the previously saved node ["this node"] from which to
* allocate a persistent huge page for the pool and advance the
* next node from which to allocate, handling wrap at end of node
* mask.
*/
hugetlb: add nodemask arg to huge page alloc, free and surplus adjust functions In preparation for constraining huge page allocation and freeing by the controlling task's numa mempolicy, add a "nodes_allowed" nodemask pointer to the allocate, free and surplus adjustment functions. For now, pass NULL to indicate default behavior--i.e., use node_online_map. A subsqeuent patch will derive a non-default mask from the controlling task's numa mempolicy. Note that this method of updating the global hstate nr_hugepages under the constraint of a nodemask simplifies keeping the global state consistent--especially the number of persistent and surplus pages relative to reservations and overcommit limits. There are undoubtedly other ways to do this, but this works for both interfaces: mempolicy and per node attributes. [rientjes@google.com: fix HIGHMEM compile error] Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Reviewed-by: Mel Gorman <mel@csn.ul.ie> Acked-by: David Rientjes <rientjes@google.com> Reviewed-by: Andi Kleen <andi@firstfloor.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> Cc: Nishanth Aravamudan <nacc@us.ibm.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@canonical.com> Cc: Eric Whitney <eric.whitney@hp.com> Cc: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-14 17:58:16 -08:00
static int hstate_next_node_to_alloc(struct hstate *h,
nodemask_t *nodes_allowed)
{
hugetlb: add nodemask arg to huge page alloc, free and surplus adjust functions In preparation for constraining huge page allocation and freeing by the controlling task's numa mempolicy, add a "nodes_allowed" nodemask pointer to the allocate, free and surplus adjustment functions. For now, pass NULL to indicate default behavior--i.e., use node_online_map. A subsqeuent patch will derive a non-default mask from the controlling task's numa mempolicy. Note that this method of updating the global hstate nr_hugepages under the constraint of a nodemask simplifies keeping the global state consistent--especially the number of persistent and surplus pages relative to reservations and overcommit limits. There are undoubtedly other ways to do this, but this works for both interfaces: mempolicy and per node attributes. [rientjes@google.com: fix HIGHMEM compile error] Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Reviewed-by: Mel Gorman <mel@csn.ul.ie> Acked-by: David Rientjes <rientjes@google.com> Reviewed-by: Andi Kleen <andi@firstfloor.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> Cc: Nishanth Aravamudan <nacc@us.ibm.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@canonical.com> Cc: Eric Whitney <eric.whitney@hp.com> Cc: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-14 17:58:16 -08:00
int nid;
VM_BUG_ON(!nodes_allowed);
nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
return nid;
}
hugetlb: add nodemask arg to huge page alloc, free and surplus adjust functions In preparation for constraining huge page allocation and freeing by the controlling task's numa mempolicy, add a "nodes_allowed" nodemask pointer to the allocate, free and surplus adjustment functions. For now, pass NULL to indicate default behavior--i.e., use node_online_map. A subsqeuent patch will derive a non-default mask from the controlling task's numa mempolicy. Note that this method of updating the global hstate nr_hugepages under the constraint of a nodemask simplifies keeping the global state consistent--especially the number of persistent and surplus pages relative to reservations and overcommit limits. There are undoubtedly other ways to do this, but this works for both interfaces: mempolicy and per node attributes. [rientjes@google.com: fix HIGHMEM compile error] Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Reviewed-by: Mel Gorman <mel@csn.ul.ie> Acked-by: David Rientjes <rientjes@google.com> Reviewed-by: Andi Kleen <andi@firstfloor.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> Cc: Nishanth Aravamudan <nacc@us.ibm.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@canonical.com> Cc: Eric Whitney <eric.whitney@hp.com> Cc: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-14 17:58:16 -08:00
static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
hugetlb: fix hugepage allocation with memoryless nodes Anton found a problem with the hugetlb pool allocation when some nodes have no memory (http://marc.info/?l=linux-mm&m=118133042025995&w=2). Lee worked on versions that tried to fix it, but none were accepted. Christoph has created a set of patches which allow for GFP_THISNODE allocations to fail if the node has no memory. Currently, alloc_fresh_huge_page() returns NULL when it is not able to allocate a huge page on the current node, as specified by its custom interleave variable. The callers of this function, though, assume that a failure in alloc_fresh_huge_page() indicates no hugepages can be allocated on the system period. This might not be the case, for instance, if we have an uneven NUMA system, and we happen to try to allocate a hugepage on a node with less memory and fail, while there is still plenty of free memory on the other nodes. To correct this, make alloc_fresh_huge_page() search through all online nodes before deciding no hugepages can be allocated. Add a helper function for actually allocating the hugepage. Use a new global nid iterator to control which nid to allocate on. Note: we expect particular semantics for __GFP_THISNODE, which are now enforced even for memoryless nodes. That is, there is should be no fallback to other nodes. Therefore, we rely on the nid passed into alloc_pages_node() to be the nid the page comes from. If this is incorrect, accounting will break. Tested on x86 !NUMA, x86 NUMA, x86_64 NUMA and ppc64 NUMA (with 2 memoryless nodes). Before on the ppc64 box: Trying to clear the hugetlb pool Done. 0 free Trying to resize the pool to 100 Node 0 HugePages_Free: 25 Node 1 HugePages_Free: 75 Node 2 HugePages_Free: 0 Node 3 HugePages_Free: 0 Done. Initially 100 free Trying to resize the pool to 200 Node 0 HugePages_Free: 50 Node 1 HugePages_Free: 150 Node 2 HugePages_Free: 0 Node 3 HugePages_Free: 0 Done. 200 free After: Trying to clear the hugetlb pool Done. 0 free Trying to resize the pool to 100 Node 0 HugePages_Free: 50 Node 1 HugePages_Free: 50 Node 2 HugePages_Free: 0 Node 3 HugePages_Free: 0 Done. Initially 100 free Trying to resize the pool to 200 Node 0 HugePages_Free: 100 Node 1 HugePages_Free: 100 Node 2 HugePages_Free: 0 Node 3 HugePages_Free: 0 Done. 200 free Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Acked-by: Christoph Lameter <clameter@sgi.com> Cc: Adam Litke <agl@us.ibm.com> Cc: David Gibson <hermes@gibson.dropbear.id.au> Cc: Badari Pulavarty <pbadari@us.ibm.com> Cc: Ken Chen <kenchen@google.com> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 01:26:24 -07:00
{
struct page *page;
int start_nid;
int next_nid;
int ret = 0;
hugetlb: add nodemask arg to huge page alloc, free and surplus adjust functions In preparation for constraining huge page allocation and freeing by the controlling task's numa mempolicy, add a "nodes_allowed" nodemask pointer to the allocate, free and surplus adjustment functions. For now, pass NULL to indicate default behavior--i.e., use node_online_map. A subsqeuent patch will derive a non-default mask from the controlling task's numa mempolicy. Note that this method of updating the global hstate nr_hugepages under the constraint of a nodemask simplifies keeping the global state consistent--especially the number of persistent and surplus pages relative to reservations and overcommit limits. There are undoubtedly other ways to do this, but this works for both interfaces: mempolicy and per node attributes. [rientjes@google.com: fix HIGHMEM compile error] Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Reviewed-by: Mel Gorman <mel@csn.ul.ie> Acked-by: David Rientjes <rientjes@google.com> Reviewed-by: Andi Kleen <andi@firstfloor.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> Cc: Nishanth Aravamudan <nacc@us.ibm.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@canonical.com> Cc: Eric Whitney <eric.whitney@hp.com> Cc: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-14 17:58:16 -08:00
start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
next_nid = start_nid;
hugetlb: fix hugepage allocation with memoryless nodes Anton found a problem with the hugetlb pool allocation when some nodes have no memory (http://marc.info/?l=linux-mm&m=118133042025995&w=2). Lee worked on versions that tried to fix it, but none were accepted. Christoph has created a set of patches which allow for GFP_THISNODE allocations to fail if the node has no memory. Currently, alloc_fresh_huge_page() returns NULL when it is not able to allocate a huge page on the current node, as specified by its custom interleave variable. The callers of this function, though, assume that a failure in alloc_fresh_huge_page() indicates no hugepages can be allocated on the system period. This might not be the case, for instance, if we have an uneven NUMA system, and we happen to try to allocate a hugepage on a node with less memory and fail, while there is still plenty of free memory on the other nodes. To correct this, make alloc_fresh_huge_page() search through all online nodes before deciding no hugepages can be allocated. Add a helper function for actually allocating the hugepage. Use a new global nid iterator to control which nid to allocate on. Note: we expect particular semantics for __GFP_THISNODE, which are now enforced even for memoryless nodes. That is, there is should be no fallback to other nodes. Therefore, we rely on the nid passed into alloc_pages_node() to be the nid the page comes from. If this is incorrect, accounting will break. Tested on x86 !NUMA, x86 NUMA, x86_64 NUMA and ppc64 NUMA (with 2 memoryless nodes). Before on the ppc64 box: Trying to clear the hugetlb pool Done. 0 free Trying to resize the pool to 100 Node 0 HugePages_Free: 25 Node 1 HugePages_Free: 75 Node 2 HugePages_Free: 0 Node 3 HugePages_Free: 0 Done. Initially 100 free Trying to resize the pool to 200 Node 0 HugePages_Free: 50 Node 1 HugePages_Free: 150 Node 2 HugePages_Free: 0 Node 3 HugePages_Free: 0 Done. 200 free After: Trying to clear the hugetlb pool Done. 0 free Trying to resize the pool to 100 Node 0 HugePages_Free: 50 Node 1 HugePages_Free: 50 Node 2 HugePages_Free: 0 Node 3 HugePages_Free: 0 Done. Initially 100 free Trying to resize the pool to 200 Node 0 HugePages_Free: 100 Node 1 HugePages_Free: 100 Node 2 HugePages_Free: 0 Node 3 HugePages_Free: 0 Done. 200 free Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Acked-by: Christoph Lameter <clameter@sgi.com> Cc: Adam Litke <agl@us.ibm.com> Cc: David Gibson <hermes@gibson.dropbear.id.au> Cc: Badari Pulavarty <pbadari@us.ibm.com> Cc: Ken Chen <kenchen@google.com> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 01:26:24 -07:00
do {
page = alloc_fresh_huge_page_node(h, next_nid);
if (page) {
hugetlb: fix hugepage allocation with memoryless nodes Anton found a problem with the hugetlb pool allocation when some nodes have no memory (http://marc.info/?l=linux-mm&m=118133042025995&w=2). Lee worked on versions that tried to fix it, but none were accepted. Christoph has created a set of patches which allow for GFP_THISNODE allocations to fail if the node has no memory. Currently, alloc_fresh_huge_page() returns NULL when it is not able to allocate a huge page on the current node, as specified by its custom interleave variable. The callers of this function, though, assume that a failure in alloc_fresh_huge_page() indicates no hugepages can be allocated on the system period. This might not be the case, for instance, if we have an uneven NUMA system, and we happen to try to allocate a hugepage on a node with less memory and fail, while there is still plenty of free memory on the other nodes. To correct this, make alloc_fresh_huge_page() search through all online nodes before deciding no hugepages can be allocated. Add a helper function for actually allocating the hugepage. Use a new global nid iterator to control which nid to allocate on. Note: we expect particular semantics for __GFP_THISNODE, which are now enforced even for memoryless nodes. That is, there is should be no fallback to other nodes. Therefore, we rely on the nid passed into alloc_pages_node() to be the nid the page comes from. If this is incorrect, accounting will break. Tested on x86 !NUMA, x86 NUMA, x86_64 NUMA and ppc64 NUMA (with 2 memoryless nodes). Before on the ppc64 box: Trying to clear the hugetlb pool Done. 0 free Trying to resize the pool to 100 Node 0 HugePages_Free: 25 Node 1 HugePages_Free: 75 Node 2 HugePages_Free: 0 Node 3 HugePages_Free: 0 Done. Initially 100 free Trying to resize the pool to 200 Node 0 HugePages_Free: 50 Node 1 HugePages_Free: 150 Node 2 HugePages_Free: 0 Node 3 HugePages_Free: 0 Done. 200 free After: Trying to clear the hugetlb pool Done. 0 free Trying to resize the pool to 100 Node 0 HugePages_Free: 50 Node 1 HugePages_Free: 50 Node 2 HugePages_Free: 0 Node 3 HugePages_Free: 0 Done. Initially 100 free Trying to resize the pool to 200 Node 0 HugePages_Free: 100 Node 1 HugePages_Free: 100 Node 2 HugePages_Free: 0 Node 3 HugePages_Free: 0 Done. 200 free Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Acked-by: Christoph Lameter <clameter@sgi.com> Cc: Adam Litke <agl@us.ibm.com> Cc: David Gibson <hermes@gibson.dropbear.id.au> Cc: Badari Pulavarty <pbadari@us.ibm.com> Cc: Ken Chen <kenchen@google.com> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 01:26:24 -07:00
ret = 1;
break;
}
hugetlb: add nodemask arg to huge page alloc, free and surplus adjust functions In preparation for constraining huge page allocation and freeing by the controlling task's numa mempolicy, add a "nodes_allowed" nodemask pointer to the allocate, free and surplus adjustment functions. For now, pass NULL to indicate default behavior--i.e., use node_online_map. A subsqeuent patch will derive a non-default mask from the controlling task's numa mempolicy. Note that this method of updating the global hstate nr_hugepages under the constraint of a nodemask simplifies keeping the global state consistent--especially the number of persistent and surplus pages relative to reservations and overcommit limits. There are undoubtedly other ways to do this, but this works for both interfaces: mempolicy and per node attributes. [rientjes@google.com: fix HIGHMEM compile error] Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Reviewed-by: Mel Gorman <mel@csn.ul.ie> Acked-by: David Rientjes <rientjes@google.com> Reviewed-by: Andi Kleen <andi@firstfloor.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> Cc: Nishanth Aravamudan <nacc@us.ibm.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@canonical.com> Cc: Eric Whitney <eric.whitney@hp.com> Cc: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-14 17:58:16 -08:00
next_nid = hstate_next_node_to_alloc(h, nodes_allowed);
} while (next_nid != start_nid);
hugetlb: fix hugepage allocation with memoryless nodes Anton found a problem with the hugetlb pool allocation when some nodes have no memory (http://marc.info/?l=linux-mm&m=118133042025995&w=2). Lee worked on versions that tried to fix it, but none were accepted. Christoph has created a set of patches which allow for GFP_THISNODE allocations to fail if the node has no memory. Currently, alloc_fresh_huge_page() returns NULL when it is not able to allocate a huge page on the current node, as specified by its custom interleave variable. The callers of this function, though, assume that a failure in alloc_fresh_huge_page() indicates no hugepages can be allocated on the system period. This might not be the case, for instance, if we have an uneven NUMA system, and we happen to try to allocate a hugepage on a node with less memory and fail, while there is still plenty of free memory on the other nodes. To correct this, make alloc_fresh_huge_page() search through all online nodes before deciding no hugepages can be allocated. Add a helper function for actually allocating the hugepage. Use a new global nid iterator to control which nid to allocate on. Note: we expect particular semantics for __GFP_THISNODE, which are now enforced even for memoryless nodes. That is, there is should be no fallback to other nodes. Therefore, we rely on the nid passed into alloc_pages_node() to be the nid the page comes from. If this is incorrect, accounting will break. Tested on x86 !NUMA, x86 NUMA, x86_64 NUMA and ppc64 NUMA (with 2 memoryless nodes). Before on the ppc64 box: Trying to clear the hugetlb pool Done. 0 free Trying to resize the pool to 100 Node 0 HugePages_Free: 25 Node 1 HugePages_Free: 75 Node 2 HugePages_Free: 0 Node 3 HugePages_Free: 0 Done. Initially 100 free Trying to resize the pool to 200 Node 0 HugePages_Free: 50 Node 1 HugePages_Free: 150 Node 2 HugePages_Free: 0 Node 3 HugePages_Free: 0 Done. 200 free After: Trying to clear the hugetlb pool Done. 0 free Trying to resize the pool to 100 Node 0 HugePages_Free: 50 Node 1 HugePages_Free: 50 Node 2 HugePages_Free: 0 Node 3 HugePages_Free: 0 Done. Initially 100 free Trying to resize the pool to 200 Node 0 HugePages_Free: 100 Node 1 HugePages_Free: 100 Node 2 HugePages_Free: 0 Node 3 HugePages_Free: 0 Done. 200 free Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Acked-by: Christoph Lameter <clameter@sgi.com> Cc: Adam Litke <agl@us.ibm.com> Cc: David Gibson <hermes@gibson.dropbear.id.au> Cc: Badari Pulavarty <pbadari@us.ibm.com> Cc: Ken Chen <kenchen@google.com> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 01:26:24 -07:00
if (ret)
count_vm_event(HTLB_BUDDY_PGALLOC);
else
count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
hugetlb: fix hugepage allocation with memoryless nodes Anton found a problem with the hugetlb pool allocation when some nodes have no memory (http://marc.info/?l=linux-mm&m=118133042025995&w=2). Lee worked on versions that tried to fix it, but none were accepted. Christoph has created a set of patches which allow for GFP_THISNODE allocations to fail if the node has no memory. Currently, alloc_fresh_huge_page() returns NULL when it is not able to allocate a huge page on the current node, as specified by its custom interleave variable. The callers of this function, though, assume that a failure in alloc_fresh_huge_page() indicates no hugepages can be allocated on the system period. This might not be the case, for instance, if we have an uneven NUMA system, and we happen to try to allocate a hugepage on a node with less memory and fail, while there is still plenty of free memory on the other nodes. To correct this, make alloc_fresh_huge_page() search through all online nodes before deciding no hugepages can be allocated. Add a helper function for actually allocating the hugepage. Use a new global nid iterator to control which nid to allocate on. Note: we expect particular semantics for __GFP_THISNODE, which are now enforced even for memoryless nodes. That is, there is should be no fallback to other nodes. Therefore, we rely on the nid passed into alloc_pages_node() to be the nid the page comes from. If this is incorrect, accounting will break. Tested on x86 !NUMA, x86 NUMA, x86_64 NUMA and ppc64 NUMA (with 2 memoryless nodes). Before on the ppc64 box: Trying to clear the hugetlb pool Done. 0 free Trying to resize the pool to 100 Node 0 HugePages_Free: 25 Node 1 HugePages_Free: 75 Node 2 HugePages_Free: 0 Node 3 HugePages_Free: 0 Done. Initially 100 free Trying to resize the pool to 200 Node 0 HugePages_Free: 50 Node 1 HugePages_Free: 150 Node 2 HugePages_Free: 0 Node 3 HugePages_Free: 0 Done. 200 free After: Trying to clear the hugetlb pool Done. 0 free Trying to resize the pool to 100 Node 0 HugePages_Free: 50 Node 1 HugePages_Free: 50 Node 2 HugePages_Free: 0 Node 3 HugePages_Free: 0 Done. Initially 100 free Trying to resize the pool to 200 Node 0 HugePages_Free: 100 Node 1 HugePages_Free: 100 Node 2 HugePages_Free: 0 Node 3 HugePages_Free: 0 Done. 200 free Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Acked-by: Christoph Lameter <clameter@sgi.com> Cc: Adam Litke <agl@us.ibm.com> Cc: David Gibson <hermes@gibson.dropbear.id.au> Cc: Badari Pulavarty <pbadari@us.ibm.com> Cc: Ken Chen <kenchen@google.com> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 01:26:24 -07:00
return ret;
}
/*
hugetlb: add nodemask arg to huge page alloc, free and surplus adjust functions In preparation for constraining huge page allocation and freeing by the controlling task's numa mempolicy, add a "nodes_allowed" nodemask pointer to the allocate, free and surplus adjustment functions. For now, pass NULL to indicate default behavior--i.e., use node_online_map. A subsqeuent patch will derive a non-default mask from the controlling task's numa mempolicy. Note that this method of updating the global hstate nr_hugepages under the constraint of a nodemask simplifies keeping the global state consistent--especially the number of persistent and surplus pages relative to reservations and overcommit limits. There are undoubtedly other ways to do this, but this works for both interfaces: mempolicy and per node attributes. [rientjes@google.com: fix HIGHMEM compile error] Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Reviewed-by: Mel Gorman <mel@csn.ul.ie> Acked-by: David Rientjes <rientjes@google.com> Reviewed-by: Andi Kleen <andi@firstfloor.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> Cc: Nishanth Aravamudan <nacc@us.ibm.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@canonical.com> Cc: Eric Whitney <eric.whitney@hp.com> Cc: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-14 17:58:16 -08:00
* helper for free_pool_huge_page() - return the previously saved
* node ["this node"] from which to free a huge page. Advance the
* next node id whether or not we find a free huge page to free so
* that the next attempt to free addresses the next node.
*/
hugetlb: add nodemask arg to huge page alloc, free and surplus adjust functions In preparation for constraining huge page allocation and freeing by the controlling task's numa mempolicy, add a "nodes_allowed" nodemask pointer to the allocate, free and surplus adjustment functions. For now, pass NULL to indicate default behavior--i.e., use node_online_map. A subsqeuent patch will derive a non-default mask from the controlling task's numa mempolicy. Note that this method of updating the global hstate nr_hugepages under the constraint of a nodemask simplifies keeping the global state consistent--especially the number of persistent and surplus pages relative to reservations and overcommit limits. There are undoubtedly other ways to do this, but this works for both interfaces: mempolicy and per node attributes. [rientjes@google.com: fix HIGHMEM compile error] Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Reviewed-by: Mel Gorman <mel@csn.ul.ie> Acked-by: David Rientjes <rientjes@google.com> Reviewed-by: Andi Kleen <andi@firstfloor.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> Cc: Nishanth Aravamudan <nacc@us.ibm.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@canonical.com> Cc: Eric Whitney <eric.whitney@hp.com> Cc: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-14 17:58:16 -08:00
static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
{
hugetlb: add nodemask arg to huge page alloc, free and surplus adjust functions In preparation for constraining huge page allocation and freeing by the controlling task's numa mempolicy, add a "nodes_allowed" nodemask pointer to the allocate, free and surplus adjustment functions. For now, pass NULL to indicate default behavior--i.e., use node_online_map. A subsqeuent patch will derive a non-default mask from the controlling task's numa mempolicy. Note that this method of updating the global hstate nr_hugepages under the constraint of a nodemask simplifies keeping the global state consistent--especially the number of persistent and surplus pages relative to reservations and overcommit limits. There are undoubtedly other ways to do this, but this works for both interfaces: mempolicy and per node attributes. [rientjes@google.com: fix HIGHMEM compile error] Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Reviewed-by: Mel Gorman <mel@csn.ul.ie> Acked-by: David Rientjes <rientjes@google.com> Reviewed-by: Andi Kleen <andi@firstfloor.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> Cc: Nishanth Aravamudan <nacc@us.ibm.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@canonical.com> Cc: Eric Whitney <eric.whitney@hp.com> Cc: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-14 17:58:16 -08:00
int nid;
VM_BUG_ON(!nodes_allowed);
nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
return nid;
}
/*
* Free huge page from pool from next node to free.
* Attempt to keep persistent huge pages more or less
* balanced over allowed nodes.
* Called with hugetlb_lock locked.
*/
hugetlb: add nodemask arg to huge page alloc, free and surplus adjust functions In preparation for constraining huge page allocation and freeing by the controlling task's numa mempolicy, add a "nodes_allowed" nodemask pointer to the allocate, free and surplus adjustment functions. For now, pass NULL to indicate default behavior--i.e., use node_online_map. A subsqeuent patch will derive a non-default mask from the controlling task's numa mempolicy. Note that this method of updating the global hstate nr_hugepages under the constraint of a nodemask simplifies keeping the global state consistent--especially the number of persistent and surplus pages relative to reservations and overcommit limits. There are undoubtedly other ways to do this, but this works for both interfaces: mempolicy and per node attributes. [rientjes@google.com: fix HIGHMEM compile error] Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Reviewed-by: Mel Gorman <mel@csn.ul.ie> Acked-by: David Rientjes <rientjes@google.com> Reviewed-by: Andi Kleen <andi@firstfloor.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> Cc: Nishanth Aravamudan <nacc@us.ibm.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@canonical.com> Cc: Eric Whitney <eric.whitney@hp.com> Cc: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-14 17:58:16 -08:00
static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
bool acct_surplus)
{
int start_nid;
int next_nid;
int ret = 0;
hugetlb: add nodemask arg to huge page alloc, free and surplus adjust functions In preparation for constraining huge page allocation and freeing by the controlling task's numa mempolicy, add a "nodes_allowed" nodemask pointer to the allocate, free and surplus adjustment functions. For now, pass NULL to indicate default behavior--i.e., use node_online_map. A subsqeuent patch will derive a non-default mask from the controlling task's numa mempolicy. Note that this method of updating the global hstate nr_hugepages under the constraint of a nodemask simplifies keeping the global state consistent--especially the number of persistent and surplus pages relative to reservations and overcommit limits. There are undoubtedly other ways to do this, but this works for both interfaces: mempolicy and per node attributes. [rientjes@google.com: fix HIGHMEM compile error] Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Reviewed-by: Mel Gorman <mel@csn.ul.ie> Acked-by: David Rientjes <rientjes@google.com> Reviewed-by: Andi Kleen <andi@firstfloor.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> Cc: Nishanth Aravamudan <nacc@us.ibm.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@canonical.com> Cc: Eric Whitney <eric.whitney@hp.com> Cc: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-14 17:58:16 -08:00
start_nid = hstate_next_node_to_free(h, nodes_allowed);
next_nid = start_nid;
do {
/*
* If we're returning unused surplus pages, only examine
* nodes with surplus pages.
*/
if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
!list_empty(&h->hugepage_freelists[next_nid])) {
struct page *page =
list_entry(h->hugepage_freelists[next_nid].next,
struct page, lru);
list_del(&page->lru);
h->free_huge_pages--;
h->free_huge_pages_node[next_nid]--;
if (acct_surplus) {
h->surplus_huge_pages--;
h->surplus_huge_pages_node[next_nid]--;
}
update_and_free_page(h, page);
ret = 1;
break;
}
hugetlb: add nodemask arg to huge page alloc, free and surplus adjust functions In preparation for constraining huge page allocation and freeing by the controlling task's numa mempolicy, add a "nodes_allowed" nodemask pointer to the allocate, free and surplus adjustment functions. For now, pass NULL to indicate default behavior--i.e., use node_online_map. A subsqeuent patch will derive a non-default mask from the controlling task's numa mempolicy. Note that this method of updating the global hstate nr_hugepages under the constraint of a nodemask simplifies keeping the global state consistent--especially the number of persistent and surplus pages relative to reservations and overcommit limits. There are undoubtedly other ways to do this, but this works for both interfaces: mempolicy and per node attributes. [rientjes@google.com: fix HIGHMEM compile error] Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Reviewed-by: Mel Gorman <mel@csn.ul.ie> Acked-by: David Rientjes <rientjes@google.com> Reviewed-by: Andi Kleen <andi@firstfloor.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> Cc: Nishanth Aravamudan <nacc@us.ibm.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@canonical.com> Cc: Eric Whitney <eric.whitney@hp.com> Cc: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-14 17:58:16 -08:00
next_nid = hstate_next_node_to_free(h, nodes_allowed);
} while (next_nid != start_nid);
return ret;
}
static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
{
struct page *page;
unsigned int r_nid;
if (h->order >= MAX_ORDER)
return NULL;
hugetlb: introduce nr_overcommit_hugepages sysctl hugetlb: introduce nr_overcommit_hugepages sysctl While examining the code to support /proc/sys/vm/hugetlb_dynamic_pool, I became convinced that having a boolean sysctl was insufficient: 1) To support per-node control of hugepages, I have previously submitted patches to add a sysfs attribute related to nr_hugepages. However, with a boolean global value and per-mount quota enforcement constraining the dynamic pool, adding corresponding control of the dynamic pool on a per-node basis seems inconsistent to me. 2) Administration of the hugetlb dynamic pool with multiple hugetlbfs mount points is, arguably, more arduous than it needs to be. Each quota would need to be set separately, and the sum would need to be monitored. To ease the administration, and to help make the way for per-node control of the static & dynamic hugepage pool, I added a separate sysctl, nr_overcommit_hugepages. This value serves as a high watermark for the overall hugepage pool, while nr_hugepages serves as a low watermark. The boolean sysctl can then be removed, as the condition nr_overcommit_hugepages > 0 indicates the same administrative setting as hugetlb_dynamic_pool == 1 Quotas still serve as local enforcement of the size of the pool on a per-mount basis. A few caveats: 1) There is a race whereby the global surplus huge page counter is incremented before a hugepage has allocated. Another process could then try grow the pool, and fail to convert a surplus huge page to a normal huge page and instead allocate a fresh huge page. I believe this is benign, as no memory is leaked (the actual pages are still tracked correctly) and the counters won't go out of sync. 2) Shrinking the static pool while a surplus is in effect will allow the number of surplus huge pages to exceed the overcommit value. As long as this condition holds, however, no more surplus huge pages will be allowed on the system until one of the two sysctls are increased sufficiently, or the surplus huge pages go out of use and are freed. Successfully tested on x86_64 with the current libhugetlbfs snapshot, modified to use the new sysctl. Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Acked-by: Adam Litke <agl@us.ibm.com> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Dave Hansen <haveblue@us.ibm.com> Cc: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-12-17 16:20:12 -08:00
/*
* Assume we will successfully allocate the surplus page to
* prevent racing processes from causing the surplus to exceed
* overcommit
*
* This however introduces a different race, where a process B
* tries to grow the static hugepage pool while alloc_pages() is
* called by process A. B will only examine the per-node
* counters in determining if surplus huge pages can be
* converted to normal huge pages in adjust_pool_surplus(). A
* won't be able to increment the per-node counter, until the
* lock is dropped by B, but B doesn't drop hugetlb_lock until
* no more huge pages can be converted from surplus to normal
* state (and doesn't try to convert again). Thus, we have a
* case where a surplus huge page exists, the pool is grown, and
* the surplus huge page still exists after, even though it
* should just have been converted to a normal huge page. This
* does not leak memory, though, as the hugepage will be freed
* once it is out of use. It also does not allow the counters to
* go out of whack in adjust_pool_surplus() as we don't modify
* the node values until we've gotten the hugepage and only the
* per-node value is checked there.
*/
spin_lock(&hugetlb_lock);
if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
hugetlb: introduce nr_overcommit_hugepages sysctl hugetlb: introduce nr_overcommit_hugepages sysctl While examining the code to support /proc/sys/vm/hugetlb_dynamic_pool, I became convinced that having a boolean sysctl was insufficient: 1) To support per-node control of hugepages, I have previously submitted patches to add a sysfs attribute related to nr_hugepages. However, with a boolean global value and per-mount quota enforcement constraining the dynamic pool, adding corresponding control of the dynamic pool on a per-node basis seems inconsistent to me. 2) Administration of the hugetlb dynamic pool with multiple hugetlbfs mount points is, arguably, more arduous than it needs to be. Each quota would need to be set separately, and the sum would need to be monitored. To ease the administration, and to help make the way for per-node control of the static & dynamic hugepage pool, I added a separate sysctl, nr_overcommit_hugepages. This value serves as a high watermark for the overall hugepage pool, while nr_hugepages serves as a low watermark. The boolean sysctl can then be removed, as the condition nr_overcommit_hugepages > 0 indicates the same administrative setting as hugetlb_dynamic_pool == 1 Quotas still serve as local enforcement of the size of the pool on a per-mount basis. A few caveats: 1) There is a race whereby the global surplus huge page counter is incremented before a hugepage has allocated. Another process could then try grow the pool, and fail to convert a surplus huge page to a normal huge page and instead allocate a fresh huge page. I believe this is benign, as no memory is leaked (the actual pages are still tracked correctly) and the counters won't go out of sync. 2) Shrinking the static pool while a surplus is in effect will allow the number of surplus huge pages to exceed the overcommit value. As long as this condition holds, however, no more surplus huge pages will be allowed on the system until one of the two sysctls are increased sufficiently, or the surplus huge pages go out of use and are freed. Successfully tested on x86_64 with the current libhugetlbfs snapshot, modified to use the new sysctl. Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Acked-by: Adam Litke <agl@us.ibm.com> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Dave Hansen <haveblue@us.ibm.com> Cc: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-12-17 16:20:12 -08:00
spin_unlock(&hugetlb_lock);
return NULL;
} else {
h->nr_huge_pages++;
h->surplus_huge_pages++;
hugetlb: introduce nr_overcommit_hugepages sysctl hugetlb: introduce nr_overcommit_hugepages sysctl While examining the code to support /proc/sys/vm/hugetlb_dynamic_pool, I became convinced that having a boolean sysctl was insufficient: 1) To support per-node control of hugepages, I have previously submitted patches to add a sysfs attribute related to nr_hugepages. However, with a boolean global value and per-mount quota enforcement constraining the dynamic pool, adding corresponding control of the dynamic pool on a per-node basis seems inconsistent to me. 2) Administration of the hugetlb dynamic pool with multiple hugetlbfs mount points is, arguably, more arduous than it needs to be. Each quota would need to be set separately, and the sum would need to be monitored. To ease the administration, and to help make the way for per-node control of the static & dynamic hugepage pool, I added a separate sysctl, nr_overcommit_hugepages. This value serves as a high watermark for the overall hugepage pool, while nr_hugepages serves as a low watermark. The boolean sysctl can then be removed, as the condition nr_overcommit_hugepages > 0 indicates the same administrative setting as hugetlb_dynamic_pool == 1 Quotas still serve as local enforcement of the size of the pool on a per-mount basis. A few caveats: 1) There is a race whereby the global surplus huge page counter is incremented before a hugepage has allocated. Another process could then try grow the pool, and fail to convert a surplus huge page to a normal huge page and instead allocate a fresh huge page. I believe this is benign, as no memory is leaked (the actual pages are still tracked correctly) and the counters won't go out of sync. 2) Shrinking the static pool while a surplus is in effect will allow the number of surplus huge pages to exceed the overcommit value. As long as this condition holds, however, no more surplus huge pages will be allowed on the system until one of the two sysctls are increased sufficiently, or the surplus huge pages go out of use and are freed. Successfully tested on x86_64 with the current libhugetlbfs snapshot, modified to use the new sysctl. Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Acked-by: Adam Litke <agl@us.ibm.com> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Dave Hansen <haveblue@us.ibm.com> Cc: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-12-17 16:20:12 -08:00
}
spin_unlock(&hugetlb_lock);
if (nid == NUMA_NO_NODE)
page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
__GFP_REPEAT|__GFP_NOWARN,
huge_page_order(h));
else
page = alloc_pages_exact_node(nid,
htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
__GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
hugetlb: introduce nr_overcommit_hugepages sysctl hugetlb: introduce nr_overcommit_hugepages sysctl While examining the code to support /proc/sys/vm/hugetlb_dynamic_pool, I became convinced that having a boolean sysctl was insufficient: 1) To support per-node control of hugepages, I have previously submitted patches to add a sysfs attribute related to nr_hugepages. However, with a boolean global value and per-mount quota enforcement constraining the dynamic pool, adding corresponding control of the dynamic pool on a per-node basis seems inconsistent to me. 2) Administration of the hugetlb dynamic pool with multiple hugetlbfs mount points is, arguably, more arduous than it needs to be. Each quota would need to be set separately, and the sum would need to be monitored. To ease the administration, and to help make the way for per-node control of the static & dynamic hugepage pool, I added a separate sysctl, nr_overcommit_hugepages. This value serves as a high watermark for the overall hugepage pool, while nr_hugepages serves as a low watermark. The boolean sysctl can then be removed, as the condition nr_overcommit_hugepages > 0 indicates the same administrative setting as hugetlb_dynamic_pool == 1 Quotas still serve as local enforcement of the size of the pool on a per-mount basis. A few caveats: 1) There is a race whereby the global surplus huge page counter is incremented before a hugepage has allocated. Another process could then try grow the pool, and fail to convert a surplus huge page to a normal huge page and instead allocate a fresh huge page. I believe this is benign, as no memory is leaked (the actual pages are still tracked correctly) and the counters won't go out of sync. 2) Shrinking the static pool while a surplus is in effect will allow the number of surplus huge pages to exceed the overcommit value. As long as this condition holds, however, no more surplus huge pages will be allowed on the system until one of the two sysctls are increased sufficiently, or the surplus huge pages go out of use and are freed. Successfully tested on x86_64 with the current libhugetlbfs snapshot, modified to use the new sysctl. Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Acked-by: Adam Litke <agl@us.ibm.com> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Dave Hansen <haveblue@us.ibm.com> Cc: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-12-17 16:20:12 -08:00
if (page && arch_prepare_hugepage(page)) {
__free_pages(page, huge_page_order(h));
return NULL;
}
hugetlb: introduce nr_overcommit_hugepages sysctl hugetlb: introduce nr_overcommit_hugepages sysctl While examining the code to support /proc/sys/vm/hugetlb_dynamic_pool, I became convinced that having a boolean sysctl was insufficient: 1) To support per-node control of hugepages, I have previously submitted patches to add a sysfs attribute related to nr_hugepages. However, with a boolean global value and per-mount quota enforcement constraining the dynamic pool, adding corresponding control of the dynamic pool on a per-node basis seems inconsistent to me. 2) Administration of the hugetlb dynamic pool with multiple hugetlbfs mount points is, arguably, more arduous than it needs to be. Each quota would need to be set separately, and the sum would need to be monitored. To ease the administration, and to help make the way for per-node control of the static & dynamic hugepage pool, I added a separate sysctl, nr_overcommit_hugepages. This value serves as a high watermark for the overall hugepage pool, while nr_hugepages serves as a low watermark. The boolean sysctl can then be removed, as the condition nr_overcommit_hugepages > 0 indicates the same administrative setting as hugetlb_dynamic_pool == 1 Quotas still serve as local enforcement of the size of the pool on a per-mount basis. A few caveats: 1) There is a race whereby the global surplus huge page counter is incremented before a hugepage has allocated. Another process could then try grow the pool, and fail to convert a surplus huge page to a normal huge page and instead allocate a fresh huge page. I believe this is benign, as no memory is leaked (the actual pages are still tracked correctly) and the counters won't go out of sync. 2) Shrinking the static pool while a surplus is in effect will allow the number of surplus huge pages to exceed the overcommit value. As long as this condition holds, however, no more surplus huge pages will be allowed on the system until one of the two sysctls are increased sufficiently, or the surplus huge pages go out of use and are freed. Successfully tested on x86_64 with the current libhugetlbfs snapshot, modified to use the new sysctl. Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Acked-by: Adam Litke <agl@us.ibm.com> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Dave Hansen <haveblue@us.ibm.com> Cc: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-12-17 16:20:12 -08:00
spin_lock(&hugetlb_lock);
if (page) {
r_nid = page_to_nid(page);
set_compound_page_dtor(page, free_huge_page);
hugetlb: introduce nr_overcommit_hugepages sysctl hugetlb: introduce nr_overcommit_hugepages sysctl While examining the code to support /proc/sys/vm/hugetlb_dynamic_pool, I became convinced that having a boolean sysctl was insufficient: 1) To support per-node control of hugepages, I have previously submitted patches to add a sysfs attribute related to nr_hugepages. However, with a boolean global value and per-mount quota enforcement constraining the dynamic pool, adding corresponding control of the dynamic pool on a per-node basis seems inconsistent to me. 2) Administration of the hugetlb dynamic pool with multiple hugetlbfs mount points is, arguably, more arduous than it needs to be. Each quota would need to be set separately, and the sum would need to be monitored. To ease the administration, and to help make the way for per-node control of the static & dynamic hugepage pool, I added a separate sysctl, nr_overcommit_hugepages. This value serves as a high watermark for the overall hugepage pool, while nr_hugepages serves as a low watermark. The boolean sysctl can then be removed, as the condition nr_overcommit_hugepages > 0 indicates the same administrative setting as hugetlb_dynamic_pool == 1 Quotas still serve as local enforcement of the size of the pool on a per-mount basis. A few caveats: 1) There is a race whereby the global surplus huge page counter is incremented before a hugepage has allocated. Another process could then try grow the pool, and fail to convert a surplus huge page to a normal huge page and instead allocate a fresh huge page. I believe this is benign, as no memory is leaked (the actual pages are still tracked correctly) and the counters won't go out of sync. 2) Shrinking the static pool while a surplus is in effect will allow the number of surplus huge pages to exceed the overcommit value. As long as this condition holds, however, no more surplus huge pages will be allowed on the system until one of the two sysctls are increased sufficiently, or the surplus huge pages go out of use and are freed. Successfully tested on x86_64 with the current libhugetlbfs snapshot, modified to use the new sysctl. Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Acked-by: Adam Litke <agl@us.ibm.com> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Dave Hansen <haveblue@us.ibm.com> Cc: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-12-17 16:20:12 -08:00
/*
* We incremented the global counters already
*/
h->nr_huge_pages_node[r_nid]++;
h->surplus_huge_pages_node[r_nid]++;
__count_vm_event(HTLB_BUDDY_PGALLOC);
hugetlb: introduce nr_overcommit_hugepages sysctl hugetlb: introduce nr_overcommit_hugepages sysctl While examining the code to support /proc/sys/vm/hugetlb_dynamic_pool, I became convinced that having a boolean sysctl was insufficient: 1) To support per-node control of hugepages, I have previously submitted patches to add a sysfs attribute related to nr_hugepages. However, with a boolean global value and per-mount quota enforcement constraining the dynamic pool, adding corresponding control of the dynamic pool on a per-node basis seems inconsistent to me. 2) Administration of the hugetlb dynamic pool with multiple hugetlbfs mount points is, arguably, more arduous than it needs to be. Each quota would need to be set separately, and the sum would need to be monitored. To ease the administration, and to help make the way for per-node control of the static & dynamic hugepage pool, I added a separate sysctl, nr_overcommit_hugepages. This value serves as a high watermark for the overall hugepage pool, while nr_hugepages serves as a low watermark. The boolean sysctl can then be removed, as the condition nr_overcommit_hugepages > 0 indicates the same administrative setting as hugetlb_dynamic_pool == 1 Quotas still serve as local enforcement of the size of the pool on a per-mount basis. A few caveats: 1) There is a race whereby the global surplus huge page counter is incremented before a hugepage has allocated. Another process could then try grow the pool, and fail to convert a surplus huge page to a normal huge page and instead allocate a fresh huge page. I believe this is benign, as no memory is leaked (the actual pages are still tracked correctly) and the counters won't go out of sync. 2) Shrinking the static pool while a surplus is in effect will allow the number of surplus huge pages to exceed the overcommit value. As long as this condition holds, however, no more surplus huge pages will be allowed on the system until one of the two sysctls are increased sufficiently, or the surplus huge pages go out of use and are freed. Successfully tested on x86_64 with the current libhugetlbfs snapshot, modified to use the new sysctl. Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Acked-by: Adam Litke <agl@us.ibm.com> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Dave Hansen <haveblue@us.ibm.com> Cc: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-12-17 16:20:12 -08:00
} else {
h->nr_huge_pages--;
h->surplus_huge_pages--;
__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
}
hugetlb: introduce nr_overcommit_hugepages sysctl hugetlb: introduce nr_overcommit_hugepages sysctl While examining the code to support /proc/sys/vm/hugetlb_dynamic_pool, I became convinced that having a boolean sysctl was insufficient: 1) To support per-node control of hugepages, I have previously submitted patches to add a sysfs attribute related to nr_hugepages. However, with a boolean global value and per-mount quota enforcement constraining the dynamic pool, adding corresponding control of the dynamic pool on a per-node basis seems inconsistent to me. 2) Administration of the hugetlb dynamic pool with multiple hugetlbfs mount points is, arguably, more arduous than it needs to be. Each quota would need to be set separately, and the sum would need to be monitored. To ease the administration, and to help make the way for per-node control of the static & dynamic hugepage pool, I added a separate sysctl, nr_overcommit_hugepages. This value serves as a high watermark for the overall hugepage pool, while nr_hugepages serves as a low watermark. The boolean sysctl can then be removed, as the condition nr_overcommit_hugepages > 0 indicates the same administrative setting as hugetlb_dynamic_pool == 1 Quotas still serve as local enforcement of the size of the pool on a per-mount basis. A few caveats: 1) There is a race whereby the global surplus huge page counter is incremented before a hugepage has allocated. Another process could then try grow the pool, and fail to convert a surplus huge page to a normal huge page and instead allocate a fresh huge page. I believe this is benign, as no memory is leaked (the actual pages are still tracked correctly) and the counters won't go out of sync. 2) Shrinking the static pool while a surplus is in effect will allow the number of surplus huge pages to exceed the overcommit value. As long as this condition holds, however, no more surplus huge pages will be allowed on the system until one of the two sysctls are increased sufficiently, or the surplus huge pages go out of use and are freed. Successfully tested on x86_64 with the current libhugetlbfs snapshot, modified to use the new sysctl. Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Acked-by: Adam Litke <agl@us.ibm.com> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Dave Hansen <haveblue@us.ibm.com> Cc: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-12-17 16:20:12 -08:00
spin_unlock(&hugetlb_lock);
return page;
}
/*
* This allocation function is useful in the context where vma is irrelevant.
* E.g. soft-offlining uses this function because it only cares physical
* address of error page.
*/
struct page *alloc_huge_page_node(struct hstate *h, int nid)
{
struct page *page;
spin_lock(&hugetlb_lock);
page = dequeue_huge_page_node(h, nid);
spin_unlock(&hugetlb_lock);
if (!page)
page = alloc_buddy_huge_page(h, nid);
return page;
}
/*
* Increase the hugetlb pool such that it can accommodate a reservation
* of size 'delta'.
*/
static int gather_surplus_pages(struct hstate *h, int delta)
{
struct list_head surplus_list;
struct page *page, *tmp;
int ret, i;
int needed, allocated;
needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
if (needed <= 0) {
h->resv_huge_pages += delta;
return 0;
}
allocated = 0;
INIT_LIST_HEAD(&surplus_list);
ret = -ENOMEM;
retry:
spin_unlock(&hugetlb_lock);
for (i = 0; i < needed; i++) {
page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
if (!page)
/*
* We were not able to allocate enough pages to
* satisfy the entire reservation so we free what
* we've allocated so far.
*/
goto free;
list_add(&page->lru, &surplus_list);
}
allocated += needed;
/*
* After retaking hugetlb_lock, we need to recalculate 'needed'
* because either resv_huge_pages or free_huge_pages may have changed.
*/
spin_lock(&hugetlb_lock);
needed = (h->resv_huge_pages + delta) -
(h->free_huge_pages + allocated);
if (needed > 0)
goto retry;
/*
* The surplus_list now contains _at_least_ the number of extra pages
* needed to accommodate the reservation. Add the appropriate number
* of pages to the hugetlb pool and free the extras back to the buddy
* allocator. Commit the entire reservation here to prevent another
* process from stealing the pages as they are added to the pool but
* before they are reserved.
*/
needed += allocated;
h->resv_huge_pages += delta;
ret = 0;
spin_unlock(&hugetlb_lock);
/* Free the needed pages to the hugetlb pool */
list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
if ((--needed) < 0)
break;
list_del(&page->lru);
/*
* This page is now managed by the hugetlb allocator and has
* no users -- drop the buddy allocator's reference.
*/
put_page_testzero(page);
VM_BUG_ON(page_count(page));
enqueue_huge_page(h, page);
}
/* Free unnecessary surplus pages to the buddy allocator */
free:
if (!list_empty(&surplus_list)) {
list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
list_del(&page->lru);
put_page(page);
}
}
spin_lock(&hugetlb_lock);
return ret;
}
/*
* When releasing a hugetlb pool reservation, any surplus pages that were
* allocated to satisfy the reservation must be explicitly freed if they were
* never used.
* Called with hugetlb_lock held.
*/
static void return_unused_surplus_pages(struct hstate *h,
unsigned long unused_resv_pages)
{
unsigned long nr_pages;
/* Uncommit the reservation */
h->resv_huge_pages -= unused_resv_pages;
/* Cannot return gigantic pages currently */
if (h->order >= MAX_ORDER)
return;
nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
/*
* We want to release as many surplus pages as possible, spread
* evenly across all nodes with memory. Iterate across these nodes
* until we can no longer free unreserved surplus pages. This occurs
* when the nodes with surplus pages have no free pages.
* free_pool_huge_page() will balance the the freed pages across the
* on-line nodes with memory and will handle the hstate accounting.
*/
while (nr_pages--) {
if (!free_pool_huge_page(h, &node_states[N_HIGH_MEMORY], 1))
break;
}
}
/*
* Determine if the huge page at addr within the vma has an associated
* reservation. Where it does not we will need to logically increase
* reservation and actually increase quota before an allocation can occur.
* Where any new reservation would be required the reservation change is
* prepared, but not committed. Once the page has been quota'd allocated
* an instantiated the change should be committed via vma_commit_reservation.
* No action is required on failure.
*/
static long vma_needs_reservation(struct hstate *h,
struct vm_area_struct *vma, unsigned long addr)
{
struct address_space *mapping = vma->vm_file->f_mapping;
struct inode *inode = mapping->host;
mm: account for MAP_SHARED mappings using VM_MAYSHARE and not VM_SHARED in hugetlbfs Addresses http://bugzilla.kernel.org/show_bug.cgi?id=13302 hugetlbfs reserves huge pages but does not fault them at mmap() time to ensure that future faults succeed. The reservation behaviour differs depending on whether the mapping was mapped MAP_SHARED or MAP_PRIVATE. For MAP_SHARED mappings, hugepages are reserved when mmap() is first called and are tracked based on information associated with the inode. Other processes mapping MAP_SHARED use the same reservation. MAP_PRIVATE track the reservations based on the VMA created as part of the mmap() operation. Each process mapping MAP_PRIVATE must make its own reservation. hugetlbfs currently checks if a VMA is MAP_SHARED with the VM_SHARED flag and not VM_MAYSHARE. For file-backed mappings, such as hugetlbfs, VM_SHARED is set only if the mapping is MAP_SHARED and the file was opened read-write. If a shared memory mapping was mapped shared-read-write for populating of data and mapped shared-read-only by other processes, then hugetlbfs would account for the mapping as if it was MAP_PRIVATE. This causes processes to fail to map the file MAP_SHARED even though it should succeed as the reservation is there. This patch alters mm/hugetlb.c and replaces VM_SHARED with VM_MAYSHARE when the intent of the code was to check whether the VMA was mapped MAP_SHARED or MAP_PRIVATE. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: Ingo Molnar <mingo@elte.hu> Cc: <stable@kernel.org> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: <starlight@binnacle.cx> Cc: Eric B Munson <ebmunson@us.ibm.com> Cc: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@canonical.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-05-28 14:34:40 -07:00
if (vma->vm_flags & VM_MAYSHARE) {
pgoff_t idx = vma_hugecache_offset(h, vma, addr);
return region_chg(&inode->i_mapping->private_list,
idx, idx + 1);
hugetlb reservations: fix hugetlb MAP_PRIVATE reservations across vma splits When a hugetlb mapping with a reservation is split, a new VMA is cloned from the original. This new VMA is a direct copy of the original including the reservation count. When this pair of VMAs are unmapped we will incorrect double account the unused reservation and the overall reservation count will be incorrect, in extreme cases it will wrap. The problem occurs when we split an existing VMA say to unmap a page in the middle. split_vma() will create a new VMA copying all fields from the original. As we are storing our reservation count in vm_private_data this is also copies, endowing the new VMA with a duplicate of the original VMA's reservation. Neither of the new VMAs can exhaust these reservations as they are too small, but when we unmap and close these VMAs we will incorrect credit the remainder twice and resv_huge_pages will become out of sync. This can lead to allocation failures on mappings with reservations and even to resv_huge_pages wrapping which prevents all subsequent hugepage allocations. The simple fix would be to correctly apportion the remaining reservation count when the split is made. However the only hook we have vm_ops->open only has the new VMA we do not know the identity of the preceeding VMA. Also even if we did have that VMA to hand we do not know how much of the reservation was consumed each side of the split. This patch therefore takes a different tack. We know that the whole of any private mapping (which has a reservation) has a reservation over its whole size. Any present pages represent consumed reservation. Therefore if we track the instantiated pages we can calculate the remaining reservation. This patch reuses the existing regions code to track the regions for which we have consumed reservation (ie. the instantiated pages), as each page is faulted in we record the consumption of reservation for the new page. When we need to return unused reservations at unmap time we simply count the consumed reservation region subtracting that from the whole of the map. During a VMA split the newly opened VMA will point to the same region map, as this map is offset oriented it remains valid for both of the split VMAs. This map is referenced counted so that it is removed when all VMAs which are part of the mmap are gone. Thanks to Adam Litke and Mel Gorman for their review feedback. Signed-off-by: Andy Whitcroft <apw@shadowen.org> Acked-by: Mel Gorman <mel@csn.ul.ie> Cc: Adam Litke <agl@us.ibm.com> Cc: Johannes Weiner <hannes@saeurebad.de> Cc: Andy Whitcroft <apw@shadowen.org> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Michael Kerrisk <mtk.manpages@googlemail.com> Cc: Jon Tollefson <kniht@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:32 -07:00
} else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
return 1;
hugetlb reservations: fix hugetlb MAP_PRIVATE reservations across vma splits When a hugetlb mapping with a reservation is split, a new VMA is cloned from the original. This new VMA is a direct copy of the original including the reservation count. When this pair of VMAs are unmapped we will incorrect double account the unused reservation and the overall reservation count will be incorrect, in extreme cases it will wrap. The problem occurs when we split an existing VMA say to unmap a page in the middle. split_vma() will create a new VMA copying all fields from the original. As we are storing our reservation count in vm_private_data this is also copies, endowing the new VMA with a duplicate of the original VMA's reservation. Neither of the new VMAs can exhaust these reservations as they are too small, but when we unmap and close these VMAs we will incorrect credit the remainder twice and resv_huge_pages will become out of sync. This can lead to allocation failures on mappings with reservations and even to resv_huge_pages wrapping which prevents all subsequent hugepage allocations. The simple fix would be to correctly apportion the remaining reservation count when the split is made. However the only hook we have vm_ops->open only has the new VMA we do not know the identity of the preceeding VMA. Also even if we did have that VMA to hand we do not know how much of the reservation was consumed each side of the split. This patch therefore takes a different tack. We know that the whole of any private mapping (which has a reservation) has a reservation over its whole size. Any present pages represent consumed reservation. Therefore if we track the instantiated pages we can calculate the remaining reservation. This patch reuses the existing regions code to track the regions for which we have consumed reservation (ie. the instantiated pages), as each page is faulted in we record the consumption of reservation for the new page. When we need to return unused reservations at unmap time we simply count the consumed reservation region subtracting that from the whole of the map. During a VMA split the newly opened VMA will point to the same region map, as this map is offset oriented it remains valid for both of the split VMAs. This map is referenced counted so that it is removed when all VMAs which are part of the mmap are gone. Thanks to Adam Litke and Mel Gorman for their review feedback. Signed-off-by: Andy Whitcroft <apw@shadowen.org> Acked-by: Mel Gorman <mel@csn.ul.ie> Cc: Adam Litke <agl@us.ibm.com> Cc: Johannes Weiner <hannes@saeurebad.de> Cc: Andy Whitcroft <apw@shadowen.org> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Michael Kerrisk <mtk.manpages@googlemail.com> Cc: Jon Tollefson <kniht@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:32 -07:00
} else {
long err;
pgoff_t idx = vma_hugecache_offset(h, vma, addr);
hugetlb reservations: fix hugetlb MAP_PRIVATE reservations across vma splits When a hugetlb mapping with a reservation is split, a new VMA is cloned from the original. This new VMA is a direct copy of the original including the reservation count. When this pair of VMAs are unmapped we will incorrect double account the unused reservation and the overall reservation count will be incorrect, in extreme cases it will wrap. The problem occurs when we split an existing VMA say to unmap a page in the middle. split_vma() will create a new VMA copying all fields from the original. As we are storing our reservation count in vm_private_data this is also copies, endowing the new VMA with a duplicate of the original VMA's reservation. Neither of the new VMAs can exhaust these reservations as they are too small, but when we unmap and close these VMAs we will incorrect credit the remainder twice and resv_huge_pages will become out of sync. This can lead to allocation failures on mappings with reservations and even to resv_huge_pages wrapping which prevents all subsequent hugepage allocations. The simple fix would be to correctly apportion the remaining reservation count when the split is made. However the only hook we have vm_ops->open only has the new VMA we do not know the identity of the preceeding VMA. Also even if we did have that VMA to hand we do not know how much of the reservation was consumed each side of the split. This patch therefore takes a different tack. We know that the whole of any private mapping (which has a reservation) has a reservation over its whole size. Any present pages represent consumed reservation. Therefore if we track the instantiated pages we can calculate the remaining reservation. This patch reuses the existing regions code to track the regions for which we have consumed reservation (ie. the instantiated pages), as each page is faulted in we record the consumption of reservation for the new page. When we need to return unused reservations at unmap time we simply count the consumed reservation region subtracting that from the whole of the map. During a VMA split the newly opened VMA will point to the same region map, as this map is offset oriented it remains valid for both of the split VMAs. This map is referenced counted so that it is removed when all VMAs which are part of the mmap are gone. Thanks to Adam Litke and Mel Gorman for their review feedback. Signed-off-by: Andy Whitcroft <apw@shadowen.org> Acked-by: Mel Gorman <mel@csn.ul.ie> Cc: Adam Litke <agl@us.ibm.com> Cc: Johannes Weiner <hannes@saeurebad.de> Cc: Andy Whitcroft <apw@shadowen.org> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Michael Kerrisk <mtk.manpages@googlemail.com> Cc: Jon Tollefson <kniht@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:32 -07:00
struct resv_map *reservations = vma_resv_map(vma);
err = region_chg(&reservations->regions, idx, idx + 1);
if (err < 0)
return err;
return 0;
}
}
static void vma_commit_reservation(struct hstate *h,
struct vm_area_struct *vma, unsigned long addr)
{
struct address_space *mapping = vma->vm_file->f_mapping;
struct inode *inode = mapping->host;
mm: account for MAP_SHARED mappings using VM_MAYSHARE and not VM_SHARED in hugetlbfs Addresses http://bugzilla.kernel.org/show_bug.cgi?id=13302 hugetlbfs reserves huge pages but does not fault them at mmap() time to ensure that future faults succeed. The reservation behaviour differs depending on whether the mapping was mapped MAP_SHARED or MAP_PRIVATE. For MAP_SHARED mappings, hugepages are reserved when mmap() is first called and are tracked based on information associated with the inode. Other processes mapping MAP_SHARED use the same reservation. MAP_PRIVATE track the reservations based on the VMA created as part of the mmap() operation. Each process mapping MAP_PRIVATE must make its own reservation. hugetlbfs currently checks if a VMA is MAP_SHARED with the VM_SHARED flag and not VM_MAYSHARE. For file-backed mappings, such as hugetlbfs, VM_SHARED is set only if the mapping is MAP_SHARED and the file was opened read-write. If a shared memory mapping was mapped shared-read-write for populating of data and mapped shared-read-only by other processes, then hugetlbfs would account for the mapping as if it was MAP_PRIVATE. This causes processes to fail to map the file MAP_SHARED even though it should succeed as the reservation is there. This patch alters mm/hugetlb.c and replaces VM_SHARED with VM_MAYSHARE when the intent of the code was to check whether the VMA was mapped MAP_SHARED or MAP_PRIVATE. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: Ingo Molnar <mingo@elte.hu> Cc: <stable@kernel.org> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: <starlight@binnacle.cx> Cc: Eric B Munson <ebmunson@us.ibm.com> Cc: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@canonical.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-05-28 14:34:40 -07:00
if (vma->vm_flags & VM_MAYSHARE) {
pgoff_t idx = vma_hugecache_offset(h, vma, addr);
region_add(&inode->i_mapping->private_list, idx, idx + 1);
hugetlb reservations: fix hugetlb MAP_PRIVATE reservations across vma splits When a hugetlb mapping with a reservation is split, a new VMA is cloned from the original. This new VMA is a direct copy of the original including the reservation count. When this pair of VMAs are unmapped we will incorrect double account the unused reservation and the overall reservation count will be incorrect, in extreme cases it will wrap. The problem occurs when we split an existing VMA say to unmap a page in the middle. split_vma() will create a new VMA copying all fields from the original. As we are storing our reservation count in vm_private_data this is also copies, endowing the new VMA with a duplicate of the original VMA's reservation. Neither of the new VMAs can exhaust these reservations as they are too small, but when we unmap and close these VMAs we will incorrect credit the remainder twice and resv_huge_pages will become out of sync. This can lead to allocation failures on mappings with reservations and even to resv_huge_pages wrapping which prevents all subsequent hugepage allocations. The simple fix would be to correctly apportion the remaining reservation count when the split is made. However the only hook we have vm_ops->open only has the new VMA we do not know the identity of the preceeding VMA. Also even if we did have that VMA to hand we do not know how much of the reservation was consumed each side of the split. This patch therefore takes a different tack. We know that the whole of any private mapping (which has a reservation) has a reservation over its whole size. Any present pages represent consumed reservation. Therefore if we track the instantiated pages we can calculate the remaining reservation. This patch reuses the existing regions code to track the regions for which we have consumed reservation (ie. the instantiated pages), as each page is faulted in we record the consumption of reservation for the new page. When we need to return unused reservations at unmap time we simply count the consumed reservation region subtracting that from the whole of the map. During a VMA split the newly opened VMA will point to the same region map, as this map is offset oriented it remains valid for both of the split VMAs. This map is referenced counted so that it is removed when all VMAs which are part of the mmap are gone. Thanks to Adam Litke and Mel Gorman for their review feedback. Signed-off-by: Andy Whitcroft <apw@shadowen.org> Acked-by: Mel Gorman <mel@csn.ul.ie> Cc: Adam Litke <agl@us.ibm.com> Cc: Johannes Weiner <hannes@saeurebad.de> Cc: Andy Whitcroft <apw@shadowen.org> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Michael Kerrisk <mtk.manpages@googlemail.com> Cc: Jon Tollefson <kniht@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:32 -07:00
} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
pgoff_t idx = vma_hugecache_offset(h, vma, addr);
hugetlb reservations: fix hugetlb MAP_PRIVATE reservations across vma splits When a hugetlb mapping with a reservation is split, a new VMA is cloned from the original. This new VMA is a direct copy of the original including the reservation count. When this pair of VMAs are unmapped we will incorrect double account the unused reservation and the overall reservation count will be incorrect, in extreme cases it will wrap. The problem occurs when we split an existing VMA say to unmap a page in the middle. split_vma() will create a new VMA copying all fields from the original. As we are storing our reservation count in vm_private_data this is also copies, endowing the new VMA with a duplicate of the original VMA's reservation. Neither of the new VMAs can exhaust these reservations as they are too small, but when we unmap and close these VMAs we will incorrect credit the remainder twice and resv_huge_pages will become out of sync. This can lead to allocation failures on mappings with reservations and even to resv_huge_pages wrapping which prevents all subsequent hugepage allocations. The simple fix would be to correctly apportion the remaining reservation count when the split is made. However the only hook we have vm_ops->open only has the new VMA we do not know the identity of the preceeding VMA. Also even if we did have that VMA to hand we do not know how much of the reservation was consumed each side of the split. This patch therefore takes a different tack. We know that the whole of any private mapping (which has a reservation) has a reservation over its whole size. Any present pages represent consumed reservation. Therefore if we track the instantiated pages we can calculate the remaining reservation. This patch reuses the existing regions code to track the regions for which we have consumed reservation (ie. the instantiated pages), as each page is faulted in we record the consumption of reservation for the new page. When we need to return unused reservations at unmap time we simply count the consumed reservation region subtracting that from the whole of the map. During a VMA split the newly opened VMA will point to the same region map, as this map is offset oriented it remains valid for both of the split VMAs. This map is referenced counted so that it is removed when all VMAs which are part of the mmap are gone. Thanks to Adam Litke and Mel Gorman for their review feedback. Signed-off-by: Andy Whitcroft <apw@shadowen.org> Acked-by: Mel Gorman <mel@csn.ul.ie> Cc: Adam Litke <agl@us.ibm.com> Cc: Johannes Weiner <hannes@saeurebad.de> Cc: Andy Whitcroft <apw@shadowen.org> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Michael Kerrisk <mtk.manpages@googlemail.com> Cc: Jon Tollefson <kniht@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:32 -07:00
struct resv_map *reservations = vma_resv_map(vma);
/* Mark this page used in the map. */
region_add(&reservations->regions, idx, idx + 1);
}
}
hugetlb: reserve huge pages for reliable MAP_PRIVATE hugetlbfs mappings until fork() This patch reserves huge pages at mmap() time for MAP_PRIVATE mappings in a similar manner to the reservations taken for MAP_SHARED mappings. The reserve count is accounted both globally and on a per-VMA basis for private mappings. This guarantees that a process that successfully calls mmap() will successfully fault all pages in the future unless fork() is called. The characteristics of private mappings of hugetlbfs files behaviour after this patch are; 1. The process calling mmap() is guaranteed to succeed all future faults until it forks(). 2. On fork(), the parent may die due to SIGKILL on writes to the private mapping if enough pages are not available for the COW. For reasonably reliable behaviour in the face of a small huge page pool, children of hugepage-aware processes should not reference the mappings; such as might occur when fork()ing to exec(). 3. On fork(), the child VMAs inherit no reserves. Reads on pages already faulted by the parent will succeed. Successful writes will depend on enough huge pages being free in the pool. 4. Quotas of the hugetlbfs mount are checked at reserve time for the mapper and at fault time otherwise. Before this patch, all reads or writes in the child potentially needs page allocations that can later lead to the death of the parent. This applies to reads and writes of uninstantiated pages as well as COW. After the patch it is only a write to an instantiated page that causes problems. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@shadowen.org> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:23 -07:00
static struct page *alloc_huge_page(struct vm_area_struct *vma,
hugetlb: guarantee that COW faults for a process that called mmap(MAP_PRIVATE) on hugetlbfs will succeed After patch 2 in this series, a process that successfully calls mmap() for a MAP_PRIVATE mapping will be guaranteed to successfully fault until a process calls fork(). At that point, the next write fault from the parent could fail due to COW if the child still has a reference. We only reserve pages for the parent but a copy must be made to avoid leaking data from the parent to the child after fork(). Reserves could be taken for both parent and child at fork time to guarantee faults but if the mapping is large it is highly likely we will not have sufficient pages for the reservation, and it is common to fork only to exec() immediatly after. A failure here would be very undesirable. Note that the current behaviour of mainline with MAP_PRIVATE pages is pretty bad. The following situation is allowed to occur today. 1. Process calls mmap(MAP_PRIVATE) 2. Process calls mlock() to fault all pages and makes sure it succeeds 3. Process forks() 4. Process writes to MAP_PRIVATE mapping while child still exists 5. If the COW fails at this point, the process gets SIGKILLed even though it had taken care to ensure the pages existed This patch improves the situation by guaranteeing the reliability of the process that successfully calls mmap(). When the parent performs COW, it will try to satisfy the allocation without using reserves. If that fails the parent will steal the page leaving any children without a page. Faults from the child after that point will result in failure. If the child COW happens first, an attempt will be made to allocate the page without reserves and the child will get SIGKILLed on failure. To summarise the new behaviour: 1. If the original mapper performs COW on a private mapping with multiple references, it will attempt to allocate a hugepage from the pool or the buddy allocator without using the existing reserves. On fail, VMAs mapping the same area are traversed and the page being COW'd is unmapped where found. It will then steal the original page as the last mapper in the normal way. 2. The VMAs the pages were unmapped from are flagged to note that pages with data no longer exist. Future no-page faults on those VMAs will terminate the process as otherwise it would appear that data was corrupted. A warning is printed to the console that this situation occured. 2. If the child performs COW first, it will attempt to satisfy the COW from the pool if there are enough pages or via the buddy allocator if overcommit is allowed and the buddy allocator can satisfy the request. If it fails, the child will be killed. If the pool is large enough, existing applications will not notice that the reserves were a factor. Existing applications depending on the no-reserves been set are unlikely to exist as for much of the history of hugetlbfs, pages were prefaulted at mmap(), allocating the pages at that point or failing the mmap(). [npiggin@suse.de: fix CONFIG_HUGETLB=n build] Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@shadowen.org> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:25 -07:00
unsigned long addr, int avoid_reserve)
{
struct hstate *h = hstate_vma(vma);
hugetlb: split alloc_huge_page into private and shared components Hugetlbfs implements a quota system which can limit the amount of memory that can be used by the filesystem. Before allocating a new huge page for a file, the quota is checked and debited. The quota is then credited when truncating the file. I found a few bugs in the code for both MAP_PRIVATE and MAP_SHARED mappings. Before detailing the problems and my proposed solutions, we should agree on a definition of quotas that properly addresses both private and shared pages. Since the purpose of quotas is to limit total memory consumption on a per-filesystem basis, I argue that all pages allocated by the fs (private and shared) should be charged against quota. Private Mappings ================ The current code will debit quota for private pages sometimes, but will never credit it. At a minimum, this causes a leak in the quota accounting which renders the accounting essentially useless as it is. Shared pages have a one to one mapping with a hugetlbfs file and are easy to account by debiting on allocation and crediting on truncate. Private pages are anonymous in nature and have a many to one relationship with their hugetlbfs files (due to copy on write). Because private pages are not indexed by the mapping's radix tree, thier quota cannot be credited at file truncation time. Crediting must be done when the page is unmapped and freed. Shared Pages ============ I discovered an issue concerning the interaction between the MAP_SHARED reservation system and quotas. Since quota is not checked until page instantiation, an over-quota mmap/reservation will initially succeed. When instantiating the first over-quota page, the program will receive SIGBUS. This is inconsistent since the reservation is supposed to be a guarantee. The solution is to debit the full amount of quota at reservation time and credit the unused portion when the reservation is released. This patch series brings quotas back in line by making the following modifications: * Private pages - Debit quota in alloc_huge_page() - Credit quota in free_huge_page() * Shared pages - Debit quota for entire reservation at mmap time - Credit quota for instantiated pages in free_huge_page() - Credit quota for unused reservation at munmap time This patch: The shared page reservation and dynamic pool resizing features have made the allocation of private vs. shared huge pages quite different. By splitting out the private/shared-specific portions of the process into their own functions, readability is greatly improved. alloc_huge_page now calls the proper helper and performs common operations. [akpm@linux-foundation.org: coding-style cleanups] Signed-off-by: Adam Litke <agl@us.ibm.com> Cc: Ken Chen <kenchen@google.com> Cc: Andy Whitcroft <apw@shadowen.org> Cc: Dave Hansen <haveblue@us.ibm.com> Cc: David Gibson <hermes@gibson.dropbear.id.au> Cc: William Lee Irwin III <wli@holomorphy.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-11-14 16:59:37 -08:00
struct page *page;
hugetlb: reserve huge pages for reliable MAP_PRIVATE hugetlbfs mappings until fork() This patch reserves huge pages at mmap() time for MAP_PRIVATE mappings in a similar manner to the reservations taken for MAP_SHARED mappings. The reserve count is accounted both globally and on a per-VMA basis for private mappings. This guarantees that a process that successfully calls mmap() will successfully fault all pages in the future unless fork() is called. The characteristics of private mappings of hugetlbfs files behaviour after this patch are; 1. The process calling mmap() is guaranteed to succeed all future faults until it forks(). 2. On fork(), the parent may die due to SIGKILL on writes to the private mapping if enough pages are not available for the COW. For reasonably reliable behaviour in the face of a small huge page pool, children of hugepage-aware processes should not reference the mappings; such as might occur when fork()ing to exec(). 3. On fork(), the child VMAs inherit no reserves. Reads on pages already faulted by the parent will succeed. Successful writes will depend on enough huge pages being free in the pool. 4. Quotas of the hugetlbfs mount are checked at reserve time for the mapper and at fault time otherwise. Before this patch, all reads or writes in the child potentially needs page allocations that can later lead to the death of the parent. This applies to reads and writes of uninstantiated pages as well as COW. After the patch it is only a write to an instantiated page that causes problems. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@shadowen.org> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:23 -07:00
struct address_space *mapping = vma->vm_file->f_mapping;
struct inode *inode = mapping->host;
long chg;
hugetlb: reserve huge pages for reliable MAP_PRIVATE hugetlbfs mappings until fork() This patch reserves huge pages at mmap() time for MAP_PRIVATE mappings in a similar manner to the reservations taken for MAP_SHARED mappings. The reserve count is accounted both globally and on a per-VMA basis for private mappings. This guarantees that a process that successfully calls mmap() will successfully fault all pages in the future unless fork() is called. The characteristics of private mappings of hugetlbfs files behaviour after this patch are; 1. The process calling mmap() is guaranteed to succeed all future faults until it forks(). 2. On fork(), the parent may die due to SIGKILL on writes to the private mapping if enough pages are not available for the COW. For reasonably reliable behaviour in the face of a small huge page pool, children of hugepage-aware processes should not reference the mappings; such as might occur when fork()ing to exec(). 3. On fork(), the child VMAs inherit no reserves. Reads on pages already faulted by the parent will succeed. Successful writes will depend on enough huge pages being free in the pool. 4. Quotas of the hugetlbfs mount are checked at reserve time for the mapper and at fault time otherwise. Before this patch, all reads or writes in the child potentially needs page allocations that can later lead to the death of the parent. This applies to reads and writes of uninstantiated pages as well as COW. After the patch it is only a write to an instantiated page that causes problems. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@shadowen.org> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:23 -07:00
/*
* Processes that did not create the mapping will have no reserves and
* will not have accounted against quota. Check that the quota can be
* made before satisfying the allocation
* MAP_NORESERVE mappings may also need pages and quota allocated
* if no reserve mapping overlaps.
hugetlb: reserve huge pages for reliable MAP_PRIVATE hugetlbfs mappings until fork() This patch reserves huge pages at mmap() time for MAP_PRIVATE mappings in a similar manner to the reservations taken for MAP_SHARED mappings. The reserve count is accounted both globally and on a per-VMA basis for private mappings. This guarantees that a process that successfully calls mmap() will successfully fault all pages in the future unless fork() is called. The characteristics of private mappings of hugetlbfs files behaviour after this patch are; 1. The process calling mmap() is guaranteed to succeed all future faults until it forks(). 2. On fork(), the parent may die due to SIGKILL on writes to the private mapping if enough pages are not available for the COW. For reasonably reliable behaviour in the face of a small huge page pool, children of hugepage-aware processes should not reference the mappings; such as might occur when fork()ing to exec(). 3. On fork(), the child VMAs inherit no reserves. Reads on pages already faulted by the parent will succeed. Successful writes will depend on enough huge pages being free in the pool. 4. Quotas of the hugetlbfs mount are checked at reserve time for the mapper and at fault time otherwise. Before this patch, all reads or writes in the child potentially needs page allocations that can later lead to the death of the parent. This applies to reads and writes of uninstantiated pages as well as COW. After the patch it is only a write to an instantiated page that causes problems. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@shadowen.org> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:23 -07:00
*/
chg = vma_needs_reservation(h, vma, addr);
if (chg < 0)
return ERR_PTR(chg);
if (chg)
hugetlb: reserve huge pages for reliable MAP_PRIVATE hugetlbfs mappings until fork() This patch reserves huge pages at mmap() time for MAP_PRIVATE mappings in a similar manner to the reservations taken for MAP_SHARED mappings. The reserve count is accounted both globally and on a per-VMA basis for private mappings. This guarantees that a process that successfully calls mmap() will successfully fault all pages in the future unless fork() is called. The characteristics of private mappings of hugetlbfs files behaviour after this patch are; 1. The process calling mmap() is guaranteed to succeed all future faults until it forks(). 2. On fork(), the parent may die due to SIGKILL on writes to the private mapping if enough pages are not available for the COW. For reasonably reliable behaviour in the face of a small huge page pool, children of hugepage-aware processes should not reference the mappings; such as might occur when fork()ing to exec(). 3. On fork(), the child VMAs inherit no reserves. Reads on pages already faulted by the parent will succeed. Successful writes will depend on enough huge pages being free in the pool. 4. Quotas of the hugetlbfs mount are checked at reserve time for the mapper and at fault time otherwise. Before this patch, all reads or writes in the child potentially needs page allocations that can later lead to the death of the parent. This applies to reads and writes of uninstantiated pages as well as COW. After the patch it is only a write to an instantiated page that causes problems. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@shadowen.org> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:23 -07:00
if (hugetlb_get_quota(inode->i_mapping, chg))
return ERR_PTR(-ENOSPC);
spin_lock(&hugetlb_lock);
page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
spin_unlock(&hugetlb_lock);
[PATCH] hugepage: Strict page reservation for hugepage inodes These days, hugepages are demand-allocated at first fault time. There's a somewhat dubious (and racy) heuristic when making a new mmap() to check if there are enough available hugepages to fully satisfy that mapping. A particularly obvious case where the heuristic breaks down is where a process maps its hugepages not as a single chunk, but as a bunch of individually mmap()ed (or shmat()ed) blocks without touching and instantiating the pages in between allocations. In this case the size of each block is compared against the total number of available hugepages. It's thus easy for the process to become overcommitted, because each block mapping will succeed, although the total number of hugepages required by all blocks exceeds the number available. In particular, this defeats such a program which will detect a mapping failure and adjust its hugepage usage downward accordingly. The patch below addresses this problem, by strictly reserving a number of physical hugepages for hugepage inodes which have been mapped, but not instatiated. MAP_SHARED mappings are thus "safe" - they will fail on mmap(), not later with an OOM SIGKILL. MAP_PRIVATE mappings can still trigger an OOM. (Actually SHARED mappings can technically still OOM, but only if the sysadmin explicitly reduces the hugepage pool between mapping and instantiation) This patch appears to address the problem at hand - it allows DB2 to start correctly, for instance, which previously suffered the failure described above. This patch causes no regressions on the libhugetblfs testsuite, and makes a test (designed to catch this problem) pass which previously failed (ppc64, POWER5). Signed-off-by: David Gibson <dwg@au1.ibm.com> Cc: William Lee Irwin III <wli@holomorphy.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-22 00:08:55 -08:00
if (!page) {
page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
if (!page) {
hugetlb: reserve huge pages for reliable MAP_PRIVATE hugetlbfs mappings until fork() This patch reserves huge pages at mmap() time for MAP_PRIVATE mappings in a similar manner to the reservations taken for MAP_SHARED mappings. The reserve count is accounted both globally and on a per-VMA basis for private mappings. This guarantees that a process that successfully calls mmap() will successfully fault all pages in the future unless fork() is called. The characteristics of private mappings of hugetlbfs files behaviour after this patch are; 1. The process calling mmap() is guaranteed to succeed all future faults until it forks(). 2. On fork(), the parent may die due to SIGKILL on writes to the private mapping if enough pages are not available for the COW. For reasonably reliable behaviour in the face of a small huge page pool, children of hugepage-aware processes should not reference the mappings; such as might occur when fork()ing to exec(). 3. On fork(), the child VMAs inherit no reserves. Reads on pages already faulted by the parent will succeed. Successful writes will depend on enough huge pages being free in the pool. 4. Quotas of the hugetlbfs mount are checked at reserve time for the mapper and at fault time otherwise. Before this patch, all reads or writes in the child potentially needs page allocations that can later lead to the death of the parent. This applies to reads and writes of uninstantiated pages as well as COW. After the patch it is only a write to an instantiated page that causes problems. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@shadowen.org> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:23 -07:00
hugetlb_put_quota(inode->i_mapping, chg);
hugetlbfs: kill applications that use MAP_NORESERVE with SIGBUS instead of OOM-killer Ordinarily, application using hugetlbfs will create mappings with reserves. For shared mappings, these pages are reserved before mmap() returns success and for private mappings, the caller process is guaranteed and a child process that cannot get the pages gets killed with sigbus. An application that uses MAP_NORESERVE gets no reservations and mmap() will always succeed at the risk the page will not be available at fault time. This might be used for example on very large sparse mappings where the developer is confident the necessary huge pages exist to satisfy all faults even though the whole mapping cannot be backed by huge pages. Unfortunately, if an allocation does fail, VM_FAULT_OOM is returned to the fault handler which proceeds to trigger the OOM-killer. This is unhelpful. Even without hugetlbfs mounted, a user using mmap() can trivially trigger the OOM-killer because VM_FAULT_OOM is returned (will provide example program if desired - it's a whopping 24 lines long). It could be considered a DOS available to an unprivileged user. This patch alters hugetlbfs to kill a process that uses MAP_NORESERVE where huge pages were not available with SIGBUS instead of triggering the OOM killer. This change affects hugetlb_cow() as well. I feel there is a failure case in there, but I didn't create one. It would need a fairly specific target in terms of the faulting application and the hugepage pool size. The hugetlb_no_page() path is much easier to hit but both might as well be closed. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: David Rientjes <rientjes@google.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: <stable@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-05-11 14:06:53 -07:00
return ERR_PTR(-VM_FAULT_SIGBUS);
}
}
hugetlb: split alloc_huge_page into private and shared components Hugetlbfs implements a quota system which can limit the amount of memory that can be used by the filesystem. Before allocating a new huge page for a file, the quota is checked and debited. The quota is then credited when truncating the file. I found a few bugs in the code for both MAP_PRIVATE and MAP_SHARED mappings. Before detailing the problems and my proposed solutions, we should agree on a definition of quotas that properly addresses both private and shared pages. Since the purpose of quotas is to limit total memory consumption on a per-filesystem basis, I argue that all pages allocated by the fs (private and shared) should be charged against quota. Private Mappings ================ The current code will debit quota for private pages sometimes, but will never credit it. At a minimum, this causes a leak in the quota accounting which renders the accounting essentially useless as it is. Shared pages have a one to one mapping with a hugetlbfs file and are easy to account by debiting on allocation and crediting on truncate. Private pages are anonymous in nature and have a many to one relationship with their hugetlbfs files (due to copy on write). Because private pages are not indexed by the mapping's radix tree, thier quota cannot be credited at file truncation time. Crediting must be done when the page is unmapped and freed. Shared Pages ============ I discovered an issue concerning the interaction between the MAP_SHARED reservation system and quotas. Since quota is not checked until page instantiation, an over-quota mmap/reservation will initially succeed. When instantiating the first over-quota page, the program will receive SIGBUS. This is inconsistent since the reservation is supposed to be a guarantee. The solution is to debit the full amount of quota at reservation time and credit the unused portion when the reservation is released. This patch series brings quotas back in line by making the following modifications: * Private pages - Debit quota in alloc_huge_page() - Credit quota in free_huge_page() * Shared pages - Debit quota for entire reservation at mmap time - Credit quota for instantiated pages in free_huge_page() - Credit quota for unused reservation at munmap time This patch: The shared page reservation and dynamic pool resizing features have made the allocation of private vs. shared huge pages quite different. By splitting out the private/shared-specific portions of the process into their own functions, readability is greatly improved. alloc_huge_page now calls the proper helper and performs common operations. [akpm@linux-foundation.org: coding-style cleanups] Signed-off-by: Adam Litke <agl@us.ibm.com> Cc: Ken Chen <kenchen@google.com> Cc: Andy Whitcroft <apw@shadowen.org> Cc: Dave Hansen <haveblue@us.ibm.com> Cc: David Gibson <hermes@gibson.dropbear.id.au> Cc: William Lee Irwin III <wli@holomorphy.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-11-14 16:59:37 -08:00
hugetlb: reserve huge pages for reliable MAP_PRIVATE hugetlbfs mappings until fork() This patch reserves huge pages at mmap() time for MAP_PRIVATE mappings in a similar manner to the reservations taken for MAP_SHARED mappings. The reserve count is accounted both globally and on a per-VMA basis for private mappings. This guarantees that a process that successfully calls mmap() will successfully fault all pages in the future unless fork() is called. The characteristics of private mappings of hugetlbfs files behaviour after this patch are; 1. The process calling mmap() is guaranteed to succeed all future faults until it forks(). 2. On fork(), the parent may die due to SIGKILL on writes to the private mapping if enough pages are not available for the COW. For reasonably reliable behaviour in the face of a small huge page pool, children of hugepage-aware processes should not reference the mappings; such as might occur when fork()ing to exec(). 3. On fork(), the child VMAs inherit no reserves. Reads on pages already faulted by the parent will succeed. Successful writes will depend on enough huge pages being free in the pool. 4. Quotas of the hugetlbfs mount are checked at reserve time for the mapper and at fault time otherwise. Before this patch, all reads or writes in the child potentially needs page allocations that can later lead to the death of the parent. This applies to reads and writes of uninstantiated pages as well as COW. After the patch it is only a write to an instantiated page that causes problems. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@shadowen.org> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:23 -07:00
set_page_private(page, (unsigned long) mapping);
vma_commit_reservation(h, vma, addr);
return page;
[PATCH] hugepage: Strict page reservation for hugepage inodes These days, hugepages are demand-allocated at first fault time. There's a somewhat dubious (and racy) heuristic when making a new mmap() to check if there are enough available hugepages to fully satisfy that mapping. A particularly obvious case where the heuristic breaks down is where a process maps its hugepages not as a single chunk, but as a bunch of individually mmap()ed (or shmat()ed) blocks without touching and instantiating the pages in between allocations. In this case the size of each block is compared against the total number of available hugepages. It's thus easy for the process to become overcommitted, because each block mapping will succeed, although the total number of hugepages required by all blocks exceeds the number available. In particular, this defeats such a program which will detect a mapping failure and adjust its hugepage usage downward accordingly. The patch below addresses this problem, by strictly reserving a number of physical hugepages for hugepage inodes which have been mapped, but not instatiated. MAP_SHARED mappings are thus "safe" - they will fail on mmap(), not later with an OOM SIGKILL. MAP_PRIVATE mappings can still trigger an OOM. (Actually SHARED mappings can technically still OOM, but only if the sysadmin explicitly reduces the hugepage pool between mapping and instantiation) This patch appears to address the problem at hand - it allows DB2 to start correctly, for instance, which previously suffered the failure described above. This patch causes no regressions on the libhugetblfs testsuite, and makes a test (designed to catch this problem) pass which previously failed (ppc64, POWER5). Signed-off-by: David Gibson <dwg@au1.ibm.com> Cc: William Lee Irwin III <wli@holomorphy.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-22 00:08:55 -08:00
}
int __weak alloc_bootmem_huge_page(struct hstate *h)
{
struct huge_bootmem_page *m;
int nr_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
while (nr_nodes) {
void *addr;
addr = __alloc_bootmem_node_nopanic(
hugetlb: add nodemask arg to huge page alloc, free and surplus adjust functions In preparation for constraining huge page allocation and freeing by the controlling task's numa mempolicy, add a "nodes_allowed" nodemask pointer to the allocate, free and surplus adjustment functions. For now, pass NULL to indicate default behavior--i.e., use node_online_map. A subsqeuent patch will derive a non-default mask from the controlling task's numa mempolicy. Note that this method of updating the global hstate nr_hugepages under the constraint of a nodemask simplifies keeping the global state consistent--especially the number of persistent and surplus pages relative to reservations and overcommit limits. There are undoubtedly other ways to do this, but this works for both interfaces: mempolicy and per node attributes. [rientjes@google.com: fix HIGHMEM compile error] Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Reviewed-by: Mel Gorman <mel@csn.ul.ie> Acked-by: David Rientjes <rientjes@google.com> Reviewed-by: Andi Kleen <andi@firstfloor.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> Cc: Nishanth Aravamudan <nacc@us.ibm.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@canonical.com> Cc: Eric Whitney <eric.whitney@hp.com> Cc: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-14 17:58:16 -08:00
NODE_DATA(hstate_next_node_to_alloc(h,
&node_states[N_HIGH_MEMORY])),
huge_page_size(h), huge_page_size(h), 0);
if (addr) {
/*
* Use the beginning of the huge page to store the
* huge_bootmem_page struct (until gather_bootmem
* puts them into the mem_map).
*/
m = addr;
goto found;
}
nr_nodes--;
}
return 0;
found:
BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
/* Put them into a private list first because mem_map is not up yet */
list_add(&m->list, &huge_boot_pages);
m->hstate = h;
return 1;
}
static void prep_compound_huge_page(struct page *page, int order)
{
if (unlikely(order > (MAX_ORDER - 1)))
prep_compound_gigantic_page(page, order);
else
prep_compound_page(page, order);
}
/* Put bootmem huge pages into the standard lists after mem_map is up */
static void __init gather_bootmem_prealloc(void)
{
struct huge_bootmem_page *m;
list_for_each_entry(m, &huge_boot_pages, list) {
struct page *page = virt_to_page(m);
struct hstate *h = m->hstate;
__ClearPageReserved(page);
WARN_ON(page_count(page) != 1);
prep_compound_huge_page(page, h->order);
prep_new_huge_page(h, page, page_to_nid(page));
}
}
static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
{
unsigned long i;
for (i = 0; i < h->max_huge_pages; ++i) {
if (h->order >= MAX_ORDER) {
if (!alloc_bootmem_huge_page(h))
break;
} else if (!alloc_fresh_huge_page(h,
&node_states[N_HIGH_MEMORY]))
break;
}
h->max_huge_pages = i;
}
static void __init hugetlb_init_hstates(void)
{
struct hstate *h;
for_each_hstate(h) {
/* oversize hugepages were init'ed in early boot */
if (h->order < MAX_ORDER)
hugetlb_hstate_alloc_pages(h);
}
}
static char * __init memfmt(char *buf, unsigned long n)
{
if (n >= (1UL << 30))
sprintf(buf, "%lu GB", n >> 30);
else if (n >= (1UL << 20))
sprintf(buf, "%lu MB", n >> 20);
else
sprintf(buf, "%lu KB", n >> 10);
return buf;
}
static void __init report_hugepages(void)
{
struct hstate *h;
for_each_hstate(h) {
char buf[32];
printk(KERN_INFO "HugeTLB registered %s page size, "
"pre-allocated %ld pages\n",
memfmt(buf, huge_page_size(h)),
h->free_huge_pages);
}
}
#ifdef CONFIG_HIGHMEM
hugetlb: add nodemask arg to huge page alloc, free and surplus adjust functions In preparation for constraining huge page allocation and freeing by the controlling task's numa mempolicy, add a "nodes_allowed" nodemask pointer to the allocate, free and surplus adjustment functions. For now, pass NULL to indicate default behavior--i.e., use node_online_map. A subsqeuent patch will derive a non-default mask from the controlling task's numa mempolicy. Note that this method of updating the global hstate nr_hugepages under the constraint of a nodemask simplifies keeping the global state consistent--especially the number of persistent and surplus pages relative to reservations and overcommit limits. There are undoubtedly other ways to do this, but this works for both interfaces: mempolicy and per node attributes. [rientjes@google.com: fix HIGHMEM compile error] Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Reviewed-by: Mel Gorman <mel@csn.ul.ie> Acked-by: David Rientjes <rientjes@google.com> Reviewed-by: Andi Kleen <andi@firstfloor.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> Cc: Nishanth Aravamudan <nacc@us.ibm.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@canonical.com> Cc: Eric Whitney <eric.whitney@hp.com> Cc: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-14 17:58:16 -08:00
static void try_to_free_low(struct hstate *h, unsigned long count,
nodemask_t *nodes_allowed)
{
int i;
if (h->order >= MAX_ORDER)
return;
hugetlb: add nodemask arg to huge page alloc, free and surplus adjust functions In preparation for constraining huge page allocation and freeing by the controlling task's numa mempolicy, add a "nodes_allowed" nodemask pointer to the allocate, free and surplus adjustment functions. For now, pass NULL to indicate default behavior--i.e., use node_online_map. A subsqeuent patch will derive a non-default mask from the controlling task's numa mempolicy. Note that this method of updating the global hstate nr_hugepages under the constraint of a nodemask simplifies keeping the global state consistent--especially the number of persistent and surplus pages relative to reservations and overcommit limits. There are undoubtedly other ways to do this, but this works for both interfaces: mempolicy and per node attributes. [rientjes@google.com: fix HIGHMEM compile error] Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Reviewed-by: Mel Gorman <mel@csn.ul.ie> Acked-by: David Rientjes <rientjes@google.com> Reviewed-by: Andi Kleen <andi@firstfloor.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> Cc: Nishanth Aravamudan <nacc@us.ibm.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@canonical.com> Cc: Eric Whitney <eric.whitney@hp.com> Cc: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-14 17:58:16 -08:00
for_each_node_mask(i, *nodes_allowed) {
struct page *page, *next;
struct list_head *freel = &h->hugepage_freelists[i];
list_for_each_entry_safe(page, next, freel, lru) {
if (count >= h->nr_huge_pages)
return;
if (PageHighMem(page))
continue;
list_del(&page->lru);
update_and_free_page(h, page);
h->free_huge_pages--;
h->free_huge_pages_node[page_to_nid(page)]--;
}
}
}
#else
hugetlb: add nodemask arg to huge page alloc, free and surplus adjust functions In preparation for constraining huge page allocation and freeing by the controlling task's numa mempolicy, add a "nodes_allowed" nodemask pointer to the allocate, free and surplus adjustment functions. For now, pass NULL to indicate default behavior--i.e., use node_online_map. A subsqeuent patch will derive a non-default mask from the controlling task's numa mempolicy. Note that this method of updating the global hstate nr_hugepages under the constraint of a nodemask simplifies keeping the global state consistent--especially the number of persistent and surplus pages relative to reservations and overcommit limits. There are undoubtedly other ways to do this, but this works for both interfaces: mempolicy and per node attributes. [rientjes@google.com: fix HIGHMEM compile error] Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Reviewed-by: Mel Gorman <mel@csn.ul.ie> Acked-by: David Rientjes <rientjes@google.com> Reviewed-by: Andi Kleen <andi@firstfloor.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> Cc: Nishanth Aravamudan <nacc@us.ibm.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@canonical.com> Cc: Eric Whitney <eric.whitney@hp.com> Cc: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-14 17:58:16 -08:00
static inline void try_to_free_low(struct hstate *h, unsigned long count,
nodemask_t *nodes_allowed)
{
}
#endif
mm: introduce PageHuge() for testing huge/gigantic pages A series of patches to enhance the /proc/pagemap interface and to add a userspace executable which can be used to present the pagemap data. Export 10 more flags to end users (and more for kernel developers): 11. KPF_MMAP (pseudo flag) memory mapped page 12. KPF_ANON (pseudo flag) memory mapped page (anonymous) 13. KPF_SWAPCACHE page is in swap cache 14. KPF_SWAPBACKED page is swap/RAM backed 15. KPF_COMPOUND_HEAD (*) 16. KPF_COMPOUND_TAIL (*) 17. KPF_HUGE hugeTLB pages 18. KPF_UNEVICTABLE page is in the unevictable LRU list 19. KPF_HWPOISON hardware detected corruption 20. KPF_NOPAGE (pseudo flag) no page frame at the address (*) For compound pages, exporting _both_ head/tail info enables users to tell where a compound page starts/ends, and its order. a simple demo of the page-types tool # ./page-types -h page-types [options] -r|--raw Raw mode, for kernel developers -a|--addr addr-spec Walk a range of pages -b|--bits bits-spec Walk pages with specified bits -l|--list Show page details in ranges -L|--list-each Show page details one by one -N|--no-summary Don't show summay info -h|--help Show this usage message addr-spec: N one page at offset N (unit: pages) N+M pages range from N to N+M-1 N,M pages range from N to M-1 N, pages range from N to end ,M pages range from 0 to M bits-spec: bit1,bit2 (flags & (bit1|bit2)) != 0 bit1,bit2=bit1 (flags & (bit1|bit2)) == bit1 bit1,~bit2 (flags & (bit1|bit2)) == bit1 =bit1,bit2 flags == (bit1|bit2) bit-names: locked error referenced uptodate dirty lru active slab writeback reclaim buddy mmap anonymous swapcache swapbacked compound_head compound_tail huge unevictable hwpoison nopage reserved(r) mlocked(r) mappedtodisk(r) private(r) private_2(r) owner_private(r) arch(r) uncached(r) readahead(o) slob_free(o) slub_frozen(o) slub_debug(o) (r) raw mode bits (o) overloaded bits # ./page-types flags page-count MB symbolic-flags long-symbolic-flags 0x0000000000000000 487369 1903 _________________________________ 0x0000000000000014 5 0 __R_D____________________________ referenced,dirty 0x0000000000000020 1 0 _____l___________________________ lru 0x0000000000000024 34 0 __R__l___________________________ referenced,lru 0x0000000000000028 3838 14 ___U_l___________________________ uptodate,lru 0x0001000000000028 48 0 ___U_l_______________________I___ uptodate,lru,readahead 0x000000000000002c 6478 25 __RU_l___________________________ referenced,uptodate,lru 0x000100000000002c 47 0 __RU_l_______________________I___ referenced,uptodate,lru,readahead 0x0000000000000040 8344 32 ______A__________________________ active 0x0000000000000060 1 0 _____lA__________________________ lru,active 0x0000000000000068 348 1 ___U_lA__________________________ uptodate,lru,active 0x0001000000000068 12 0 ___U_lA______________________I___ uptodate,lru,active,readahead 0x000000000000006c 988 3 __RU_lA__________________________ referenced,uptodate,lru,active 0x000100000000006c 48 0 __RU_lA______________________I___ referenced,uptodate,lru,active,readahead 0x0000000000004078 1 0 ___UDlA_______b__________________ uptodate,dirty,lru,active,swapbacked 0x000000000000407c 34 0 __RUDlA_______b__________________ referenced,uptodate,dirty,lru,active,swapbacked 0x0000000000000400 503 1 __________B______________________ buddy 0x0000000000000804 1 0 __R________M_____________________ referenced,mmap 0x0000000000000828 1029 4 ___U_l_____M_____________________ uptodate,lru,mmap 0x0001000000000828 43 0 ___U_l_____M_________________I___ uptodate,lru,mmap,readahead 0x000000000000082c 382 1 __RU_l_____M_____________________ referenced,uptodate,lru,mmap 0x000100000000082c 12 0 __RU_l_____M_________________I___ referenced,uptodate,lru,mmap,readahead 0x0000000000000868 192 0 ___U_lA____M_____________________ uptodate,lru,active,mmap 0x0001000000000868 12 0 ___U_lA____M_________________I___ uptodate,lru,active,mmap,readahead 0x000000000000086c 800 3 __RU_lA____M_____________________ referenced,uptodate,lru,active,mmap 0x000100000000086c 31 0 __RU_lA____M_________________I___ referenced,uptodate,lru,active,mmap,readahead 0x0000000000004878 2 0 ___UDlA____M__b__________________ uptodate,dirty,lru,active,mmap,swapbacked 0x0000000000001000 492 1 ____________a____________________ anonymous 0x0000000000005808 4 0 ___U_______Ma_b__________________ uptodate,mmap,anonymous,swapbacked 0x0000000000005868 2839 11 ___U_lA____Ma_b__________________ uptodate,lru,active,mmap,anonymous,swapbacked 0x000000000000586c 30 0 __RU_lA____Ma_b__________________ referenced,uptodate,lru,active,mmap,anonymous,swapbacked total 513968 2007 # ./page-types -r flags page-count MB symbolic-flags long-symbolic-flags 0x0000000000000000 468002 1828 _________________________________ 0x0000000100000000 19102 74 _____________________r___________ reserved 0x0000000000008000 41 0 _______________H_________________ compound_head 0x0000000000010000 188 0 ________________T________________ compound_tail 0x0000000000008014 1 0 __R_D__________H_________________ referenced,dirty,compound_head 0x0000000000010014 4 0 __R_D___________T________________ referenced,dirty,compound_tail 0x0000000000000020 1 0 _____l___________________________ lru 0x0000000800000024 34 0 __R__l__________________P________ referenced,lru,private 0x0000000000000028 3794 14 ___U_l___________________________ uptodate,lru 0x0001000000000028 46 0 ___U_l_______________________I___ uptodate,lru,readahead 0x0000000400000028 44 0 ___U_l_________________d_________ uptodate,lru,mappedtodisk 0x0001000400000028 2 0 ___U_l_________________d_____I___ uptodate,lru,mappedtodisk,readahead 0x000000000000002c 6434 25 __RU_l___________________________ referenced,uptodate,lru 0x000100000000002c 47 0 __RU_l_______________________I___ referenced,uptodate,lru,readahead 0x000000040000002c 14 0 __RU_l_________________d_________ referenced,uptodate,lru,mappedtodisk 0x000000080000002c 30 0 __RU_l__________________P________ referenced,uptodate,lru,private 0x0000000800000040 8124 31 ______A_________________P________ active,private 0x0000000000000040 219 0 ______A__________________________ active 0x0000000800000060 1 0 _____lA_________________P________ lru,active,private 0x0000000000000068 322 1 ___U_lA__________________________ uptodate,lru,active 0x0001000000000068 12 0 ___U_lA______________________I___ uptodate,lru,active,readahead 0x0000000400000068 13 0 ___U_lA________________d_________ uptodate,lru,active,mappedtodisk 0x0000000800000068 12 0 ___U_lA_________________P________ uptodate,lru,active,private 0x000000000000006c 977 3 __RU_lA__________________________ referenced,uptodate,lru,active 0x000100000000006c 48 0 __RU_lA______________________I___ referenced,uptodate,lru,active,readahead 0x000000040000006c 5 0 __RU_lA________________d_________ referenced,uptodate,lru,active,mappedtodisk 0x000000080000006c 3 0 __RU_lA_________________P________ referenced,uptodate,lru,active,private 0x0000000c0000006c 3 0 __RU_lA________________dP________ referenced,uptodate,lru,active,mappedtodisk,private 0x0000000c00000068 1 0 ___U_lA________________dP________ uptodate,lru,active,mappedtodisk,private 0x0000000000004078 1 0 ___UDlA_______b__________________ uptodate,dirty,lru,active,swapbacked 0x000000000000407c 34 0 __RUDlA_______b__________________ referenced,uptodate,dirty,lru,active,swapbacked 0x0000000000000400 538 2 __________B______________________ buddy 0x0000000000000804 1 0 __R________M_____________________ referenced,mmap 0x0000000000000828 1029 4 ___U_l_____M_____________________ uptodate,lru,mmap 0x0001000000000828 43 0 ___U_l_____M_________________I___ uptodate,lru,mmap,readahead 0x000000000000082c 382 1 __RU_l_____M_____________________ referenced,uptodate,lru,mmap 0x000100000000082c 12 0 __RU_l_____M_________________I___ referenced,uptodate,lru,mmap,readahead 0x0000000000000868 192 0 ___U_lA____M_____________________ uptodate,lru,active,mmap 0x0001000000000868 12 0 ___U_lA____M_________________I___ uptodate,lru,active,mmap,readahead 0x000000000000086c 800 3 __RU_lA____M_____________________ referenced,uptodate,lru,active,mmap 0x000100000000086c 31 0 __RU_lA____M_________________I___ referenced,uptodate,lru,active,mmap,readahead 0x0000000000004878 2 0 ___UDlA____M__b__________________ uptodate,dirty,lru,active,mmap,swapbacked 0x0000000000001000 492 1 ____________a____________________ anonymous 0x0000000000005008 2 0 ___U________a_b__________________ uptodate,anonymous,swapbacked 0x0000000000005808 4 0 ___U_______Ma_b__________________ uptodate,mmap,anonymous,swapbacked 0x000000000000580c 1 0 __RU_______Ma_b__________________ referenced,uptodate,mmap,anonymous,swapbacked 0x0000000000005868 2839 11 ___U_lA____Ma_b__________________ uptodate,lru,active,mmap,anonymous,swapbacked 0x000000000000586c 29 0 __RU_lA____Ma_b__________________ referenced,uptodate,lru,active,mmap,anonymous,swapbacked total 513968 2007 # ./page-types --raw --list --no-summary --bits reserved offset count flags 0 15 _____________________r___________ 31 4 _____________________r___________ 159 97 _____________________r___________ 4096 2067 _____________________r___________ 6752 2390 _____________________r___________ 9355 3 _____________________r___________ 9728 14526 _____________________r___________ This patch: Introduce PageHuge(), which identifies huge/gigantic pages by their dedicated compound destructor functions. Also move prep_compound_gigantic_page() to hugetlb.c and make __free_pages_ok() non-static. Signed-off-by: Wu Fengguang <fengguang.wu@intel.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Matt Mackall <mpm@selenic.com> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-06-16 15:32:22 -07:00
/*
* Increment or decrement surplus_huge_pages. Keep node-specific counters
* balanced by operating on them in a round-robin fashion.
* Returns 1 if an adjustment was made.
*/
hugetlb: add nodemask arg to huge page alloc, free and surplus adjust functions In preparation for constraining huge page allocation and freeing by the controlling task's numa mempolicy, add a "nodes_allowed" nodemask pointer to the allocate, free and surplus adjustment functions. For now, pass NULL to indicate default behavior--i.e., use node_online_map. A subsqeuent patch will derive a non-default mask from the controlling task's numa mempolicy. Note that this method of updating the global hstate nr_hugepages under the constraint of a nodemask simplifies keeping the global state consistent--especially the number of persistent and surplus pages relative to reservations and overcommit limits. There are undoubtedly other ways to do this, but this works for both interfaces: mempolicy and per node attributes. [rientjes@google.com: fix HIGHMEM compile error] Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Reviewed-by: Mel Gorman <mel@csn.ul.ie> Acked-by: David Rientjes <rientjes@google.com> Reviewed-by: Andi Kleen <andi@firstfloor.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> Cc: Nishanth Aravamudan <nacc@us.ibm.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@canonical.com> Cc: Eric Whitney <eric.whitney@hp.com> Cc: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-14 17:58:16 -08:00
static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
int delta)
mm: introduce PageHuge() for testing huge/gigantic pages A series of patches to enhance the /proc/pagemap interface and to add a userspace executable which can be used to present the pagemap data. Export 10 more flags to end users (and more for kernel developers): 11. KPF_MMAP (pseudo flag) memory mapped page 12. KPF_ANON (pseudo flag) memory mapped page (anonymous) 13. KPF_SWAPCACHE page is in swap cache 14. KPF_SWAPBACKED page is swap/RAM backed 15. KPF_COMPOUND_HEAD (*) 16. KPF_COMPOUND_TAIL (*) 17. KPF_HUGE hugeTLB pages 18. KPF_UNEVICTABLE page is in the unevictable LRU list 19. KPF_HWPOISON hardware detected corruption 20. KPF_NOPAGE (pseudo flag) no page frame at the address (*) For compound pages, exporting _both_ head/tail info enables users to tell where a compound page starts/ends, and its order. a simple demo of the page-types tool # ./page-types -h page-types [options] -r|--raw Raw mode, for kernel developers -a|--addr addr-spec Walk a range of pages -b|--bits bits-spec Walk pages with specified bits -l|--list Show page details in ranges -L|--list-each Show page details one by one -N|--no-summary Don't show summay info -h|--help Show this usage message addr-spec: N one page at offset N (unit: pages) N+M pages range from N to N+M-1 N,M pages range from N to M-1 N, pages range from N to end ,M pages range from 0 to M bits-spec: bit1,bit2 (flags & (bit1|bit2)) != 0 bit1,bit2=bit1 (flags & (bit1|bit2)) == bit1 bit1,~bit2 (flags & (bit1|bit2)) == bit1 =bit1,bit2 flags == (bit1|bit2) bit-names: locked error referenced uptodate dirty lru active slab writeback reclaim buddy mmap anonymous swapcache swapbacked compound_head compound_tail huge unevictable hwpoison nopage reserved(r) mlocked(r) mappedtodisk(r) private(r) private_2(r) owner_private(r) arch(r) uncached(r) readahead(o) slob_free(o) slub_frozen(o) slub_debug(o) (r) raw mode bits (o) overloaded bits # ./page-types flags page-count MB symbolic-flags long-symbolic-flags 0x0000000000000000 487369 1903 _________________________________ 0x0000000000000014 5 0 __R_D____________________________ referenced,dirty 0x0000000000000020 1 0 _____l___________________________ lru 0x0000000000000024 34 0 __R__l___________________________ referenced,lru 0x0000000000000028 3838 14 ___U_l___________________________ uptodate,lru 0x0001000000000028 48 0 ___U_l_______________________I___ uptodate,lru,readahead 0x000000000000002c 6478 25 __RU_l___________________________ referenced,uptodate,lru 0x000100000000002c 47 0 __RU_l_______________________I___ referenced,uptodate,lru,readahead 0x0000000000000040 8344 32 ______A__________________________ active 0x0000000000000060 1 0 _____lA__________________________ lru,active 0x0000000000000068 348 1 ___U_lA__________________________ uptodate,lru,active 0x0001000000000068 12 0 ___U_lA______________________I___ uptodate,lru,active,readahead 0x000000000000006c 988 3 __RU_lA__________________________ referenced,uptodate,lru,active 0x000100000000006c 48 0 __RU_lA______________________I___ referenced,uptodate,lru,active,readahead 0x0000000000004078 1 0 ___UDlA_______b__________________ uptodate,dirty,lru,active,swapbacked 0x000000000000407c 34 0 __RUDlA_______b__________________ referenced,uptodate,dirty,lru,active,swapbacked 0x0000000000000400 503 1 __________B______________________ buddy 0x0000000000000804 1 0 __R________M_____________________ referenced,mmap 0x0000000000000828 1029 4 ___U_l_____M_____________________ uptodate,lru,mmap 0x0001000000000828 43 0 ___U_l_____M_________________I___ uptodate,lru,mmap,readahead 0x000000000000082c 382 1 __RU_l_____M_____________________ referenced,uptodate,lru,mmap 0x000100000000082c 12 0 __RU_l_____M_________________I___ referenced,uptodate,lru,mmap,readahead 0x0000000000000868 192 0 ___U_lA____M_____________________ uptodate,lru,active,mmap 0x0001000000000868 12 0 ___U_lA____M_________________I___ uptodate,lru,active,mmap,readahead 0x000000000000086c 800 3 __RU_lA____M_____________________ referenced,uptodate,lru,active,mmap 0x000100000000086c 31 0 __RU_lA____M_________________I___ referenced,uptodate,lru,active,mmap,readahead 0x0000000000004878 2 0 ___UDlA____M__b__________________ uptodate,dirty,lru,active,mmap,swapbacked 0x0000000000001000 492 1 ____________a____________________ anonymous 0x0000000000005808 4 0 ___U_______Ma_b__________________ uptodate,mmap,anonymous,swapbacked 0x0000000000005868 2839 11 ___U_lA____Ma_b__________________ uptodate,lru,active,mmap,anonymous,swapbacked 0x000000000000586c 30 0 __RU_lA____Ma_b__________________ referenced,uptodate,lru,active,mmap,anonymous,swapbacked total 513968 2007 # ./page-types -r flags page-count MB symbolic-flags long-symbolic-flags 0x0000000000000000 468002 1828 _________________________________ 0x0000000100000000 19102 74 _____________________r___________ reserved 0x0000000000008000 41 0 _______________H_________________ compound_head 0x0000000000010000 188 0 ________________T________________ compound_tail 0x0000000000008014 1 0 __R_D__________H_________________ referenced,dirty,compound_head 0x0000000000010014 4 0 __R_D___________T________________ referenced,dirty,compound_tail 0x0000000000000020 1 0 _____l___________________________ lru 0x0000000800000024 34 0 __R__l__________________P________ referenced,lru,private 0x0000000000000028 3794 14 ___U_l___________________________ uptodate,lru 0x0001000000000028 46 0 ___U_l_______________________I___ uptodate,lru,readahead 0x0000000400000028 44 0 ___U_l_________________d_________ uptodate,lru,mappedtodisk 0x0001000400000028 2 0 ___U_l_________________d_____I___ uptodate,lru,mappedtodisk,readahead 0x000000000000002c 6434 25 __RU_l___________________________ referenced,uptodate,lru 0x000100000000002c 47 0 __RU_l_______________________I___ referenced,uptodate,lru,readahead 0x000000040000002c 14 0 __RU_l_________________d_________ referenced,uptodate,lru,mappedtodisk 0x000000080000002c 30 0 __RU_l__________________P________ referenced,uptodate,lru,private 0x0000000800000040 8124 31 ______A_________________P________ active,private 0x0000000000000040 219 0 ______A__________________________ active 0x0000000800000060 1 0 _____lA_________________P________ lru,active,private 0x0000000000000068 322 1 ___U_lA__________________________ uptodate,lru,active 0x0001000000000068 12 0 ___U_lA______________________I___ uptodate,lru,active,readahead 0x0000000400000068 13 0 ___U_lA________________d_________ uptodate,lru,active,mappedtodisk 0x0000000800000068 12 0 ___U_lA_________________P________ uptodate,lru,active,private 0x000000000000006c 977 3 __RU_lA__________________________ referenced,uptodate,lru,active 0x000100000000006c 48 0 __RU_lA______________________I___ referenced,uptodate,lru,active,readahead 0x000000040000006c 5 0 __RU_lA________________d_________ referenced,uptodate,lru,active,mappedtodisk 0x000000080000006c 3 0 __RU_lA_________________P________ referenced,uptodate,lru,active,private 0x0000000c0000006c 3 0 __RU_lA________________dP________ referenced,uptodate,lru,active,mappedtodisk,private 0x0000000c00000068 1 0 ___U_lA________________dP________ uptodate,lru,active,mappedtodisk,private 0x0000000000004078 1 0 ___UDlA_______b__________________ uptodate,dirty,lru,active,swapbacked 0x000000000000407c 34 0 __RUDlA_______b__________________ referenced,uptodate,dirty,lru,active,swapbacked 0x0000000000000400 538 2 __________B______________________ buddy 0x0000000000000804 1 0 __R________M_____________________ referenced,mmap 0x0000000000000828 1029 4 ___U_l_____M_____________________ uptodate,lru,mmap 0x0001000000000828 43 0 ___U_l_____M_________________I___ uptodate,lru,mmap,readahead 0x000000000000082c 382 1 __RU_l_____M_____________________ referenced,uptodate,lru,mmap 0x000100000000082c 12 0 __RU_l_____M_________________I___ referenced,uptodate,lru,mmap,readahead 0x0000000000000868 192 0 ___U_lA____M_____________________ uptodate,lru,active,mmap 0x0001000000000868 12 0 ___U_lA____M_________________I___ uptodate,lru,active,mmap,readahead 0x000000000000086c 800 3 __RU_lA____M_____________________ referenced,uptodate,lru,active,mmap 0x000100000000086c 31 0 __RU_lA____M_________________I___ referenced,uptodate,lru,active,mmap,readahead 0x0000000000004878 2 0 ___UDlA____M__b__________________ uptodate,dirty,lru,active,mmap,swapbacked 0x0000000000001000 492 1 ____________a____________________ anonymous 0x0000000000005008 2 0 ___U________a_b__________________ uptodate,anonymous,swapbacked 0x0000000000005808 4 0 ___U_______Ma_b__________________ uptodate,mmap,anonymous,swapbacked 0x000000000000580c 1 0 __RU_______Ma_b__________________ referenced,uptodate,mmap,anonymous,swapbacked 0x0000000000005868 2839 11 ___U_lA____Ma_b__________________ uptodate,lru,active,mmap,anonymous,swapbacked 0x000000000000586c 29 0 __RU_lA____Ma_b__________________ referenced,uptodate,lru,active,mmap,anonymous,swapbacked total 513968 2007 # ./page-types --raw --list --no-summary --bits reserved offset count flags 0 15 _____________________r___________ 31 4 _____________________r___________ 159 97 _____________________r___________ 4096 2067 _____________________r___________ 6752 2390 _____________________r___________ 9355 3 _____________________r___________ 9728 14526 _____________________r___________ This patch: Introduce PageHuge(), which identifies huge/gigantic pages by their dedicated compound destructor functions. Also move prep_compound_gigantic_page() to hugetlb.c and make __free_pages_ok() non-static. Signed-off-by: Wu Fengguang <fengguang.wu@intel.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Matt Mackall <mpm@selenic.com> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-06-16 15:32:22 -07:00
{
int start_nid, next_nid;
mm: introduce PageHuge() for testing huge/gigantic pages A series of patches to enhance the /proc/pagemap interface and to add a userspace executable which can be used to present the pagemap data. Export 10 more flags to end users (and more for kernel developers): 11. KPF_MMAP (pseudo flag) memory mapped page 12. KPF_ANON (pseudo flag) memory mapped page (anonymous) 13. KPF_SWAPCACHE page is in swap cache 14. KPF_SWAPBACKED page is swap/RAM backed 15. KPF_COMPOUND_HEAD (*) 16. KPF_COMPOUND_TAIL (*) 17. KPF_HUGE hugeTLB pages 18. KPF_UNEVICTABLE page is in the unevictable LRU list 19. KPF_HWPOISON hardware detected corruption 20. KPF_NOPAGE (pseudo flag) no page frame at the address (*) For compound pages, exporting _both_ head/tail info enables users to tell where a compound page starts/ends, and its order. a simple demo of the page-types tool # ./page-types -h page-types [options] -r|--raw Raw mode, for kernel developers -a|--addr addr-spec Walk a range of pages -b|--bits bits-spec Walk pages with specified bits -l|--list Show page details in ranges -L|--list-each Show page details one by one -N|--no-summary Don't show summay info -h|--help Show this usage message addr-spec: N one page at offset N (unit: pages) N+M pages range from N to N+M-1 N,M pages range from N to M-1 N, pages range from N to end ,M pages range from 0 to M bits-spec: bit1,bit2 (flags & (bit1|bit2)) != 0 bit1,bit2=bit1 (flags & (bit1|bit2)) == bit1 bit1,~bit2 (flags & (bit1|bit2)) == bit1 =bit1,bit2 flags == (bit1|bit2) bit-names: locked error referenced uptodate dirty lru active slab writeback reclaim buddy mmap anonymous swapcache swapbacked compound_head compound_tail huge unevictable hwpoison nopage reserved(r) mlocked(r) mappedtodisk(r) private(r) private_2(r) owner_private(r) arch(r) uncached(r) readahead(o) slob_free(o) slub_frozen(o) slub_debug(o) (r) raw mode bits (o) overloaded bits # ./page-types flags page-count MB symbolic-flags long-symbolic-flags 0x0000000000000000 487369 1903 _________________________________ 0x0000000000000014 5 0 __R_D____________________________ referenced,dirty 0x0000000000000020 1 0 _____l___________________________ lru 0x0000000000000024 34 0 __R__l___________________________ referenced,lru 0x0000000000000028 3838 14 ___U_l___________________________ uptodate,lru 0x0001000000000028 48 0 ___U_l_______________________I___ uptodate,lru,readahead 0x000000000000002c 6478 25 __RU_l___________________________ referenced,uptodate,lru 0x000100000000002c 47 0 __RU_l_______________________I___ referenced,uptodate,lru,readahead 0x0000000000000040 8344 32 ______A__________________________ active 0x0000000000000060 1 0 _____lA__________________________ lru,active 0x0000000000000068 348 1 ___U_lA__________________________ uptodate,lru,active 0x0001000000000068 12 0 ___U_lA______________________I___ uptodate,lru,active,readahead 0x000000000000006c 988 3 __RU_lA__________________________ referenced,uptodate,lru,active 0x000100000000006c 48 0 __RU_lA______________________I___ referenced,uptodate,lru,active,readahead 0x0000000000004078 1 0 ___UDlA_______b__________________ uptodate,dirty,lru,active,swapbacked 0x000000000000407c 34 0 __RUDlA_______b__________________ referenced,uptodate,dirty,lru,active,swapbacked 0x0000000000000400 503 1 __________B______________________ buddy 0x0000000000000804 1 0 __R________M_____________________ referenced,mmap 0x0000000000000828 1029 4 ___U_l_____M_____________________ uptodate,lru,mmap 0x0001000000000828 43 0 ___U_l_____M_________________I___ uptodate,lru,mmap,readahead 0x000000000000082c 382 1 __RU_l_____M_____________________ referenced,uptodate,lru,mmap 0x000100000000082c 12 0 __RU_l_____M_________________I___ referenced,uptodate,lru,mmap,readahead 0x0000000000000868 192 0 ___U_lA____M_____________________ uptodate,lru,active,mmap 0x0001000000000868 12 0 ___U_lA____M_________________I___ uptodate,lru,active,mmap,readahead 0x000000000000086c 800 3 __RU_lA____M_____________________ referenced,uptodate,lru,active,mmap 0x000100000000086c 31 0 __RU_lA____M_________________I___ referenced,uptodate,lru,active,mmap,readahead 0x0000000000004878 2 0 ___UDlA____M__b__________________ uptodate,dirty,lru,active,mmap,swapbacked 0x0000000000001000 492 1 ____________a____________________ anonymous 0x0000000000005808 4 0 ___U_______Ma_b__________________ uptodate,mmap,anonymous,swapbacked 0x0000000000005868 2839 11 ___U_lA____Ma_b__________________ uptodate,lru,active,mmap,anonymous,swapbacked 0x000000000000586c 30 0 __RU_lA____Ma_b__________________ referenced,uptodate,lru,active,mmap,anonymous,swapbacked total 513968 2007 # ./page-types -r flags page-count MB symbolic-flags long-symbolic-flags 0x0000000000000000 468002 1828 _________________________________ 0x0000000100000000 19102 74 _____________________r___________ reserved 0x0000000000008000 41 0 _______________H_________________ compound_head 0x0000000000010000 188 0 ________________T________________ compound_tail 0x0000000000008014 1 0 __R_D__________H_________________ referenced,dirty,compound_head 0x0000000000010014 4 0 __R_D___________T________________ referenced,dirty,compound_tail 0x0000000000000020 1 0 _____l___________________________ lru 0x0000000800000024 34 0 __R__l__________________P________ referenced,lru,private 0x0000000000000028 3794 14 ___U_l___________________________ uptodate,lru 0x0001000000000028 46 0 ___U_l_______________________I___ uptodate,lru,readahead 0x0000000400000028 44 0 ___U_l_________________d_________ uptodate,lru,mappedtodisk 0x0001000400000028 2 0 ___U_l_________________d_____I___ uptodate,lru,mappedtodisk,readahead 0x000000000000002c 6434 25 __RU_l___________________________ referenced,uptodate,lru 0x000100000000002c 47 0 __RU_l_______________________I___ referenced,uptodate,lru,readahead 0x000000040000002c 14 0 __RU_l_________________d_________ referenced,uptodate,lru,mappedtodisk 0x000000080000002c 30 0 __RU_l__________________P________ referenced,uptodate,lru,private 0x0000000800000040 8124 31 ______A_________________P________ active,private 0x0000000000000040 219 0 ______A__________________________ active 0x0000000800000060 1 0 _____lA_________________P________ lru,active,private 0x0000000000000068 322 1 ___U_lA__________________________ uptodate,lru,active 0x0001000000000068 12 0 ___U_lA______________________I___ uptodate,lru,active,readahead 0x0000000400000068 13 0 ___U_lA________________d_________ uptodate,lru,active,mappedtodisk 0x0000000800000068 12 0 ___U_lA_________________P________ uptodate,lru,active,private 0x000000000000006c 977 3 __RU_lA__________________________ referenced,uptodate,lru,active 0x000100000000006c 48 0 __RU_lA______________________I___ referenced,uptodate,lru,active,readahead 0x000000040000006c 5 0 __RU_lA________________d_________ referenced,uptodate,lru,active,mappedtodisk 0x000000080000006c 3 0 __RU_lA_________________P________ referenced,uptodate,lru,active,private 0x0000000c0000006c 3 0 __RU_lA________________dP________ referenced,uptodate,lru,active,mappedtodisk,private 0x0000000c00000068 1 0 ___U_lA________________dP________ uptodate,lru,active,mappedtodisk,private 0x0000000000004078 1 0 ___UDlA_______b__________________ uptodate,dirty,lru,active,swapbacked 0x000000000000407c 34 0 __RUDlA_______b__________________ referenced,uptodate,dirty,lru,active,swapbacked 0x0000000000000400 538 2 __________B______________________ buddy 0x0000000000000804 1 0 __R________M_____________________ referenced,mmap 0x0000000000000828 1029 4 ___U_l_____M_____________________ uptodate,lru,mmap 0x0001000000000828 43 0 ___U_l_____M_________________I___ uptodate,lru,mmap,readahead 0x000000000000082c 382 1 __RU_l_____M_____________________ referenced,uptodate,lru,mmap 0x000100000000082c 12 0 __RU_l_____M_________________I___ referenced,uptodate,lru,mmap,readahead 0x0000000000000868 192 0 ___U_lA____M_____________________ uptodate,lru,active,mmap 0x0001000000000868 12 0 ___U_lA____M_________________I___ uptodate,lru,active,mmap,readahead 0x000000000000086c 800 3 __RU_lA____M_____________________ referenced,uptodate,lru,active,mmap 0x000100000000086c 31 0 __RU_lA____M_________________I___ referenced,uptodate,lru,active,mmap,readahead 0x0000000000004878 2 0 ___UDlA____M__b__________________ uptodate,dirty,lru,active,mmap,swapbacked 0x0000000000001000 492 1 ____________a____________________ anonymous 0x0000000000005008 2 0 ___U________a_b__________________ uptodate,anonymous,swapbacked 0x0000000000005808 4 0 ___U_______Ma_b__________________ uptodate,mmap,anonymous,swapbacked 0x000000000000580c 1 0 __RU_______Ma_b__________________ referenced,uptodate,mmap,anonymous,swapbacked 0x0000000000005868 2839 11 ___U_lA____Ma_b__________________ uptodate,lru,active,mmap,anonymous,swapbacked 0x000000000000586c 29 0 __RU_lA____Ma_b__________________ referenced,uptodate,lru,active,mmap,anonymous,swapbacked total 513968 2007 # ./page-types --raw --list --no-summary --bits reserved offset count flags 0 15 _____________________r___________ 31 4 _____________________r___________ 159 97 _____________________r___________ 4096 2067 _____________________r___________ 6752 2390 _____________________r___________ 9355 3 _____________________r___________ 9728 14526 _____________________r___________ This patch: Introduce PageHuge(), which identifies huge/gigantic pages by their dedicated compound destructor functions. Also move prep_compound_gigantic_page() to hugetlb.c and make __free_pages_ok() non-static. Signed-off-by: Wu Fengguang <fengguang.wu@intel.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Matt Mackall <mpm@selenic.com> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-06-16 15:32:22 -07:00
int ret = 0;
VM_BUG_ON(delta != -1 && delta != 1);
if (delta < 0)
hugetlb: add nodemask arg to huge page alloc, free and surplus adjust functions In preparation for constraining huge page allocation and freeing by the controlling task's numa mempolicy, add a "nodes_allowed" nodemask pointer to the allocate, free and surplus adjustment functions. For now, pass NULL to indicate default behavior--i.e., use node_online_map. A subsqeuent patch will derive a non-default mask from the controlling task's numa mempolicy. Note that this method of updating the global hstate nr_hugepages under the constraint of a nodemask simplifies keeping the global state consistent--especially the number of persistent and surplus pages relative to reservations and overcommit limits. There are undoubtedly other ways to do this, but this works for both interfaces: mempolicy and per node attributes. [rientjes@google.com: fix HIGHMEM compile error] Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Reviewed-by: Mel Gorman <mel@csn.ul.ie> Acked-by: David Rientjes <rientjes@google.com> Reviewed-by: Andi Kleen <andi@firstfloor.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> Cc: Nishanth Aravamudan <nacc@us.ibm.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@canonical.com> Cc: Eric Whitney <eric.whitney@hp.com> Cc: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-14 17:58:16 -08:00
start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
else
hugetlb: add nodemask arg to huge page alloc, free and surplus adjust functions In preparation for constraining huge page allocation and freeing by the controlling task's numa mempolicy, add a "nodes_allowed" nodemask pointer to the allocate, free and surplus adjustment functions. For now, pass NULL to indicate default behavior--i.e., use node_online_map. A subsqeuent patch will derive a non-default mask from the controlling task's numa mempolicy. Note that this method of updating the global hstate nr_hugepages under the constraint of a nodemask simplifies keeping the global state consistent--especially the number of persistent and surplus pages relative to reservations and overcommit limits. There are undoubtedly other ways to do this, but this works for both interfaces: mempolicy and per node attributes. [rientjes@google.com: fix HIGHMEM compile error] Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Reviewed-by: Mel Gorman <mel@csn.ul.ie> Acked-by: David Rientjes <rientjes@google.com> Reviewed-by: Andi Kleen <andi@firstfloor.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> Cc: Nishanth Aravamudan <nacc@us.ibm.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@canonical.com> Cc: Eric Whitney <eric.whitney@hp.com> Cc: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-14 17:58:16 -08:00
start_nid = hstate_next_node_to_free(h, nodes_allowed);
next_nid = start_nid;
do {
int nid = next_nid;
if (delta < 0) {
/*
* To shrink on this node, there must be a surplus page
*/
if (!h->surplus_huge_pages_node[nid]) {
hugetlb: add nodemask arg to huge page alloc, free and surplus adjust functions In preparation for constraining huge page allocation and freeing by the controlling task's numa mempolicy, add a "nodes_allowed" nodemask pointer to the allocate, free and surplus adjustment functions. For now, pass NULL to indicate default behavior--i.e., use node_online_map. A subsqeuent patch will derive a non-default mask from the controlling task's numa mempolicy. Note that this method of updating the global hstate nr_hugepages under the constraint of a nodemask simplifies keeping the global state consistent--especially the number of persistent and surplus pages relative to reservations and overcommit limits. There are undoubtedly other ways to do this, but this works for both interfaces: mempolicy and per node attributes. [rientjes@google.com: fix HIGHMEM compile error] Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Reviewed-by: Mel Gorman <mel@csn.ul.ie> Acked-by: David Rientjes <rientjes@google.com> Reviewed-by: Andi Kleen <andi@firstfloor.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> Cc: Nishanth Aravamudan <nacc@us.ibm.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@canonical.com> Cc: Eric Whitney <eric.whitney@hp.com> Cc: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-14 17:58:16 -08:00
next_nid = hstate_next_node_to_alloc(h,
nodes_allowed);
continue;
}
}
if (delta > 0) {
/*
* Surplus cannot exceed the total number of pages
*/
if (h->surplus_huge_pages_node[nid] >=
h->nr_huge_pages_node[nid]) {
hugetlb: add nodemask arg to huge page alloc, free and surplus adjust functions In preparation for constraining huge page allocation and freeing by the controlling task's numa mempolicy, add a "nodes_allowed" nodemask pointer to the allocate, free and surplus adjustment functions. For now, pass NULL to indicate default behavior--i.e., use node_online_map. A subsqeuent patch will derive a non-default mask from the controlling task's numa mempolicy. Note that this method of updating the global hstate nr_hugepages under the constraint of a nodemask simplifies keeping the global state consistent--especially the number of persistent and surplus pages relative to reservations and overcommit limits. There are undoubtedly other ways to do this, but this works for both interfaces: mempolicy and per node attributes. [rientjes@google.com: fix HIGHMEM compile error] Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Reviewed-by: Mel Gorman <mel@csn.ul.ie> Acked-by: David Rientjes <rientjes@google.com> Reviewed-by: Andi Kleen <andi@firstfloor.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> Cc: Nishanth Aravamudan <nacc@us.ibm.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@canonical.com> Cc: Eric Whitney <eric.whitney@hp.com> Cc: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-14 17:58:16 -08:00
next_nid = hstate_next_node_to_free(h,
nodes_allowed);
continue;
}
}
mm: introduce PageHuge() for testing huge/gigantic pages A series of patches to enhance the /proc/pagemap interface and to add a userspace executable which can be used to present the pagemap data. Export 10 more flags to end users (and more for kernel developers): 11. KPF_MMAP (pseudo flag) memory mapped page 12. KPF_ANON (pseudo flag) memory mapped page (anonymous) 13. KPF_SWAPCACHE page is in swap cache 14. KPF_SWAPBACKED page is swap/RAM backed 15. KPF_COMPOUND_HEAD (*) 16. KPF_COMPOUND_TAIL (*) 17. KPF_HUGE hugeTLB pages 18. KPF_UNEVICTABLE page is in the unevictable LRU list 19. KPF_HWPOISON hardware detected corruption 20. KPF_NOPAGE (pseudo flag) no page frame at the address (*) For compound pages, exporting _both_ head/tail info enables users to tell where a compound page starts/ends, and its order. a simple demo of the page-types tool # ./page-types -h page-types [options] -r|--raw Raw mode, for kernel developers -a|--addr addr-spec Walk a range of pages -b|--bits bits-spec Walk pages with specified bits -l|--list Show page details in ranges -L|--list-each Show page details one by one -N|--no-summary Don't show summay info -h|--help Show this usage message addr-spec: N one page at offset N (unit: pages) N+M pages range from N to N+M-1 N,M pages range from N to M-1 N, pages range from N to end ,M pages range from 0 to M bits-spec: bit1,bit2 (flags & (bit1|bit2)) != 0 bit1,bit2=bit1 (flags & (bit1|bit2)) == bit1 bit1,~bit2 (flags & (bit1|bit2)) == bit1 =bit1,bit2 flags == (bit1|bit2) bit-names: locked error referenced uptodate dirty lru active slab writeback reclaim buddy mmap anonymous swapcache swapbacked compound_head compound_tail huge unevictable hwpoison nopage reserved(r) mlocked(r) mappedtodisk(r) private(r) private_2(r) owner_private(r) arch(r) uncached(r) readahead(o) slob_free(o) slub_frozen(o) slub_debug(o) (r) raw mode bits (o) overloaded bits # ./page-types flags page-count MB symbolic-flags long-symbolic-flags 0x0000000000000000 487369 1903 _________________________________ 0x0000000000000014 5 0 __R_D____________________________ referenced,dirty 0x0000000000000020 1 0 _____l___________________________ lru 0x0000000000000024 34 0 __R__l___________________________ referenced,lru 0x0000000000000028 3838 14 ___U_l___________________________ uptodate,lru 0x0001000000000028 48 0 ___U_l_______________________I___ uptodate,lru,readahead 0x000000000000002c 6478 25 __RU_l___________________________ referenced,uptodate,lru 0x000100000000002c 47 0 __RU_l_______________________I___ referenced,uptodate,lru,readahead 0x0000000000000040 8344 32 ______A__________________________ active 0x0000000000000060 1 0 _____lA__________________________ lru,active 0x0000000000000068 348 1 ___U_lA__________________________ uptodate,lru,active 0x0001000000000068 12 0 ___U_lA______________________I___ uptodate,lru,active,readahead 0x000000000000006c 988 3 __RU_lA__________________________ referenced,uptodate,lru,active 0x000100000000006c 48 0 __RU_lA______________________I___ referenced,uptodate,lru,active,readahead 0x0000000000004078 1 0 ___UDlA_______b__________________ uptodate,dirty,lru,active,swapbacked 0x000000000000407c 34 0 __RUDlA_______b__________________ referenced,uptodate,dirty,lru,active,swapbacked 0x0000000000000400 503 1 __________B______________________ buddy 0x0000000000000804 1 0 __R________M_____________________ referenced,mmap 0x0000000000000828 1029 4 ___U_l_____M_____________________ uptodate,lru,mmap 0x0001000000000828 43 0 ___U_l_____M_________________I___ uptodate,lru,mmap,readahead 0x000000000000082c 382 1 __RU_l_____M_____________________ referenced,uptodate,lru,mmap 0x000100000000082c 12 0 __RU_l_____M_________________I___ referenced,uptodate,lru,mmap,readahead 0x0000000000000868 192 0 ___U_lA____M_____________________ uptodate,lru,active,mmap 0x0001000000000868 12 0 ___U_lA____M_________________I___ uptodate,lru,active,mmap,readahead 0x000000000000086c 800 3 __RU_lA____M_____________________ referenced,uptodate,lru,active,mmap 0x000100000000086c 31 0 __RU_lA____M_________________I___ referenced,uptodate,lru,active,mmap,readahead 0x0000000000004878 2 0 ___UDlA____M__b__________________ uptodate,dirty,lru,active,mmap,swapbacked 0x0000000000001000 492 1 ____________a____________________ anonymous 0x0000000000005808 4 0 ___U_______Ma_b__________________ uptodate,mmap,anonymous,swapbacked 0x0000000000005868 2839 11 ___U_lA____Ma_b__________________ uptodate,lru,active,mmap,anonymous,swapbacked 0x000000000000586c 30 0 __RU_lA____Ma_b__________________ referenced,uptodate,lru,active,mmap,anonymous,swapbacked total 513968 2007 # ./page-types -r flags page-count MB symbolic-flags long-symbolic-flags 0x0000000000000000 468002 1828 _________________________________ 0x0000000100000000 19102 74 _____________________r___________ reserved 0x0000000000008000 41 0 _______________H_________________ compound_head 0x0000000000010000 188 0 ________________T________________ compound_tail 0x0000000000008014 1 0 __R_D__________H_________________ referenced,dirty,compound_head 0x0000000000010014 4 0 __R_D___________T________________ referenced,dirty,compound_tail 0x0000000000000020 1 0 _____l___________________________ lru 0x0000000800000024 34 0 __R__l__________________P________ referenced,lru,private 0x0000000000000028 3794 14 ___U_l___________________________ uptodate,lru 0x0001000000000028 46 0 ___U_l_______________________I___ uptodate,lru,readahead 0x0000000400000028 44 0 ___U_l_________________d_________ uptodate,lru,mappedtodisk 0x0001000400000028 2 0 ___U_l_________________d_____I___ uptodate,lru,mappedtodisk,readahead 0x000000000000002c 6434 25 __RU_l___________________________ referenced,uptodate,lru 0x000100000000002c 47 0 __RU_l_______________________I___ referenced,uptodate,lru,readahead 0x000000040000002c 14 0 __RU_l_________________d_________ referenced,uptodate,lru,mappedtodisk 0x000000080000002c 30 0 __RU_l__________________P________ referenced,uptodate,lru,private 0x0000000800000040 8124 31 ______A_________________P________ active,private 0x0000000000000040 219 0 ______A__________________________ active 0x0000000800000060 1 0 _____lA_________________P________ lru,active,private 0x0000000000000068 322 1 ___U_lA__________________________ uptodate,lru,active 0x0001000000000068 12 0 ___U_lA______________________I___ uptodate,lru,active,readahead 0x0000000400000068 13 0 ___U_lA________________d_________ uptodate,lru,active,mappedtodisk 0x0000000800000068 12 0 ___U_lA_________________P________ uptodate,lru,active,private 0x000000000000006c 977 3 __RU_lA__________________________ referenced,uptodate,lru,active 0x000100000000006c 48 0 __RU_lA______________________I___ referenced,uptodate,lru,active,readahead 0x000000040000006c 5 0 __RU_lA________________d_________ referenced,uptodate,lru,active,mappedtodisk 0x000000080000006c 3 0 __RU_lA_________________P________ referenced,uptodate,lru,active,private 0x0000000c0000006c 3 0 __RU_lA________________dP________ referenced,uptodate,lru,active,mappedtodisk,private 0x0000000c00000068 1 0 ___U_lA________________dP________ uptodate,lru,active,mappedtodisk,private 0x0000000000004078 1 0 ___UDlA_______b__________________ uptodate,dirty,lru,active,swapbacked 0x000000000000407c 34 0 __RUDlA_______b__________________ referenced,uptodate,dirty,lru,active,swapbacked 0x0000000000000400 538 2 __________B______________________ buddy 0x0000000000000804 1 0 __R________M_____________________ referenced,mmap 0x0000000000000828 1029 4 ___U_l_____M_____________________ uptodate,lru,mmap 0x0001000000000828 43 0 ___U_l_____M_________________I___ uptodate,lru,mmap,readahead 0x000000000000082c 382 1 __RU_l_____M_____________________ referenced,uptodate,lru,mmap 0x000100000000082c 12 0 __RU_l_____M_________________I___ referenced,uptodate,lru,mmap,readahead 0x0000000000000868 192 0 ___U_lA____M_____________________ uptodate,lru,active,mmap 0x0001000000000868 12 0 ___U_lA____M_________________I___ uptodate,lru,active,mmap,readahead 0x000000000000086c 800 3 __RU_lA____M_____________________ referenced,uptodate,lru,active,mmap 0x000100000000086c 31 0 __RU_lA____M_________________I___ referenced,uptodate,lru,active,mmap,readahead 0x0000000000004878 2 0 ___UDlA____M__b__________________ uptodate,dirty,lru,active,mmap,swapbacked 0x0000000000001000 492 1 ____________a____________________ anonymous 0x0000000000005008 2 0 ___U________a_b__________________ uptodate,anonymous,swapbacked 0x0000000000005808 4 0 ___U_______Ma_b__________________ uptodate,mmap,anonymous,swapbacked 0x000000000000580c 1 0 __RU_______Ma_b__________________ referenced,uptodate,mmap,anonymous,swapbacked 0x0000000000005868 2839 11 ___U_lA____Ma_b__________________ uptodate,lru,active,mmap,anonymous,swapbacked 0x000000000000586c 29 0 __RU_lA____Ma_b__________________ referenced,uptodate,lru,active,mmap,anonymous,swapbacked total 513968 2007 # ./page-types --raw --list --no-summary --bits reserved offset count flags 0 15 _____________________r___________ 31 4 _____________________r___________ 159 97 _____________________r___________ 4096 2067 _____________________r___________ 6752 2390 _____________________r___________ 9355 3 _____________________r___________ 9728 14526 _____________________r___________ This patch: Introduce PageHuge(), which identifies huge/gigantic pages by their dedicated compound destructor functions. Also move prep_compound_gigantic_page() to hugetlb.c and make __free_pages_ok() non-static. Signed-off-by: Wu Fengguang <fengguang.wu@intel.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Matt Mackall <mpm@selenic.com> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-06-16 15:32:22 -07:00
h->surplus_huge_pages += delta;
h->surplus_huge_pages_node[nid] += delta;
ret = 1;
break;
} while (next_nid != start_nid);
mm: introduce PageHuge() for testing huge/gigantic pages A series of patches to enhance the /proc/pagemap interface and to add a userspace executable which can be used to present the pagemap data. Export 10 more flags to end users (and more for kernel developers): 11. KPF_MMAP (pseudo flag) memory mapped page 12. KPF_ANON (pseudo flag) memory mapped page (anonymous) 13. KPF_SWAPCACHE page is in swap cache 14. KPF_SWAPBACKED page is swap/RAM backed 15. KPF_COMPOUND_HEAD (*) 16. KPF_COMPOUND_TAIL (*) 17. KPF_HUGE hugeTLB pages 18. KPF_UNEVICTABLE page is in the unevictable LRU list 19. KPF_HWPOISON hardware detected corruption 20. KPF_NOPAGE (pseudo flag) no page frame at the address (*) For compound pages, exporting _both_ head/tail info enables users to tell where a compound page starts/ends, and its order. a simple demo of the page-types tool # ./page-types -h page-types [options] -r|--raw Raw mode, for kernel developers -a|--addr addr-spec Walk a range of pages -b|--bits bits-spec Walk pages with specified bits -l|--list Show page details in ranges -L|--list-each Show page details one by one -N|--no-summary Don't show summay info -h|--help Show this usage message addr-spec: N one page at offset N (unit: pages) N+M pages range from N to N+M-1 N,M pages range from N to M-1 N, pages range from N to end ,M pages range from 0 to M bits-spec: bit1,bit2 (flags & (bit1|bit2)) != 0 bit1,bit2=bit1 (flags & (bit1|bit2)) == bit1 bit1,~bit2 (flags & (bit1|bit2)) == bit1 =bit1,bit2 flags == (bit1|bit2) bit-names: locked error referenced uptodate dirty lru active slab writeback reclaim buddy mmap anonymous swapcache swapbacked compound_head compound_tail huge unevictable hwpoison nopage reserved(r) mlocked(r) mappedtodisk(r) private(r) private_2(r) owner_private(r) arch(r) uncached(r) readahead(o) slob_free(o) slub_frozen(o) slub_debug(o) (r) raw mode bits (o) overloaded bits # ./page-types flags page-count MB symbolic-flags long-symbolic-flags 0x0000000000000000 487369 1903 _________________________________ 0x0000000000000014 5 0 __R_D____________________________ referenced,dirty 0x0000000000000020 1 0 _____l___________________________ lru 0x0000000000000024 34 0 __R__l___________________________ referenced,lru 0x0000000000000028 3838 14 ___U_l___________________________ uptodate,lru 0x0001000000000028 48 0 ___U_l_______________________I___ uptodate,lru,readahead 0x000000000000002c 6478 25 __RU_l___________________________ referenced,uptodate,lru 0x000100000000002c 47 0 __RU_l_______________________I___ referenced,uptodate,lru,readahead 0x0000000000000040 8344 32 ______A__________________________ active 0x0000000000000060 1 0 _____lA__________________________ lru,active 0x0000000000000068 348 1 ___U_lA__________________________ uptodate,lru,active 0x0001000000000068 12 0 ___U_lA______________________I___ uptodate,lru,active,readahead 0x000000000000006c 988 3 __RU_lA__________________________ referenced,uptodate,lru,active 0x000100000000006c 48 0 __RU_lA______________________I___ referenced,uptodate,lru,active,readahead 0x0000000000004078 1 0 ___UDlA_______b__________________ uptodate,dirty,lru,active,swapbacked 0x000000000000407c 34 0 __RUDlA_______b__________________ referenced,uptodate,dirty,lru,active,swapbacked 0x0000000000000400 503 1 __________B______________________ buddy 0x0000000000000804 1 0 __R________M_____________________ referenced,mmap 0x0000000000000828 1029 4 ___U_l_____M_____________________ uptodate,lru,mmap 0x0001000000000828 43 0 ___U_l_____M_________________I___ uptodate,lru,mmap,readahead 0x000000000000082c 382 1 __RU_l_____M_____________________ referenced,uptodate,lru,mmap 0x000100000000082c 12 0 __RU_l_____M_________________I___ referenced,uptodate,lru,mmap,readahead 0x0000000000000868 192 0 ___U_lA____M_____________________ uptodate,lru,active,mmap 0x0001000000000868 12 0 ___U_lA____M_________________I___ uptodate,lru,active,mmap,readahead 0x000000000000086c 800 3 __RU_lA____M_____________________ referenced,uptodate,lru,active,mmap 0x000100000000086c 31 0 __RU_lA____M_________________I___ referenced,uptodate,lru,active,mmap,readahead 0x0000000000004878 2 0 ___UDlA____M__b__________________ uptodate,dirty,lru,active,mmap,swapbacked 0x0000000000001000 492 1 ____________a____________________ anonymous 0x0000000000005808 4 0 ___U_______Ma_b__________________ uptodate,mmap,anonymous,swapbacked 0x0000000000005868 2839 11 ___U_lA____Ma_b__________________ uptodate,lru,active,mmap,anonymous,swapbacked 0x000000000000586c 30 0 __RU_lA____Ma_b__________________ referenced,uptodate,lru,active,mmap,anonymous,swapbacked total 513968 2007 # ./page-types -r flags page-count MB symbolic-flags long-symbolic-flags 0x0000000000000000 468002 1828 _________________________________ 0x0000000100000000 19102 74 _____________________r___________ reserved 0x0000000000008000 41 0 _______________H_________________ compound_head 0x0000000000010000 188 0 ________________T________________ compound_tail 0x0000000000008014 1 0 __R_D__________H_________________ referenced,dirty,compound_head 0x0000000000010014 4 0 __R_D___________T________________ referenced,dirty,compound_tail 0x0000000000000020 1 0 _____l___________________________ lru 0x0000000800000024 34 0 __R__l__________________P________ referenced,lru,private 0x0000000000000028 3794 14 ___U_l___________________________ uptodate,lru 0x0001000000000028 46 0 ___U_l_______________________I___ uptodate,lru,readahead 0x0000000400000028 44 0 ___U_l_________________d_________ uptodate,lru,mappedtodisk 0x0001000400000028 2 0 ___U_l_________________d_____I___ uptodate,lru,mappedtodisk,readahead 0x000000000000002c 6434 25 __RU_l___________________________ referenced,uptodate,lru 0x000100000000002c 47 0 __RU_l_______________________I___ referenced,uptodate,lru,readahead 0x000000040000002c 14 0 __RU_l_________________d_________ referenced,uptodate,lru,mappedtodisk 0x000000080000002c 30 0 __RU_l__________________P________ referenced,uptodate,lru,private 0x0000000800000040 8124 31 ______A_________________P________ active,private 0x0000000000000040 219 0 ______A__________________________ active 0x0000000800000060 1 0 _____lA_________________P________ lru,active,private 0x0000000000000068 322 1 ___U_lA__________________________ uptodate,lru,active 0x0001000000000068 12 0 ___U_lA______________________I___ uptodate,lru,active,readahead 0x0000000400000068 13 0 ___U_lA________________d_________ uptodate,lru,active,mappedtodisk 0x0000000800000068 12 0 ___U_lA_________________P________ uptodate,lru,active,private 0x000000000000006c 977 3 __RU_lA__________________________ referenced,uptodate,lru,active 0x000100000000006c 48 0 __RU_lA______________________I___ referenced,uptodate,lru,active,readahead 0x000000040000006c 5 0 __RU_lA________________d_________ referenced,uptodate,lru,active,mappedtodisk 0x000000080000006c 3 0 __RU_lA_________________P________ referenced,uptodate,lru,active,private 0x0000000c0000006c 3 0 __RU_lA________________dP________ referenced,uptodate,lru,active,mappedtodisk,private 0x0000000c00000068 1 0 ___U_lA________________dP________ uptodate,lru,active,mappedtodisk,private 0x0000000000004078 1 0 ___UDlA_______b__________________ uptodate,dirty,lru,active,swapbacked 0x000000000000407c 34 0 __RUDlA_______b__________________ referenced,uptodate,dirty,lru,active,swapbacked 0x0000000000000400 538 2 __________B______________________ buddy 0x0000000000000804 1 0 __R________M_____________________ referenced,mmap 0x0000000000000828 1029 4 ___U_l_____M_____________________ uptodate,lru,mmap 0x0001000000000828 43 0 ___U_l_____M_________________I___ uptodate,lru,mmap,readahead 0x000000000000082c 382 1 __RU_l_____M_____________________ referenced,uptodate,lru,mmap 0x000100000000082c 12 0 __RU_l_____M_________________I___ referenced,uptodate,lru,mmap,readahead 0x0000000000000868 192 0 ___U_lA____M_____________________ uptodate,lru,active,mmap 0x0001000000000868 12 0 ___U_lA____M_________________I___ uptodate,lru,active,mmap,readahead 0x000000000000086c 800 3 __RU_lA____M_____________________ referenced,uptodate,lru,active,mmap 0x000100000000086c 31 0 __RU_lA____M_________________I___ referenced,uptodate,lru,active,mmap,readahead 0x0000000000004878 2 0 ___UDlA____M__b__________________ uptodate,dirty,lru,active,mmap,swapbacked 0x0000000000001000 492 1 ____________a____________________ anonymous 0x0000000000005008 2 0 ___U________a_b__________________ uptodate,anonymous,swapbacked 0x0000000000005808 4 0 ___U_______Ma_b__________________ uptodate,mmap,anonymous,swapbacked 0x000000000000580c 1 0 __RU_______Ma_b__________________ referenced,uptodate,mmap,anonymous,swapbacked 0x0000000000005868 2839 11 ___U_lA____Ma_b__________________ uptodate,lru,active,mmap,anonymous,swapbacked 0x000000000000586c 29 0 __RU_lA____Ma_b__________________ referenced,uptodate,lru,active,mmap,anonymous,swapbacked total 513968 2007 # ./page-types --raw --list --no-summary --bits reserved offset count flags 0 15 _____________________r___________ 31 4 _____________________r___________ 159 97 _____________________r___________ 4096 2067 _____________________r___________ 6752 2390 _____________________r___________ 9355 3 _____________________r___________ 9728 14526 _____________________r___________ This patch: Introduce PageHuge(), which identifies huge/gigantic pages by their dedicated compound destructor functions. Also move prep_compound_gigantic_page() to hugetlb.c and make __free_pages_ok() non-static. Signed-off-by: Wu Fengguang <fengguang.wu@intel.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Matt Mackall <mpm@selenic.com> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-06-16 15:32:22 -07:00
return ret;
}
#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
hugetlb: add nodemask arg to huge page alloc, free and surplus adjust functions In preparation for constraining huge page allocation and freeing by the controlling task's numa mempolicy, add a "nodes_allowed" nodemask pointer to the allocate, free and surplus adjustment functions. For now, pass NULL to indicate default behavior--i.e., use node_online_map. A subsqeuent patch will derive a non-default mask from the controlling task's numa mempolicy. Note that this method of updating the global hstate nr_hugepages under the constraint of a nodemask simplifies keeping the global state consistent--especially the number of persistent and surplus pages relative to reservations and overcommit limits. There are undoubtedly other ways to do this, but this works for both interfaces: mempolicy and per node attributes. [rientjes@google.com: fix HIGHMEM compile error] Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Reviewed-by: Mel Gorman <mel@csn.ul.ie> Acked-by: David Rientjes <rientjes@google.com> Reviewed-by: Andi Kleen <andi@firstfloor.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> Cc: Nishanth Aravamudan <nacc@us.ibm.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@canonical.com> Cc: Eric Whitney <eric.whitney@hp.com> Cc: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-14 17:58:16 -08:00
static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
nodemask_t *nodes_allowed)
{
unsigned long min_count, ret;
if (h->order >= MAX_ORDER)
return h->max_huge_pages;
/*
* Increase the pool size
* First take pages out of surplus state. Then make up the
* remaining difference by allocating fresh huge pages.
hugetlb: introduce nr_overcommit_hugepages sysctl hugetlb: introduce nr_overcommit_hugepages sysctl While examining the code to support /proc/sys/vm/hugetlb_dynamic_pool, I became convinced that having a boolean sysctl was insufficient: 1) To support per-node control of hugepages, I have previously submitted patches to add a sysfs attribute related to nr_hugepages. However, with a boolean global value and per-mount quota enforcement constraining the dynamic pool, adding corresponding control of the dynamic pool on a per-node basis seems inconsistent to me. 2) Administration of the hugetlb dynamic pool with multiple hugetlbfs mount points is, arguably, more arduous than it needs to be. Each quota would need to be set separately, and the sum would need to be monitored. To ease the administration, and to help make the way for per-node control of the static & dynamic hugepage pool, I added a separate sysctl, nr_overcommit_hugepages. This value serves as a high watermark for the overall hugepage pool, while nr_hugepages serves as a low watermark. The boolean sysctl can then be removed, as the condition nr_overcommit_hugepages > 0 indicates the same administrative setting as hugetlb_dynamic_pool == 1 Quotas still serve as local enforcement of the size of the pool on a per-mount basis. A few caveats: 1) There is a race whereby the global surplus huge page counter is incremented before a hugepage has allocated. Another process could then try grow the pool, and fail to convert a surplus huge page to a normal huge page and instead allocate a fresh huge page. I believe this is benign, as no memory is leaked (the actual pages are still tracked correctly) and the counters won't go out of sync. 2) Shrinking the static pool while a surplus is in effect will allow the number of surplus huge pages to exceed the overcommit value. As long as this condition holds, however, no more surplus huge pages will be allowed on the system until one of the two sysctls are increased sufficiently, or the surplus huge pages go out of use and are freed. Successfully tested on x86_64 with the current libhugetlbfs snapshot, modified to use the new sysctl. Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Acked-by: Adam Litke <agl@us.ibm.com> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Dave Hansen <haveblue@us.ibm.com> Cc: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-12-17 16:20:12 -08:00
*
* We might race with alloc_buddy_huge_page() here and be unable
* to convert a surplus huge page to a normal huge page. That is
* not critical, though, it just means the overall size of the
* pool might be one hugepage larger than it needs to be, but
* within all the constraints specified by the sysctls.
*/
spin_lock(&hugetlb_lock);
while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
hugetlb: add nodemask arg to huge page alloc, free and surplus adjust functions In preparation for constraining huge page allocation and freeing by the controlling task's numa mempolicy, add a "nodes_allowed" nodemask pointer to the allocate, free and surplus adjustment functions. For now, pass NULL to indicate default behavior--i.e., use node_online_map. A subsqeuent patch will derive a non-default mask from the controlling task's numa mempolicy. Note that this method of updating the global hstate nr_hugepages under the constraint of a nodemask simplifies keeping the global state consistent--especially the number of persistent and surplus pages relative to reservations and overcommit limits. There are undoubtedly other ways to do this, but this works for both interfaces: mempolicy and per node attributes. [rientjes@google.com: fix HIGHMEM compile error] Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Reviewed-by: Mel Gorman <mel@csn.ul.ie> Acked-by: David Rientjes <rientjes@google.com> Reviewed-by: Andi Kleen <andi@firstfloor.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> Cc: Nishanth Aravamudan <nacc@us.ibm.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@canonical.com> Cc: Eric Whitney <eric.whitney@hp.com> Cc: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-14 17:58:16 -08:00
if (!adjust_pool_surplus(h, nodes_allowed, -1))
break;
}
while (count > persistent_huge_pages(h)) {
/*
* If this allocation races such that we no longer need the
* page, free_huge_page will handle it by freeing the page
* and reducing the surplus.
*/
spin_unlock(&hugetlb_lock);
hugetlb: add nodemask arg to huge page alloc, free and surplus adjust functions In preparation for constraining huge page allocation and freeing by the controlling task's numa mempolicy, add a "nodes_allowed" nodemask pointer to the allocate, free and surplus adjustment functions. For now, pass NULL to indicate default behavior--i.e., use node_online_map. A subsqeuent patch will derive a non-default mask from the controlling task's numa mempolicy. Note that this method of updating the global hstate nr_hugepages under the constraint of a nodemask simplifies keeping the global state consistent--especially the number of persistent and surplus pages relative to reservations and overcommit limits. There are undoubtedly other ways to do this, but this works for both interfaces: mempolicy and per node attributes. [rientjes@google.com: fix HIGHMEM compile error] Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Reviewed-by: Mel Gorman <mel@csn.ul.ie> Acked-by: David Rientjes <rientjes@google.com> Reviewed-by: Andi Kleen <andi@firstfloor.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> Cc: Nishanth Aravamudan <nacc@us.ibm.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@canonical.com> Cc: Eric Whitney <eric.whitney@hp.com> Cc: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-14 17:58:16 -08:00
ret = alloc_fresh_huge_page(h, nodes_allowed);
spin_lock(&hugetlb_lock);
if (!ret)
goto out;
/* Bail for signals. Probably ctrl-c from user */
if (signal_pending(current))
goto out;
}
/*
* Decrease the pool size
* First return free pages to the buddy allocator (being careful
* to keep enough around to satisfy reservations). Then place
* pages into surplus state as needed so the pool will shrink
* to the desired size as pages become free.
hugetlb: introduce nr_overcommit_hugepages sysctl hugetlb: introduce nr_overcommit_hugepages sysctl While examining the code to support /proc/sys/vm/hugetlb_dynamic_pool, I became convinced that having a boolean sysctl was insufficient: 1) To support per-node control of hugepages, I have previously submitted patches to add a sysfs attribute related to nr_hugepages. However, with a boolean global value and per-mount quota enforcement constraining the dynamic pool, adding corresponding control of the dynamic pool on a per-node basis seems inconsistent to me. 2) Administration of the hugetlb dynamic pool with multiple hugetlbfs mount points is, arguably, more arduous than it needs to be. Each quota would need to be set separately, and the sum would need to be monitored. To ease the administration, and to help make the way for per-node control of the static & dynamic hugepage pool, I added a separate sysctl, nr_overcommit_hugepages. This value serves as a high watermark for the overall hugepage pool, while nr_hugepages serves as a low watermark. The boolean sysctl can then be removed, as the condition nr_overcommit_hugepages > 0 indicates the same administrative setting as hugetlb_dynamic_pool == 1 Quotas still serve as local enforcement of the size of the pool on a per-mount basis. A few caveats: 1) There is a race whereby the global surplus huge page counter is incremented before a hugepage has allocated. Another process could then try grow the pool, and fail to convert a surplus huge page to a normal huge page and instead allocate a fresh huge page. I believe this is benign, as no memory is leaked (the actual pages are still tracked correctly) and the counters won't go out of sync. 2) Shrinking the static pool while a surplus is in effect will allow the number of surplus huge pages to exceed the overcommit value. As long as this condition holds, however, no more surplus huge pages will be allowed on the system until one of the two sysctls are increased sufficiently, or the surplus huge pages go out of use and are freed. Successfully tested on x86_64 with the current libhugetlbfs snapshot, modified to use the new sysctl. Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Acked-by: Adam Litke <agl@us.ibm.com> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Dave Hansen <haveblue@us.ibm.com> Cc: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-12-17 16:20:12 -08:00
*
* By placing pages into the surplus state independent of the
* overcommit value, we are allowing the surplus pool size to
* exceed overcommit. There are few sane options here. Since
* alloc_buddy_huge_page() is checking the global counter,
* though, we'll note that we're not allowed to exceed surplus
* and won't grow the pool anywhere else. Not until one of the
* sysctls are changed, or the surplus pages go out of use.
*/
min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
min_count = max(count, min_count);
hugetlb: add nodemask arg to huge page alloc, free and surplus adjust functions In preparation for constraining huge page allocation and freeing by the controlling task's numa mempolicy, add a "nodes_allowed" nodemask pointer to the allocate, free and surplus adjustment functions. For now, pass NULL to indicate default behavior--i.e., use node_online_map. A subsqeuent patch will derive a non-default mask from the controlling task's numa mempolicy. Note that this method of updating the global hstate nr_hugepages under the constraint of a nodemask simplifies keeping the global state consistent--especially the number of persistent and surplus pages relative to reservations and overcommit limits. There are undoubtedly other ways to do this, but this works for both interfaces: mempolicy and per node attributes. [rientjes@google.com: fix HIGHMEM compile error] Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Reviewed-by: Mel Gorman <mel@csn.ul.ie> Acked-by: David Rientjes <rientjes@google.com> Reviewed-by: Andi Kleen <andi@firstfloor.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> Cc: Nishanth Aravamudan <nacc@us.ibm.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@canonical.com> Cc: Eric Whitney <eric.whitney@hp.com> Cc: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-14 17:58:16 -08:00
try_to_free_low(h, min_count, nodes_allowed);
while (min_count < persistent_huge_pages(h)) {
hugetlb: add nodemask arg to huge page alloc, free and surplus adjust functions In preparation for constraining huge page allocation and freeing by the controlling task's numa mempolicy, add a "nodes_allowed" nodemask pointer to the allocate, free and surplus adjustment functions. For now, pass NULL to indicate default behavior--i.e., use node_online_map. A subsqeuent patch will derive a non-default mask from the controlling task's numa mempolicy. Note that this method of updating the global hstate nr_hugepages under the constraint of a nodemask simplifies keeping the global state consistent--especially the number of persistent and surplus pages relative to reservations and overcommit limits. There are undoubtedly other ways to do this, but this works for both interfaces: mempolicy and per node attributes. [rientjes@google.com: fix HIGHMEM compile error] Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Reviewed-by: Mel Gorman <mel@csn.ul.ie> Acked-by: David Rientjes <rientjes@google.com> Reviewed-by: Andi Kleen <andi@firstfloor.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> Cc: Nishanth Aravamudan <nacc@us.ibm.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@canonical.com> Cc: Eric Whitney <eric.whitney@hp.com> Cc: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-14 17:58:16 -08:00
if (!free_pool_huge_page(h, nodes_allowed, 0))
break;
}
while (count < persistent_huge_pages(h)) {
hugetlb: add nodemask arg to huge page alloc, free and surplus adjust functions In preparation for constraining huge page allocation and freeing by the controlling task's numa mempolicy, add a "nodes_allowed" nodemask pointer to the allocate, free and surplus adjustment functions. For now, pass NULL to indicate default behavior--i.e., use node_online_map. A subsqeuent patch will derive a non-default mask from the controlling task's numa mempolicy. Note that this method of updating the global hstate nr_hugepages under the constraint of a nodemask simplifies keeping the global state consistent--especially the number of persistent and surplus pages relative to reservations and overcommit limits. There are undoubtedly other ways to do this, but this works for both interfaces: mempolicy and per node attributes. [rientjes@google.com: fix HIGHMEM compile error] Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Reviewed-by: Mel Gorman <mel@csn.ul.ie> Acked-by: David Rientjes <rientjes@google.com> Reviewed-by: Andi Kleen <andi@firstfloor.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> Cc: Nishanth Aravamudan <nacc@us.ibm.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@canonical.com> Cc: Eric Whitney <eric.whitney@hp.com> Cc: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-14 17:58:16 -08:00
if (!adjust_pool_surplus(h, nodes_allowed, 1))
break;
}
out:
ret = persistent_huge_pages(h);
spin_unlock(&hugetlb_lock);
return ret;
}
hugetlb: new sysfs interface Provide new hugepages user APIs that are more suited to multiple hstates in sysfs. There is a new directory, /sys/kernel/hugepages. Underneath that directory there will be a directory per-supported hugepage size, e.g.: /sys/kernel/hugepages/hugepages-64kB /sys/kernel/hugepages/hugepages-16384kB /sys/kernel/hugepages/hugepages-16777216kB corresponding to 64k, 16m and 16g respectively. Within each hugepages-size directory there are a number of files, corresponding to the tracked counters in the hstate, e.g.: /sys/kernel/hugepages/hugepages-64/nr_hugepages /sys/kernel/hugepages/hugepages-64/nr_overcommit_hugepages /sys/kernel/hugepages/hugepages-64/free_hugepages /sys/kernel/hugepages/hugepages-64/resv_hugepages /sys/kernel/hugepages/hugepages-64/surplus_hugepages Of these files, the first two are read-write and the latter three are read-only. The size of the hugepage being manipulated is trivially deducible from the enclosing directory and is always expressed in kB (to match meminfo). [dave@linux.vnet.ibm.com: fix build] [nacc@us.ibm.com: hugetlb: hang off of /sys/kernel/mm rather than /sys/kernel] [nacc@us.ibm.com: hugetlb: remove CONFIG_SYSFS dependency] Acked-by: Greg Kroah-Hartman <gregkh@suse.de> Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Dave Hansen <dave@linux.vnet.ibm.com> Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:44 -07:00
#define HSTATE_ATTR_RO(_name) \
static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
#define HSTATE_ATTR(_name) \
static struct kobj_attribute _name##_attr = \
__ATTR(_name, 0644, _name##_show, _name##_store)
static struct kobject *hugepages_kobj;
static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
hugetlb: add per node hstate attributes Add the per huge page size control/query attributes to the per node sysdevs: /sys/devices/system/node/node<ID>/hugepages/hugepages-<size>/ nr_hugepages - r/w free_huge_pages - r/o surplus_huge_pages - r/o The patch attempts to re-use/share as much of the existing global hstate attribute initialization and handling, and the "nodes_allowed" constraint processing as possible. Calling set_max_huge_pages() with no node indicates a change to global hstate parameters. In this case, any non-default task mempolicy will be used to generate the nodes_allowed mask. A valid node id indicates an update to that node's hstate parameters, and the count argument specifies the target count for the specified node. From this info, we compute the target global count for the hstate and construct a nodes_allowed node mask contain only the specified node. Setting the node specific nr_hugepages via the per node attribute effectively ignores any task mempolicy or cpuset constraints. With this patch: (me):ls /sys/devices/system/node/node0/hugepages/hugepages-2048kB ./ ../ free_hugepages nr_hugepages surplus_hugepages Starting from: Node 0 HugePages_Total: 0 Node 0 HugePages_Free: 0 Node 0 HugePages_Surp: 0 Node 1 HugePages_Total: 0 Node 1 HugePages_Free: 0 Node 1 HugePages_Surp: 0 Node 2 HugePages_Total: 0 Node 2 HugePages_Free: 0 Node 2 HugePages_Surp: 0 Node 3 HugePages_Total: 0 Node 3 HugePages_Free: 0 Node 3 HugePages_Surp: 0 vm.nr_hugepages = 0 Allocate 16 persistent huge pages on node 2: (me):echo 16 >/sys/devices/system/node/node2/hugepages/hugepages-2048kB/nr_hugepages [Note that this is equivalent to: numactl -m 2 hugeadmin --pool-pages-min 2M:+16 ] Yields: Node 0 HugePages_Total: 0 Node 0 HugePages_Free: 0 Node 0 HugePages_Surp: 0 Node 1 HugePages_Total: 0 Node 1 HugePages_Free: 0 Node 1 HugePages_Surp: 0 Node 2 HugePages_Total: 16 Node 2 HugePages_Free: 16 Node 2 HugePages_Surp: 0 Node 3 HugePages_Total: 0 Node 3 HugePages_Free: 0 Node 3 HugePages_Surp: 0 vm.nr_hugepages = 16 Global controls work as expected--reduce pool to 8 persistent huge pages: (me):echo 8 >/sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages Node 0 HugePages_Total: 0 Node 0 HugePages_Free: 0 Node 0 HugePages_Surp: 0 Node 1 HugePages_Total: 0 Node 1 HugePages_Free: 0 Node 1 HugePages_Surp: 0 Node 2 HugePages_Total: 8 Node 2 HugePages_Free: 8 Node 2 HugePages_Surp: 0 Node 3 HugePages_Total: 0 Node 3 HugePages_Free: 0 Node 3 HugePages_Surp: 0 Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Reviewed-by: Andi Kleen <andi@firstfloor.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> Cc: Nishanth Aravamudan <nacc@us.ibm.com> Cc: David Rientjes <rientjes@google.com> Cc: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@canonical.com> Cc: Eric Whitney <eric.whitney@hp.com> Cc: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-14 17:58:25 -08:00
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
hugetlb: new sysfs interface Provide new hugepages user APIs that are more suited to multiple hstates in sysfs. There is a new directory, /sys/kernel/hugepages. Underneath that directory there will be a directory per-supported hugepage size, e.g.: /sys/kernel/hugepages/hugepages-64kB /sys/kernel/hugepages/hugepages-16384kB /sys/kernel/hugepages/hugepages-16777216kB corresponding to 64k, 16m and 16g respectively. Within each hugepages-size directory there are a number of files, corresponding to the tracked counters in the hstate, e.g.: /sys/kernel/hugepages/hugepages-64/nr_hugepages /sys/kernel/hugepages/hugepages-64/nr_overcommit_hugepages /sys/kernel/hugepages/hugepages-64/free_hugepages /sys/kernel/hugepages/hugepages-64/resv_hugepages /sys/kernel/hugepages/hugepages-64/surplus_hugepages Of these files, the first two are read-write and the latter three are read-only. The size of the hugepage being manipulated is trivially deducible from the enclosing directory and is always expressed in kB (to match meminfo). [dave@linux.vnet.ibm.com: fix build] [nacc@us.ibm.com: hugetlb: hang off of /sys/kernel/mm rather than /sys/kernel] [nacc@us.ibm.com: hugetlb: remove CONFIG_SYSFS dependency] Acked-by: Greg Kroah-Hartman <gregkh@suse.de> Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Dave Hansen <dave@linux.vnet.ibm.com> Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:44 -07:00
{
int i;
hugetlb: add per node hstate attributes Add the per huge page size control/query attributes to the per node sysdevs: /sys/devices/system/node/node<ID>/hugepages/hugepages-<size>/ nr_hugepages - r/w free_huge_pages - r/o surplus_huge_pages - r/o The patch attempts to re-use/share as much of the existing global hstate attribute initialization and handling, and the "nodes_allowed" constraint processing as possible. Calling set_max_huge_pages() with no node indicates a change to global hstate parameters. In this case, any non-default task mempolicy will be used to generate the nodes_allowed mask. A valid node id indicates an update to that node's hstate parameters, and the count argument specifies the target count for the specified node. From this info, we compute the target global count for the hstate and construct a nodes_allowed node mask contain only the specified node. Setting the node specific nr_hugepages via the per node attribute effectively ignores any task mempolicy or cpuset constraints. With this patch: (me):ls /sys/devices/system/node/node0/hugepages/hugepages-2048kB ./ ../ free_hugepages nr_hugepages surplus_hugepages Starting from: Node 0 HugePages_Total: 0 Node 0 HugePages_Free: 0 Node 0 HugePages_Surp: 0 Node 1 HugePages_Total: 0 Node 1 HugePages_Free: 0 Node 1 HugePages_Surp: 0 Node 2 HugePages_Total: 0 Node 2 HugePages_Free: 0 Node 2 HugePages_Surp: 0 Node 3 HugePages_Total: 0 Node 3 HugePages_Free: 0 Node 3 HugePages_Surp: 0 vm.nr_hugepages = 0 Allocate 16 persistent huge pages on node 2: (me):echo 16 >/sys/devices/system/node/node2/hugepages/hugepages-2048kB/nr_hugepages [Note that this is equivalent to: numactl -m 2 hugeadmin --pool-pages-min 2M:+16 ] Yields: Node 0 HugePages_Total: 0 Node 0 HugePages_Free: 0 Node 0 HugePages_Surp: 0 Node 1 HugePages_Total: 0 Node 1 HugePages_Free: 0 Node 1 HugePages_Surp: 0 Node 2 HugePages_Total: 16 Node 2 HugePages_Free: 16 Node 2 HugePages_Surp: 0 Node 3 HugePages_Total: 0 Node 3 HugePages_Free: 0 Node 3 HugePages_Surp: 0 vm.nr_hugepages = 16 Global controls work as expected--reduce pool to 8 persistent huge pages: (me):echo 8 >/sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages Node 0 HugePages_Total: 0 Node 0 HugePages_Free: 0 Node 0 HugePages_Surp: 0 Node 1 HugePages_Total: 0 Node 1 HugePages_Free: 0 Node 1 HugePages_Surp: 0 Node 2 HugePages_Total: 8 Node 2 HugePages_Free: 8 Node 2 HugePages_Surp: 0 Node 3 HugePages_Total: 0 Node 3 HugePages_Free: 0 Node 3 HugePages_Surp: 0 Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Reviewed-by: Andi Kleen <andi@firstfloor.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> Cc: Nishanth Aravamudan <nacc@us.ibm.com> Cc: David Rientjes <rientjes@google.com> Cc: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@canonical.com> Cc: Eric Whitney <eric.whitney@hp.com> Cc: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-14 17:58:25 -08:00
hugetlb: new sysfs interface Provide new hugepages user APIs that are more suited to multiple hstates in sysfs. There is a new directory, /sys/kernel/hugepages. Underneath that directory there will be a directory per-supported hugepage size, e.g.: /sys/kernel/hugepages/hugepages-64kB /sys/kernel/hugepages/hugepages-16384kB /sys/kernel/hugepages/hugepages-16777216kB corresponding to 64k, 16m and 16g respectively. Within each hugepages-size directory there are a number of files, corresponding to the tracked counters in the hstate, e.g.: /sys/kernel/hugepages/hugepages-64/nr_hugepages /sys/kernel/hugepages/hugepages-64/nr_overcommit_hugepages /sys/kernel/hugepages/hugepages-64/free_hugepages /sys/kernel/hugepages/hugepages-64/resv_hugepages /sys/kernel/hugepages/hugepages-64/surplus_hugepages Of these files, the first two are read-write and the latter three are read-only. The size of the hugepage being manipulated is trivially deducible from the enclosing directory and is always expressed in kB (to match meminfo). [dave@linux.vnet.ibm.com: fix build] [nacc@us.ibm.com: hugetlb: hang off of /sys/kernel/mm rather than /sys/kernel] [nacc@us.ibm.com: hugetlb: remove CONFIG_SYSFS dependency] Acked-by: Greg Kroah-Hartman <gregkh@suse.de> Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Dave Hansen <dave@linux.vnet.ibm.com> Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:44 -07:00
for (i = 0; i < HUGE_MAX_HSTATE; i++)
hugetlb: add per node hstate attributes Add the per huge page size control/query attributes to the per node sysdevs: /sys/devices/system/node/node<ID>/hugepages/hugepages-<size>/ nr_hugepages - r/w free_huge_pages - r/o surplus_huge_pages - r/o The patch attempts to re-use/share as much of the existing global hstate attribute initialization and handling, and the "nodes_allowed" constraint processing as possible. Calling set_max_huge_pages() with no node indicates a change to global hstate parameters. In this case, any non-default task mempolicy will be used to generate the nodes_allowed mask. A valid node id indicates an update to that node's hstate parameters, and the count argument specifies the target count for the specified node. From this info, we compute the target global count for the hstate and construct a nodes_allowed node mask contain only the specified node. Setting the node specific nr_hugepages via the per node attribute effectively ignores any task mempolicy or cpuset constraints. With this patch: (me):ls /sys/devices/system/node/node0/hugepages/hugepages-2048kB ./ ../ free_hugepages nr_hugepages surplus_hugepages Starting from: Node 0 HugePages_Total: 0 Node 0 HugePages_Free: 0 Node 0 HugePages_Surp: 0 Node 1 HugePages_Total: 0 Node 1 HugePages_Free: 0 Node 1 HugePages_Surp: 0 Node 2 HugePages_Total: 0 Node 2 HugePages_Free: 0 Node 2 HugePages_Surp: 0 Node 3 HugePages_Total: 0 Node 3 HugePages_Free: 0 Node 3 HugePages_Surp: 0 vm.nr_hugepages = 0 Allocate 16 persistent huge pages on node 2: (me):echo 16 >/sys/devices/system/node/node2/hugepages/hugepages-2048kB/nr_hugepages [Note that this is equivalent to: numactl -m 2 hugeadmin --pool-pages-min 2M:+16 ] Yields: Node 0 HugePages_Total: 0 Node 0 HugePages_Free: 0 Node 0 HugePages_Surp: 0 Node 1 HugePages_Total: 0 Node 1 HugePages_Free: 0 Node 1 HugePages_Surp: 0 Node 2 HugePages_Total: 16 Node 2 HugePages_Free: 16 Node 2 HugePages_Surp: 0 Node 3 HugePages_Total: 0 Node 3 HugePages_Free: 0 Node 3 HugePages_Surp: 0 vm.nr_hugepages = 16 Global controls work as expected--reduce pool to 8 persistent huge pages: (me):echo 8 >/sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages Node 0 HugePages_Total: 0 Node 0 HugePages_Free: 0 Node 0 HugePages_Surp: 0 Node 1 HugePages_Total: 0 Node 1 HugePages_Free: 0 Node 1 HugePages_Surp: 0 Node 2 HugePages_Total: 8 Node 2 HugePages_Free: 8 Node 2 HugePages_Surp: 0 Node 3 HugePages_Total: 0 Node 3 HugePages_Free: 0 Node 3 HugePages_Surp: 0 Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Reviewed-by: Andi Kleen <andi@firstfloor.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> Cc: Nishanth Aravamudan <nacc@us.ibm.com> Cc: David Rientjes <rientjes@google.com> Cc: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@canonical.com> Cc: Eric Whitney <eric.whitney@hp.com> Cc: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-14 17:58:25 -08:00
if (hstate_kobjs[i] == kobj) {
if (nidp)
*nidp = NUMA_NO_NODE;
hugetlb: new sysfs interface Provide new hugepages user APIs that are more suited to multiple hstates in sysfs. There is a new directory, /sys/kernel/hugepages. Underneath that directory there will be a directory per-supported hugepage size, e.g.: /sys/kernel/hugepages/hugepages-64kB /sys/kernel/hugepages/hugepages-16384kB /sys/kernel/hugepages/hugepages-16777216kB corresponding to 64k, 16m and 16g respectively. Within each hugepages-size directory there are a number of files, corresponding to the tracked counters in the hstate, e.g.: /sys/kernel/hugepages/hugepages-64/nr_hugepages /sys/kernel/hugepages/hugepages-64/nr_overcommit_hugepages /sys/kernel/hugepages/hugepages-64/free_hugepages /sys/kernel/hugepages/hugepages-64/resv_hugepages /sys/kernel/hugepages/hugepages-64/surplus_hugepages Of these files, the first two are read-write and the latter three are read-only. The size of the hugepage being manipulated is trivially deducible from the enclosing directory and is always expressed in kB (to match meminfo). [dave@linux.vnet.ibm.com: fix build] [nacc@us.ibm.com: hugetlb: hang off of /sys/kernel/mm rather than /sys/kernel] [nacc@us.ibm.com: hugetlb: remove CONFIG_SYSFS dependency] Acked-by: Greg Kroah-Hartman <gregkh@suse.de> Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Dave Hansen <dave@linux.vnet.ibm.com> Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:44 -07:00
return &hstates[i];
hugetlb: add per node hstate attributes Add the per huge page size control/query attributes to the per node sysdevs: /sys/devices/system/node/node<ID>/hugepages/hugepages-<size>/ nr_hugepages - r/w free_huge_pages - r/o surplus_huge_pages - r/o The patch attempts to re-use/share as much of the existing global hstate attribute initialization and handling, and the "nodes_allowed" constraint processing as possible. Calling set_max_huge_pages() with no node indicates a change to global hstate parameters. In this case, any non-default task mempolicy will be used to generate the nodes_allowed mask. A valid node id indicates an update to that node's hstate parameters, and the count argument specifies the target count for the specified node. From this info, we compute the target global count for the hstate and construct a nodes_allowed node mask contain only the specified node. Setting the node specific nr_hugepages via the per node attribute effectively ignores any task mempolicy or cpuset constraints. With this patch: (me):ls /sys/devices/system/node/node0/hugepages/hugepages-2048kB ./ ../ free_hugepages nr_hugepages surplus_hugepages Starting from: Node 0 HugePages_Total: 0 Node 0 HugePages_Free: 0 Node 0 HugePages_Surp: 0 Node 1 HugePages_Total: 0 Node 1 HugePages_Free: 0 Node 1 HugePages_Surp: 0 Node 2 HugePages_Total: 0 Node 2 HugePages_Free: 0 Node 2 HugePages_Surp: 0 Node 3 HugePages_Total: 0 Node 3 HugePages_Free: 0 Node 3 HugePages_Surp: 0 vm.nr_hugepages = 0 Allocate 16 persistent huge pages on node 2: (me):echo 16 >/sys/devices/system/node/node2/hugepages/hugepages-2048kB/nr_hugepages [Note that this is equivalent to: numactl -m 2 hugeadmin --pool-pages-min 2M:+16 ] Yields: Node 0 HugePages_Total: 0 Node 0 HugePages_Free: 0 Node 0 HugePages_Surp: 0 Node 1 HugePages_Total: 0 Node 1 HugePages_Free: 0 Node 1 HugePages_Surp: 0 Node 2 HugePages_Total: 16 Node 2 HugePages_Free: 16 Node 2 HugePages_Surp: 0 Node 3 HugePages_Total: 0 Node 3 HugePages_Free: 0 Node 3 HugePages_Surp: 0 vm.nr_hugepages = 16 Global controls work as expected--reduce pool to 8 persistent huge pages: (me):echo 8 >/sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages Node 0 HugePages_Total: 0 Node 0 HugePages_Free: 0 Node 0 HugePages_Surp: 0 Node 1 HugePages_Total: 0 Node 1 HugePages_Free: 0 Node 1 HugePages_Surp: 0 Node 2 HugePages_Total: 8 Node 2 HugePages_Free: 8 Node 2 HugePages_Surp: 0 Node 3 HugePages_Total: 0 Node 3 HugePages_Free: 0 Node 3 HugePages_Surp: 0 Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Reviewed-by: Andi Kleen <andi@firstfloor.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> Cc: Nishanth Aravamudan <nacc@us.ibm.com> Cc: David Rientjes <rientjes@google.com> Cc: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@canonical.com> Cc: Eric Whitney <eric.whitney@hp.com> Cc: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-14 17:58:25 -08:00
}
return kobj_to_node_hstate(kobj, nidp);
hugetlb: new sysfs interface Provide new hugepages user APIs that are more suited to multiple hstates in sysfs. There is a new directory, /sys/kernel/hugepages. Underneath that directory there will be a directory per-supported hugepage size, e.g.: /sys/kernel/hugepages/hugepages-64kB /sys/kernel/hugepages/hugepages-16384kB /sys/kernel/hugepages/hugepages-16777216kB corresponding to 64k, 16m and 16g respectively. Within each hugepages-size directory there are a number of files, corresponding to the tracked counters in the hstate, e.g.: /sys/kernel/hugepages/hugepages-64/nr_hugepages /sys/kernel/hugepages/hugepages-64/nr_overcommit_hugepages /sys/kernel/hugepages/hugepages-64/free_hugepages /sys/kernel/hugepages/hugepages-64/resv_hugepages /sys/kernel/hugepages/hugepages-64/surplus_hugepages Of these files, the first two are read-write and the latter three are read-only. The size of the hugepage being manipulated is trivially deducible from the enclosing directory and is always expressed in kB (to match meminfo). [dave@linux.vnet.ibm.com: fix build] [nacc@us.ibm.com: hugetlb: hang off of /sys/kernel/mm rather than /sys/kernel] [nacc@us.ibm.com: hugetlb: remove CONFIG_SYSFS dependency] Acked-by: Greg Kroah-Hartman <gregkh@suse.de> Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Dave Hansen <dave@linux.vnet.ibm.com> Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:44 -07:00
}
hugetlb: derive huge pages nodes allowed from task mempolicy This patch derives a "nodes_allowed" node mask from the numa mempolicy of the task modifying the number of persistent huge pages to control the allocation, freeing and adjusting of surplus huge pages when the pool page count is modified via the new sysctl or sysfs attribute "nr_hugepages_mempolicy". The nodes_allowed mask is derived as follows: * For "default" [NULL] task mempolicy, a NULL nodemask_t pointer is produced. This will cause the hugetlb subsystem to use node_online_map as the "nodes_allowed". This preserves the behavior before this patch. * For "preferred" mempolicy, including explicit local allocation, a nodemask with the single preferred node will be produced. "local" policy will NOT track any internode migrations of the task adjusting nr_hugepages. * For "bind" and "interleave" policy, the mempolicy's nodemask will be used. * Other than to inform the construction of the nodes_allowed node mask, the actual mempolicy mode is ignored. That is, all modes behave like interleave over the resulting nodes_allowed mask with no "fallback". See the updated documentation [next patch] for more information about the implications of this patch. Examples: Starting with: Node 0 HugePages_Total: 0 Node 1 HugePages_Total: 0 Node 2 HugePages_Total: 0 Node 3 HugePages_Total: 0 Default behavior [with or without this patch] balances persistent hugepage allocation across nodes [with sufficient contiguous memory]: sysctl vm.nr_hugepages[_mempolicy]=32 yields: Node 0 HugePages_Total: 8 Node 1 HugePages_Total: 8 Node 2 HugePages_Total: 8 Node 3 HugePages_Total: 8 Of course, we only have nr_hugepages_mempolicy with the patch, but with default mempolicy, nr_hugepages_mempolicy behaves the same as nr_hugepages. Applying mempolicy--e.g., with numactl [using '-m' a.k.a. '--membind' because it allows multiple nodes to be specified and it's easy to type]--we can allocate huge pages on individual nodes or sets of nodes. So, starting from the condition above, with 8 huge pages per node, add 8 more to node 2 using: numactl -m 2 sysctl vm.nr_hugepages_mempolicy=40 This yields: Node 0 HugePages_Total: 8 Node 1 HugePages_Total: 8 Node 2 HugePages_Total: 16 Node 3 HugePages_Total: 8 The incremental 8 huge pages were restricted to node 2 by the specified mempolicy. Similarly, we can use mempolicy to free persistent huge pages from specified nodes: numactl -m 0,1 sysctl vm.nr_hugepages_mempolicy=32 yields: Node 0 HugePages_Total: 4 Node 1 HugePages_Total: 4 Node 2 HugePages_Total: 16 Node 3 HugePages_Total: 8 The 8 huge pages freed were balanced over nodes 0 and 1. [rientjes@google.com: accomodate reworked NODEMASK_ALLOC] Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Reviewed-by: Andi Kleen <andi@firstfloor.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> Cc: Nishanth Aravamudan <nacc@us.ibm.com> Cc: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@canonical.com> Cc: Eric Whitney <eric.whitney@hp.com> Cc: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-14 17:58:21 -08:00
static ssize_t nr_hugepages_show_common(struct kobject *kobj,
hugetlb: new sysfs interface Provide new hugepages user APIs that are more suited to multiple hstates in sysfs. There is a new directory, /sys/kernel/hugepages. Underneath that directory there will be a directory per-supported hugepage size, e.g.: /sys/kernel/hugepages/hugepages-64kB /sys/kernel/hugepages/hugepages-16384kB /sys/kernel/hugepages/hugepages-16777216kB corresponding to 64k, 16m and 16g respectively. Within each hugepages-size directory there are a number of files, corresponding to the tracked counters in the hstate, e.g.: /sys/kernel/hugepages/hugepages-64/nr_hugepages /sys/kernel/hugepages/hugepages-64/nr_overcommit_hugepages /sys/kernel/hugepages/hugepages-64/free_hugepages /sys/kernel/hugepages/hugepages-64/resv_hugepages /sys/kernel/hugepages/hugepages-64/surplus_hugepages Of these files, the first two are read-write and the latter three are read-only. The size of the hugepage being manipulated is trivially deducible from the enclosing directory and is always expressed in kB (to match meminfo). [dave@linux.vnet.ibm.com: fix build] [nacc@us.ibm.com: hugetlb: hang off of /sys/kernel/mm rather than /sys/kernel] [nacc@us.ibm.com: hugetlb: remove CONFIG_SYSFS dependency] Acked-by: Greg Kroah-Hartman <gregkh@suse.de> Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Dave Hansen <dave@linux.vnet.ibm.com> Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:44 -07:00
struct kobj_attribute *attr, char *buf)
{
hugetlb: add per node hstate attributes Add the per huge page size control/query attributes to the per node sysdevs: /sys/devices/system/node/node<ID>/hugepages/hugepages-<size>/ nr_hugepages - r/w free_huge_pages - r/o surplus_huge_pages - r/o The patch attempts to re-use/share as much of the existing global hstate attribute initialization and handling, and the "nodes_allowed" constraint processing as possible. Calling set_max_huge_pages() with no node indicates a change to global hstate parameters. In this case, any non-default task mempolicy will be used to generate the nodes_allowed mask. A valid node id indicates an update to that node's hstate parameters, and the count argument specifies the target count for the specified node. From this info, we compute the target global count for the hstate and construct a nodes_allowed node mask contain only the specified node. Setting the node specific nr_hugepages via the per node attribute effectively ignores any task mempolicy or cpuset constraints. With this patch: (me):ls /sys/devices/system/node/node0/hugepages/hugepages-2048kB ./ ../ free_hugepages nr_hugepages surplus_hugepages Starting from: Node 0 HugePages_Total: 0 Node 0 HugePages_Free: 0 Node 0 HugePages_Surp: 0 Node 1 HugePages_Total: 0 Node 1 HugePages_Free: 0 Node 1 HugePages_Surp: 0 Node 2 HugePages_Total: 0 Node 2 HugePages_Free: 0 Node 2 HugePages_Surp: 0 Node 3 HugePages_Total: 0 Node 3 HugePages_Free: 0 Node 3 HugePages_Surp: 0 vm.nr_hugepages = 0 Allocate 16 persistent huge pages on node 2: (me):echo 16 >/sys/devices/system/node/node2/hugepages/hugepages-2048kB/nr_hugepages [Note that this is equivalent to: numactl -m 2 hugeadmin --pool-pages-min 2M:+16 ] Yields: Node 0 HugePages_Total: 0 Node 0 HugePages_Free: 0 Node 0 HugePages_Surp: 0 Node 1 HugePages_Total: 0 Node 1 HugePages_Free: 0 Node 1 HugePages_Surp: 0 Node 2 HugePages_Total: 16 Node 2 HugePages_Free: 16 Node 2 HugePages_Surp: 0 Node 3 HugePages_Total: 0 Node 3 HugePages_Free: 0 Node 3 HugePages_Surp: 0 vm.nr_hugepages = 16 Global controls work as expected--reduce pool to 8 persistent huge pages: (me):echo 8 >/sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages Node 0 HugePages_Total: 0 Node 0 HugePages_Free: 0 Node 0 HugePages_Surp: 0 Node 1 HugePages_Total: 0 Node 1 HugePages_Free: 0 Node 1 HugePages_Surp: 0 Node 2 HugePages_Total: 8 Node 2 HugePages_Free: 8 Node 2 HugePages_Surp: 0 Node 3 HugePages_Total: 0 Node 3 HugePages_Free: 0 Node 3 HugePages_Surp: 0 Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Reviewed-by: Andi Kleen <andi@firstfloor.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> Cc: Nishanth Aravamudan <nacc@us.ibm.com> Cc: David Rientjes <rientjes@google.com> Cc: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@canonical.com> Cc: Eric Whitney <eric.whitney@hp.com> Cc: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-14 17:58:25 -08:00
struct hstate *h;
unsigned long nr_huge_pages;
int nid;
h = kobj_to_hstate(kobj, &nid);
if (nid == NUMA_NO_NODE)
nr_huge_pages = h->nr_huge_pages;
else
nr_huge_pages = h->nr_huge_pages_node[nid];
return sprintf(buf, "%lu\n", nr_huge_pages);
hugetlb: new sysfs interface Provide new hugepages user APIs that are more suited to multiple hstates in sysfs. There is a new directory, /sys/kernel/hugepages. Underneath that directory there will be a directory per-supported hugepage size, e.g.: /sys/kernel/hugepages/hugepages-64kB /sys/kernel/hugepages/hugepages-16384kB /sys/kernel/hugepages/hugepages-16777216kB corresponding to 64k, 16m and 16g respectively. Within each hugepages-size directory there are a number of files, corresponding to the tracked counters in the hstate, e.g.: /sys/kernel/hugepages/hugepages-64/nr_hugepages /sys/kernel/hugepages/hugepages-64/nr_overcommit_hugepages /sys/kernel/hugepages/hugepages-64/free_hugepages /sys/kernel/hugepages/hugepages-64/resv_hugepages /sys/kernel/hugepages/hugepages-64/surplus_hugepages Of these files, the first two are read-write and the latter three are read-only. The size of the hugepage being manipulated is trivially deducible from the enclosing directory and is always expressed in kB (to match meminfo). [dave@linux.vnet.ibm.com: fix build] [nacc@us.ibm.com: hugetlb: hang off of /sys/kernel/mm rather than /sys/kernel] [nacc@us.ibm.com: hugetlb: remove CONFIG_SYSFS dependency] Acked-by: Greg Kroah-Hartman <gregkh@suse.de> Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Dave Hansen <dave@linux.vnet.ibm.com> Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:44 -07:00
}
hugetlb: derive huge pages nodes allowed from task mempolicy This patch derives a "nodes_allowed" node mask from the numa mempolicy of the task modifying the number of persistent huge pages to control the allocation, freeing and adjusting of surplus huge pages when the pool page count is modified via the new sysctl or sysfs attribute "nr_hugepages_mempolicy". The nodes_allowed mask is derived as follows: * For "default" [NULL] task mempolicy, a NULL nodemask_t pointer is produced. This will cause the hugetlb subsystem to use node_online_map as the "nodes_allowed". This preserves the behavior before this patch. * For "preferred" mempolicy, including explicit local allocation, a nodemask with the single preferred node will be produced. "local" policy will NOT track any internode migrations of the task adjusting nr_hugepages. * For "bind" and "interleave" policy, the mempolicy's nodemask will be used. * Other than to inform the construction of the nodes_allowed node mask, the actual mempolicy mode is ignored. That is, all modes behave like interleave over the resulting nodes_allowed mask with no "fallback". See the updated documentation [next patch] for more information about the implications of this patch. Examples: Starting with: Node 0 HugePages_Total: 0 Node 1 HugePages_Total: 0 Node 2 HugePages_Total: 0 Node 3 HugePages_Total: 0 Default behavior [with or without this patch] balances persistent hugepage allocation across nodes [with sufficient contiguous memory]: sysctl vm.nr_hugepages[_mempolicy]=32 yields: Node 0 HugePages_Total: 8 Node 1 HugePages_Total: 8 Node 2 HugePages_Total: 8 Node 3 HugePages_Total: 8 Of course, we only have nr_hugepages_mempolicy with the patch, but with default mempolicy, nr_hugepages_mempolicy behaves the same as nr_hugepages. Applying mempolicy--e.g., with numactl [using '-m' a.k.a. '--membind' because it allows multiple nodes to be specified and it's easy to type]--we can allocate huge pages on individual nodes or sets of nodes. So, starting from the condition above, with 8 huge pages per node, add 8 more to node 2 using: numactl -m 2 sysctl vm.nr_hugepages_mempolicy=40 This yields: Node 0 HugePages_Total: 8 Node 1 HugePages_Total: 8 Node 2 HugePages_Total: 16 Node 3 HugePages_Total: 8 The incremental 8 huge pages were restricted to node 2 by the specified mempolicy. Similarly, we can use mempolicy to free persistent huge pages from specified nodes: numactl -m 0,1 sysctl vm.nr_hugepages_mempolicy=32 yields: Node 0 HugePages_Total: 4 Node 1 HugePages_Total: 4 Node 2 HugePages_Total: 16 Node 3 HugePages_Total: 8 The 8 huge pages freed were balanced over nodes 0 and 1. [rientjes@google.com: accomodate reworked NODEMASK_ALLOC] Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Reviewed-by: Andi Kleen <andi@firstfloor.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> Cc: Nishanth Aravamudan <nacc@us.ibm.com> Cc: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@canonical.com> Cc: Eric Whitney <eric.whitney@hp.com> Cc: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-14 17:58:21 -08:00
static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
struct kobject *kobj, struct kobj_attribute *attr,
const char *buf, size_t len)
hugetlb: new sysfs interface Provide new hugepages user APIs that are more suited to multiple hstates in sysfs. There is a new directory, /sys/kernel/hugepages. Underneath that directory there will be a directory per-supported hugepage size, e.g.: /sys/kernel/hugepages/hugepages-64kB /sys/kernel/hugepages/hugepages-16384kB /sys/kernel/hugepages/hugepages-16777216kB corresponding to 64k, 16m and 16g respectively. Within each hugepages-size directory there are a number of files, corresponding to the tracked counters in the hstate, e.g.: /sys/kernel/hugepages/hugepages-64/nr_hugepages /sys/kernel/hugepages/hugepages-64/nr_overcommit_hugepages /sys/kernel/hugepages/hugepages-64/free_hugepages /sys/kernel/hugepages/hugepages-64/resv_hugepages /sys/kernel/hugepages/hugepages-64/surplus_hugepages Of these files, the first two are read-write and the latter three are read-only. The size of the hugepage being manipulated is trivially deducible from the enclosing directory and is always expressed in kB (to match meminfo). [dave@linux.vnet.ibm.com: fix build] [nacc@us.ibm.com: hugetlb: hang off of /sys/kernel/mm rather than /sys/kernel] [nacc@us.ibm.com: hugetlb: remove CONFIG_SYSFS dependency] Acked-by: Greg Kroah-Hartman <gregkh@suse.de> Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Dave Hansen <dave@linux.vnet.ibm.com> Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:44 -07:00
{
int err;
hugetlb: add per node hstate attributes Add the per huge page size control/query attributes to the per node sysdevs: /sys/devices/system/node/node<ID>/hugepages/hugepages-<size>/ nr_hugepages - r/w free_huge_pages - r/o surplus_huge_pages - r/o The patch attempts to re-use/share as much of the existing global hstate attribute initialization and handling, and the "nodes_allowed" constraint processing as possible. Calling set_max_huge_pages() with no node indicates a change to global hstate parameters. In this case, any non-default task mempolicy will be used to generate the nodes_allowed mask. A valid node id indicates an update to that node's hstate parameters, and the count argument specifies the target count for the specified node. From this info, we compute the target global count for the hstate and construct a nodes_allowed node mask contain only the specified node. Setting the node specific nr_hugepages via the per node attribute effectively ignores any task mempolicy or cpuset constraints. With this patch: (me):ls /sys/devices/system/node/node0/hugepages/hugepages-2048kB ./ ../ free_hugepages nr_hugepages surplus_hugepages Starting from: Node 0 HugePages_Total: 0 Node 0 HugePages_Free: 0 Node 0 HugePages_Surp: 0 Node 1 HugePages_Total: 0 Node 1 HugePages_Free: 0 Node 1 HugePages_Surp: 0 Node 2 HugePages_Total: 0 Node 2 HugePages_Free: 0 Node 2 HugePages_Surp: 0 Node 3 HugePages_Total: 0 Node 3 HugePages_Free: 0 Node 3 HugePages_Surp: 0 vm.nr_hugepages = 0 Allocate 16 persistent huge pages on node 2: (me):echo 16 >/sys/devices/system/node/node2/hugepages/hugepages-2048kB/nr_hugepages [Note that this is equivalent to: numactl -m 2 hugeadmin --pool-pages-min 2M:+16 ] Yields: Node 0 HugePages_Total: 0 Node 0 HugePages_Free: 0 Node 0 HugePages_Surp: 0 Node 1 HugePages_Total: 0 Node 1 HugePages_Free: 0 Node 1 HugePages_Surp: 0 Node 2 HugePages_Total: 16 Node 2 HugePages_Free: 16 Node 2 HugePages_Surp: 0 Node 3 HugePages_Total: 0 Node 3 HugePages_Free: 0 Node 3 HugePages_Surp: 0 vm.nr_hugepages = 16 Global controls work as expected--reduce pool to 8 persistent huge pages: (me):echo 8 >/sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages Node 0 HugePages_Total: 0 Node 0 HugePages_Free: 0 Node 0 HugePages_Surp: 0 Node 1 HugePages_Total: 0 Node 1 HugePages_Free: 0 Node 1 HugePages_Surp: 0 Node 2 HugePages_Total: 8 Node 2 HugePages_Free: 8 Node 2 HugePages_Surp: 0 Node 3 HugePages_Total: 0 Node 3 HugePages_Free: 0 Node 3 HugePages_Surp: 0 Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Reviewed-by: Andi Kleen <andi@firstfloor.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> Cc: Nishanth Aravamudan <nacc@us.ibm.com> Cc: David Rientjes <rientjes@google.com> Cc: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@canonical.com> Cc: Eric Whitney <eric.whitney@hp.com> Cc: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-14 17:58:25 -08:00
int nid;
hugetlb: derive huge pages nodes allowed from task mempolicy This patch derives a "nodes_allowed" node mask from the numa mempolicy of the task modifying the number of persistent huge pages to control the allocation, freeing and adjusting of surplus huge pages when the pool page count is modified via the new sysctl or sysfs attribute "nr_hugepages_mempolicy". The nodes_allowed mask is derived as follows: * For "default" [NULL] task mempolicy, a NULL nodemask_t pointer is produced. This will cause the hugetlb subsystem to use node_online_map as the "nodes_allowed". This preserves the behavior before this patch. * For "preferred" mempolicy, including explicit local allocation, a nodemask with the single preferred node will be produced. "local" policy will NOT track any internode migrations of the task adjusting nr_hugepages. * For "bind" and "interleave" policy, the mempolicy's nodemask will be used. * Other than to inform the construction of the nodes_allowed node mask, the actual mempolicy mode is ignored. That is, all modes behave like interleave over the resulting nodes_allowed mask with no "fallback". See the updated documentation [next patch] for more information about the implications of this patch. Examples: Starting with: Node 0 HugePages_Total: 0 Node 1 HugePages_Total: 0 Node 2 HugePages_Total: 0 Node 3 HugePages_Total: 0 Default behavior [with or without this patch] balances persistent hugepage allocation across nodes [with sufficient contiguous memory]: sysctl vm.nr_hugepages[_mempolicy]=32 yields: Node 0 HugePages_Total: 8 Node 1 HugePages_Total: 8 Node 2 HugePages_Total: 8 Node 3 HugePages_Total: 8 Of course, we only have nr_hugepages_mempolicy with the patch, but with default mempolicy, nr_hugepages_mempolicy behaves the same as nr_hugepages. Applying mempolicy--e.g., with numactl [using '-m' a.k.a. '--membind' because it allows multiple nodes to be specified and it's easy to type]--we can allocate huge pages on individual nodes or sets of nodes. So, starting from the condition above, with 8 huge pages per node, add 8 more to node 2 using: numactl -m 2 sysctl vm.nr_hugepages_mempolicy=40 This yields: Node 0 HugePages_Total: 8 Node 1 HugePages_Total: 8 Node 2 HugePages_Total: 16 Node 3 HugePages_Total: 8 The incremental 8 huge pages were restricted to node 2 by the specified mempolicy. Similarly, we can use mempolicy to free persistent huge pages from specified nodes: numactl -m 0,1 sysctl vm.nr_hugepages_mempolicy=32 yields: Node 0 HugePages_Total: 4 Node 1 HugePages_Total: 4 Node 2 HugePages_Total: 16 Node 3 HugePages_Total: 8 The 8 huge pages freed were balanced over nodes 0 and 1. [rientjes@google.com: accomodate reworked NODEMASK_ALLOC] Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Reviewed-by: Andi Kleen <andi@firstfloor.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> Cc: Nishanth Aravamudan <nacc@us.ibm.com> Cc: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@canonical.com> Cc: Eric Whitney <eric.whitney@hp.com> Cc: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-14 17:58:21 -08:00
unsigned long count;
hugetlb: add per node hstate attributes Add the per huge page size control/query attributes to the per node sysdevs: /sys/devices/system/node/node<ID>/hugepages/hugepages-<size>/ nr_hugepages - r/w free_huge_pages - r/o surplus_huge_pages - r/o The patch attempts to re-use/share as much of the existing global hstate attribute initialization and handling, and the "nodes_allowed" constraint processing as possible. Calling set_max_huge_pages() with no node indicates a change to global hstate parameters. In this case, any non-default task mempolicy will be used to generate the nodes_allowed mask. A valid node id indicates an update to that node's hstate parameters, and the count argument specifies the target count for the specified node. From this info, we compute the target global count for the hstate and construct a nodes_allowed node mask contain only the specified node. Setting the node specific nr_hugepages via the per node attribute effectively ignores any task mempolicy or cpuset constraints. With this patch: (me):ls /sys/devices/system/node/node0/hugepages/hugepages-2048kB ./ ../ free_hugepages nr_hugepages surplus_hugepages Starting from: Node 0 HugePages_Total: 0 Node 0 HugePages_Free: 0 Node 0 HugePages_Surp: 0 Node 1 HugePages_Total: 0 Node 1 HugePages_Free: 0 Node 1 HugePages_Surp: 0 Node 2 HugePages_Total: 0 Node 2 HugePages_Free: 0 Node 2 HugePages_Surp: 0 Node 3 HugePages_Total: 0 Node 3 HugePages_Free: 0 Node 3 HugePages_Surp: 0 vm.nr_hugepages = 0 Allocate 16 persistent huge pages on node 2: (me):echo 16 >/sys/devices/system/node/node2/hugepages/hugepages-2048kB/nr_hugepages [Note that this is equivalent to: numactl -m 2 hugeadmin --pool-pages-min 2M:+16 ] Yields: Node 0 HugePages_Total: 0 Node 0 HugePages_Free: 0 Node 0 HugePages_Surp: 0 Node 1 HugePages_Total: 0 Node 1 HugePages_Free: 0 Node 1 HugePages_Surp: 0 Node 2 HugePages_Total: 16 Node 2 HugePages_Free: 16 Node 2 HugePages_Surp: 0 Node 3 HugePages_Total: 0 Node 3 HugePages_Free: 0 Node 3 HugePages_Surp: 0 vm.nr_hugepages = 16 Global controls work as expected--reduce pool to 8 persistent huge pages: (me):echo 8 >/sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages Node 0 HugePages_Total: 0 Node 0 HugePages_Free: 0 Node 0 HugePages_Surp: 0 Node 1 HugePages_Total: 0 Node 1 HugePages_Free: 0 Node 1 HugePages_Surp: 0 Node 2 HugePages_Total: 8 Node 2 HugePages_Free: 8 Node 2 HugePages_Surp: 0 Node 3 HugePages_Total: 0 Node 3 HugePages_Free: 0 Node 3 HugePages_Surp: 0 Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Reviewed-by: Andi Kleen <andi@firstfloor.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> Cc: Nishanth Aravamudan <nacc@us.ibm.com> Cc: David Rientjes <rientjes@google.com> Cc: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@canonical.com> Cc: Eric Whitney <eric.whitney@hp.com> Cc: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-14 17:58:25 -08:00
struct hstate *h;
mm: add gfp flags for NODEMASK_ALLOC slab allocations Objects passed to NODEMASK_ALLOC() are relatively small in size and are backed by slab caches that are not of large order, traditionally never greater than PAGE_ALLOC_COSTLY_ORDER. Thus, using GFP_KERNEL for these allocations on large machines when CONFIG_NODES_SHIFT > 8 will cause the page allocator to loop endlessly in the allocation attempt, each time invoking both direct reclaim or the oom killer. This is of particular interest when using NODEMASK_ALLOC() from a mempolicy context (either directly in mm/mempolicy.c or the mempolicy constrained hugetlb allocations) since the oom killer always kills current when allocations are constrained by mempolicies. So for all present use cases in the kernel, current would end up being oom killed when direct reclaim fails. That would allow the NODEMASK_ALLOC() to succeed but current would have sacrificed itself upon returning. This patch adds gfp flags to NODEMASK_ALLOC() to pass to kmalloc() on CONFIG_NODES_SHIFT > 8; this parameter is a nop on other configurations. All current use cases either directly from hugetlb code or indirectly via NODEMASK_SCRATCH() union __GFP_NORETRY to avoid direct reclaim and the oom killer when the slab allocator needs to allocate additional pages. The side-effect of this change is that all current use cases of either NODEMASK_ALLOC() or NODEMASK_SCRATCH() need appropriate -ENOMEM handling when the allocation fails (never for CONFIG_NODES_SHIFT <= 8). All current use cases were audited and do have appropriate error handling at this time. Signed-off-by: David Rientjes <rientjes@google.com> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Randy Dunlap <randy.dunlap@oracle.com> Cc: Nishanth Aravamudan <nacc@us.ibm.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: David Rientjes <rientjes@google.com> Cc: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@canonical.com> Cc: Eric Whitney <eric.whitney@hp.com> Cc: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-14 17:58:38 -08:00
NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
hugetlb: new sysfs interface Provide new hugepages user APIs that are more suited to multiple hstates in sysfs. There is a new directory, /sys/kernel/hugepages. Underneath that directory there will be a directory per-supported hugepage size, e.g.: /sys/kernel/hugepages/hugepages-64kB /sys/kernel/hugepages/hugepages-16384kB /sys/kernel/hugepages/hugepages-16777216kB corresponding to 64k, 16m and 16g respectively. Within each hugepages-size directory there are a number of files, corresponding to the tracked counters in the hstate, e.g.: /sys/kernel/hugepages/hugepages-64/nr_hugepages /sys/kernel/hugepages/hugepages-64/nr_overcommit_hugepages /sys/kernel/hugepages/hugepages-64/free_hugepages /sys/kernel/hugepages/hugepages-64/resv_hugepages /sys/kernel/hugepages/hugepages-64/surplus_hugepages Of these files, the first two are read-write and the latter three are read-only. The size of the hugepage being manipulated is trivially deducible from the enclosing directory and is always expressed in kB (to match meminfo). [dave@linux.vnet.ibm.com: fix build] [nacc@us.ibm.com: hugetlb: hang off of /sys/kernel/mm rather than /sys/kernel] [nacc@us.ibm.com: hugetlb: remove CONFIG_SYSFS dependency] Acked-by: Greg Kroah-Hartman <gregkh@suse.de> Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Dave Hansen <dave@linux.vnet.ibm.com> Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:44 -07:00
hugetlb: derive huge pages nodes allowed from task mempolicy This patch derives a "nodes_allowed" node mask from the numa mempolicy of the task modifying the number of persistent huge pages to control the allocation, freeing and adjusting of surplus huge pages when the pool page count is modified via the new sysctl or sysfs attribute "nr_hugepages_mempolicy". The nodes_allowed mask is derived as follows: * For "default" [NULL] task mempolicy, a NULL nodemask_t pointer is produced. This will cause the hugetlb subsystem to use node_online_map as the "nodes_allowed". This preserves the behavior before this patch. * For "preferred" mempolicy, including explicit local allocation, a nodemask with the single preferred node will be produced. "local" policy will NOT track any internode migrations of the task adjusting nr_hugepages. * For "bind" and "interleave" policy, the mempolicy's nodemask will be used. * Other than to inform the construction of the nodes_allowed node mask, the actual mempolicy mode is ignored. That is, all modes behave like interleave over the resulting nodes_allowed mask with no "fallback". See the updated documentation [next patch] for more information about the implications of this patch. Examples: Starting with: Node 0 HugePages_Total: 0 Node 1 HugePages_Total: 0 Node 2 HugePages_Total: 0 Node 3 HugePages_Total: 0 Default behavior [with or without this patch] balances persistent hugepage allocation across nodes [with sufficient contiguous memory]: sysctl vm.nr_hugepages[_mempolicy]=32 yields: Node 0 HugePages_Total: 8 Node 1 HugePages_Total: 8 Node 2 HugePages_Total: 8 Node 3 HugePages_Total: 8 Of course, we only have nr_hugepages_mempolicy with the patch, but with default mempolicy, nr_hugepages_mempolicy behaves the same as nr_hugepages. Applying mempolicy--e.g., with numactl [using '-m' a.k.a. '--membind' because it allows multiple nodes to be specified and it's easy to type]--we can allocate huge pages on individual nodes or sets of nodes. So, starting from the condition above, with 8 huge pages per node, add 8 more to node 2 using: numactl -m 2 sysctl vm.nr_hugepages_mempolicy=40 This yields: Node 0 HugePages_Total: 8 Node 1 HugePages_Total: 8 Node 2 HugePages_Total: 16 Node 3 HugePages_Total: 8 The incremental 8 huge pages were restricted to node 2 by the specified mempolicy. Similarly, we can use mempolicy to free persistent huge pages from specified nodes: numactl -m 0,1 sysctl vm.nr_hugepages_mempolicy=32 yields: Node 0 HugePages_Total: 4 Node 1 HugePages_Total: 4 Node 2 HugePages_Total: 16 Node 3 HugePages_Total: 8 The 8 huge pages freed were balanced over nodes 0 and 1. [rientjes@google.com: accomodate reworked NODEMASK_ALLOC] Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Reviewed-by: Andi Kleen <andi@firstfloor.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> Cc: Nishanth Aravamudan <nacc@us.ibm.com> Cc: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@canonical.com> Cc: Eric Whitney <eric.whitney@hp.com> Cc: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-14 17:58:21 -08:00
err = strict_strtoul(buf, 10, &count);
if (err)
goto out;
hugetlb: new sysfs interface Provide new hugepages user APIs that are more suited to multiple hstates in sysfs. There is a new directory, /sys/kernel/hugepages. Underneath that directory there will be a directory per-supported hugepage size, e.g.: /sys/kernel/hugepages/hugepages-64kB /sys/kernel/hugepages/hugepages-16384kB /sys/kernel/hugepages/hugepages-16777216kB corresponding to 64k, 16m and 16g respectively. Within each hugepages-size directory there are a number of files, corresponding to the tracked counters in the hstate, e.g.: /sys/kernel/hugepages/hugepages-64/nr_hugepages /sys/kernel/hugepages/hugepages-64/nr_overcommit_hugepages /sys/kernel/hugepages/hugepages-64/free_hugepages /sys/kernel/hugepages/hugepages-64/resv_hugepages /sys/kernel/hugepages/hugepages-64/surplus_hugepages Of these files, the first two are read-write and the latter three are read-only. The size of the hugepage being manipulated is trivially deducible from the enclosing directory and is always expressed in kB (to match meminfo). [dave@linux.vnet.ibm.com: fix build] [nacc@us.ibm.com: hugetlb: hang off of /sys/kernel/mm rather than /sys/kernel] [nacc@us.ibm.com: hugetlb: remove CONFIG_SYSFS dependency] Acked-by: Greg Kroah-Hartman <gregkh@suse.de> Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Dave Hansen <dave@linux.vnet.ibm.com> Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:44 -07:00
hugetlb: add per node hstate attributes Add the per huge page size control/query attributes to the per node sysdevs: /sys/devices/system/node/node<ID>/hugepages/hugepages-<size>/ nr_hugepages - r/w free_huge_pages - r/o surplus_huge_pages - r/o The patch attempts to re-use/share as much of the existing global hstate attribute initialization and handling, and the "nodes_allowed" constraint processing as possible. Calling set_max_huge_pages() with no node indicates a change to global hstate parameters. In this case, any non-default task mempolicy will be used to generate the nodes_allowed mask. A valid node id indicates an update to that node's hstate parameters, and the count argument specifies the target count for the specified node. From this info, we compute the target global count for the hstate and construct a nodes_allowed node mask contain only the specified node. Setting the node specific nr_hugepages via the per node attribute effectively ignores any task mempolicy or cpuset constraints. With this patch: (me):ls /sys/devices/system/node/node0/hugepages/hugepages-2048kB ./ ../ free_hugepages nr_hugepages surplus_hugepages Starting from: Node 0 HugePages_Total: 0 Node 0 HugePages_Free: 0 Node 0 HugePages_Surp: 0 Node 1 HugePages_Total: 0 Node 1 HugePages_Free: 0 Node 1 HugePages_Surp: 0 Node 2 HugePages_Total: 0 Node 2 HugePages_Free: 0 Node 2 HugePages_Surp: 0 Node 3 HugePages_Total: 0 Node 3 HugePages_Free: 0 Node 3 HugePages_Surp: 0 vm.nr_hugepages = 0 Allocate 16 persistent huge pages on node 2: (me):echo 16 >/sys/devices/system/node/node2/hugepages/hugepages-2048kB/nr_hugepages [Note that this is equivalent to: numactl -m 2 hugeadmin --pool-pages-min 2M:+16 ] Yields: Node 0 HugePages_Total: 0 Node 0 HugePages_Free: 0 Node 0 HugePages_Surp: 0 Node 1 HugePages_Total: 0 Node 1 HugePages_Free: 0 Node 1 HugePages_Surp: 0 Node 2 HugePages_Total: 16 Node 2 HugePages_Free: 16 Node 2 HugePages_Surp: 0 Node 3 HugePages_Total: 0 Node 3 HugePages_Free: 0 Node 3 HugePages_Surp: 0 vm.nr_hugepages = 16 Global controls work as expected--reduce pool to 8 persistent huge pages: (me):echo 8 >/sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages Node 0 HugePages_Total: 0 Node 0 HugePages_Free: 0 Node 0 HugePages_Surp: 0 Node 1 HugePages_Total: 0 Node 1 HugePages_Free: 0 Node 1 HugePages_Surp: 0 Node 2 HugePages_Total: 8 Node 2 HugePages_Free: 8 Node 2 HugePages_Surp: 0 Node 3 HugePages_Total: 0 Node 3 HugePages_Free: 0 Node 3 HugePages_Surp: 0 Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Reviewed-by: Andi Kleen <andi@firstfloor.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> Cc: Nishanth Aravamudan <nacc@us.ibm.com> Cc: David Rientjes <rientjes@google.com> Cc: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@canonical.com> Cc: Eric Whitney <eric.whitney@hp.com> Cc: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-14 17:58:25 -08:00
h = kobj_to_hstate(kobj, &nid);
if (h->order >= MAX_ORDER) {
err = -EINVAL;
goto out;
}
hugetlb: add per node hstate attributes Add the per huge page size control/query attributes to the per node sysdevs: /sys/devices/system/node/node<ID>/hugepages/hugepages-<size>/ nr_hugepages - r/w free_huge_pages - r/o surplus_huge_pages - r/o The patch attempts to re-use/share as much of the existing global hstate attribute initialization and handling, and the "nodes_allowed" constraint processing as possible. Calling set_max_huge_pages() with no node indicates a change to global hstate parameters. In this case, any non-default task mempolicy will be used to generate the nodes_allowed mask. A valid node id indicates an update to that node's hstate parameters, and the count argument specifies the target count for the specified node. From this info, we compute the target global count for the hstate and construct a nodes_allowed node mask contain only the specified node. Setting the node specific nr_hugepages via the per node attribute effectively ignores any task mempolicy or cpuset constraints. With this patch: (me):ls /sys/devices/system/node/node0/hugepages/hugepages-2048kB ./ ../ free_hugepages nr_hugepages surplus_hugepages Starting from: Node 0 HugePages_Total: 0 Node 0 HugePages_Free: 0 Node 0 HugePages_Surp: 0 Node 1 HugePages_Total: 0 Node 1 HugePages_Free: 0 Node 1 HugePages_Surp: 0 Node 2 HugePages_Total: 0 Node 2 HugePages_Free: 0 Node 2 HugePages_Surp: 0 Node 3 HugePages_Total: 0 Node 3 HugePages_Free: 0 Node 3 HugePages_Surp: 0 vm.nr_hugepages = 0 Allocate 16 persistent huge pages on node 2: (me):echo 16 >/sys/devices/system/node/node2/hugepages/hugepages-2048kB/nr_hugepages [Note that this is equivalent to: numactl -m 2 hugeadmin --pool-pages-min 2M:+16 ] Yields: Node 0 HugePages_Total: 0 Node 0 HugePages_Free: 0 Node 0 HugePages_Surp: 0 Node 1 HugePages_Total: 0 Node 1 HugePages_Free: 0 Node 1 HugePages_Surp: 0 Node 2 HugePages_Total: 16 Node 2 HugePages_Free: 16 Node 2 HugePages_Surp: 0 Node 3 HugePages_Total: 0 Node 3 HugePages_Free: 0 Node 3 HugePages_Surp: 0 vm.nr_hugepages = 16 Global controls work as expected--reduce pool to 8 persistent huge pages: (me):echo 8 >/sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages Node 0 HugePages_Total: 0 Node 0 HugePages_Free: 0 Node 0 HugePages_Surp: 0 Node 1 HugePages_Total: 0 Node 1 HugePages_Free: 0 Node 1 HugePages_Surp: 0 Node 2 HugePages_Total: 8 Node 2 HugePages_Free: 8 Node 2 HugePages_Surp: 0 Node 3 HugePages_Total: 0 Node 3 HugePages_Free: 0 Node 3 HugePages_Surp: 0 Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Reviewed-by: Andi Kleen <andi@firstfloor.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> Cc: Nishanth Aravamudan <nacc@us.ibm.com> Cc: David Rientjes <rientjes@google.com> Cc: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@canonical.com> Cc: Eric Whitney <eric.whitney@hp.com> Cc: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-14 17:58:25 -08:00
if (nid == NUMA_NO_NODE) {
/*
* global hstate attribute
*/
if (!(obey_mempolicy &&
init_nodemask_of_mempolicy(nodes_allowed))) {
NODEMASK_FREE(nodes_allowed);
nodes_allowed = &node_states[N_HIGH_MEMORY];
}
} else if (nodes_allowed) {
/*
* per node hstate attribute: adjust count to global,
* but restrict alloc/free to the specified node.
*/
count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
init_nodemask_of_node(nodes_allowed, nid);
} else
nodes_allowed = &node_states[N_HIGH_MEMORY];
hugetlb: derive huge pages nodes allowed from task mempolicy This patch derives a "nodes_allowed" node mask from the numa mempolicy of the task modifying the number of persistent huge pages to control the allocation, freeing and adjusting of surplus huge pages when the pool page count is modified via the new sysctl or sysfs attribute "nr_hugepages_mempolicy". The nodes_allowed mask is derived as follows: * For "default" [NULL] task mempolicy, a NULL nodemask_t pointer is produced. This will cause the hugetlb subsystem to use node_online_map as the "nodes_allowed". This preserves the behavior before this patch. * For "preferred" mempolicy, including explicit local allocation, a nodemask with the single preferred node will be produced. "local" policy will NOT track any internode migrations of the task adjusting nr_hugepages. * For "bind" and "interleave" policy, the mempolicy's nodemask will be used. * Other than to inform the construction of the nodes_allowed node mask, the actual mempolicy mode is ignored. That is, all modes behave like interleave over the resulting nodes_allowed mask with no "fallback". See the updated documentation [next patch] for more information about the implications of this patch. Examples: Starting with: Node 0 HugePages_Total: 0 Node 1 HugePages_Total: 0 Node 2 HugePages_Total: 0 Node 3 HugePages_Total: 0 Default behavior [with or without this patch] balances persistent hugepage allocation across nodes [with sufficient contiguous memory]: sysctl vm.nr_hugepages[_mempolicy]=32 yields: Node 0 HugePages_Total: 8 Node 1 HugePages_Total: 8 Node 2 HugePages_Total: 8 Node 3 HugePages_Total: 8 Of course, we only have nr_hugepages_mempolicy with the patch, but with default mempolicy, nr_hugepages_mempolicy behaves the same as nr_hugepages. Applying mempolicy--e.g., with numactl [using '-m' a.k.a. '--membind' because it allows multiple nodes to be specified and it's easy to type]--we can allocate huge pages on individual nodes or sets of nodes. So, starting from the condition above, with 8 huge pages per node, add 8 more to node 2 using: numactl -m 2 sysctl vm.nr_hugepages_mempolicy=40 This yields: Node 0 HugePages_Total: 8 Node 1 HugePages_Total: 8 Node 2 HugePages_Total: 16 Node 3 HugePages_Total: 8 The incremental 8 huge pages were restricted to node 2 by the specified mempolicy. Similarly, we can use mempolicy to free persistent huge pages from specified nodes: numactl -m 0,1 sysctl vm.nr_hugepages_mempolicy=32 yields: Node 0 HugePages_Total: 4 Node 1 HugePages_Total: 4 Node 2 HugePages_Total: 16 Node 3 HugePages_Total: 8 The 8 huge pages freed were balanced over nodes 0 and 1. [rientjes@google.com: accomodate reworked NODEMASK_ALLOC] Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Reviewed-by: Andi Kleen <andi@firstfloor.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> Cc: Nishanth Aravamudan <nacc@us.ibm.com> Cc: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@canonical.com> Cc: Eric Whitney <eric.whitney@hp.com> Cc: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-14 17:58:21 -08:00
h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
hugetlb: new sysfs interface Provide new hugepages user APIs that are more suited to multiple hstates in sysfs. There is a new directory, /sys/kernel/hugepages. Underneath that directory there will be a directory per-supported hugepage size, e.g.: /sys/kernel/hugepages/hugepages-64kB /sys/kernel/hugepages/hugepages-16384kB /sys/kernel/hugepages/hugepages-16777216kB corresponding to 64k, 16m and 16g respectively. Within each hugepages-size directory there are a number of files, corresponding to the tracked counters in the hstate, e.g.: /sys/kernel/hugepages/hugepages-64/nr_hugepages /sys/kernel/hugepages/hugepages-64/nr_overcommit_hugepages /sys/kernel/hugepages/hugepages-64/free_hugepages /sys/kernel/hugepages/hugepages-64/resv_hugepages /sys/kernel/hugepages/hugepages-64/surplus_hugepages Of these files, the first two are read-write and the latter three are read-only. The size of the hugepage being manipulated is trivially deducible from the enclosing directory and is always expressed in kB (to match meminfo). [dave@linux.vnet.ibm.com: fix build] [nacc@us.ibm.com: hugetlb: hang off of /sys/kernel/mm rather than /sys/kernel] [nacc@us.ibm.com: hugetlb: remove CONFIG_SYSFS dependency] Acked-by: Greg Kroah-Hartman <gregkh@suse.de> Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Dave Hansen <dave@linux.vnet.ibm.com> Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:44 -07:00
if (nodes_allowed != &node_states[N_HIGH_MEMORY])
hugetlb: derive huge pages nodes allowed from task mempolicy This patch derives a "nodes_allowed" node mask from the numa mempolicy of the task modifying the number of persistent huge pages to control the allocation, freeing and adjusting of surplus huge pages when the pool page count is modified via the new sysctl or sysfs attribute "nr_hugepages_mempolicy". The nodes_allowed mask is derived as follows: * For "default" [NULL] task mempolicy, a NULL nodemask_t pointer is produced. This will cause the hugetlb subsystem to use node_online_map as the "nodes_allowed". This preserves the behavior before this patch. * For "preferred" mempolicy, including explicit local allocation, a nodemask with the single preferred node will be produced. "local" policy will NOT track any internode migrations of the task adjusting nr_hugepages. * For "bind" and "interleave" policy, the mempolicy's nodemask will be used. * Other than to inform the construction of the nodes_allowed node mask, the actual mempolicy mode is ignored. That is, all modes behave like interleave over the resulting nodes_allowed mask with no "fallback". See the updated documentation [next patch] for more information about the implications of this patch. Examples: Starting with: Node 0 HugePages_Total: 0 Node 1 HugePages_Total: 0 Node 2 HugePages_Total: 0 Node 3 HugePages_Total: 0 Default behavior [with or without this patch] balances persistent hugepage allocation across nodes [with sufficient contiguous memory]: sysctl vm.nr_hugepages[_mempolicy]=32 yields: Node 0 HugePages_Total: 8 Node 1 HugePages_Total: 8 Node 2 HugePages_Total: 8 Node 3 HugePages_Total: 8 Of course, we only have nr_hugepages_mempolicy with the patch, but with default mempolicy, nr_hugepages_mempolicy behaves the same as nr_hugepages. Applying mempolicy--e.g., with numactl [using '-m' a.k.a. '--membind' because it allows multiple nodes to be specified and it's easy to type]--we can allocate huge pages on individual nodes or sets of nodes. So, starting from the condition above, with 8 huge pages per node, add 8 more to node 2 using: numactl -m 2 sysctl vm.nr_hugepages_mempolicy=40 This yields: Node 0 HugePages_Total: 8 Node 1 HugePages_Total: 8 Node 2 HugePages_Total: 16 Node 3 HugePages_Total: 8 The incremental 8 huge pages were restricted to node 2 by the specified mempolicy. Similarly, we can use mempolicy to free persistent huge pages from specified nodes: numactl -m 0,1 sysctl vm.nr_hugepages_mempolicy=32 yields: Node 0 HugePages_Total: 4 Node 1 HugePages_Total: 4 Node 2 HugePages_Total: 16 Node 3 HugePages_Total: 8 The 8 huge pages freed were balanced over nodes 0 and 1. [rientjes@google.com: accomodate reworked NODEMASK_ALLOC] Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Reviewed-by: Andi Kleen <andi@firstfloor.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> Cc: Nishanth Aravamudan <nacc@us.ibm.com> Cc: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@canonical.com> Cc: Eric Whitney <eric.whitney@hp.com> Cc: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-14 17:58:21 -08:00
NODEMASK_FREE(nodes_allowed);
return len;
out:
NODEMASK_FREE(nodes_allowed);
return err;
hugetlb: derive huge pages nodes allowed from task mempolicy This patch derives a "nodes_allowed" node mask from the numa mempolicy of the task modifying the number of persistent huge pages to control the allocation, freeing and adjusting of surplus huge pages when the pool page count is modified via the new sysctl or sysfs attribute "nr_hugepages_mempolicy". The nodes_allowed mask is derived as follows: * For "default" [NULL] task mempolicy, a NULL nodemask_t pointer is produced. This will cause the hugetlb subsystem to use node_online_map as the "nodes_allowed". This preserves the behavior before this patch. * For "preferred" mempolicy, including explicit local allocation, a nodemask with the single preferred node will be produced. "local" policy will NOT track any internode migrations of the task adjusting nr_hugepages. * For "bind" and "interleave" policy, the mempolicy's nodemask will be used. * Other than to inform the construction of the nodes_allowed node mask, the actual mempolicy mode is ignored. That is, all modes behave like interleave over the resulting nodes_allowed mask with no "fallback". See the updated documentation [next patch] for more information about the implications of this patch. Examples: Starting with: Node 0 HugePages_Total: 0 Node 1 HugePages_Total: 0 Node 2 HugePages_Total: 0 Node 3 HugePages_Total: 0 Default behavior [with or without this patch] balances persistent hugepage allocation across nodes [with sufficient contiguous memory]: sysctl vm.nr_hugepages[_mempolicy]=32 yields: Node 0 HugePages_Total: 8 Node 1 HugePages_Total: 8 Node 2 HugePages_Total: 8 Node 3 HugePages_Total: 8 Of course, we only have nr_hugepages_mempolicy with the patch, but with default mempolicy, nr_hugepages_mempolicy behaves the same as nr_hugepages. Applying mempolicy--e.g., with numactl [using '-m' a.k.a. '--membind' because it allows multiple nodes to be specified and it's easy to type]--we can allocate huge pages on individual nodes or sets of nodes. So, starting from the condition above, with 8 huge pages per node, add 8 more to node 2 using: numactl -m 2 sysctl vm.nr_hugepages_mempolicy=40 This yields: Node 0 HugePages_Total: 8 Node 1 HugePages_Total: 8 Node 2 HugePages_Total: 16 Node 3 HugePages_Total: 8 The incremental 8 huge pages were restricted to node 2 by the specified mempolicy. Similarly, we can use mempolicy to free persistent huge pages from specified nodes: numactl -m 0,1 sysctl vm.nr_hugepages_mempolicy=32 yields: Node 0 HugePages_Total: 4 Node 1 HugePages_Total: 4 Node 2 HugePages_Total: 16 Node 3 HugePages_Total: 8 The 8 huge pages freed were balanced over nodes 0 and 1. [rientjes@google.com: accomodate reworked NODEMASK_ALLOC] Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Reviewed-by: Andi Kleen <andi@firstfloor.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> Cc: Nishanth Aravamudan <nacc@us.ibm.com> Cc: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@canonical.com> Cc: Eric Whitney <eric.whitney@hp.com> Cc: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-14 17:58:21 -08:00
}
static ssize_t nr_hugepages_show(struct kobject *kobj,
struct kobj_attribute *attr, char *buf)
{
return nr_hugepages_show_common(kobj, attr, buf);
}
static ssize_t nr_hugepages_store(struct kobject *kobj,
struct kobj_attribute *attr, const char *buf, size_t len)
{
return nr_hugepages_store_common(false, kobj, attr, buf, len);
hugetlb: new sysfs interface Provide new hugepages user APIs that are more suited to multiple hstates in sysfs. There is a new directory, /sys/kernel/hugepages. Underneath that directory there will be a directory per-supported hugepage size, e.g.: /sys/kernel/hugepages/hugepages-64kB /sys/kernel/hugepages/hugepages-16384kB /sys/kernel/hugepages/hugepages-16777216kB corresponding to 64k, 16m and 16g respectively. Within each hugepages-size directory there are a number of files, corresponding to the tracked counters in the hstate, e.g.: /sys/kernel/hugepages/hugepages-64/nr_hugepages /sys/kernel/hugepages/hugepages-64/nr_overcommit_hugepages /sys/kernel/hugepages/hugepages-64/free_hugepages /sys/kernel/hugepages/hugepages-64/resv_hugepages /sys/kernel/hugepages/hugepages-64/surplus_hugepages Of these files, the first two are read-write and the latter three are read-only. The size of the hugepage being manipulated is trivially deducible from the enclosing directory and is always expressed in kB (to match meminfo). [dave@linux.vnet.ibm.com: fix build] [nacc@us.ibm.com: hugetlb: hang off of /sys/kernel/mm rather than /sys/kernel] [nacc@us.ibm.com: hugetlb: remove CONFIG_SYSFS dependency] Acked-by: Greg Kroah-Hartman <gregkh@suse.de> Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Dave Hansen <dave@linux.vnet.ibm.com> Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:44 -07:00
}
HSTATE_ATTR(nr_hugepages);
hugetlb: derive huge pages nodes allowed from task mempolicy This patch derives a "nodes_allowed" node mask from the numa mempolicy of the task modifying the number of persistent huge pages to control the allocation, freeing and adjusting of surplus huge pages when the pool page count is modified via the new sysctl or sysfs attribute "nr_hugepages_mempolicy". The nodes_allowed mask is derived as follows: * For "default" [NULL] task mempolicy, a NULL nodemask_t pointer is produced. This will cause the hugetlb subsystem to use node_online_map as the "nodes_allowed". This preserves the behavior before this patch. * For "preferred" mempolicy, including explicit local allocation, a nodemask with the single preferred node will be produced. "local" policy will NOT track any internode migrations of the task adjusting nr_hugepages. * For "bind" and "interleave" policy, the mempolicy's nodemask will be used. * Other than to inform the construction of the nodes_allowed node mask, the actual mempolicy mode is ignored. That is, all modes behave like interleave over the resulting nodes_allowed mask with no "fallback". See the updated documentation [next patch] for more information about the implications of this patch. Examples: Starting with: Node 0 HugePages_Total: 0 Node 1 HugePages_Total: 0 Node 2 HugePages_Total: 0 Node 3 HugePages_Total: 0 Default behavior [with or without this patch] balances persistent hugepage allocation across nodes [with sufficient contiguous memory]: sysctl vm.nr_hugepages[_mempolicy]=32 yields: Node 0 HugePages_Total: 8 Node 1 HugePages_Total: 8 Node 2 HugePages_Total: 8 Node 3 HugePages_Total: 8 Of course, we only have nr_hugepages_mempolicy with the patch, but with default mempolicy, nr_hugepages_mempolicy behaves the same as nr_hugepages. Applying mempolicy--e.g., with numactl [using '-m' a.k.a. '--membind' because it allows multiple nodes to be specified and it's easy to type]--we can allocate huge pages on individual nodes or sets of nodes. So, starting from the condition above, with 8 huge pages per node, add 8 more to node 2 using: numactl -m 2 sysctl vm.nr_hugepages_mempolicy=40 This yields: Node 0 HugePages_Total: 8 Node 1 HugePages_Total: 8 Node 2 HugePages_Total: 16 Node 3 HugePages_Total: 8 The incremental 8 huge pages were restricted to node 2 by the specified mempolicy. Similarly, we can use mempolicy to free persistent huge pages from specified nodes: numactl -m 0,1 sysctl vm.nr_hugepages_mempolicy=32 yields: Node 0 HugePages_Total: 4 Node 1 HugePages_Total: 4 Node 2 HugePages_Total: 16 Node 3 HugePages_Total: 8 The 8 huge pages freed were balanced over nodes 0 and 1. [rientjes@google.com: accomodate reworked NODEMASK_ALLOC] Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Reviewed-by: Andi Kleen <andi@firstfloor.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> Cc: Nishanth Aravamudan <nacc@us.ibm.com> Cc: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@canonical.com> Cc: Eric Whitney <eric.whitney@hp.com> Cc: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-14 17:58:21 -08:00
#ifdef CONFIG_NUMA
/*
* hstate attribute for optionally mempolicy-based constraint on persistent
* huge page alloc/free.
*/
static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
struct kobj_attribute *attr, char *buf)
{
return nr_hugepages_show_common(kobj, attr, buf);
}
static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
struct kobj_attribute *attr, const char *buf, size_t len)
{
return nr_hugepages_store_common(true, kobj, attr, buf, len);
}
HSTATE_ATTR(nr_hugepages_mempolicy);
#endif
hugetlb: new sysfs interface Provide new hugepages user APIs that are more suited to multiple hstates in sysfs. There is a new directory, /sys/kernel/hugepages. Underneath that directory there will be a directory per-supported hugepage size, e.g.: /sys/kernel/hugepages/hugepages-64kB /sys/kernel/hugepages/hugepages-16384kB /sys/kernel/hugepages/hugepages-16777216kB corresponding to 64k, 16m and 16g respectively. Within each hugepages-size directory there are a number of files, corresponding to the tracked counters in the hstate, e.g.: /sys/kernel/hugepages/hugepages-64/nr_hugepages /sys/kernel/hugepages/hugepages-64/nr_overcommit_hugepages /sys/kernel/hugepages/hugepages-64/free_hugepages /sys/kernel/hugepages/hugepages-64/resv_hugepages /sys/kernel/hugepages/hugepages-64/surplus_hugepages Of these files, the first two are read-write and the latter three are read-only. The size of the hugepage being manipulated is trivially deducible from the enclosing directory and is always expressed in kB (to match meminfo). [dave@linux.vnet.ibm.com: fix build] [nacc@us.ibm.com: hugetlb: hang off of /sys/kernel/mm rather than /sys/kernel] [nacc@us.ibm.com: hugetlb: remove CONFIG_SYSFS dependency] Acked-by: Greg Kroah-Hartman <gregkh@suse.de> Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Dave Hansen <dave@linux.vnet.ibm.com> Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:44 -07:00
static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
struct kobj_attribute *attr, char *buf)
{
hugetlb: add per node hstate attributes Add the per huge page size control/query attributes to the per node sysdevs: /sys/devices/system/node/node<ID>/hugepages/hugepages-<size>/ nr_hugepages - r/w free_huge_pages - r/o surplus_huge_pages - r/o The patch attempts to re-use/share as much of the existing global hstate attribute initialization and handling, and the "nodes_allowed" constraint processing as possible. Calling set_max_huge_pages() with no node indicates a change to global hstate parameters. In this case, any non-default task mempolicy will be used to generate the nodes_allowed mask. A valid node id indicates an update to that node's hstate parameters, and the count argument specifies the target count for the specified node. From this info, we compute the target global count for the hstate and construct a nodes_allowed node mask contain only the specified node. Setting the node specific nr_hugepages via the per node attribute effectively ignores any task mempolicy or cpuset constraints. With this patch: (me):ls /sys/devices/system/node/node0/hugepages/hugepages-2048kB ./ ../ free_hugepages nr_hugepages surplus_hugepages Starting from: Node 0 HugePages_Total: 0 Node 0 HugePages_Free: 0 Node 0 HugePages_Surp: 0 Node 1 HugePages_Total: 0 Node 1 HugePages_Free: 0 Node 1 HugePages_Surp: 0 Node 2 HugePages_Total: 0 Node 2 HugePages_Free: 0 Node 2 HugePages_Surp: 0 Node 3 HugePages_Total: 0 Node 3 HugePages_Free: 0 Node 3 HugePages_Surp: 0 vm.nr_hugepages = 0 Allocate 16 persistent huge pages on node 2: (me):echo 16 >/sys/devices/system/node/node2/hugepages/hugepages-2048kB/nr_hugepages [Note that this is equivalent to: numactl -m 2 hugeadmin --pool-pages-min 2M:+16 ] Yields: Node 0 HugePages_Total: 0 Node 0 HugePages_Free: 0 Node 0 HugePages_Surp: 0 Node 1 HugePages_Total: 0 Node 1 HugePages_Free: 0 Node 1 HugePages_Surp: 0 Node 2 HugePages_Total: 16 Node 2 HugePages_Free: 16 Node 2 HugePages_Surp: 0 Node 3 HugePages_Total: 0 Node 3 HugePages_Free: 0 Node 3 HugePages_Surp: 0 vm.nr_hugepages = 16 Global controls work as expected--reduce pool to 8 persistent huge pages: (me):echo 8 >/sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages Node 0 HugePages_Total: 0 Node 0 HugePages_Free: 0 Node 0 HugePages_Surp: 0 Node 1 HugePages_Total: 0 Node 1 HugePages_Free: 0 Node 1 HugePages_Surp: 0 Node 2 HugePages_Total: 8 Node 2 HugePages_Free: 8 Node 2 HugePages_Surp: 0 Node 3 HugePages_Total: 0 Node 3 HugePages_Free: 0 Node 3 HugePages_Surp: 0 Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Reviewed-by: Andi Kleen <andi@firstfloor.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> Cc: Nishanth Aravamudan <nacc@us.ibm.com> Cc: David Rientjes <rientjes@google.com> Cc: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@canonical.com> Cc: Eric Whitney <eric.whitney@hp.com> Cc: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-14 17:58:25 -08:00
struct hstate *h = kobj_to_hstate(kobj, NULL);
hugetlb: new sysfs interface Provide new hugepages user APIs that are more suited to multiple hstates in sysfs. There is a new directory, /sys/kernel/hugepages. Underneath that directory there will be a directory per-supported hugepage size, e.g.: /sys/kernel/hugepages/hugepages-64kB /sys/kernel/hugepages/hugepages-16384kB /sys/kernel/hugepages/hugepages-16777216kB corresponding to 64k, 16m and 16g respectively. Within each hugepages-size directory there are a number of files, corresponding to the tracked counters in the hstate, e.g.: /sys/kernel/hugepages/hugepages-64/nr_hugepages /sys/kernel/hugepages/hugepages-64/nr_overcommit_hugepages /sys/kernel/hugepages/hugepages-64/free_hugepages /sys/kernel/hugepages/hugepages-64/resv_hugepages /sys/kernel/hugepages/hugepages-64/surplus_hugepages Of these files, the first two are read-write and the latter three are read-only. The size of the hugepage being manipulated is trivially deducible from the enclosing directory and is always expressed in kB (to match meminfo). [dave@linux.vnet.ibm.com: fix build] [nacc@us.ibm.com: hugetlb: hang off of /sys/kernel/mm rather than /sys/kernel] [nacc@us.ibm.com: hugetlb: remove CONFIG_SYSFS dependency] Acked-by: Greg Kroah-Hartman <gregkh@suse.de> Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Dave Hansen <dave@linux.vnet.ibm.com> Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:44 -07:00
return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
}
hugetlb: new sysfs interface Provide new hugepages user APIs that are more suited to multiple hstates in sysfs. There is a new directory, /sys/kernel/hugepages. Underneath that directory there will be a directory per-supported hugepage size, e.g.: /sys/kernel/hugepages/hugepages-64kB /sys/kernel/hugepages/hugepages-16384kB /sys/kernel/hugepages/hugepages-16777216kB corresponding to 64k, 16m and 16g respectively. Within each hugepages-size directory there are a number of files, corresponding to the tracked counters in the hstate, e.g.: /sys/kernel/hugepages/hugepages-64/nr_hugepages /sys/kernel/hugepages/hugepages-64/nr_overcommit_hugepages /sys/kernel/hugepages/hugepages-64/free_hugepages /sys/kernel/hugepages/hugepages-64/resv_hugepages /sys/kernel/hugepages/hugepages-64/surplus_hugepages Of these files, the first two are read-write and the latter three are read-only. The size of the hugepage being manipulated is trivially deducible from the enclosing directory and is always expressed in kB (to match meminfo). [dave@linux.vnet.ibm.com: fix build] [nacc@us.ibm.com: hugetlb: hang off of /sys/kernel/mm rather than /sys/kernel] [nacc@us.ibm.com: hugetlb: remove CONFIG_SYSFS dependency] Acked-by: Greg Kroah-Hartman <gregkh@suse.de> Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Dave Hansen <dave@linux.vnet.ibm.com> Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:44 -07:00
static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
struct kobj_attribute *attr, const char *buf, size_t count)
{
int err;
unsigned long input;
hugetlb: add per node hstate attributes Add the per huge page size control/query attributes to the per node sysdevs: /sys/devices/system/node/node<ID>/hugepages/hugepages-<size>/ nr_hugepages - r/w free_huge_pages - r/o surplus_huge_pages - r/o The patch attempts to re-use/share as much of the existing global hstate attribute initialization and handling, and the "nodes_allowed" constraint processing as possible. Calling set_max_huge_pages() with no node indicates a change to global hstate parameters. In this case, any non-default task mempolicy will be used to generate the nodes_allowed mask. A valid node id indicates an update to that node's hstate parameters, and the count argument specifies the target count for the specified node. From this info, we compute the target global count for the hstate and construct a nodes_allowed node mask contain only the specified node. Setting the node specific nr_hugepages via the per node attribute effectively ignores any task mempolicy or cpuset constraints. With this patch: (me):ls /sys/devices/system/node/node0/hugepages/hugepages-2048kB ./ ../ free_hugepages nr_hugepages surplus_hugepages Starting from: Node 0 HugePages_Total: 0 Node 0 HugePages_Free: 0 Node 0 HugePages_Surp: 0 Node 1 HugePages_Total: 0 Node 1 HugePages_Free: 0 Node 1 HugePages_Surp: 0 Node 2 HugePages_Total: 0 Node 2 HugePages_Free: 0 Node 2 HugePages_Surp: 0 Node 3 HugePages_Total: 0 Node 3 HugePages_Free: 0 Node 3 HugePages_Surp: 0 vm.nr_hugepages = 0 Allocate 16 persistent huge pages on node 2: (me):echo 16 >/sys/devices/system/node/node2/hugepages/hugepages-2048kB/nr_hugepages [Note that this is equivalent to: numactl -m 2 hugeadmin --pool-pages-min 2M:+16 ] Yields: Node 0 HugePages_Total: 0 Node 0 HugePages_Free: 0 Node 0 HugePages_Surp: 0 Node 1 HugePages_Total: 0 Node 1 HugePages_Free: 0 Node 1 HugePages_Surp: 0 Node 2 HugePages_Total: 16 Node 2 HugePages_Free: 16 Node 2 HugePages_Surp: 0 Node 3 HugePages_Total: 0 Node 3 HugePages_Free: 0 Node 3 HugePages_Surp: 0 vm.nr_hugepages = 16 Global controls work as expected--reduce pool to 8 persistent huge pages: (me):echo 8 >/sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages Node 0 HugePages_Total: 0 Node 0 HugePages_Free: 0 Node 0 HugePages_Surp: 0 Node 1 HugePages_Total: 0 Node 1 HugePages_Free: 0 Node 1 HugePages_Surp: 0 Node 2 HugePages_Total: 8 Node 2 HugePages_Free: 8 Node 2 HugePages_Surp: 0 Node 3 HugePages_Total: 0 Node 3 HugePages_Free: 0 Node 3 HugePages_Surp: 0 Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Reviewed-by: Andi Kleen <andi@firstfloor.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> Cc: Nishanth Aravamudan <nacc@us.ibm.com> Cc: David Rientjes <rientjes@google.com> Cc: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@canonical.com> Cc: Eric Whitney <eric.whitney@hp.com> Cc: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-14 17:58:25 -08:00
struct hstate *h = kobj_to_hstate(kobj, NULL);
hugetlb: new sysfs interface Provide new hugepages user APIs that are more suited to multiple hstates in sysfs. There is a new directory, /sys/kernel/hugepages. Underneath that directory there will be a directory per-supported hugepage size, e.g.: /sys/kernel/hugepages/hugepages-64kB /sys/kernel/hugepages/hugepages-16384kB /sys/kernel/hugepages/hugepages-16777216kB corresponding to 64k, 16m and 16g respectively. Within each hugepages-size directory there are a number of files, corresponding to the tracked counters in the hstate, e.g.: /sys/kernel/hugepages/hugepages-64/nr_hugepages /sys/kernel/hugepages/hugepages-64/nr_overcommit_hugepages /sys/kernel/hugepages/hugepages-64/free_hugepages /sys/kernel/hugepages/hugepages-64/resv_hugepages /sys/kernel/hugepages/hugepages-64/surplus_hugepages Of these files, the first two are read-write and the latter three are read-only. The size of the hugepage being manipulated is trivially deducible from the enclosing directory and is always expressed in kB (to match meminfo). [dave@linux.vnet.ibm.com: fix build] [nacc@us.ibm.com: hugetlb: hang off of /sys/kernel/mm rather than /sys/kernel] [nacc@us.ibm.com: hugetlb: remove CONFIG_SYSFS dependency] Acked-by: Greg Kroah-Hartman <gregkh@suse.de> Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Dave Hansen <dave@linux.vnet.ibm.com> Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:44 -07:00
if (h->order >= MAX_ORDER)
return -EINVAL;
hugetlb: new sysfs interface Provide new hugepages user APIs that are more suited to multiple hstates in sysfs. There is a new directory, /sys/kernel/hugepages. Underneath that directory there will be a directory per-supported hugepage size, e.g.: /sys/kernel/hugepages/hugepages-64kB /sys/kernel/hugepages/hugepages-16384kB /sys/kernel/hugepages/hugepages-16777216kB corresponding to 64k, 16m and 16g respectively. Within each hugepages-size directory there are a number of files, corresponding to the tracked counters in the hstate, e.g.: /sys/kernel/hugepages/hugepages-64/nr_hugepages /sys/kernel/hugepages/hugepages-64/nr_overcommit_hugepages /sys/kernel/hugepages/hugepages-64/free_hugepages /sys/kernel/hugepages/hugepages-64/resv_hugepages /sys/kernel/hugepages/hugepages-64/surplus_hugepages Of these files, the first two are read-write and the latter three are read-only. The size of the hugepage being manipulated is trivially deducible from the enclosing directory and is always expressed in kB (to match meminfo). [dave@linux.vnet.ibm.com: fix build] [nacc@us.ibm.com: hugetlb: hang off of /sys/kernel/mm rather than /sys/kernel] [nacc@us.ibm.com: hugetlb: remove CONFIG_SYSFS dependency] Acked-by: Greg Kroah-Hartman <gregkh@suse.de> Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Dave Hansen <dave@linux.vnet.ibm.com> Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:44 -07:00
err = strict_strtoul(buf, 10, &input);
if (err)
return err;
hugetlb: new sysfs interface Provide new hugepages user APIs that are more suited to multiple hstates in sysfs. There is a new directory, /sys/kernel/hugepages. Underneath that directory there will be a directory per-supported hugepage size, e.g.: /sys/kernel/hugepages/hugepages-64kB /sys/kernel/hugepages/hugepages-16384kB /sys/kernel/hugepages/hugepages-16777216kB corresponding to 64k, 16m and 16g respectively. Within each hugepages-size directory there are a number of files, corresponding to the tracked counters in the hstate, e.g.: /sys/kernel/hugepages/hugepages-64/nr_hugepages /sys/kernel/hugepages/hugepages-64/nr_overcommit_hugepages /sys/kernel/hugepages/hugepages-64/free_hugepages /sys/kernel/hugepages/hugepages-64/resv_hugepages /sys/kernel/hugepages/hugepages-64/surplus_hugepages Of these files, the first two are read-write and the latter three are read-only. The size of the hugepage being manipulated is trivially deducible from the enclosing directory and is always expressed in kB (to match meminfo). [dave@linux.vnet.ibm.com: fix build] [nacc@us.ibm.com: hugetlb: hang off of /sys/kernel/mm rather than /sys/kernel] [nacc@us.ibm.com: hugetlb: remove CONFIG_SYSFS dependency] Acked-by: Greg Kroah-Hartman <gregkh@suse.de> Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Dave Hansen <dave@linux.vnet.ibm.com> Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:44 -07:00
spin_lock(&hugetlb_lock);
h->nr_overcommit_huge_pages = input;
spin_unlock(&hugetlb_lock);
return count;
}
HSTATE_ATTR(nr_overcommit_hugepages);
static ssize_t free_hugepages_show(struct kobject *kobj,
struct kobj_attribute *attr, char *buf)
{
hugetlb: add per node hstate attributes Add the per huge page size control/query attributes to the per node sysdevs: /sys/devices/system/node/node<ID>/hugepages/hugepages-<size>/ nr_hugepages - r/w free_huge_pages - r/o surplus_huge_pages - r/o The patch attempts to re-use/share as much of the existing global hstate attribute initialization and handling, and the "nodes_allowed" constraint processing as possible. Calling set_max_huge_pages() with no node indicates a change to global hstate parameters. In this case, any non-default task mempolicy will be used to generate the nodes_allowed mask. A valid node id indicates an update to that node's hstate parameters, and the count argument specifies the target count for the specified node. From this info, we compute the target global count for the hstate and construct a nodes_allowed node mask contain only the specified node. Setting the node specific nr_hugepages via the per node attribute effectively ignores any task mempolicy or cpuset constraints. With this patch: (me):ls /sys/devices/system/node/node0/hugepages/hugepages-2048kB ./ ../ free_hugepages nr_hugepages surplus_hugepages Starting from: Node 0 HugePages_Total: 0 Node 0 HugePages_Free: 0 Node 0 HugePages_Surp: 0 Node 1 HugePages_Total: 0 Node 1 HugePages_Free: 0 Node 1 HugePages_Surp: 0 Node 2 HugePages_Total: 0 Node 2 HugePages_Free: 0 Node 2 HugePages_Surp: 0 Node 3 HugePages_Total: 0 Node 3 HugePages_Free: 0 Node 3 HugePages_Surp: 0 vm.nr_hugepages = 0 Allocate 16 persistent huge pages on node 2: (me):echo 16 >/sys/devices/system/node/node2/hugepages/hugepages-2048kB/nr_hugepages [Note that this is equivalent to: numactl -m 2 hugeadmin --pool-pages-min 2M:+16 ] Yields: Node 0 HugePages_Total: 0 Node 0 HugePages_Free: 0 Node 0 HugePages_Surp: 0 Node 1 HugePages_Total: 0 Node 1 HugePages_Free: 0 Node 1 HugePages_Surp: 0 Node 2 HugePages_Total: 16 Node 2 HugePages_Free: 16 Node 2 HugePages_Surp: 0 Node 3 HugePages_Total: 0 Node 3 HugePages_Free: 0 Node 3 HugePages_Surp: 0 vm.nr_hugepages = 16 Global controls work as expected--reduce pool to 8 persistent huge pages: (me):echo 8 >/sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages Node 0 HugePages_Total: 0 Node 0 HugePages_Free: 0 Node 0 HugePages_Surp: 0 Node 1 HugePages_Total: 0 Node 1 HugePages_Free: 0 Node 1 HugePages_Surp: 0 Node 2 HugePages_Total: 8 Node 2 HugePages_Free: 8 Node 2 HugePages_Surp: 0 Node 3 HugePages_Total: 0 Node 3 HugePages_Free: 0 Node 3 HugePages_Surp: 0 Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Reviewed-by: Andi Kleen <andi@firstfloor.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> Cc: Nishanth Aravamudan <nacc@us.ibm.com> Cc: David Rientjes <rientjes@google.com> Cc: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@canonical.com> Cc: Eric Whitney <eric.whitney@hp.com> Cc: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-14 17:58:25 -08:00
struct hstate *h;
unsigned long free_huge_pages;
int nid;
h = kobj_to_hstate(kobj, &nid);
if (nid == NUMA_NO_NODE)
free_huge_pages = h->free_huge_pages;
else
free_huge_pages = h->free_huge_pages_node[nid];
return sprintf(buf, "%lu\n", free_huge_pages);
hugetlb: new sysfs interface Provide new hugepages user APIs that are more suited to multiple hstates in sysfs. There is a new directory, /sys/kernel/hugepages. Underneath that directory there will be a directory per-supported hugepage size, e.g.: /sys/kernel/hugepages/hugepages-64kB /sys/kernel/hugepages/hugepages-16384kB /sys/kernel/hugepages/hugepages-16777216kB corresponding to 64k, 16m and 16g respectively. Within each hugepages-size directory there are a number of files, corresponding to the tracked counters in the hstate, e.g.: /sys/kernel/hugepages/hugepages-64/nr_hugepages /sys/kernel/hugepages/hugepages-64/nr_overcommit_hugepages /sys/kernel/hugepages/hugepages-64/free_hugepages /sys/kernel/hugepages/hugepages-64/resv_hugepages /sys/kernel/hugepages/hugepages-64/surplus_hugepages Of these files, the first two are read-write and the latter three are read-only. The size of the hugepage being manipulated is trivially deducible from the enclosing directory and is always expressed in kB (to match meminfo). [dave@linux.vnet.ibm.com: fix build] [nacc@us.ibm.com: hugetlb: hang off of /sys/kernel/mm rather than /sys/kernel] [nacc@us.ibm.com: hugetlb: remove CONFIG_SYSFS dependency] Acked-by: Greg Kroah-Hartman <gregkh@suse.de> Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Dave Hansen <dave@linux.vnet.ibm.com> Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:44 -07:00
}
HSTATE_ATTR_RO(free_hugepages);
static ssize_t resv_hugepages_show(struct kobject *kobj,
struct kobj_attribute *attr, char *buf)
{
hugetlb: add per node hstate attributes Add the per huge page size control/query attributes to the per node sysdevs: /sys/devices/system/node/node<ID>/hugepages/hugepages-<size>/ nr_hugepages - r/w free_huge_pages - r/o surplus_huge_pages - r/o The patch attempts to re-use/share as much of the existing global hstate attribute initialization and handling, and the "nodes_allowed" constraint processing as possible. Calling set_max_huge_pages() with no node indicates a change to global hstate parameters. In this case, any non-default task mempolicy will be used to generate the nodes_allowed mask. A valid node id indicates an update to that node's hstate parameters, and the count argument specifies the target count for the specified node. From this info, we compute the target global count for the hstate and construct a nodes_allowed node mask contain only the specified node. Setting the node specific nr_hugepages via the per node attribute effectively ignores any task mempolicy or cpuset constraints. With this patch: (me):ls /sys/devices/system/node/node0/hugepages/hugepages-2048kB ./ ../ free_hugepages nr_hugepages surplus_hugepages Starting from: Node 0 HugePages_Total: 0 Node 0 HugePages_Free: 0 Node 0 HugePages_Surp: 0 Node 1 HugePages_Total: 0 Node 1 HugePages_Free: 0 Node 1 HugePages_Surp: 0 Node 2 HugePages_Total: 0 Node 2 HugePages_Free: 0 Node 2 HugePages_Surp: 0 Node 3 HugePages_Total: 0 Node 3 HugePages_Free: 0 Node 3 HugePages_Surp: 0 vm.nr_hugepages = 0 Allocate 16 persistent huge pages on node 2: (me):echo 16 >/sys/devices/system/node/node2/hugepages/hugepages-2048kB/nr_hugepages [Note that this is equivalent to: numactl -m 2 hugeadmin --pool-pages-min 2M:+16 ] Yields: Node 0 HugePages_Total: 0 Node 0 HugePages_Free: 0 Node 0 HugePages_Surp: 0 Node 1 HugePages_Total: 0 Node 1 HugePages_Free: 0 Node 1 HugePages_Surp: 0 Node 2 HugePages_Total: 16 Node 2 HugePages_Free: 16 Node 2 HugePages_Surp: 0 Node 3 HugePages_Total: 0 Node 3 HugePages_Free: 0 Node 3 HugePages_Surp: 0 vm.nr_hugepages = 16 Global controls work as expected--reduce pool to 8 persistent huge pages: (me):echo 8 >/sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages Node 0 HugePages_Total: 0 Node 0 HugePages_Free: 0 Node 0 HugePages_Surp: 0 Node 1 HugePages_Total: 0 Node 1 HugePages_Free: 0 Node 1 HugePages_Surp: 0 Node 2 HugePages_Total: 8 Node 2 HugePages_Free: 8 Node 2 HugePages_Surp: 0 Node 3 HugePages_Total: 0 Node 3 HugePages_Free: 0 Node 3 HugePages_Surp: 0 Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Reviewed-by: Andi Kleen <andi@firstfloor.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> Cc: Nishanth Aravamudan <nacc@us.ibm.com> Cc: David Rientjes <rientjes@google.com> Cc: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@canonical.com> Cc: Eric Whitney <eric.whitney@hp.com> Cc: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-14 17:58:25 -08:00
struct hstate *h = kobj_to_hstate(kobj, NULL);
hugetlb: new sysfs interface Provide new hugepages user APIs that are more suited to multiple hstates in sysfs. There is a new directory, /sys/kernel/hugepages. Underneath that directory there will be a directory per-supported hugepage size, e.g.: /sys/kernel/hugepages/hugepages-64kB /sys/kernel/hugepages/hugepages-16384kB /sys/kernel/hugepages/hugepages-16777216kB corresponding to 64k, 16m and 16g respectively. Within each hugepages-size directory there are a number of files, corresponding to the tracked counters in the hstate, e.g.: /sys/kernel/hugepages/hugepages-64/nr_hugepages /sys/kernel/hugepages/hugepages-64/nr_overcommit_hugepages /sys/kernel/hugepages/hugepages-64/free_hugepages /sys/kernel/hugepages/hugepages-64/resv_hugepages /sys/kernel/hugepages/hugepages-64/surplus_hugepages Of these files, the first two are read-write and the latter three are read-only. The size of the hugepage being manipulated is trivially deducible from the enclosing directory and is always expressed in kB (to match meminfo). [dave@linux.vnet.ibm.com: fix build] [nacc@us.ibm.com: hugetlb: hang off of /sys/kernel/mm rather than /sys/kernel] [nacc@us.ibm.com: hugetlb: remove CONFIG_SYSFS dependency] Acked-by: Greg Kroah-Hartman <gregkh@suse.de> Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Dave Hansen <dave@linux.vnet.ibm.com> Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:44 -07:00
return sprintf(buf, "%lu\n", h->resv_huge_pages);
}
HSTATE_ATTR_RO(resv_hugepages);
static ssize_t surplus_hugepages_show(struct kobject *kobj,
struct kobj_attribute *attr, char *buf)
{
hugetlb: add per node hstate attributes Add the per huge page size control/query attributes to the per node sysdevs: /sys/devices/system/node/node<ID>/hugepages/hugepages-<size>/ nr_hugepages - r/w free_huge_pages - r/o surplus_huge_pages - r/o The patch attempts to re-use/share as much of the existing global hstate attribute initialization and handling, and the "nodes_allowed" constraint processing as possible. Calling set_max_huge_pages() with no node indicates a change to global hstate parameters. In this case, any non-default task mempolicy will be used to generate the nodes_allowed mask. A valid node id indicates an update to that node's hstate parameters, and the count argument specifies the target count for the specified node. From this info, we compute the target global count for the hstate and construct a nodes_allowed node mask contain only the specified node. Setting the node specific nr_hugepages via the per node attribute effectively ignores any task mempolicy or cpuset constraints. With this patch: (me):ls /sys/devices/system/node/node0/hugepages/hugepages-2048kB ./ ../ free_hugepages nr_hugepages surplus_hugepages Starting from: Node 0 HugePages_Total: 0 Node 0 HugePages_Free: 0 Node 0 HugePages_Surp: 0 Node 1 HugePages_Total: 0 Node 1 HugePages_Free: 0 Node 1 HugePages_Surp: 0 Node 2 HugePages_Total: 0 Node 2 HugePages_Free: 0 Node 2 HugePages_Surp: 0 Node 3 HugePages_Total: 0 Node 3 HugePages_Free: 0 Node 3 HugePages_Surp: 0 vm.nr_hugepages = 0 Allocate 16 persistent huge pages on node 2: (me):echo 16 >/sys/devices/system/node/node2/hugepages/hugepages-2048kB/nr_hugepages [Note that this is equivalent to: numactl -m 2 hugeadmin --pool-pages-min 2M:+16 ] Yields: Node 0 HugePages_Total: 0 Node 0 HugePages_Free: 0 Node 0 HugePages_Surp: 0 Node 1 HugePages_Total: 0 Node 1 HugePages_Free: 0 Node 1 HugePages_Surp: 0 Node 2 HugePages_Total: 16 Node 2 HugePages_Free: 16 Node 2 HugePages_Surp: 0 Node 3 HugePages_Total: 0 Node 3 HugePages_Free: 0 Node 3 HugePages_Surp: 0 vm.nr_hugepages = 16 Global controls work as expected--reduce pool to 8 persistent huge pages: (me):echo 8 >/sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages Node 0 HugePages_Total: 0 Node 0 HugePages_Free: 0 Node 0 HugePages_Surp: 0 Node 1 HugePages_Total: 0 Node 1 HugePages_Free: 0 Node 1 HugePages_Surp: 0 Node 2 HugePages_Total: 8 Node 2 HugePages_Free: 8 Node 2 HugePages_Surp: 0 Node 3 HugePages_Total: 0 Node 3 HugePages_Free: 0 Node 3 HugePages_Surp: 0 Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Reviewed-by: Andi Kleen <andi@firstfloor.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> Cc: Nishanth Aravamudan <nacc@us.ibm.com> Cc: David Rientjes <rientjes@google.com> Cc: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@canonical.com> Cc: Eric Whitney <eric.whitney@hp.com> Cc: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-14 17:58:25 -08:00
struct hstate *h;
unsigned long surplus_huge_pages;
int nid;
h = kobj_to_hstate(kobj, &nid);
if (nid == NUMA_NO_NODE)
surplus_huge_pages = h->surplus_huge_pages;
else
surplus_huge_pages = h->surplus_huge_pages_node[nid];
return sprintf(buf, "%lu\n", surplus_huge_pages);
hugetlb: new sysfs interface Provide new hugepages user APIs that are more suited to multiple hstates in sysfs. There is a new directory, /sys/kernel/hugepages. Underneath that directory there will be a directory per-supported hugepage size, e.g.: /sys/kernel/hugepages/hugepages-64kB /sys/kernel/hugepages/hugepages-16384kB /sys/kernel/hugepages/hugepages-16777216kB corresponding to 64k, 16m and 16g respectively. Within each hugepages-size directory there are a number of files, corresponding to the tracked counters in the hstate, e.g.: /sys/kernel/hugepages/hugepages-64/nr_hugepages /sys/kernel/hugepages/hugepages-64/nr_overcommit_hugepages /sys/kernel/hugepages/hugepages-64/free_hugepages /sys/kernel/hugepages/hugepages-64/resv_hugepages /sys/kernel/hugepages/hugepages-64/surplus_hugepages Of these files, the first two are read-write and the latter three are read-only. The size of the hugepage being manipulated is trivially deducible from the enclosing directory and is always expressed in kB (to match meminfo). [dave@linux.vnet.ibm.com: fix build] [nacc@us.ibm.com: hugetlb: hang off of /sys/kernel/mm rather than /sys/kernel] [nacc@us.ibm.com: hugetlb: remove CONFIG_SYSFS dependency] Acked-by: Greg Kroah-Hartman <gregkh@suse.de> Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Dave Hansen <dave@linux.vnet.ibm.com> Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:44 -07:00
}
HSTATE_ATTR_RO(surplus_hugepages);
static struct attribute *hstate_attrs[] = {
&nr_hugepages_attr.attr,
&nr_overcommit_hugepages_attr.attr,
&free_hugepages_attr.attr,
&resv_hugepages_attr.attr,
&surplus_hugepages_attr.attr,
hugetlb: derive huge pages nodes allowed from task mempolicy This patch derives a "nodes_allowed" node mask from the numa mempolicy of the task modifying the number of persistent huge pages to control the allocation, freeing and adjusting of surplus huge pages when the pool page count is modified via the new sysctl or sysfs attribute "nr_hugepages_mempolicy". The nodes_allowed mask is derived as follows: * For "default" [NULL] task mempolicy, a NULL nodemask_t pointer is produced. This will cause the hugetlb subsystem to use node_online_map as the "nodes_allowed". This preserves the behavior before this patch. * For "preferred" mempolicy, including explicit local allocation, a nodemask with the single preferred node will be produced. "local" policy will NOT track any internode migrations of the task adjusting nr_hugepages. * For "bind" and "interleave" policy, the mempolicy's nodemask will be used. * Other than to inform the construction of the nodes_allowed node mask, the actual mempolicy mode is ignored. That is, all modes behave like interleave over the resulting nodes_allowed mask with no "fallback". See the updated documentation [next patch] for more information about the implications of this patch. Examples: Starting with: Node 0 HugePages_Total: 0 Node 1 HugePages_Total: 0 Node 2 HugePages_Total: 0 Node 3 HugePages_Total: 0 Default behavior [with or without this patch] balances persistent hugepage allocation across nodes [with sufficient contiguous memory]: sysctl vm.nr_hugepages[_mempolicy]=32 yields: Node 0 HugePages_Total: 8 Node 1 HugePages_Total: 8 Node 2 HugePages_Total: 8 Node 3 HugePages_Total: 8 Of course, we only have nr_hugepages_mempolicy with the patch, but with default mempolicy, nr_hugepages_mempolicy behaves the same as nr_hugepages. Applying mempolicy--e.g., with numactl [using '-m' a.k.a. '--membind' because it allows multiple nodes to be specified and it's easy to type]--we can allocate huge pages on individual nodes or sets of nodes. So, starting from the condition above, with 8 huge pages per node, add 8 more to node 2 using: numactl -m 2 sysctl vm.nr_hugepages_mempolicy=40 This yields: Node 0 HugePages_Total: 8 Node 1 HugePages_Total: 8 Node 2 HugePages_Total: 16 Node 3 HugePages_Total: 8 The incremental 8 huge pages were restricted to node 2 by the specified mempolicy. Similarly, we can use mempolicy to free persistent huge pages from specified nodes: numactl -m 0,1 sysctl vm.nr_hugepages_mempolicy=32 yields: Node 0 HugePages_Total: 4 Node 1 HugePages_Total: 4 Node 2 HugePages_Total: 16 Node 3 HugePages_Total: 8 The 8 huge pages freed were balanced over nodes 0 and 1. [rientjes@google.com: accomodate reworked NODEMASK_ALLOC] Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Reviewed-by: Andi Kleen <andi@firstfloor.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> Cc: Nishanth Aravamudan <nacc@us.ibm.com> Cc: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@canonical.com> Cc: Eric Whitney <eric.whitney@hp.com> Cc: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-14 17:58:21 -08:00
#ifdef CONFIG_NUMA
&nr_hugepages_mempolicy_attr.attr,
#endif
hugetlb: new sysfs interface Provide new hugepages user APIs that are more suited to multiple hstates in sysfs. There is a new directory, /sys/kernel/hugepages. Underneath that directory there will be a directory per-supported hugepage size, e.g.: /sys/kernel/hugepages/hugepages-64kB /sys/kernel/hugepages/hugepages-16384kB /sys/kernel/hugepages/hugepages-16777216kB corresponding to 64k, 16m and 16g respectively. Within each hugepages-size directory there are a number of files, corresponding to the tracked counters in the hstate, e.g.: /sys/kernel/hugepages/hugepages-64/nr_hugepages /sys/kernel/hugepages/hugepages-64/nr_overcommit_hugepages /sys/kernel/hugepages/hugepages-64/free_hugepages /sys/kernel/hugepages/hugepages-64/resv_hugepages /sys/kernel/hugepages/hugepages-64/surplus_hugepages Of these files, the first two are read-write and the latter three are read-only. The size of the hugepage being manipulated is trivially deducible from the enclosing directory and is always expressed in kB (to match meminfo). [dave@linux.vnet.ibm.com: fix build] [nacc@us.ibm.com: hugetlb: hang off of /sys/kernel/mm rather than /sys/kernel] [nacc@us.ibm.com: hugetlb: remove CONFIG_SYSFS dependency] Acked-by: Greg Kroah-Hartman <gregkh@suse.de> Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Dave Hansen <dave@linux.vnet.ibm.com> Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:44 -07:00
NULL,
};
static struct attribute_group hstate_attr_group = {
.attrs = hstate_attrs,
};
static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
struct kobject **hstate_kobjs,
struct attribute_group *hstate_attr_group)
hugetlb: new sysfs interface Provide new hugepages user APIs that are more suited to multiple hstates in sysfs. There is a new directory, /sys/kernel/hugepages. Underneath that directory there will be a directory per-supported hugepage size, e.g.: /sys/kernel/hugepages/hugepages-64kB /sys/kernel/hugepages/hugepages-16384kB /sys/kernel/hugepages/hugepages-16777216kB corresponding to 64k, 16m and 16g respectively. Within each hugepages-size directory there are a number of files, corresponding to the tracked counters in the hstate, e.g.: /sys/kernel/hugepages/hugepages-64/nr_hugepages /sys/kernel/hugepages/hugepages-64/nr_overcommit_hugepages /sys/kernel/hugepages/hugepages-64/free_hugepages /sys/kernel/hugepages/hugepages-64/resv_hugepages /sys/kernel/hugepages/hugepages-64/surplus_hugepages Of these files, the first two are read-write and the latter three are read-only. The size of the hugepage being manipulated is trivially deducible from the enclosing directory and is always expressed in kB (to match meminfo). [dave@linux.vnet.ibm.com: fix build] [nacc@us.ibm.com: hugetlb: hang off of /sys/kernel/mm rather than /sys/kernel] [nacc@us.ibm.com: hugetlb: remove CONFIG_SYSFS dependency] Acked-by: Greg Kroah-Hartman <gregkh@suse.de> Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Dave Hansen <dave@linux.vnet.ibm.com> Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:44 -07:00
{
int retval;
hugetlb: add per node hstate attributes Add the per huge page size control/query attributes to the per node sysdevs: /sys/devices/system/node/node<ID>/hugepages/hugepages-<size>/ nr_hugepages - r/w free_huge_pages - r/o surplus_huge_pages - r/o The patch attempts to re-use/share as much of the existing global hstate attribute initialization and handling, and the "nodes_allowed" constraint processing as possible. Calling set_max_huge_pages() with no node indicates a change to global hstate parameters. In this case, any non-default task mempolicy will be used to generate the nodes_allowed mask. A valid node id indicates an update to that node's hstate parameters, and the count argument specifies the target count for the specified node. From this info, we compute the target global count for the hstate and construct a nodes_allowed node mask contain only the specified node. Setting the node specific nr_hugepages via the per node attribute effectively ignores any task mempolicy or cpuset constraints. With this patch: (me):ls /sys/devices/system/node/node0/hugepages/hugepages-2048kB ./ ../ free_hugepages nr_hugepages surplus_hugepages Starting from: Node 0 HugePages_Total: 0 Node 0 HugePages_Free: 0 Node 0 HugePages_Surp: 0 Node 1 HugePages_Total: 0 Node 1 HugePages_Free: 0 Node 1 HugePages_Surp: 0 Node 2 HugePages_Total: 0 Node 2 HugePages_Free: 0 Node 2 HugePages_Surp: 0 Node 3 HugePages_Total: 0 Node 3 HugePages_Free: 0 Node 3 HugePages_Surp: 0 vm.nr_hugepages = 0 Allocate 16 persistent huge pages on node 2: (me):echo 16 >/sys/devices/system/node/node2/hugepages/hugepages-2048kB/nr_hugepages [Note that this is equivalent to: numactl -m 2 hugeadmin --pool-pages-min 2M:+16 ] Yields: Node 0 HugePages_Total: 0 Node 0 HugePages_Free: 0 Node 0 HugePages_Surp: 0 Node 1 HugePages_Total: 0 Node 1 HugePages_Free: 0 Node 1 HugePages_Surp: 0 Node 2 HugePages_Total: 16 Node 2 HugePages_Free: 16 Node 2 HugePages_Surp: 0 Node 3 HugePages_Total: 0 Node 3 HugePages_Free: 0 Node 3 HugePages_Surp: 0 vm.nr_hugepages = 16 Global controls work as expected--reduce pool to 8 persistent huge pages: (me):echo 8 >/sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages Node 0 HugePages_Total: 0 Node 0 HugePages_Free: 0 Node 0 HugePages_Surp: 0 Node 1 HugePages_Total: 0 Node 1 HugePages_Free: 0 Node 1 HugePages_Surp: 0 Node 2 HugePages_Total: 8 Node 2 HugePages_Free: 8 Node 2 HugePages_Surp: 0 Node 3 HugePages_Total: 0 Node 3 HugePages_Free: 0 Node 3 HugePages_Surp: 0 Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Reviewed-by: Andi Kleen <andi@firstfloor.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> Cc: Nishanth Aravamudan <nacc@us.ibm.com> Cc: David Rientjes <rientjes@google.com> Cc: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@canonical.com> Cc: Eric Whitney <eric.whitney@hp.com> Cc: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-14 17:58:25 -08:00
int hi = h - hstates;
hugetlb: new sysfs interface Provide new hugepages user APIs that are more suited to multiple hstates in sysfs. There is a new directory, /sys/kernel/hugepages. Underneath that directory there will be a directory per-supported hugepage size, e.g.: /sys/kernel/hugepages/hugepages-64kB /sys/kernel/hugepages/hugepages-16384kB /sys/kernel/hugepages/hugepages-16777216kB corresponding to 64k, 16m and 16g respectively. Within each hugepages-size directory there are a number of files, corresponding to the tracked counters in the hstate, e.g.: /sys/kernel/hugepages/hugepages-64/nr_hugepages /sys/kernel/hugepages/hugepages-64/nr_overcommit_hugepages /sys/kernel/hugepages/hugepages-64/free_hugepages /sys/kernel/hugepages/hugepages-64/resv_hugepages /sys/kernel/hugepages/hugepages-64/surplus_hugepages Of these files, the first two are read-write and the latter three are read-only. The size of the hugepage being manipulated is trivially deducible from the enclosing directory and is always expressed in kB (to match meminfo). [dave@linux.vnet.ibm.com: fix build] [nacc@us.ibm.com: hugetlb: hang off of /sys/kernel/mm rather than /sys/kernel] [nacc@us.ibm.com: hugetlb: remove CONFIG_SYSFS dependency] Acked-by: Greg Kroah-Hartman <gregkh@suse.de> Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Dave Hansen <dave@linux.vnet.ibm.com> Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:44 -07:00
hugetlb: add per node hstate attributes Add the per huge page size control/query attributes to the per node sysdevs: /sys/devices/system/node/node<ID>/hugepages/hugepages-<size>/ nr_hugepages - r/w free_huge_pages - r/o surplus_huge_pages - r/o The patch attempts to re-use/share as much of the existing global hstate attribute initialization and handling, and the "nodes_allowed" constraint processing as possible. Calling set_max_huge_pages() with no node indicates a change to global hstate parameters. In this case, any non-default task mempolicy will be used to generate the nodes_allowed mask. A valid node id indicates an update to that node's hstate parameters, and the count argument specifies the target count for the specified node. From this info, we compute the target global count for the hstate and construct a nodes_allowed node mask contain only the specified node. Setting the node specific nr_hugepages via the per node attribute effectively ignores any task mempolicy or cpuset constraints. With this patch: (me):ls /sys/devices/system/node/node0/hugepages/hugepages-2048kB ./ ../ free_hugepages nr_hugepages surplus_hugepages Starting from: Node 0 HugePages_Total: 0 Node 0 HugePages_Free: 0 Node 0 HugePages_Surp: 0 Node 1 HugePages_Total: 0 Node 1 HugePages_Free: 0 Node 1 HugePages_Surp: 0 Node 2 HugePages_Total: 0 Node 2 HugePages_Free: 0 Node 2 HugePages_Surp: 0 Node 3 HugePages_Total: 0 Node 3 HugePages_Free: 0 Node 3 HugePages_Surp: 0 vm.nr_hugepages = 0 Allocate 16 persistent huge pages on node 2: (me):echo 16 >/sys/devices/system/node/node2/hugepages/hugepages-2048kB/nr_hugepages [Note that this is equivalent to: numactl -m 2 hugeadmin --pool-pages-min 2M:+16 ] Yields: Node 0 HugePages_Total: 0 Node 0 HugePages_Free: 0 Node 0 HugePages_Surp: 0 Node 1 HugePages_Total: 0 Node 1 HugePages_Free: 0 Node 1 HugePages_Surp: 0 Node 2 HugePages_Total: 16 Node 2 HugePages_Free: 16 Node 2 HugePages_Surp: 0 Node 3 HugePages_Total: 0 Node 3 HugePages_Free: 0 Node 3 HugePages_Surp: 0 vm.nr_hugepages = 16 Global controls work as expected--reduce pool to 8 persistent huge pages: (me):echo 8 >/sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages Node 0 HugePages_Total: 0 Node 0 HugePages_Free: 0 Node 0 HugePages_Surp: 0 Node 1 HugePages_Total: 0 Node 1 HugePages_Free: 0 Node 1 HugePages_Surp: 0 Node 2 HugePages_Total: 8 Node 2 HugePages_Free: 8 Node 2 HugePages_Surp: 0 Node 3 HugePages_Total: 0 Node 3 HugePages_Free: 0 Node 3 HugePages_Surp: 0 Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Reviewed-by: Andi Kleen <andi@firstfloor.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> Cc: Nishanth Aravamudan <nacc@us.ibm.com> Cc: David Rientjes <rientjes@google.com> Cc: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@canonical.com> Cc: Eric Whitney <eric.whitney@hp.com> Cc: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-14 17:58:25 -08:00
hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
if (!hstate_kobjs[hi])
hugetlb: new sysfs interface Provide new hugepages user APIs that are more suited to multiple hstates in sysfs. There is a new directory, /sys/kernel/hugepages. Underneath that directory there will be a directory per-supported hugepage size, e.g.: /sys/kernel/hugepages/hugepages-64kB /sys/kernel/hugepages/hugepages-16384kB /sys/kernel/hugepages/hugepages-16777216kB corresponding to 64k, 16m and 16g respectively. Within each hugepages-size directory there are a number of files, corresponding to the tracked counters in the hstate, e.g.: /sys/kernel/hugepages/hugepages-64/nr_hugepages /sys/kernel/hugepages/hugepages-64/nr_overcommit_hugepages /sys/kernel/hugepages/hugepages-64/free_hugepages /sys/kernel/hugepages/hugepages-64/resv_hugepages /sys/kernel/hugepages/hugepages-64/surplus_hugepages Of these files, the first two are read-write and the latter three are read-only. The size of the hugepage being manipulated is trivially deducible from the enclosing directory and is always expressed in kB (to match meminfo). [dave@linux.vnet.ibm.com: fix build] [nacc@us.ibm.com: hugetlb: hang off of /sys/kernel/mm rather than /sys/kernel] [nacc@us.ibm.com: hugetlb: remove CONFIG_SYSFS dependency] Acked-by: Greg Kroah-Hartman <gregkh@suse.de> Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Dave Hansen <dave@linux.vnet.ibm.com> Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:44 -07:00
return -ENOMEM;
hugetlb: add per node hstate attributes Add the per huge page size control/query attributes to the per node sysdevs: /sys/devices/system/node/node<ID>/hugepages/hugepages-<size>/ nr_hugepages - r/w free_huge_pages - r/o surplus_huge_pages - r/o The patch attempts to re-use/share as much of the existing global hstate attribute initialization and handling, and the "nodes_allowed" constraint processing as possible. Calling set_max_huge_pages() with no node indicates a change to global hstate parameters. In this case, any non-default task mempolicy will be used to generate the nodes_allowed mask. A valid node id indicates an update to that node's hstate parameters, and the count argument specifies the target count for the specified node. From this info, we compute the target global count for the hstate and construct a nodes_allowed node mask contain only the specified node. Setting the node specific nr_hugepages via the per node attribute effectively ignores any task mempolicy or cpuset constraints. With this patch: (me):ls /sys/devices/system/node/node0/hugepages/hugepages-2048kB ./ ../ free_hugepages nr_hugepages surplus_hugepages Starting from: Node 0 HugePages_Total: 0 Node 0 HugePages_Free: 0 Node 0 HugePages_Surp: 0 Node 1 HugePages_Total: 0 Node 1 HugePages_Free: 0 Node 1 HugePages_Surp: 0 Node 2 HugePages_Total: 0 Node 2 HugePages_Free: 0 Node 2 HugePages_Surp: 0 Node 3 HugePages_Total: 0 Node 3 HugePages_Free: 0 Node 3 HugePages_Surp: 0 vm.nr_hugepages = 0 Allocate 16 persistent huge pages on node 2: (me):echo 16 >/sys/devices/system/node/node2/hugepages/hugepages-2048kB/nr_hugepages [Note that this is equivalent to: numactl -m 2 hugeadmin --pool-pages-min 2M:+16 ] Yields: Node 0 HugePages_Total: 0 Node 0 HugePages_Free: 0 Node 0 HugePages_Surp: 0 Node 1 HugePages_Total: 0 Node 1 HugePages_Free: 0 Node 1 HugePages_Surp: 0 Node 2 HugePages_Total: 16 Node 2 HugePages_Free: 16 Node 2 HugePages_Surp: 0 Node 3 HugePages_Total: 0 Node 3 HugePages_Free: 0 Node 3 HugePages_Surp: 0 vm.nr_hugepages = 16 Global controls work as expected--reduce pool to 8 persistent huge pages: (me):echo 8 >/sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages Node 0 HugePages_Total: 0 Node 0 HugePages_Free: 0 Node 0 HugePages_Surp: 0 Node 1 HugePages_Total: 0 Node 1 HugePages_Free: 0 Node 1 HugePages_Surp: 0 Node 2 HugePages_Total: 8 Node 2 HugePages_Free: 8 Node 2 HugePages_Surp: 0 Node 3 HugePages_Total: 0 Node 3 HugePages_Free: 0 Node 3 HugePages_Surp: 0 Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Reviewed-by: Andi Kleen <andi@firstfloor.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> Cc: Nishanth Aravamudan <nacc@us.ibm.com> Cc: David Rientjes <rientjes@google.com> Cc: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@canonical.com> Cc: Eric Whitney <eric.whitney@hp.com> Cc: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-14 17:58:25 -08:00
retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
hugetlb: new sysfs interface Provide new hugepages user APIs that are more suited to multiple hstates in sysfs. There is a new directory, /sys/kernel/hugepages. Underneath that directory there will be a directory per-supported hugepage size, e.g.: /sys/kernel/hugepages/hugepages-64kB /sys/kernel/hugepages/hugepages-16384kB /sys/kernel/hugepages/hugepages-16777216kB corresponding to 64k, 16m and 16g respectively. Within each hugepages-size directory there are a number of files, corresponding to the tracked counters in the hstate, e.g.: /sys/kernel/hugepages/hugepages-64/nr_hugepages /sys/kernel/hugepages/hugepages-64/nr_overcommit_hugepages /sys/kernel/hugepages/hugepages-64/free_hugepages /sys/kernel/hugepages/hugepages-64/resv_hugepages /sys/kernel/hugepages/hugepages-64/surplus_hugepages Of these files, the first two are read-write and the latter three are read-only. The size of the hugepage being manipulated is trivially deducible from the enclosing directory and is always expressed in kB (to match meminfo). [dave@linux.vnet.ibm.com: fix build] [nacc@us.ibm.com: hugetlb: hang off of /sys/kernel/mm rather than /sys/kernel] [nacc@us.ibm.com: hugetlb: remove CONFIG_SYSFS dependency] Acked-by: Greg Kroah-Hartman <gregkh@suse.de> Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Dave Hansen <dave@linux.vnet.ibm.com> Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:44 -07:00
if (retval)
hugetlb: add per node hstate attributes Add the per huge page size control/query attributes to the per node sysdevs: /sys/devices/system/node/node<ID>/hugepages/hugepages-<size>/ nr_hugepages - r/w free_huge_pages - r/o surplus_huge_pages - r/o The patch attempts to re-use/share as much of the existing global hstate attribute initialization and handling, and the "nodes_allowed" constraint processing as possible. Calling set_max_huge_pages() with no node indicates a change to global hstate parameters. In this case, any non-default task mempolicy will be used to generate the nodes_allowed mask. A valid node id indicates an update to that node's hstate parameters, and the count argument specifies the target count for the specified node. From this info, we compute the target global count for the hstate and construct a nodes_allowed node mask contain only the specified node. Setting the node specific nr_hugepages via the per node attribute effectively ignores any task mempolicy or cpuset constraints. With this patch: (me):ls /sys/devices/system/node/node0/hugepages/hugepages-2048kB ./ ../ free_hugepages nr_hugepages surplus_hugepages Starting from: Node 0 HugePages_Total: 0 Node 0 HugePages_Free: 0 Node 0 HugePages_Surp: 0 Node 1 HugePages_Total: 0 Node 1 HugePages_Free: 0 Node 1 HugePages_Surp: 0 Node 2 HugePages_Total: 0 Node 2 HugePages_Free: 0 Node 2 HugePages_Surp: 0 Node 3 HugePages_Total: 0 Node 3 HugePages_Free: 0 Node 3 HugePages_Surp: 0 vm.nr_hugepages = 0 Allocate 16 persistent huge pages on node 2: (me):echo 16 >/sys/devices/system/node/node2/hugepages/hugepages-2048kB/nr_hugepages [Note that this is equivalent to: numactl -m 2 hugeadmin --pool-pages-min 2M:+16 ] Yields: Node 0 HugePages_Total: 0 Node 0 HugePages_Free: 0 Node 0 HugePages_Surp: 0 Node 1 HugePages_Total: 0 Node 1 HugePages_Free: 0 Node 1 HugePages_Surp: 0 Node 2 HugePages_Total: 16 Node 2 HugePages_Free: 16 Node 2 HugePages_Surp: 0 Node 3 HugePages_Total: 0 Node 3 HugePages_Free: 0 Node 3 HugePages_Surp: 0 vm.nr_hugepages = 16 Global controls work as expected--reduce pool to 8 persistent huge pages: (me):echo 8 >/sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages Node 0 HugePages_Total: 0 Node 0 HugePages_Free: 0 Node 0 HugePages_Surp: 0 Node 1 HugePages_Total: 0 Node 1 HugePages_Free: 0 Node 1 HugePages_Surp: 0 Node 2 HugePages_Total: 8 Node 2 HugePages_Free: 8 Node 2 HugePages_Surp: 0 Node 3 HugePages_Total: 0 Node 3 HugePages_Free: 0 Node 3 HugePages_Surp: 0 Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Reviewed-by: Andi Kleen <andi@firstfloor.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> Cc: Nishanth Aravamudan <nacc@us.ibm.com> Cc: David Rientjes <rientjes@google.com> Cc: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@canonical.com> Cc: Eric Whitney <eric.whitney@hp.com> Cc: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-14 17:58:25 -08:00
kobject_put(hstate_kobjs[hi]);
hugetlb: new sysfs interface Provide new hugepages user APIs that are more suited to multiple hstates in sysfs. There is a new directory, /sys/kernel/hugepages. Underneath that directory there will be a directory per-supported hugepage size, e.g.: /sys/kernel/hugepages/hugepages-64kB /sys/kernel/hugepages/hugepages-16384kB /sys/kernel/hugepages/hugepages-16777216kB corresponding to 64k, 16m and 16g respectively. Within each hugepages-size directory there are a number of files, corresponding to the tracked counters in the hstate, e.g.: /sys/kernel/hugepages/hugepages-64/nr_hugepages /sys/kernel/hugepages/hugepages-64/nr_overcommit_hugepages /sys/kernel/hugepages/hugepages-64/free_hugepages /sys/kernel/hugepages/hugepages-64/resv_hugepages /sys/kernel/hugepages/hugepages-64/surplus_hugepages Of these files, the first two are read-write and the latter three are read-only. The size of the hugepage being manipulated is trivially deducible from the enclosing directory and is always expressed in kB (to match meminfo). [dave@linux.vnet.ibm.com: fix build] [nacc@us.ibm.com: hugetlb: hang off of /sys/kernel/mm rather than /sys/kernel] [nacc@us.ibm.com: hugetlb: remove CONFIG_SYSFS dependency] Acked-by: Greg Kroah-Hartman <gregkh@suse.de> Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Dave Hansen <dave@linux.vnet.ibm.com> Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:44 -07:00
return retval;
}
static void __init hugetlb_sysfs_init(void)
{
struct hstate *h;
int err;
hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
if (!hugepages_kobj)
return;
for_each_hstate(h) {
hugetlb: add per node hstate attributes Add the per huge page size control/query attributes to the per node sysdevs: /sys/devices/system/node/node<ID>/hugepages/hugepages-<size>/ nr_hugepages - r/w free_huge_pages - r/o surplus_huge_pages - r/o The patch attempts to re-use/share as much of the existing global hstate attribute initialization and handling, and the "nodes_allowed" constraint processing as possible. Calling set_max_huge_pages() with no node indicates a change to global hstate parameters. In this case, any non-default task mempolicy will be used to generate the nodes_allowed mask. A valid node id indicates an update to that node's hstate parameters, and the count argument specifies the target count for the specified node. From this info, we compute the target global count for the hstate and construct a nodes_allowed node mask contain only the specified node. Setting the node specific nr_hugepages via the per node attribute effectively ignores any task mempolicy or cpuset constraints. With this patch: (me):ls /sys/devices/system/node/node0/hugepages/hugepages-2048kB ./ ../ free_hugepages nr_hugepages surplus_hugepages Starting from: Node 0 HugePages_Total: 0 Node 0 HugePages_Free: 0 Node 0 HugePages_Surp: 0 Node 1 HugePages_Total: 0 Node 1 HugePages_Free: 0 Node 1 HugePages_Surp: 0 Node 2 HugePages_Total: 0 Node 2 HugePages_Free: 0 Node 2 HugePages_Surp: 0 Node 3 HugePages_Total: 0 Node 3 HugePages_Free: 0 Node 3 HugePages_Surp: 0 vm.nr_hugepages = 0 Allocate 16 persistent huge pages on node 2: (me):echo 16 >/sys/devices/system/node/node2/hugepages/hugepages-2048kB/nr_hugepages [Note that this is equivalent to: numactl -m 2 hugeadmin --pool-pages-min 2M:+16 ] Yields: Node 0 HugePages_Total: 0 Node 0 HugePages_Free: 0 Node 0 HugePages_Surp: 0 Node 1 HugePages_Total: 0 Node 1 HugePages_Free: 0 Node 1 HugePages_Surp: 0 Node 2 HugePages_Total: 16 Node 2 HugePages_Free: 16 Node 2 HugePages_Surp: 0 Node 3 HugePages_Total: 0 Node 3 HugePages_Free: 0 Node 3 HugePages_Surp: 0 vm.nr_hugepages = 16 Global controls work as expected--reduce pool to 8 persistent huge pages: (me):echo 8 >/sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages Node 0 HugePages_Total: 0 Node 0 HugePages_Free: 0 Node 0 HugePages_Surp: 0 Node 1 HugePages_Total: 0 Node 1 HugePages_Free: 0 Node 1 HugePages_Surp: 0 Node 2 HugePages_Total: 8 Node 2 HugePages_Free: 8 Node 2 HugePages_Surp: 0 Node 3 HugePages_Total: 0 Node 3 HugePages_Free: 0 Node 3 HugePages_Surp: 0 Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Reviewed-by: Andi Kleen <andi@firstfloor.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> Cc: Nishanth Aravamudan <nacc@us.ibm.com> Cc: David Rientjes <rientjes@google.com> Cc: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@canonical.com> Cc: Eric Whitney <eric.whitney@hp.com> Cc: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-14 17:58:25 -08:00
err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
hstate_kobjs, &hstate_attr_group);
hugetlb: new sysfs interface Provide new hugepages user APIs that are more suited to multiple hstates in sysfs. There is a new directory, /sys/kernel/hugepages. Underneath that directory there will be a directory per-supported hugepage size, e.g.: /sys/kernel/hugepages/hugepages-64kB /sys/kernel/hugepages/hugepages-16384kB /sys/kernel/hugepages/hugepages-16777216kB corresponding to 64k, 16m and 16g respectively. Within each hugepages-size directory there are a number of files, corresponding to the tracked counters in the hstate, e.g.: /sys/kernel/hugepages/hugepages-64/nr_hugepages /sys/kernel/hugepages/hugepages-64/nr_overcommit_hugepages /sys/kernel/hugepages/hugepages-64/free_hugepages /sys/kernel/hugepages/hugepages-64/resv_hugepages /sys/kernel/hugepages/hugepages-64/surplus_hugepages Of these files, the first two are read-write and the latter three are read-only. The size of the hugepage being manipulated is trivially deducible from the enclosing directory and is always expressed in kB (to match meminfo). [dave@linux.vnet.ibm.com: fix build] [nacc@us.ibm.com: hugetlb: hang off of /sys/kernel/mm rather than /sys/kernel] [nacc@us.ibm.com: hugetlb: remove CONFIG_SYSFS dependency] Acked-by: Greg Kroah-Hartman <gregkh@suse.de> Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Dave Hansen <dave@linux.vnet.ibm.com> Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:44 -07:00
if (err)
printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
h->name);
}
}
hugetlb: add per node hstate attributes Add the per huge page size control/query attributes to the per node sysdevs: /sys/devices/system/node/node<ID>/hugepages/hugepages-<size>/ nr_hugepages - r/w free_huge_pages - r/o surplus_huge_pages - r/o The patch attempts to re-use/share as much of the existing global hstate attribute initialization and handling, and the "nodes_allowed" constraint processing as possible. Calling set_max_huge_pages() with no node indicates a change to global hstate parameters. In this case, any non-default task mempolicy will be used to generate the nodes_allowed mask. A valid node id indicates an update to that node's hstate parameters, and the count argument specifies the target count for the specified node. From this info, we compute the target global count for the hstate and construct a nodes_allowed node mask contain only the specified node. Setting the node specific nr_hugepages via the per node attribute effectively ignores any task mempolicy or cpuset constraints. With this patch: (me):ls /sys/devices/system/node/node0/hugepages/hugepages-2048kB ./ ../ free_hugepages nr_hugepages surplus_hugepages Starting from: Node 0 HugePages_Total: 0 Node 0 HugePages_Free: 0 Node 0 HugePages_Surp: 0 Node 1 HugePages_Total: 0 Node 1 HugePages_Free: 0 Node 1 HugePages_Surp: 0 Node 2 HugePages_Total: 0 Node 2 HugePages_Free: 0 Node 2 HugePages_Surp: 0 Node 3 HugePages_Total: 0 Node 3 HugePages_Free: 0 Node 3 HugePages_Surp: 0 vm.nr_hugepages = 0 Allocate 16 persistent huge pages on node 2: (me):echo 16 >/sys/devices/system/node/node2/hugepages/hugepages-2048kB/nr_hugepages [Note that this is equivalent to: numactl -m 2 hugeadmin --pool-pages-min 2M:+16 ] Yields: Node 0 HugePages_Total: 0 Node 0 HugePages_Free: 0 Node 0 HugePages_Surp: 0 Node 1 HugePages_Total: 0 Node 1 HugePages_Free: 0 Node 1 HugePages_Surp: 0 Node 2 HugePages_Total: 16 Node 2 HugePages_Free: 16 Node 2 HugePages_Surp: 0 Node 3 HugePages_Total: 0 Node 3 HugePages_Free: 0 Node 3 HugePages_Surp: 0 vm.nr_hugepages = 16 Global controls work as expected--reduce pool to 8 persistent huge pages: (me):echo 8 >/sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages Node 0 HugePages_Total: 0 Node 0 HugePages_Free: 0 Node 0 HugePages_Surp: 0 Node 1 HugePages_Total: 0 Node 1 HugePages_Free: 0 Node 1 HugePages_Surp: 0 Node 2 HugePages_Total: 8 Node 2 HugePages_Free: 8 Node 2 HugePages_Surp: 0 Node 3 HugePages_Total: 0 Node 3 HugePages_Free: 0 Node 3 HugePages_Surp: 0 Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Reviewed-by: Andi Kleen <andi@firstfloor.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> Cc: Nishanth Aravamudan <nacc@us.ibm.com> Cc: David Rientjes <rientjes@google.com> Cc: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@canonical.com> Cc: Eric Whitney <eric.whitney@hp.com> Cc: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-14 17:58:25 -08:00
#ifdef CONFIG_NUMA
/*
* node_hstate/s - associate per node hstate attributes, via their kobjects,
* with node sysdevs in node_devices[] using a parallel array. The array
* index of a node sysdev or _hstate == node id.
* This is here to avoid any static dependency of the node sysdev driver, in
* the base kernel, on the hugetlb module.
*/
struct node_hstate {
struct kobject *hugepages_kobj;
struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
};
struct node_hstate node_hstates[MAX_NUMNODES];
/*
* A subset of global hstate attributes for node sysdevs
*/
static struct attribute *per_node_hstate_attrs[] = {
&nr_hugepages_attr.attr,
&free_hugepages_attr.attr,
&surplus_hugepages_attr.attr,
NULL,
};
static struct attribute_group per_node_hstate_attr_group = {
.attrs = per_node_hstate_attrs,
};
/*
* kobj_to_node_hstate - lookup global hstate for node sysdev hstate attr kobj.
* Returns node id via non-NULL nidp.
*/
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
int nid;
for (nid = 0; nid < nr_node_ids; nid++) {
struct node_hstate *nhs = &node_hstates[nid];
int i;
for (i = 0; i < HUGE_MAX_HSTATE; i++)
if (nhs->hstate_kobjs[i] == kobj) {
if (nidp)
*nidp = nid;
return &hstates[i];
}
}
BUG();
return NULL;
}
/*
* Unregister hstate attributes from a single node sysdev.
* No-op if no hstate attributes attached.
*/
void hugetlb_unregister_node(struct node *node)
{
struct hstate *h;
struct node_hstate *nhs = &node_hstates[node->sysdev.id];
if (!nhs->hugepages_kobj)
return; /* no hstate attributes */
hugetlb: add per node hstate attributes Add the per huge page size control/query attributes to the per node sysdevs: /sys/devices/system/node/node<ID>/hugepages/hugepages-<size>/ nr_hugepages - r/w free_huge_pages - r/o surplus_huge_pages - r/o The patch attempts to re-use/share as much of the existing global hstate attribute initialization and handling, and the "nodes_allowed" constraint processing as possible. Calling set_max_huge_pages() with no node indicates a change to global hstate parameters. In this case, any non-default task mempolicy will be used to generate the nodes_allowed mask. A valid node id indicates an update to that node's hstate parameters, and the count argument specifies the target count for the specified node. From this info, we compute the target global count for the hstate and construct a nodes_allowed node mask contain only the specified node. Setting the node specific nr_hugepages via the per node attribute effectively ignores any task mempolicy or cpuset constraints. With this patch: (me):ls /sys/devices/system/node/node0/hugepages/hugepages-2048kB ./ ../ free_hugepages nr_hugepages surplus_hugepages Starting from: Node 0 HugePages_Total: 0 Node 0 HugePages_Free: 0 Node 0 HugePages_Surp: 0 Node 1 HugePages_Total: 0 Node 1 HugePages_Free: 0 Node 1 HugePages_Surp: 0 Node 2 HugePages_Total: 0 Node 2 HugePages_Free: 0 Node 2 HugePages_Surp: 0 Node 3 HugePages_Total: 0 Node 3 HugePages_Free: 0 Node 3 HugePages_Surp: 0 vm.nr_hugepages = 0 Allocate 16 persistent huge pages on node 2: (me):echo 16 >/sys/devices/system/node/node2/hugepages/hugepages-2048kB/nr_hugepages [Note that this is equivalent to: numactl -m 2 hugeadmin --pool-pages-min 2M:+16 ] Yields: Node 0 HugePages_Total: 0 Node 0 HugePages_Free: 0 Node 0 HugePages_Surp: 0 Node 1 HugePages_Total: 0 Node 1 HugePages_Free: 0 Node 1 HugePages_Surp: 0 Node 2 HugePages_Total: 16 Node 2 HugePages_Free: 16 Node 2 HugePages_Surp: 0 Node 3 HugePages_Total: 0 Node 3 HugePages_Free: 0 Node 3 HugePages_Surp: 0 vm.nr_hugepages = 16 Global controls work as expected--reduce pool to 8 persistent huge pages: (me):echo 8 >/sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages Node 0 HugePages_Total: 0 Node 0 HugePages_Free: 0 Node 0 HugePages_Surp: 0 Node 1 HugePages_Total: 0 Node 1 HugePages_Free: 0 Node 1 HugePages_Surp: 0 Node 2 HugePages_Total: 8 Node 2 HugePages_Free: 8 Node 2 HugePages_Surp: 0 Node 3 HugePages_Total: 0 Node 3 HugePages_Free: 0 Node 3 HugePages_Surp: 0 Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Reviewed-by: Andi Kleen <andi@firstfloor.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> Cc: Nishanth Aravamudan <nacc@us.ibm.com> Cc: David Rientjes <rientjes@google.com> Cc: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@canonical.com> Cc: Eric Whitney <eric.whitney@hp.com> Cc: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-14 17:58:25 -08:00
for_each_hstate(h)
if (nhs->hstate_kobjs[h - hstates]) {
kobject_put(nhs->hstate_kobjs[h - hstates]);
nhs->hstate_kobjs[h - hstates] = NULL;
}
kobject_put(nhs->hugepages_kobj);
nhs->hugepages_kobj = NULL;
}
/*
* hugetlb module exit: unregister hstate attributes from node sysdevs
* that have them.
*/
static void hugetlb_unregister_all_nodes(void)
{
int nid;
/*
* disable node sysdev registrations.
*/
register_hugetlbfs_with_node(NULL, NULL);
/*
* remove hstate attributes from any nodes that have them.
*/
for (nid = 0; nid < nr_node_ids; nid++)
hugetlb_unregister_node(&node_devices[nid]);
}
/*
* Register hstate attributes for a single node sysdev.
* No-op if attributes already registered.
*/
void hugetlb_register_node(struct node *node)
{
struct hstate *h;
struct node_hstate *nhs = &node_hstates[node->sysdev.id];
int err;
if (nhs->hugepages_kobj)
return; /* already allocated */
nhs->hugepages_kobj = kobject_create_and_add("hugepages",
&node->sysdev.kobj);
if (!nhs->hugepages_kobj)
return;
for_each_hstate(h) {
err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
nhs->hstate_kobjs,
&per_node_hstate_attr_group);
if (err) {
printk(KERN_ERR "Hugetlb: Unable to add hstate %s"
" for node %d\n",
h->name, node->sysdev.id);
hugetlb_unregister_node(node);
break;
}
}
}
/*
* hugetlb init time: register hstate attributes for all registered node
* sysdevs of nodes that have memory. All on-line nodes should have
* registered their associated sysdev by this time.
hugetlb: add per node hstate attributes Add the per huge page size control/query attributes to the per node sysdevs: /sys/devices/system/node/node<ID>/hugepages/hugepages-<size>/ nr_hugepages - r/w free_huge_pages - r/o surplus_huge_pages - r/o The patch attempts to re-use/share as much of the existing global hstate attribute initialization and handling, and the "nodes_allowed" constraint processing as possible. Calling set_max_huge_pages() with no node indicates a change to global hstate parameters. In this case, any non-default task mempolicy will be used to generate the nodes_allowed mask. A valid node id indicates an update to that node's hstate parameters, and the count argument specifies the target count for the specified node. From this info, we compute the target global count for the hstate and construct a nodes_allowed node mask contain only the specified node. Setting the node specific nr_hugepages via the per node attribute effectively ignores any task mempolicy or cpuset constraints. With this patch: (me):ls /sys/devices/system/node/node0/hugepages/hugepages-2048kB ./ ../ free_hugepages nr_hugepages surplus_hugepages Starting from: Node 0 HugePages_Total: 0 Node 0 HugePages_Free: 0 Node 0 HugePages_Surp: 0 Node 1 HugePages_Total: 0 Node 1 HugePages_Free: 0 Node 1 HugePages_Surp: 0 Node 2 HugePages_Total: 0 Node 2 HugePages_Free: 0 Node 2 HugePages_Surp: 0 Node 3 HugePages_Total: 0 Node 3 HugePages_Free: 0 Node 3 HugePages_Surp: 0 vm.nr_hugepages = 0 Allocate 16 persistent huge pages on node 2: (me):echo 16 >/sys/devices/system/node/node2/hugepages/hugepages-2048kB/nr_hugepages [Note that this is equivalent to: numactl -m 2 hugeadmin --pool-pages-min 2M:+16 ] Yields: Node 0 HugePages_Total: 0 Node 0 HugePages_Free: 0 Node 0 HugePages_Surp: 0 Node 1 HugePages_Total: 0 Node 1 HugePages_Free: 0 Node 1 HugePages_Surp: 0 Node 2 HugePages_Total: 16 Node 2 HugePages_Free: 16 Node 2 HugePages_Surp: 0 Node 3 HugePages_Total: 0 Node 3 HugePages_Free: 0 Node 3 HugePages_Surp: 0 vm.nr_hugepages = 16 Global controls work as expected--reduce pool to 8 persistent huge pages: (me):echo 8 >/sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages Node 0 HugePages_Total: 0 Node 0 HugePages_Free: 0 Node 0 HugePages_Surp: 0 Node 1 HugePages_Total: 0 Node 1 HugePages_Free: 0 Node 1 HugePages_Surp: 0 Node 2 HugePages_Total: 8 Node 2 HugePages_Free: 8 Node 2 HugePages_Surp: 0 Node 3 HugePages_Total: 0 Node 3 HugePages_Free: 0 Node 3 HugePages_Surp: 0 Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Reviewed-by: Andi Kleen <andi@firstfloor.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> Cc: Nishanth Aravamudan <nacc@us.ibm.com> Cc: David Rientjes <rientjes@google.com> Cc: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@canonical.com> Cc: Eric Whitney <eric.whitney@hp.com> Cc: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-14 17:58:25 -08:00
*/
static void hugetlb_register_all_nodes(void)
{
int nid;
for_each_node_state(nid, N_HIGH_MEMORY) {
hugetlb: add per node hstate attributes Add the per huge page size control/query attributes to the per node sysdevs: /sys/devices/system/node/node<ID>/hugepages/hugepages-<size>/ nr_hugepages - r/w free_huge_pages - r/o surplus_huge_pages - r/o The patch attempts to re-use/share as much of the existing global hstate attribute initialization and handling, and the "nodes_allowed" constraint processing as possible. Calling set_max_huge_pages() with no node indicates a change to global hstate parameters. In this case, any non-default task mempolicy will be used to generate the nodes_allowed mask. A valid node id indicates an update to that node's hstate parameters, and the count argument specifies the target count for the specified node. From this info, we compute the target global count for the hstate and construct a nodes_allowed node mask contain only the specified node. Setting the node specific nr_hugepages via the per node attribute effectively ignores any task mempolicy or cpuset constraints. With this patch: (me):ls /sys/devices/system/node/node0/hugepages/hugepages-2048kB ./ ../ free_hugepages nr_hugepages surplus_hugepages Starting from: Node 0 HugePages_Total: 0 Node 0 HugePages_Free: 0 Node 0 HugePages_Surp: 0 Node 1 HugePages_Total: 0 Node 1 HugePages_Free: 0 Node 1 HugePages_Surp: 0 Node 2 HugePages_Total: 0 Node 2 HugePages_Free: 0 Node 2 HugePages_Surp: 0 Node 3 HugePages_Total: 0 Node 3 HugePages_Free: 0 Node 3 HugePages_Surp: 0 vm.nr_hugepages = 0 Allocate 16 persistent huge pages on node 2: (me):echo 16 >/sys/devices/system/node/node2/hugepages/hugepages-2048kB/nr_hugepages [Note that this is equivalent to: numactl -m 2 hugeadmin --pool-pages-min 2M:+16 ] Yields: Node 0 HugePages_Total: 0 Node 0 HugePages_Free: 0 Node 0 HugePages_Surp: 0 Node 1 HugePages_Total: 0 Node 1 HugePages_Free: 0 Node 1 HugePages_Surp: 0 Node 2 HugePages_Total: 16 Node 2 HugePages_Free: 16 Node 2 HugePages_Surp: 0 Node 3 HugePages_Total: 0 Node 3 HugePages_Free: 0 Node 3 HugePages_Surp: 0 vm.nr_hugepages = 16 Global controls work as expected--reduce pool to 8 persistent huge pages: (me):echo 8 >/sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages Node 0 HugePages_Total: 0 Node 0 HugePages_Free: 0 Node 0 HugePages_Surp: 0 Node 1 HugePages_Total: 0 Node 1 HugePages_Free: 0 Node 1 HugePages_Surp: 0 Node 2 HugePages_Total: 8 Node 2 HugePages_Free: 8 Node 2 HugePages_Surp: 0 Node 3 HugePages_Total: 0 Node 3 HugePages_Free: 0 Node 3 HugePages_Surp: 0 Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Reviewed-by: Andi Kleen <andi@firstfloor.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> Cc: Nishanth Aravamudan <nacc@us.ibm.com> Cc: David Rientjes <rientjes@google.com> Cc: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@canonical.com> Cc: Eric Whitney <eric.whitney@hp.com> Cc: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-14 17:58:25 -08:00
struct node *node = &node_devices[nid];
if (node->sysdev.id == nid)
hugetlb_register_node(node);
}
/*
* Let the node sysdev driver know we're here so it can
* [un]register hstate attributes on node hotplug.
*/
register_hugetlbfs_with_node(hugetlb_register_node,
hugetlb_unregister_node);
}
#else /* !CONFIG_NUMA */
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
BUG();
if (nidp)
*nidp = -1;
return NULL;
}
static void hugetlb_unregister_all_nodes(void) { }
static void hugetlb_register_all_nodes(void) { }
#endif
hugetlb: new sysfs interface Provide new hugepages user APIs that are more suited to multiple hstates in sysfs. There is a new directory, /sys/kernel/hugepages. Underneath that directory there will be a directory per-supported hugepage size, e.g.: /sys/kernel/hugepages/hugepages-64kB /sys/kernel/hugepages/hugepages-16384kB /sys/kernel/hugepages/hugepages-16777216kB corresponding to 64k, 16m and 16g respectively. Within each hugepages-size directory there are a number of files, corresponding to the tracked counters in the hstate, e.g.: /sys/kernel/hugepages/hugepages-64/nr_hugepages /sys/kernel/hugepages/hugepages-64/nr_overcommit_hugepages /sys/kernel/hugepages/hugepages-64/free_hugepages /sys/kernel/hugepages/hugepages-64/resv_hugepages /sys/kernel/hugepages/hugepages-64/surplus_hugepages Of these files, the first two are read-write and the latter three are read-only. The size of the hugepage being manipulated is trivially deducible from the enclosing directory and is always expressed in kB (to match meminfo). [dave@linux.vnet.ibm.com: fix build] [nacc@us.ibm.com: hugetlb: hang off of /sys/kernel/mm rather than /sys/kernel] [nacc@us.ibm.com: hugetlb: remove CONFIG_SYSFS dependency] Acked-by: Greg Kroah-Hartman <gregkh@suse.de> Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Dave Hansen <dave@linux.vnet.ibm.com> Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:44 -07:00
static void __exit hugetlb_exit(void)
{
struct hstate *h;
hugetlb: add per node hstate attributes Add the per huge page size control/query attributes to the per node sysdevs: /sys/devices/system/node/node<ID>/hugepages/hugepages-<size>/ nr_hugepages - r/w free_huge_pages - r/o surplus_huge_pages - r/o The patch attempts to re-use/share as much of the existing global hstate attribute initialization and handling, and the "nodes_allowed" constraint processing as possible. Calling set_max_huge_pages() with no node indicates a change to global hstate parameters. In this case, any non-default task mempolicy will be used to generate the nodes_allowed mask. A valid node id indicates an update to that node's hstate parameters, and the count argument specifies the target count for the specified node. From this info, we compute the target global count for the hstate and construct a nodes_allowed node mask contain only the specified node. Setting the node specific nr_hugepages via the per node attribute effectively ignores any task mempolicy or cpuset constraints. With this patch: (me):ls /sys/devices/system/node/node0/hugepages/hugepages-2048kB ./ ../ free_hugepages nr_hugepages surplus_hugepages Starting from: Node 0 HugePages_Total: 0 Node 0 HugePages_Free: 0 Node 0 HugePages_Surp: 0 Node 1 HugePages_Total: 0 Node 1 HugePages_Free: 0 Node 1 HugePages_Surp: 0 Node 2 HugePages_Total: 0 Node 2 HugePages_Free: 0 Node 2 HugePages_Surp: 0 Node 3 HugePages_Total: 0 Node 3 HugePages_Free: 0 Node 3 HugePages_Surp: 0 vm.nr_hugepages = 0 Allocate 16 persistent huge pages on node 2: (me):echo 16 >/sys/devices/system/node/node2/hugepages/hugepages-2048kB/nr_hugepages [Note that this is equivalent to: numactl -m 2 hugeadmin --pool-pages-min 2M:+16 ] Yields: Node 0 HugePages_Total: 0 Node 0 HugePages_Free: 0 Node 0 HugePages_Surp: 0 Node 1 HugePages_Total: 0 Node 1 HugePages_Free: 0 Node 1 HugePages_Surp: 0 Node 2 HugePages_Total: 16 Node 2 HugePages_Free: 16 Node 2 HugePages_Surp: 0 Node 3 HugePages_Total: 0 Node 3 HugePages_Free: 0 Node 3 HugePages_Surp: 0 vm.nr_hugepages = 16 Global controls work as expected--reduce pool to 8 persistent huge pages: (me):echo 8 >/sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages Node 0 HugePages_Total: 0 Node 0 HugePages_Free: 0 Node 0 HugePages_Surp: 0 Node 1 HugePages_Total: 0 Node 1 HugePages_Free: 0 Node 1 HugePages_Surp: 0 Node 2 HugePages_Total: 8 Node 2 HugePages_Free: 8 Node 2 HugePages_Surp: 0 Node 3 HugePages_Total: 0 Node 3 HugePages_Free: 0 Node 3 HugePages_Surp: 0 Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Reviewed-by: Andi Kleen <andi@firstfloor.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> Cc: Nishanth Aravamudan <nacc@us.ibm.com> Cc: David Rientjes <rientjes@google.com> Cc: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@canonical.com> Cc: Eric Whitney <eric.whitney@hp.com> Cc: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-14 17:58:25 -08:00
hugetlb_unregister_all_nodes();
hugetlb: new sysfs interface Provide new hugepages user APIs that are more suited to multiple hstates in sysfs. There is a new directory, /sys/kernel/hugepages. Underneath that directory there will be a directory per-supported hugepage size, e.g.: /sys/kernel/hugepages/hugepages-64kB /sys/kernel/hugepages/hugepages-16384kB /sys/kernel/hugepages/hugepages-16777216kB corresponding to 64k, 16m and 16g respectively. Within each hugepages-size directory there are a number of files, corresponding to the tracked counters in the hstate, e.g.: /sys/kernel/hugepages/hugepages-64/nr_hugepages /sys/kernel/hugepages/hugepages-64/nr_overcommit_hugepages /sys/kernel/hugepages/hugepages-64/free_hugepages /sys/kernel/hugepages/hugepages-64/resv_hugepages /sys/kernel/hugepages/hugepages-64/surplus_hugepages Of these files, the first two are read-write and the latter three are read-only. The size of the hugepage being manipulated is trivially deducible from the enclosing directory and is always expressed in kB (to match meminfo). [dave@linux.vnet.ibm.com: fix build] [nacc@us.ibm.com: hugetlb: hang off of /sys/kernel/mm rather than /sys/kernel] [nacc@us.ibm.com: hugetlb: remove CONFIG_SYSFS dependency] Acked-by: Greg Kroah-Hartman <gregkh@suse.de> Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Dave Hansen <dave@linux.vnet.ibm.com> Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:44 -07:00
for_each_hstate(h) {
kobject_put(hstate_kobjs[h - hstates]);
}
kobject_put(hugepages_kobj);
}
module_exit(hugetlb_exit);
static int __init hugetlb_init(void)
{
/* Some platform decide whether they support huge pages at boot
* time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
* there is no such support
*/
if (HPAGE_SHIFT == 0)
return 0;
hugetlb: new sysfs interface Provide new hugepages user APIs that are more suited to multiple hstates in sysfs. There is a new directory, /sys/kernel/hugepages. Underneath that directory there will be a directory per-supported hugepage size, e.g.: /sys/kernel/hugepages/hugepages-64kB /sys/kernel/hugepages/hugepages-16384kB /sys/kernel/hugepages/hugepages-16777216kB corresponding to 64k, 16m and 16g respectively. Within each hugepages-size directory there are a number of files, corresponding to the tracked counters in the hstate, e.g.: /sys/kernel/hugepages/hugepages-64/nr_hugepages /sys/kernel/hugepages/hugepages-64/nr_overcommit_hugepages /sys/kernel/hugepages/hugepages-64/free_hugepages /sys/kernel/hugepages/hugepages-64/resv_hugepages /sys/kernel/hugepages/hugepages-64/surplus_hugepages Of these files, the first two are read-write and the latter three are read-only. The size of the hugepage being manipulated is trivially deducible from the enclosing directory and is always expressed in kB (to match meminfo). [dave@linux.vnet.ibm.com: fix build] [nacc@us.ibm.com: hugetlb: hang off of /sys/kernel/mm rather than /sys/kernel] [nacc@us.ibm.com: hugetlb: remove CONFIG_SYSFS dependency] Acked-by: Greg Kroah-Hartman <gregkh@suse.de> Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Dave Hansen <dave@linux.vnet.ibm.com> Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:44 -07:00
if (!size_to_hstate(default_hstate_size)) {
default_hstate_size = HPAGE_SIZE;
if (!size_to_hstate(default_hstate_size))
hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
hugetlb: new sysfs interface Provide new hugepages user APIs that are more suited to multiple hstates in sysfs. There is a new directory, /sys/kernel/hugepages. Underneath that directory there will be a directory per-supported hugepage size, e.g.: /sys/kernel/hugepages/hugepages-64kB /sys/kernel/hugepages/hugepages-16384kB /sys/kernel/hugepages/hugepages-16777216kB corresponding to 64k, 16m and 16g respectively. Within each hugepages-size directory there are a number of files, corresponding to the tracked counters in the hstate, e.g.: /sys/kernel/hugepages/hugepages-64/nr_hugepages /sys/kernel/hugepages/hugepages-64/nr_overcommit_hugepages /sys/kernel/hugepages/hugepages-64/free_hugepages /sys/kernel/hugepages/hugepages-64/resv_hugepages /sys/kernel/hugepages/hugepages-64/surplus_hugepages Of these files, the first two are read-write and the latter three are read-only. The size of the hugepage being manipulated is trivially deducible from the enclosing directory and is always expressed in kB (to match meminfo). [dave@linux.vnet.ibm.com: fix build] [nacc@us.ibm.com: hugetlb: hang off of /sys/kernel/mm rather than /sys/kernel] [nacc@us.ibm.com: hugetlb: remove CONFIG_SYSFS dependency] Acked-by: Greg Kroah-Hartman <gregkh@suse.de> Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Dave Hansen <dave@linux.vnet.ibm.com> Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:44 -07:00
}
default_hstate_idx = size_to_hstate(default_hstate_size) - hstates;
if (default_hstate_max_huge_pages)
default_hstate.max_huge_pages = default_hstate_max_huge_pages;
hugetlb: new sysfs interface Provide new hugepages user APIs that are more suited to multiple hstates in sysfs. There is a new directory, /sys/kernel/hugepages. Underneath that directory there will be a directory per-supported hugepage size, e.g.: /sys/kernel/hugepages/hugepages-64kB /sys/kernel/hugepages/hugepages-16384kB /sys/kernel/hugepages/hugepages-16777216kB corresponding to 64k, 16m and 16g respectively. Within each hugepages-size directory there are a number of files, corresponding to the tracked counters in the hstate, e.g.: /sys/kernel/hugepages/hugepages-64/nr_hugepages /sys/kernel/hugepages/hugepages-64/nr_overcommit_hugepages /sys/kernel/hugepages/hugepages-64/free_hugepages /sys/kernel/hugepages/hugepages-64/resv_hugepages /sys/kernel/hugepages/hugepages-64/surplus_hugepages Of these files, the first two are read-write and the latter three are read-only. The size of the hugepage being manipulated is trivially deducible from the enclosing directory and is always expressed in kB (to match meminfo). [dave@linux.vnet.ibm.com: fix build] [nacc@us.ibm.com: hugetlb: hang off of /sys/kernel/mm rather than /sys/kernel] [nacc@us.ibm.com: hugetlb: remove CONFIG_SYSFS dependency] Acked-by: Greg Kroah-Hartman <gregkh@suse.de> Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Dave Hansen <dave@linux.vnet.ibm.com> Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:44 -07:00
hugetlb_init_hstates();
gather_bootmem_prealloc();
hugetlb: new sysfs interface Provide new hugepages user APIs that are more suited to multiple hstates in sysfs. There is a new directory, /sys/kernel/hugepages. Underneath that directory there will be a directory per-supported hugepage size, e.g.: /sys/kernel/hugepages/hugepages-64kB /sys/kernel/hugepages/hugepages-16384kB /sys/kernel/hugepages/hugepages-16777216kB corresponding to 64k, 16m and 16g respectively. Within each hugepages-size directory there are a number of files, corresponding to the tracked counters in the hstate, e.g.: /sys/kernel/hugepages/hugepages-64/nr_hugepages /sys/kernel/hugepages/hugepages-64/nr_overcommit_hugepages /sys/kernel/hugepages/hugepages-64/free_hugepages /sys/kernel/hugepages/hugepages-64/resv_hugepages /sys/kernel/hugepages/hugepages-64/surplus_hugepages Of these files, the first two are read-write and the latter three are read-only. The size of the hugepage being manipulated is trivially deducible from the enclosing directory and is always expressed in kB (to match meminfo). [dave@linux.vnet.ibm.com: fix build] [nacc@us.ibm.com: hugetlb: hang off of /sys/kernel/mm rather than /sys/kernel] [nacc@us.ibm.com: hugetlb: remove CONFIG_SYSFS dependency] Acked-by: Greg Kroah-Hartman <gregkh@suse.de> Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Dave Hansen <dave@linux.vnet.ibm.com> Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:44 -07:00
report_hugepages();
hugetlb_sysfs_init();
hugetlb: add per node hstate attributes Add the per huge page size control/query attributes to the per node sysdevs: /sys/devices/system/node/node<ID>/hugepages/hugepages-<size>/ nr_hugepages - r/w free_huge_pages - r/o surplus_huge_pages - r/o The patch attempts to re-use/share as much of the existing global hstate attribute initialization and handling, and the "nodes_allowed" constraint processing as possible. Calling set_max_huge_pages() with no node indicates a change to global hstate parameters. In this case, any non-default task mempolicy will be used to generate the nodes_allowed mask. A valid node id indicates an update to that node's hstate parameters, and the count argument specifies the target count for the specified node. From this info, we compute the target global count for the hstate and construct a nodes_allowed node mask contain only the specified node. Setting the node specific nr_hugepages via the per node attribute effectively ignores any task mempolicy or cpuset constraints. With this patch: (me):ls /sys/devices/system/node/node0/hugepages/hugepages-2048kB ./ ../ free_hugepages nr_hugepages surplus_hugepages Starting from: Node 0 HugePages_Total: 0 Node 0 HugePages_Free: 0 Node 0 HugePages_Surp: 0 Node 1 HugePages_Total: 0 Node 1 HugePages_Free: 0 Node 1 HugePages_Surp: 0 Node 2 HugePages_Total: 0 Node 2 HugePages_Free: 0 Node 2 HugePages_Surp: 0 Node 3 HugePages_Total: 0 Node 3 HugePages_Free: 0 Node 3 HugePages_Surp: 0 vm.nr_hugepages = 0 Allocate 16 persistent huge pages on node 2: (me):echo 16 >/sys/devices/system/node/node2/hugepages/hugepages-2048kB/nr_hugepages [Note that this is equivalent to: numactl -m 2 hugeadmin --pool-pages-min 2M:+16 ] Yields: Node 0 HugePages_Total: 0 Node 0 HugePages_Free: 0 Node 0 HugePages_Surp: 0 Node 1 HugePages_Total: 0 Node 1 HugePages_Free: 0 Node 1 HugePages_Surp: 0 Node 2 HugePages_Total: 16 Node 2 HugePages_Free: 16 Node 2 HugePages_Surp: 0 Node 3 HugePages_Total: 0 Node 3 HugePages_Free: 0 Node 3 HugePages_Surp: 0 vm.nr_hugepages = 16 Global controls work as expected--reduce pool to 8 persistent huge pages: (me):echo 8 >/sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages Node 0 HugePages_Total: 0 Node 0 HugePages_Free: 0 Node 0 HugePages_Surp: 0 Node 1 HugePages_Total: 0 Node 1 HugePages_Free: 0 Node 1 HugePages_Surp: 0 Node 2 HugePages_Total: 8 Node 2 HugePages_Free: 8 Node 2 HugePages_Surp: 0 Node 3 HugePages_Total: 0 Node 3 HugePages_Free: 0 Node 3 HugePages_Surp: 0 Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Reviewed-by: Andi Kleen <andi@firstfloor.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> Cc: Nishanth Aravamudan <nacc@us.ibm.com> Cc: David Rientjes <rientjes@google.com> Cc: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@canonical.com> Cc: Eric Whitney <eric.whitney@hp.com> Cc: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-14 17:58:25 -08:00
hugetlb_register_all_nodes();
hugetlb: new sysfs interface Provide new hugepages user APIs that are more suited to multiple hstates in sysfs. There is a new directory, /sys/kernel/hugepages. Underneath that directory there will be a directory per-supported hugepage size, e.g.: /sys/kernel/hugepages/hugepages-64kB /sys/kernel/hugepages/hugepages-16384kB /sys/kernel/hugepages/hugepages-16777216kB corresponding to 64k, 16m and 16g respectively. Within each hugepages-size directory there are a number of files, corresponding to the tracked counters in the hstate, e.g.: /sys/kernel/hugepages/hugepages-64/nr_hugepages /sys/kernel/hugepages/hugepages-64/nr_overcommit_hugepages /sys/kernel/hugepages/hugepages-64/free_hugepages /sys/kernel/hugepages/hugepages-64/resv_hugepages /sys/kernel/hugepages/hugepages-64/surplus_hugepages Of these files, the first two are read-write and the latter three are read-only. The size of the hugepage being manipulated is trivially deducible from the enclosing directory and is always expressed in kB (to match meminfo). [dave@linux.vnet.ibm.com: fix build] [nacc@us.ibm.com: hugetlb: hang off of /sys/kernel/mm rather than /sys/kernel] [nacc@us.ibm.com: hugetlb: remove CONFIG_SYSFS dependency] Acked-by: Greg Kroah-Hartman <gregkh@suse.de> Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Dave Hansen <dave@linux.vnet.ibm.com> Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:44 -07:00
return 0;
}
module_init(hugetlb_init);
/* Should be called on processing a hugepagesz=... option */
void __init hugetlb_add_hstate(unsigned order)
{
struct hstate *h;
unsigned long i;
hugetlb: new sysfs interface Provide new hugepages user APIs that are more suited to multiple hstates in sysfs. There is a new directory, /sys/kernel/hugepages. Underneath that directory there will be a directory per-supported hugepage size, e.g.: /sys/kernel/hugepages/hugepages-64kB /sys/kernel/hugepages/hugepages-16384kB /sys/kernel/hugepages/hugepages-16777216kB corresponding to 64k, 16m and 16g respectively. Within each hugepages-size directory there are a number of files, corresponding to the tracked counters in the hstate, e.g.: /sys/kernel/hugepages/hugepages-64/nr_hugepages /sys/kernel/hugepages/hugepages-64/nr_overcommit_hugepages /sys/kernel/hugepages/hugepages-64/free_hugepages /sys/kernel/hugepages/hugepages-64/resv_hugepages /sys/kernel/hugepages/hugepages-64/surplus_hugepages Of these files, the first two are read-write and the latter three are read-only. The size of the hugepage being manipulated is trivially deducible from the enclosing directory and is always expressed in kB (to match meminfo). [dave@linux.vnet.ibm.com: fix build] [nacc@us.ibm.com: hugetlb: hang off of /sys/kernel/mm rather than /sys/kernel] [nacc@us.ibm.com: hugetlb: remove CONFIG_SYSFS dependency] Acked-by: Greg Kroah-Hartman <gregkh@suse.de> Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Dave Hansen <dave@linux.vnet.ibm.com> Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:44 -07:00
if (size_to_hstate(PAGE_SIZE << order)) {
printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
return;
}
BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
BUG_ON(order == 0);
h = &hstates[max_hstate++];
h->order = order;
h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
h->nr_huge_pages = 0;
h->free_huge_pages = 0;
for (i = 0; i < MAX_NUMNODES; ++i)
INIT_LIST_HEAD(&h->hugepage_freelists[i]);
h->next_nid_to_alloc = first_node(node_states[N_HIGH_MEMORY]);
h->next_nid_to_free = first_node(node_states[N_HIGH_MEMORY]);
hugetlb: new sysfs interface Provide new hugepages user APIs that are more suited to multiple hstates in sysfs. There is a new directory, /sys/kernel/hugepages. Underneath that directory there will be a directory per-supported hugepage size, e.g.: /sys/kernel/hugepages/hugepages-64kB /sys/kernel/hugepages/hugepages-16384kB /sys/kernel/hugepages/hugepages-16777216kB corresponding to 64k, 16m and 16g respectively. Within each hugepages-size directory there are a number of files, corresponding to the tracked counters in the hstate, e.g.: /sys/kernel/hugepages/hugepages-64/nr_hugepages /sys/kernel/hugepages/hugepages-64/nr_overcommit_hugepages /sys/kernel/hugepages/hugepages-64/free_hugepages /sys/kernel/hugepages/hugepages-64/resv_hugepages /sys/kernel/hugepages/hugepages-64/surplus_hugepages Of these files, the first two are read-write and the latter three are read-only. The size of the hugepage being manipulated is trivially deducible from the enclosing directory and is always expressed in kB (to match meminfo). [dave@linux.vnet.ibm.com: fix build] [nacc@us.ibm.com: hugetlb: hang off of /sys/kernel/mm rather than /sys/kernel] [nacc@us.ibm.com: hugetlb: remove CONFIG_SYSFS dependency] Acked-by: Greg Kroah-Hartman <gregkh@suse.de> Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Dave Hansen <dave@linux.vnet.ibm.com> Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:44 -07:00
snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
huge_page_size(h)/1024);
hugetlb: new sysfs interface Provide new hugepages user APIs that are more suited to multiple hstates in sysfs. There is a new directory, /sys/kernel/hugepages. Underneath that directory there will be a directory per-supported hugepage size, e.g.: /sys/kernel/hugepages/hugepages-64kB /sys/kernel/hugepages/hugepages-16384kB /sys/kernel/hugepages/hugepages-16777216kB corresponding to 64k, 16m and 16g respectively. Within each hugepages-size directory there are a number of files, corresponding to the tracked counters in the hstate, e.g.: /sys/kernel/hugepages/hugepages-64/nr_hugepages /sys/kernel/hugepages/hugepages-64/nr_overcommit_hugepages /sys/kernel/hugepages/hugepages-64/free_hugepages /sys/kernel/hugepages/hugepages-64/resv_hugepages /sys/kernel/hugepages/hugepages-64/surplus_hugepages Of these files, the first two are read-write and the latter three are read-only. The size of the hugepage being manipulated is trivially deducible from the enclosing directory and is always expressed in kB (to match meminfo). [dave@linux.vnet.ibm.com: fix build] [nacc@us.ibm.com: hugetlb: hang off of /sys/kernel/mm rather than /sys/kernel] [nacc@us.ibm.com: hugetlb: remove CONFIG_SYSFS dependency] Acked-by: Greg Kroah-Hartman <gregkh@suse.de> Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Dave Hansen <dave@linux.vnet.ibm.com> Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:44 -07:00
parsed_hstate = h;
}
static int __init hugetlb_nrpages_setup(char *s)
hugetlb: new sysfs interface Provide new hugepages user APIs that are more suited to multiple hstates in sysfs. There is a new directory, /sys/kernel/hugepages. Underneath that directory there will be a directory per-supported hugepage size, e.g.: /sys/kernel/hugepages/hugepages-64kB /sys/kernel/hugepages/hugepages-16384kB /sys/kernel/hugepages/hugepages-16777216kB corresponding to 64k, 16m and 16g respectively. Within each hugepages-size directory there are a number of files, corresponding to the tracked counters in the hstate, e.g.: /sys/kernel/hugepages/hugepages-64/nr_hugepages /sys/kernel/hugepages/hugepages-64/nr_overcommit_hugepages /sys/kernel/hugepages/hugepages-64/free_hugepages /sys/kernel/hugepages/hugepages-64/resv_hugepages /sys/kernel/hugepages/hugepages-64/surplus_hugepages Of these files, the first two are read-write and the latter three are read-only. The size of the hugepage being manipulated is trivially deducible from the enclosing directory and is always expressed in kB (to match meminfo). [dave@linux.vnet.ibm.com: fix build] [nacc@us.ibm.com: hugetlb: hang off of /sys/kernel/mm rather than /sys/kernel] [nacc@us.ibm.com: hugetlb: remove CONFIG_SYSFS dependency] Acked-by: Greg Kroah-Hartman <gregkh@suse.de> Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Dave Hansen <dave@linux.vnet.ibm.com> Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:44 -07:00
{
unsigned long *mhp;
static unsigned long *last_mhp;
hugetlb: new sysfs interface Provide new hugepages user APIs that are more suited to multiple hstates in sysfs. There is a new directory, /sys/kernel/hugepages. Underneath that directory there will be a directory per-supported hugepage size, e.g.: /sys/kernel/hugepages/hugepages-64kB /sys/kernel/hugepages/hugepages-16384kB /sys/kernel/hugepages/hugepages-16777216kB corresponding to 64k, 16m and 16g respectively. Within each hugepages-size directory there are a number of files, corresponding to the tracked counters in the hstate, e.g.: /sys/kernel/hugepages/hugepages-64/nr_hugepages /sys/kernel/hugepages/hugepages-64/nr_overcommit_hugepages /sys/kernel/hugepages/hugepages-64/free_hugepages /sys/kernel/hugepages/hugepages-64/resv_hugepages /sys/kernel/hugepages/hugepages-64/surplus_hugepages Of these files, the first two are read-write and the latter three are read-only. The size of the hugepage being manipulated is trivially deducible from the enclosing directory and is always expressed in kB (to match meminfo). [dave@linux.vnet.ibm.com: fix build] [nacc@us.ibm.com: hugetlb: hang off of /sys/kernel/mm rather than /sys/kernel] [nacc@us.ibm.com: hugetlb: remove CONFIG_SYSFS dependency] Acked-by: Greg Kroah-Hartman <gregkh@suse.de> Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Dave Hansen <dave@linux.vnet.ibm.com> Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:44 -07:00
/*
* !max_hstate means we haven't parsed a hugepagesz= parameter yet,
* so this hugepages= parameter goes to the "default hstate".
*/
if (!max_hstate)
mhp = &default_hstate_max_huge_pages;
else
mhp = &parsed_hstate->max_huge_pages;
if (mhp == last_mhp) {
printk(KERN_WARNING "hugepages= specified twice without "
"interleaving hugepagesz=, ignoring\n");
return 1;
}
hugetlb: new sysfs interface Provide new hugepages user APIs that are more suited to multiple hstates in sysfs. There is a new directory, /sys/kernel/hugepages. Underneath that directory there will be a directory per-supported hugepage size, e.g.: /sys/kernel/hugepages/hugepages-64kB /sys/kernel/hugepages/hugepages-16384kB /sys/kernel/hugepages/hugepages-16777216kB corresponding to 64k, 16m and 16g respectively. Within each hugepages-size directory there are a number of files, corresponding to the tracked counters in the hstate, e.g.: /sys/kernel/hugepages/hugepages-64/nr_hugepages /sys/kernel/hugepages/hugepages-64/nr_overcommit_hugepages /sys/kernel/hugepages/hugepages-64/free_hugepages /sys/kernel/hugepages/hugepages-64/resv_hugepages /sys/kernel/hugepages/hugepages-64/surplus_hugepages Of these files, the first two are read-write and the latter three are read-only. The size of the hugepage being manipulated is trivially deducible from the enclosing directory and is always expressed in kB (to match meminfo). [dave@linux.vnet.ibm.com: fix build] [nacc@us.ibm.com: hugetlb: hang off of /sys/kernel/mm rather than /sys/kernel] [nacc@us.ibm.com: hugetlb: remove CONFIG_SYSFS dependency] Acked-by: Greg Kroah-Hartman <gregkh@suse.de> Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Dave Hansen <dave@linux.vnet.ibm.com> Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:44 -07:00
if (sscanf(s, "%lu", mhp) <= 0)
*mhp = 0;
/*
* Global state is always initialized later in hugetlb_init.
* But we need to allocate >= MAX_ORDER hstates here early to still
* use the bootmem allocator.
*/
if (max_hstate && parsed_hstate->order >= MAX_ORDER)
hugetlb_hstate_alloc_pages(parsed_hstate);
last_mhp = mhp;
hugetlb: new sysfs interface Provide new hugepages user APIs that are more suited to multiple hstates in sysfs. There is a new directory, /sys/kernel/hugepages. Underneath that directory there will be a directory per-supported hugepage size, e.g.: /sys/kernel/hugepages/hugepages-64kB /sys/kernel/hugepages/hugepages-16384kB /sys/kernel/hugepages/hugepages-16777216kB corresponding to 64k, 16m and 16g respectively. Within each hugepages-size directory there are a number of files, corresponding to the tracked counters in the hstate, e.g.: /sys/kernel/hugepages/hugepages-64/nr_hugepages /sys/kernel/hugepages/hugepages-64/nr_overcommit_hugepages /sys/kernel/hugepages/hugepages-64/free_hugepages /sys/kernel/hugepages/hugepages-64/resv_hugepages /sys/kernel/hugepages/hugepages-64/surplus_hugepages Of these files, the first two are read-write and the latter three are read-only. The size of the hugepage being manipulated is trivially deducible from the enclosing directory and is always expressed in kB (to match meminfo). [dave@linux.vnet.ibm.com: fix build] [nacc@us.ibm.com: hugetlb: hang off of /sys/kernel/mm rather than /sys/kernel] [nacc@us.ibm.com: hugetlb: remove CONFIG_SYSFS dependency] Acked-by: Greg Kroah-Hartman <gregkh@suse.de> Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Dave Hansen <dave@linux.vnet.ibm.com> Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:44 -07:00
return 1;
}
__setup("hugepages=", hugetlb_nrpages_setup);
static int __init hugetlb_default_setup(char *s)
{
default_hstate_size = memparse(s, &s);
return 1;
}
__setup("default_hugepagesz=", hugetlb_default_setup);
hugetlb: new sysfs interface Provide new hugepages user APIs that are more suited to multiple hstates in sysfs. There is a new directory, /sys/kernel/hugepages. Underneath that directory there will be a directory per-supported hugepage size, e.g.: /sys/kernel/hugepages/hugepages-64kB /sys/kernel/hugepages/hugepages-16384kB /sys/kernel/hugepages/hugepages-16777216kB corresponding to 64k, 16m and 16g respectively. Within each hugepages-size directory there are a number of files, corresponding to the tracked counters in the hstate, e.g.: /sys/kernel/hugepages/hugepages-64/nr_hugepages /sys/kernel/hugepages/hugepages-64/nr_overcommit_hugepages /sys/kernel/hugepages/hugepages-64/free_hugepages /sys/kernel/hugepages/hugepages-64/resv_hugepages /sys/kernel/hugepages/hugepages-64/surplus_hugepages Of these files, the first two are read-write and the latter three are read-only. The size of the hugepage being manipulated is trivially deducible from the enclosing directory and is always expressed in kB (to match meminfo). [dave@linux.vnet.ibm.com: fix build] [nacc@us.ibm.com: hugetlb: hang off of /sys/kernel/mm rather than /sys/kernel] [nacc@us.ibm.com: hugetlb: remove CONFIG_SYSFS dependency] Acked-by: Greg Kroah-Hartman <gregkh@suse.de> Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Dave Hansen <dave@linux.vnet.ibm.com> Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:44 -07:00
static unsigned int cpuset_mems_nr(unsigned int *array)
{
int node;
unsigned int nr = 0;
for_each_node_mask(node, cpuset_current_mems_allowed)
nr += array[node];
return nr;
}
#ifdef CONFIG_SYSCTL
hugetlb: derive huge pages nodes allowed from task mempolicy This patch derives a "nodes_allowed" node mask from the numa mempolicy of the task modifying the number of persistent huge pages to control the allocation, freeing and adjusting of surplus huge pages when the pool page count is modified via the new sysctl or sysfs attribute "nr_hugepages_mempolicy". The nodes_allowed mask is derived as follows: * For "default" [NULL] task mempolicy, a NULL nodemask_t pointer is produced. This will cause the hugetlb subsystem to use node_online_map as the "nodes_allowed". This preserves the behavior before this patch. * For "preferred" mempolicy, including explicit local allocation, a nodemask with the single preferred node will be produced. "local" policy will NOT track any internode migrations of the task adjusting nr_hugepages. * For "bind" and "interleave" policy, the mempolicy's nodemask will be used. * Other than to inform the construction of the nodes_allowed node mask, the actual mempolicy mode is ignored. That is, all modes behave like interleave over the resulting nodes_allowed mask with no "fallback". See the updated documentation [next patch] for more information about the implications of this patch. Examples: Starting with: Node 0 HugePages_Total: 0 Node 1 HugePages_Total: 0 Node 2 HugePages_Total: 0 Node 3 HugePages_Total: 0 Default behavior [with or without this patch] balances persistent hugepage allocation across nodes [with sufficient contiguous memory]: sysctl vm.nr_hugepages[_mempolicy]=32 yields: Node 0 HugePages_Total: 8 Node 1 HugePages_Total: 8 Node 2 HugePages_Total: 8 Node 3 HugePages_Total: 8 Of course, we only have nr_hugepages_mempolicy with the patch, but with default mempolicy, nr_hugepages_mempolicy behaves the same as nr_hugepages. Applying mempolicy--e.g., with numactl [using '-m' a.k.a. '--membind' because it allows multiple nodes to be specified and it's easy to type]--we can allocate huge pages on individual nodes or sets of nodes. So, starting from the condition above, with 8 huge pages per node, add 8 more to node 2 using: numactl -m 2 sysctl vm.nr_hugepages_mempolicy=40 This yields: Node 0 HugePages_Total: 8 Node 1 HugePages_Total: 8 Node 2 HugePages_Total: 16 Node 3 HugePages_Total: 8 The incremental 8 huge pages were restricted to node 2 by the specified mempolicy. Similarly, we can use mempolicy to free persistent huge pages from specified nodes: numactl -m 0,1 sysctl vm.nr_hugepages_mempolicy=32 yields: Node 0 HugePages_Total: 4 Node 1 HugePages_Total: 4 Node 2 HugePages_Total: 16 Node 3 HugePages_Total: 8 The 8 huge pages freed were balanced over nodes 0 and 1. [rientjes@google.com: accomodate reworked NODEMASK_ALLOC] Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Reviewed-by: Andi Kleen <andi@firstfloor.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> Cc: Nishanth Aravamudan <nacc@us.ibm.com> Cc: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@canonical.com> Cc: Eric Whitney <eric.whitney@hp.com> Cc: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-14 17:58:21 -08:00
static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
struct ctl_table *table, int write,
void __user *buffer, size_t *length, loff_t *ppos)
{
struct hstate *h = &default_hstate;
unsigned long tmp;
int ret;
tmp = h->max_huge_pages;
if (write && h->order >= MAX_ORDER)
return -EINVAL;
table->data = &tmp;
table->maxlen = sizeof(unsigned long);
ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
if (ret)
goto out;
hugetlb: derive huge pages nodes allowed from task mempolicy This patch derives a "nodes_allowed" node mask from the numa mempolicy of the task modifying the number of persistent huge pages to control the allocation, freeing and adjusting of surplus huge pages when the pool page count is modified via the new sysctl or sysfs attribute "nr_hugepages_mempolicy". The nodes_allowed mask is derived as follows: * For "default" [NULL] task mempolicy, a NULL nodemask_t pointer is produced. This will cause the hugetlb subsystem to use node_online_map as the "nodes_allowed". This preserves the behavior before this patch. * For "preferred" mempolicy, including explicit local allocation, a nodemask with the single preferred node will be produced. "local" policy will NOT track any internode migrations of the task adjusting nr_hugepages. * For "bind" and "interleave" policy, the mempolicy's nodemask will be used. * Other than to inform the construction of the nodes_allowed node mask, the actual mempolicy mode is ignored. That is, all modes behave like interleave over the resulting nodes_allowed mask with no "fallback". See the updated documentation [next patch] for more information about the implications of this patch. Examples: Starting with: Node 0 HugePages_Total: 0 Node 1 HugePages_Total: 0 Node 2 HugePages_Total: 0 Node 3 HugePages_Total: 0 Default behavior [with or without this patch] balances persistent hugepage allocation across nodes [with sufficient contiguous memory]: sysctl vm.nr_hugepages[_mempolicy]=32 yields: Node 0 HugePages_Total: 8 Node 1 HugePages_Total: 8 Node 2 HugePages_Total: 8 Node 3 HugePages_Total: 8 Of course, we only have nr_hugepages_mempolicy with the patch, but with default mempolicy, nr_hugepages_mempolicy behaves the same as nr_hugepages. Applying mempolicy--e.g., with numactl [using '-m' a.k.a. '--membind' because it allows multiple nodes to be specified and it's easy to type]--we can allocate huge pages on individual nodes or sets of nodes. So, starting from the condition above, with 8 huge pages per node, add 8 more to node 2 using: numactl -m 2 sysctl vm.nr_hugepages_mempolicy=40 This yields: Node 0 HugePages_Total: 8 Node 1 HugePages_Total: 8 Node 2 HugePages_Total: 16 Node 3 HugePages_Total: 8 The incremental 8 huge pages were restricted to node 2 by the specified mempolicy. Similarly, we can use mempolicy to free persistent huge pages from specified nodes: numactl -m 0,1 sysctl vm.nr_hugepages_mempolicy=32 yields: Node 0 HugePages_Total: 4 Node 1 HugePages_Total: 4 Node 2 HugePages_Total: 16 Node 3 HugePages_Total: 8 The 8 huge pages freed were balanced over nodes 0 and 1. [rientjes@google.com: accomodate reworked NODEMASK_ALLOC] Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Reviewed-by: Andi Kleen <andi@firstfloor.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> Cc: Nishanth Aravamudan <nacc@us.ibm.com> Cc: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@canonical.com> Cc: Eric Whitney <eric.whitney@hp.com> Cc: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-14 17:58:21 -08:00
if (write) {
mm: add gfp flags for NODEMASK_ALLOC slab allocations Objects passed to NODEMASK_ALLOC() are relatively small in size and are backed by slab caches that are not of large order, traditionally never greater than PAGE_ALLOC_COSTLY_ORDER. Thus, using GFP_KERNEL for these allocations on large machines when CONFIG_NODES_SHIFT > 8 will cause the page allocator to loop endlessly in the allocation attempt, each time invoking both direct reclaim or the oom killer. This is of particular interest when using NODEMASK_ALLOC() from a mempolicy context (either directly in mm/mempolicy.c or the mempolicy constrained hugetlb allocations) since the oom killer always kills current when allocations are constrained by mempolicies. So for all present use cases in the kernel, current would end up being oom killed when direct reclaim fails. That would allow the NODEMASK_ALLOC() to succeed but current would have sacrificed itself upon returning. This patch adds gfp flags to NODEMASK_ALLOC() to pass to kmalloc() on CONFIG_NODES_SHIFT > 8; this parameter is a nop on other configurations. All current use cases either directly from hugetlb code or indirectly via NODEMASK_SCRATCH() union __GFP_NORETRY to avoid direct reclaim and the oom killer when the slab allocator needs to allocate additional pages. The side-effect of this change is that all current use cases of either NODEMASK_ALLOC() or NODEMASK_SCRATCH() need appropriate -ENOMEM handling when the allocation fails (never for CONFIG_NODES_SHIFT <= 8). All current use cases were audited and do have appropriate error handling at this time. Signed-off-by: David Rientjes <rientjes@google.com> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Randy Dunlap <randy.dunlap@oracle.com> Cc: Nishanth Aravamudan <nacc@us.ibm.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: David Rientjes <rientjes@google.com> Cc: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@canonical.com> Cc: Eric Whitney <eric.whitney@hp.com> Cc: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-14 17:58:38 -08:00
NODEMASK_ALLOC(nodemask_t, nodes_allowed,
GFP_KERNEL | __GFP_NORETRY);
hugetlb: derive huge pages nodes allowed from task mempolicy This patch derives a "nodes_allowed" node mask from the numa mempolicy of the task modifying the number of persistent huge pages to control the allocation, freeing and adjusting of surplus huge pages when the pool page count is modified via the new sysctl or sysfs attribute "nr_hugepages_mempolicy". The nodes_allowed mask is derived as follows: * For "default" [NULL] task mempolicy, a NULL nodemask_t pointer is produced. This will cause the hugetlb subsystem to use node_online_map as the "nodes_allowed". This preserves the behavior before this patch. * For "preferred" mempolicy, including explicit local allocation, a nodemask with the single preferred node will be produced. "local" policy will NOT track any internode migrations of the task adjusting nr_hugepages. * For "bind" and "interleave" policy, the mempolicy's nodemask will be used. * Other than to inform the construction of the nodes_allowed node mask, the actual mempolicy mode is ignored. That is, all modes behave like interleave over the resulting nodes_allowed mask with no "fallback". See the updated documentation [next patch] for more information about the implications of this patch. Examples: Starting with: Node 0 HugePages_Total: 0 Node 1 HugePages_Total: 0 Node 2 HugePages_Total: 0 Node 3 HugePages_Total: 0 Default behavior [with or without this patch] balances persistent hugepage allocation across nodes [with sufficient contiguous memory]: sysctl vm.nr_hugepages[_mempolicy]=32 yields: Node 0 HugePages_Total: 8 Node 1 HugePages_Total: 8 Node 2 HugePages_Total: 8 Node 3 HugePages_Total: 8 Of course, we only have nr_hugepages_mempolicy with the patch, but with default mempolicy, nr_hugepages_mempolicy behaves the same as nr_hugepages. Applying mempolicy--e.g., with numactl [using '-m' a.k.a. '--membind' because it allows multiple nodes to be specified and it's easy to type]--we can allocate huge pages on individual nodes or sets of nodes. So, starting from the condition above, with 8 huge pages per node, add 8 more to node 2 using: numactl -m 2 sysctl vm.nr_hugepages_mempolicy=40 This yields: Node 0 HugePages_Total: 8 Node 1 HugePages_Total: 8 Node 2 HugePages_Total: 16 Node 3 HugePages_Total: 8 The incremental 8 huge pages were restricted to node 2 by the specified mempolicy. Similarly, we can use mempolicy to free persistent huge pages from specified nodes: numactl -m 0,1 sysctl vm.nr_hugepages_mempolicy=32 yields: Node 0 HugePages_Total: 4 Node 1 HugePages_Total: 4 Node 2 HugePages_Total: 16 Node 3 HugePages_Total: 8 The 8 huge pages freed were balanced over nodes 0 and 1. [rientjes@google.com: accomodate reworked NODEMASK_ALLOC] Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Reviewed-by: Andi Kleen <andi@firstfloor.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> Cc: Nishanth Aravamudan <nacc@us.ibm.com> Cc: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@canonical.com> Cc: Eric Whitney <eric.whitney@hp.com> Cc: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-14 17:58:21 -08:00
if (!(obey_mempolicy &&
init_nodemask_of_mempolicy(nodes_allowed))) {
NODEMASK_FREE(nodes_allowed);
nodes_allowed = &node_states[N_HIGH_MEMORY];
}
h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
if (nodes_allowed != &node_states[N_HIGH_MEMORY])
NODEMASK_FREE(nodes_allowed);
}
out:
return ret;
}
hugetlb: derive huge pages nodes allowed from task mempolicy This patch derives a "nodes_allowed" node mask from the numa mempolicy of the task modifying the number of persistent huge pages to control the allocation, freeing and adjusting of surplus huge pages when the pool page count is modified via the new sysctl or sysfs attribute "nr_hugepages_mempolicy". The nodes_allowed mask is derived as follows: * For "default" [NULL] task mempolicy, a NULL nodemask_t pointer is produced. This will cause the hugetlb subsystem to use node_online_map as the "nodes_allowed". This preserves the behavior before this patch. * For "preferred" mempolicy, including explicit local allocation, a nodemask with the single preferred node will be produced. "local" policy will NOT track any internode migrations of the task adjusting nr_hugepages. * For "bind" and "interleave" policy, the mempolicy's nodemask will be used. * Other than to inform the construction of the nodes_allowed node mask, the actual mempolicy mode is ignored. That is, all modes behave like interleave over the resulting nodes_allowed mask with no "fallback". See the updated documentation [next patch] for more information about the implications of this patch. Examples: Starting with: Node 0 HugePages_Total: 0 Node 1 HugePages_Total: 0 Node 2 HugePages_Total: 0 Node 3 HugePages_Total: 0 Default behavior [with or without this patch] balances persistent hugepage allocation across nodes [with sufficient contiguous memory]: sysctl vm.nr_hugepages[_mempolicy]=32 yields: Node 0 HugePages_Total: 8 Node 1 HugePages_Total: 8 Node 2 HugePages_Total: 8 Node 3 HugePages_Total: 8 Of course, we only have nr_hugepages_mempolicy with the patch, but with default mempolicy, nr_hugepages_mempolicy behaves the same as nr_hugepages. Applying mempolicy--e.g., with numactl [using '-m' a.k.a. '--membind' because it allows multiple nodes to be specified and it's easy to type]--we can allocate huge pages on individual nodes or sets of nodes. So, starting from the condition above, with 8 huge pages per node, add 8 more to node 2 using: numactl -m 2 sysctl vm.nr_hugepages_mempolicy=40 This yields: Node 0 HugePages_Total: 8 Node 1 HugePages_Total: 8 Node 2 HugePages_Total: 16 Node 3 HugePages_Total: 8 The incremental 8 huge pages were restricted to node 2 by the specified mempolicy. Similarly, we can use mempolicy to free persistent huge pages from specified nodes: numactl -m 0,1 sysctl vm.nr_hugepages_mempolicy=32 yields: Node 0 HugePages_Total: 4 Node 1 HugePages_Total: 4 Node 2 HugePages_Total: 16 Node 3 HugePages_Total: 8 The 8 huge pages freed were balanced over nodes 0 and 1. [rientjes@google.com: accomodate reworked NODEMASK_ALLOC] Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Reviewed-by: Andi Kleen <andi@firstfloor.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> Cc: Nishanth Aravamudan <nacc@us.ibm.com> Cc: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@canonical.com> Cc: Eric Whitney <eric.whitney@hp.com> Cc: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-14 17:58:21 -08:00
int hugetlb_sysctl_handler(struct ctl_table *table, int write,
void __user *buffer, size_t *length, loff_t *ppos)
{
return hugetlb_sysctl_handler_common(false, table, write,
buffer, length, ppos);
}
#ifdef CONFIG_NUMA
int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
void __user *buffer, size_t *length, loff_t *ppos)
{
return hugetlb_sysctl_handler_common(true, table, write,
buffer, length, ppos);
}
#endif /* CONFIG_NUMA */
int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
void __user *buffer,
size_t *length, loff_t *ppos)
{
proc_dointvec(table, write, buffer, length, ppos);
if (hugepages_treat_as_movable)
htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
else
htlb_alloc_mask = GFP_HIGHUSER;
return 0;
}
int hugetlb_overcommit_handler(struct ctl_table *table, int write,
void __user *buffer,
size_t *length, loff_t *ppos)
{
struct hstate *h = &default_hstate;
unsigned long tmp;
int ret;
tmp = h->nr_overcommit_huge_pages;
if (write && h->order >= MAX_ORDER)
return -EINVAL;
table->data = &tmp;
table->maxlen = sizeof(unsigned long);
ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
if (ret)
goto out;
if (write) {
spin_lock(&hugetlb_lock);
h->nr_overcommit_huge_pages = tmp;
spin_unlock(&hugetlb_lock);
}
out:
return ret;
}
#endif /* CONFIG_SYSCTL */
void hugetlb_report_meminfo(struct seq_file *m)
{
struct hstate *h = &default_hstate;
seq_printf(m,
vmscan: split LRU lists into anon & file sets Split the LRU lists in two, one set for pages that are backed by real file systems ("file") and one for pages that are backed by memory and swap ("anon"). The latter includes tmpfs. The advantage of doing this is that the VM will not have to scan over lots of anonymous pages (which we generally do not want to swap out), just to find the page cache pages that it should evict. This patch has the infrastructure and a basic policy to balance how much we scan the anon lists and how much we scan the file lists. The big policy changes are in separate patches. [lee.schermerhorn@hp.com: collect lru meminfo statistics from correct offset] [kosaki.motohiro@jp.fujitsu.com: prevent incorrect oom under split_lru] [kosaki.motohiro@jp.fujitsu.com: fix pagevec_move_tail() doesn't treat unevictable page] [hugh@veritas.com: memcg swapbacked pages active] [hugh@veritas.com: splitlru: BDI_CAP_SWAP_BACKED] [akpm@linux-foundation.org: fix /proc/vmstat units] [nishimura@mxp.nes.nec.co.jp: memcg: fix handling of shmem migration] [kosaki.motohiro@jp.fujitsu.com: adjust Quicklists field of /proc/meminfo] [kosaki.motohiro@jp.fujitsu.com: fix style issue of get_scan_ratio()] Signed-off-by: Rik van Riel <riel@redhat.com> Signed-off-by: Lee Schermerhorn <Lee.Schermerhorn@hp.com> Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-18 20:26:32 -07:00
"HugePages_Total: %5lu\n"
"HugePages_Free: %5lu\n"
"HugePages_Rsvd: %5lu\n"
"HugePages_Surp: %5lu\n"
"Hugepagesize: %8lu kB\n",
h->nr_huge_pages,
h->free_huge_pages,
h->resv_huge_pages,
h->surplus_huge_pages,
1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
}
int hugetlb_report_node_meminfo(int nid, char *buf)
{
struct hstate *h = &default_hstate;
return sprintf(buf,
"Node %d HugePages_Total: %5u\n"
"Node %d HugePages_Free: %5u\n"
"Node %d HugePages_Surp: %5u\n",
nid, h->nr_huge_pages_node[nid],
nid, h->free_huge_pages_node[nid],
nid, h->surplus_huge_pages_node[nid]);
}
/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
unsigned long hugetlb_total_pages(void)
{
struct hstate *h = &default_hstate;
return h->nr_huge_pages * pages_per_huge_page(h);
}
static int hugetlb_acct_memory(struct hstate *h, long delta)
hugetlb: move hugetlb_acct_memory() This is a patchset to give reliable behaviour to a process that successfully calls mmap(MAP_PRIVATE) on a hugetlbfs file. Currently, it is possible for the process to be killed due to a small hugepage pool size even if it calls mlock(). MAP_SHARED mappings on hugetlbfs reserve huge pages at mmap() time. This guarantees all future faults against the mapping will succeed. This allows local allocations at first use improving NUMA locality whilst retaining reliability. MAP_PRIVATE mappings do not reserve pages. This can result in an application being SIGKILLed later if a huge page is not available at fault time. This makes huge pages usage very ill-advised in some cases as the unexpected application failure cannot be detected and handled as it is immediately fatal. Although an application may force instantiation of the pages using mlock(), this may lead to poor memory placement and the process may still be killed when performing COW. This patchset introduces a reliability guarantee for the process which creates a private mapping, i.e. the process that calls mmap() on a hugetlbfs file successfully. The first patch of the set is purely mechanical code move to make later diffs easier to read. The second patch will guarantee faults up until the process calls fork(). After patch two, as long as the child keeps the mappings, the parent is no longer guaranteed to be reliable. Patch 3 guarantees that the parent will always successfully COW by unmapping the pages from the child in the event there are insufficient pages in the hugepage pool in allocate a new page, be it via a static or dynamic pool. Existing hugepage-aware applications are unlikely to be affected by this change. For much of hugetlbfs's history, pages were pre-faulted at mmap() time or mmap() failed which acts in a reserve-like manner. If the pool is sized correctly already so that parent and child can fault reliably, the application will not even notice the reserves. It's only when the pool is too small for the application to function perfectly reliably that the reserves come into play. Credit goes to Andy Whitcroft for cleaning up a number of mistakes during review before the patches were released. This patch: A later patch in this set needs to call hugetlb_acct_memory() before it is defined. This patch moves the function without modification. This makes later diffs easier to read. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@shadowen.org> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:22 -07:00
{
int ret = -ENOMEM;
spin_lock(&hugetlb_lock);
/*
* When cpuset is configured, it breaks the strict hugetlb page
* reservation as the accounting is done on a global variable. Such
* reservation is completely rubbish in the presence of cpuset because
* the reservation is not checked against page availability for the
* current cpuset. Application can still potentially OOM'ed by kernel
* with lack of free htlb page in cpuset that the task is in.
* Attempt to enforce strict accounting with cpuset is almost
* impossible (or too ugly) because cpuset is too fluid that
* task or memory node can be dynamically moved between cpusets.
*
* The change of semantics for shared hugetlb mapping with cpuset is
* undesirable. However, in order to preserve some of the semantics,
* we fall back to check against current free page availability as
* a best attempt and hopefully to minimize the impact of changing
* semantics that cpuset has.
*/
if (delta > 0) {
if (gather_surplus_pages(h, delta) < 0)
hugetlb: move hugetlb_acct_memory() This is a patchset to give reliable behaviour to a process that successfully calls mmap(MAP_PRIVATE) on a hugetlbfs file. Currently, it is possible for the process to be killed due to a small hugepage pool size even if it calls mlock(). MAP_SHARED mappings on hugetlbfs reserve huge pages at mmap() time. This guarantees all future faults against the mapping will succeed. This allows local allocations at first use improving NUMA locality whilst retaining reliability. MAP_PRIVATE mappings do not reserve pages. This can result in an application being SIGKILLed later if a huge page is not available at fault time. This makes huge pages usage very ill-advised in some cases as the unexpected application failure cannot be detected and handled as it is immediately fatal. Although an application may force instantiation of the pages using mlock(), this may lead to poor memory placement and the process may still be killed when performing COW. This patchset introduces a reliability guarantee for the process which creates a private mapping, i.e. the process that calls mmap() on a hugetlbfs file successfully. The first patch of the set is purely mechanical code move to make later diffs easier to read. The second patch will guarantee faults up until the process calls fork(). After patch two, as long as the child keeps the mappings, the parent is no longer guaranteed to be reliable. Patch 3 guarantees that the parent will always successfully COW by unmapping the pages from the child in the event there are insufficient pages in the hugepage pool in allocate a new page, be it via a static or dynamic pool. Existing hugepage-aware applications are unlikely to be affected by this change. For much of hugetlbfs's history, pages were pre-faulted at mmap() time or mmap() failed which acts in a reserve-like manner. If the pool is sized correctly already so that parent and child can fault reliably, the application will not even notice the reserves. It's only when the pool is too small for the application to function perfectly reliably that the reserves come into play. Credit goes to Andy Whitcroft for cleaning up a number of mistakes during review before the patches were released. This patch: A later patch in this set needs to call hugetlb_acct_memory() before it is defined. This patch moves the function without modification. This makes later diffs easier to read. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@shadowen.org> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:22 -07:00
goto out;
if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
return_unused_surplus_pages(h, delta);
hugetlb: move hugetlb_acct_memory() This is a patchset to give reliable behaviour to a process that successfully calls mmap(MAP_PRIVATE) on a hugetlbfs file. Currently, it is possible for the process to be killed due to a small hugepage pool size even if it calls mlock(). MAP_SHARED mappings on hugetlbfs reserve huge pages at mmap() time. This guarantees all future faults against the mapping will succeed. This allows local allocations at first use improving NUMA locality whilst retaining reliability. MAP_PRIVATE mappings do not reserve pages. This can result in an application being SIGKILLed later if a huge page is not available at fault time. This makes huge pages usage very ill-advised in some cases as the unexpected application failure cannot be detected and handled as it is immediately fatal. Although an application may force instantiation of the pages using mlock(), this may lead to poor memory placement and the process may still be killed when performing COW. This patchset introduces a reliability guarantee for the process which creates a private mapping, i.e. the process that calls mmap() on a hugetlbfs file successfully. The first patch of the set is purely mechanical code move to make later diffs easier to read. The second patch will guarantee faults up until the process calls fork(). After patch two, as long as the child keeps the mappings, the parent is no longer guaranteed to be reliable. Patch 3 guarantees that the parent will always successfully COW by unmapping the pages from the child in the event there are insufficient pages in the hugepage pool in allocate a new page, be it via a static or dynamic pool. Existing hugepage-aware applications are unlikely to be affected by this change. For much of hugetlbfs's history, pages were pre-faulted at mmap() time or mmap() failed which acts in a reserve-like manner. If the pool is sized correctly already so that parent and child can fault reliably, the application will not even notice the reserves. It's only when the pool is too small for the application to function perfectly reliably that the reserves come into play. Credit goes to Andy Whitcroft for cleaning up a number of mistakes during review before the patches were released. This patch: A later patch in this set needs to call hugetlb_acct_memory() before it is defined. This patch moves the function without modification. This makes later diffs easier to read. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@shadowen.org> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:22 -07:00
goto out;
}
}
ret = 0;
if (delta < 0)
return_unused_surplus_pages(h, (unsigned long) -delta);
hugetlb: move hugetlb_acct_memory() This is a patchset to give reliable behaviour to a process that successfully calls mmap(MAP_PRIVATE) on a hugetlbfs file. Currently, it is possible for the process to be killed due to a small hugepage pool size even if it calls mlock(). MAP_SHARED mappings on hugetlbfs reserve huge pages at mmap() time. This guarantees all future faults against the mapping will succeed. This allows local allocations at first use improving NUMA locality whilst retaining reliability. MAP_PRIVATE mappings do not reserve pages. This can result in an application being SIGKILLed later if a huge page is not available at fault time. This makes huge pages usage very ill-advised in some cases as the unexpected application failure cannot be detected and handled as it is immediately fatal. Although an application may force instantiation of the pages using mlock(), this may lead to poor memory placement and the process may still be killed when performing COW. This patchset introduces a reliability guarantee for the process which creates a private mapping, i.e. the process that calls mmap() on a hugetlbfs file successfully. The first patch of the set is purely mechanical code move to make later diffs easier to read. The second patch will guarantee faults up until the process calls fork(). After patch two, as long as the child keeps the mappings, the parent is no longer guaranteed to be reliable. Patch 3 guarantees that the parent will always successfully COW by unmapping the pages from the child in the event there are insufficient pages in the hugepage pool in allocate a new page, be it via a static or dynamic pool. Existing hugepage-aware applications are unlikely to be affected by this change. For much of hugetlbfs's history, pages were pre-faulted at mmap() time or mmap() failed which acts in a reserve-like manner. If the pool is sized correctly already so that parent and child can fault reliably, the application will not even notice the reserves. It's only when the pool is too small for the application to function perfectly reliably that the reserves come into play. Credit goes to Andy Whitcroft for cleaning up a number of mistakes during review before the patches were released. This patch: A later patch in this set needs to call hugetlb_acct_memory() before it is defined. This patch moves the function without modification. This makes later diffs easier to read. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@shadowen.org> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:22 -07:00
out:
spin_unlock(&hugetlb_lock);
return ret;
}
hugetlb reservations: fix hugetlb MAP_PRIVATE reservations across vma splits When a hugetlb mapping with a reservation is split, a new VMA is cloned from the original. This new VMA is a direct copy of the original including the reservation count. When this pair of VMAs are unmapped we will incorrect double account the unused reservation and the overall reservation count will be incorrect, in extreme cases it will wrap. The problem occurs when we split an existing VMA say to unmap a page in the middle. split_vma() will create a new VMA copying all fields from the original. As we are storing our reservation count in vm_private_data this is also copies, endowing the new VMA with a duplicate of the original VMA's reservation. Neither of the new VMAs can exhaust these reservations as they are too small, but when we unmap and close these VMAs we will incorrect credit the remainder twice and resv_huge_pages will become out of sync. This can lead to allocation failures on mappings with reservations and even to resv_huge_pages wrapping which prevents all subsequent hugepage allocations. The simple fix would be to correctly apportion the remaining reservation count when the split is made. However the only hook we have vm_ops->open only has the new VMA we do not know the identity of the preceeding VMA. Also even if we did have that VMA to hand we do not know how much of the reservation was consumed each side of the split. This patch therefore takes a different tack. We know that the whole of any private mapping (which has a reservation) has a reservation over its whole size. Any present pages represent consumed reservation. Therefore if we track the instantiated pages we can calculate the remaining reservation. This patch reuses the existing regions code to track the regions for which we have consumed reservation (ie. the instantiated pages), as each page is faulted in we record the consumption of reservation for the new page. When we need to return unused reservations at unmap time we simply count the consumed reservation region subtracting that from the whole of the map. During a VMA split the newly opened VMA will point to the same region map, as this map is offset oriented it remains valid for both of the split VMAs. This map is referenced counted so that it is removed when all VMAs which are part of the mmap are gone. Thanks to Adam Litke and Mel Gorman for their review feedback. Signed-off-by: Andy Whitcroft <apw@shadowen.org> Acked-by: Mel Gorman <mel@csn.ul.ie> Cc: Adam Litke <agl@us.ibm.com> Cc: Johannes Weiner <hannes@saeurebad.de> Cc: Andy Whitcroft <apw@shadowen.org> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Michael Kerrisk <mtk.manpages@googlemail.com> Cc: Jon Tollefson <kniht@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:32 -07:00
static void hugetlb_vm_op_open(struct vm_area_struct *vma)
{
struct resv_map *reservations = vma_resv_map(vma);
/*
* This new VMA should share its siblings reservation map if present.
* The VMA will only ever have a valid reservation map pointer where
* it is being copied for another still existing VMA. As that VMA
* has a reference to the reservation map it cannot disappear until
hugetlb reservations: fix hugetlb MAP_PRIVATE reservations across vma splits When a hugetlb mapping with a reservation is split, a new VMA is cloned from the original. This new VMA is a direct copy of the original including the reservation count. When this pair of VMAs are unmapped we will incorrect double account the unused reservation and the overall reservation count will be incorrect, in extreme cases it will wrap. The problem occurs when we split an existing VMA say to unmap a page in the middle. split_vma() will create a new VMA copying all fields from the original. As we are storing our reservation count in vm_private_data this is also copies, endowing the new VMA with a duplicate of the original VMA's reservation. Neither of the new VMAs can exhaust these reservations as they are too small, but when we unmap and close these VMAs we will incorrect credit the remainder twice and resv_huge_pages will become out of sync. This can lead to allocation failures on mappings with reservations and even to resv_huge_pages wrapping which prevents all subsequent hugepage allocations. The simple fix would be to correctly apportion the remaining reservation count when the split is made. However the only hook we have vm_ops->open only has the new VMA we do not know the identity of the preceeding VMA. Also even if we did have that VMA to hand we do not know how much of the reservation was consumed each side of the split. This patch therefore takes a different tack. We know that the whole of any private mapping (which has a reservation) has a reservation over its whole size. Any present pages represent consumed reservation. Therefore if we track the instantiated pages we can calculate the remaining reservation. This patch reuses the existing regions code to track the regions for which we have consumed reservation (ie. the instantiated pages), as each page is faulted in we record the consumption of reservation for the new page. When we need to return unused reservations at unmap time we simply count the consumed reservation region subtracting that from the whole of the map. During a VMA split the newly opened VMA will point to the same region map, as this map is offset oriented it remains valid for both of the split VMAs. This map is referenced counted so that it is removed when all VMAs which are part of the mmap are gone. Thanks to Adam Litke and Mel Gorman for their review feedback. Signed-off-by: Andy Whitcroft <apw@shadowen.org> Acked-by: Mel Gorman <mel@csn.ul.ie> Cc: Adam Litke <agl@us.ibm.com> Cc: Johannes Weiner <hannes@saeurebad.de> Cc: Andy Whitcroft <apw@shadowen.org> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Michael Kerrisk <mtk.manpages@googlemail.com> Cc: Jon Tollefson <kniht@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:32 -07:00
* after this open call completes. It is therefore safe to take a
* new reference here without additional locking.
*/
if (reservations)
kref_get(&reservations->refs);
}
hugetlb: reserve huge pages for reliable MAP_PRIVATE hugetlbfs mappings until fork() This patch reserves huge pages at mmap() time for MAP_PRIVATE mappings in a similar manner to the reservations taken for MAP_SHARED mappings. The reserve count is accounted both globally and on a per-VMA basis for private mappings. This guarantees that a process that successfully calls mmap() will successfully fault all pages in the future unless fork() is called. The characteristics of private mappings of hugetlbfs files behaviour after this patch are; 1. The process calling mmap() is guaranteed to succeed all future faults until it forks(). 2. On fork(), the parent may die due to SIGKILL on writes to the private mapping if enough pages are not available for the COW. For reasonably reliable behaviour in the face of a small huge page pool, children of hugepage-aware processes should not reference the mappings; such as might occur when fork()ing to exec(). 3. On fork(), the child VMAs inherit no reserves. Reads on pages already faulted by the parent will succeed. Successful writes will depend on enough huge pages being free in the pool. 4. Quotas of the hugetlbfs mount are checked at reserve time for the mapper and at fault time otherwise. Before this patch, all reads or writes in the child potentially needs page allocations that can later lead to the death of the parent. This applies to reads and writes of uninstantiated pages as well as COW. After the patch it is only a write to an instantiated page that causes problems. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@shadowen.org> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:23 -07:00
static void hugetlb_vm_op_close(struct vm_area_struct *vma)
{
struct hstate *h = hstate_vma(vma);
hugetlb reservations: fix hugetlb MAP_PRIVATE reservations across vma splits When a hugetlb mapping with a reservation is split, a new VMA is cloned from the original. This new VMA is a direct copy of the original including the reservation count. When this pair of VMAs are unmapped we will incorrect double account the unused reservation and the overall reservation count will be incorrect, in extreme cases it will wrap. The problem occurs when we split an existing VMA say to unmap a page in the middle. split_vma() will create a new VMA copying all fields from the original. As we are storing our reservation count in vm_private_data this is also copies, endowing the new VMA with a duplicate of the original VMA's reservation. Neither of the new VMAs can exhaust these reservations as they are too small, but when we unmap and close these VMAs we will incorrect credit the remainder twice and resv_huge_pages will become out of sync. This can lead to allocation failures on mappings with reservations and even to resv_huge_pages wrapping which prevents all subsequent hugepage allocations. The simple fix would be to correctly apportion the remaining reservation count when the split is made. However the only hook we have vm_ops->open only has the new VMA we do not know the identity of the preceeding VMA. Also even if we did have that VMA to hand we do not know how much of the reservation was consumed each side of the split. This patch therefore takes a different tack. We know that the whole of any private mapping (which has a reservation) has a reservation over its whole size. Any present pages represent consumed reservation. Therefore if we track the instantiated pages we can calculate the remaining reservation. This patch reuses the existing regions code to track the regions for which we have consumed reservation (ie. the instantiated pages), as each page is faulted in we record the consumption of reservation for the new page. When we need to return unused reservations at unmap time we simply count the consumed reservation region subtracting that from the whole of the map. During a VMA split the newly opened VMA will point to the same region map, as this map is offset oriented it remains valid for both of the split VMAs. This map is referenced counted so that it is removed when all VMAs which are part of the mmap are gone. Thanks to Adam Litke and Mel Gorman for their review feedback. Signed-off-by: Andy Whitcroft <apw@shadowen.org> Acked-by: Mel Gorman <mel@csn.ul.ie> Cc: Adam Litke <agl@us.ibm.com> Cc: Johannes Weiner <hannes@saeurebad.de> Cc: Andy Whitcroft <apw@shadowen.org> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Michael Kerrisk <mtk.manpages@googlemail.com> Cc: Jon Tollefson <kniht@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:32 -07:00
struct resv_map *reservations = vma_resv_map(vma);
unsigned long reserve;
unsigned long start;
unsigned long end;
if (reservations) {
start = vma_hugecache_offset(h, vma, vma->vm_start);
end = vma_hugecache_offset(h, vma, vma->vm_end);
hugetlb reservations: fix hugetlb MAP_PRIVATE reservations across vma splits When a hugetlb mapping with a reservation is split, a new VMA is cloned from the original. This new VMA is a direct copy of the original including the reservation count. When this pair of VMAs are unmapped we will incorrect double account the unused reservation and the overall reservation count will be incorrect, in extreme cases it will wrap. The problem occurs when we split an existing VMA say to unmap a page in the middle. split_vma() will create a new VMA copying all fields from the original. As we are storing our reservation count in vm_private_data this is also copies, endowing the new VMA with a duplicate of the original VMA's reservation. Neither of the new VMAs can exhaust these reservations as they are too small, but when we unmap and close these VMAs we will incorrect credit the remainder twice and resv_huge_pages will become out of sync. This can lead to allocation failures on mappings with reservations and even to resv_huge_pages wrapping which prevents all subsequent hugepage allocations. The simple fix would be to correctly apportion the remaining reservation count when the split is made. However the only hook we have vm_ops->open only has the new VMA we do not know the identity of the preceeding VMA. Also even if we did have that VMA to hand we do not know how much of the reservation was consumed each side of the split. This patch therefore takes a different tack. We know that the whole of any private mapping (which has a reservation) has a reservation over its whole size. Any present pages represent consumed reservation. Therefore if we track the instantiated pages we can calculate the remaining reservation. This patch reuses the existing regions code to track the regions for which we have consumed reservation (ie. the instantiated pages), as each page is faulted in we record the consumption of reservation for the new page. When we need to return unused reservations at unmap time we simply count the consumed reservation region subtracting that from the whole of the map. During a VMA split the newly opened VMA will point to the same region map, as this map is offset oriented it remains valid for both of the split VMAs. This map is referenced counted so that it is removed when all VMAs which are part of the mmap are gone. Thanks to Adam Litke and Mel Gorman for their review feedback. Signed-off-by: Andy Whitcroft <apw@shadowen.org> Acked-by: Mel Gorman <mel@csn.ul.ie> Cc: Adam Litke <agl@us.ibm.com> Cc: Johannes Weiner <hannes@saeurebad.de> Cc: Andy Whitcroft <apw@shadowen.org> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Michael Kerrisk <mtk.manpages@googlemail.com> Cc: Jon Tollefson <kniht@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:32 -07:00
reserve = (end - start) -
region_count(&reservations->regions, start, end);
kref_put(&reservations->refs, resv_map_release);
if (reserve) {
hugetlb_acct_memory(h, -reserve);
hugetlb_put_quota(vma->vm_file->f_mapping, reserve);
}
hugetlb reservations: fix hugetlb MAP_PRIVATE reservations across vma splits When a hugetlb mapping with a reservation is split, a new VMA is cloned from the original. This new VMA is a direct copy of the original including the reservation count. When this pair of VMAs are unmapped we will incorrect double account the unused reservation and the overall reservation count will be incorrect, in extreme cases it will wrap. The problem occurs when we split an existing VMA say to unmap a page in the middle. split_vma() will create a new VMA copying all fields from the original. As we are storing our reservation count in vm_private_data this is also copies, endowing the new VMA with a duplicate of the original VMA's reservation. Neither of the new VMAs can exhaust these reservations as they are too small, but when we unmap and close these VMAs we will incorrect credit the remainder twice and resv_huge_pages will become out of sync. This can lead to allocation failures on mappings with reservations and even to resv_huge_pages wrapping which prevents all subsequent hugepage allocations. The simple fix would be to correctly apportion the remaining reservation count when the split is made. However the only hook we have vm_ops->open only has the new VMA we do not know the identity of the preceeding VMA. Also even if we did have that VMA to hand we do not know how much of the reservation was consumed each side of the split. This patch therefore takes a different tack. We know that the whole of any private mapping (which has a reservation) has a reservation over its whole size. Any present pages represent consumed reservation. Therefore if we track the instantiated pages we can calculate the remaining reservation. This patch reuses the existing regions code to track the regions for which we have consumed reservation (ie. the instantiated pages), as each page is faulted in we record the consumption of reservation for the new page. When we need to return unused reservations at unmap time we simply count the consumed reservation region subtracting that from the whole of the map. During a VMA split the newly opened VMA will point to the same region map, as this map is offset oriented it remains valid for both of the split VMAs. This map is referenced counted so that it is removed when all VMAs which are part of the mmap are gone. Thanks to Adam Litke and Mel Gorman for their review feedback. Signed-off-by: Andy Whitcroft <apw@shadowen.org> Acked-by: Mel Gorman <mel@csn.ul.ie> Cc: Adam Litke <agl@us.ibm.com> Cc: Johannes Weiner <hannes@saeurebad.de> Cc: Andy Whitcroft <apw@shadowen.org> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Michael Kerrisk <mtk.manpages@googlemail.com> Cc: Jon Tollefson <kniht@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:32 -07:00
}
hugetlb: reserve huge pages for reliable MAP_PRIVATE hugetlbfs mappings until fork() This patch reserves huge pages at mmap() time for MAP_PRIVATE mappings in a similar manner to the reservations taken for MAP_SHARED mappings. The reserve count is accounted both globally and on a per-VMA basis for private mappings. This guarantees that a process that successfully calls mmap() will successfully fault all pages in the future unless fork() is called. The characteristics of private mappings of hugetlbfs files behaviour after this patch are; 1. The process calling mmap() is guaranteed to succeed all future faults until it forks(). 2. On fork(), the parent may die due to SIGKILL on writes to the private mapping if enough pages are not available for the COW. For reasonably reliable behaviour in the face of a small huge page pool, children of hugepage-aware processes should not reference the mappings; such as might occur when fork()ing to exec(). 3. On fork(), the child VMAs inherit no reserves. Reads on pages already faulted by the parent will succeed. Successful writes will depend on enough huge pages being free in the pool. 4. Quotas of the hugetlbfs mount are checked at reserve time for the mapper and at fault time otherwise. Before this patch, all reads or writes in the child potentially needs page allocations that can later lead to the death of the parent. This applies to reads and writes of uninstantiated pages as well as COW. After the patch it is only a write to an instantiated page that causes problems. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@shadowen.org> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:23 -07:00
}
/*
* We cannot handle pagefaults against hugetlb pages at all. They cause
* handle_mm_fault() to try to instantiate regular-sized pages in the
* hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
* this far.
*/
static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
BUG();
return 0;
}
const struct vm_operations_struct hugetlb_vm_ops = {
.fault = hugetlb_vm_op_fault,
hugetlb reservations: fix hugetlb MAP_PRIVATE reservations across vma splits When a hugetlb mapping with a reservation is split, a new VMA is cloned from the original. This new VMA is a direct copy of the original including the reservation count. When this pair of VMAs are unmapped we will incorrect double account the unused reservation and the overall reservation count will be incorrect, in extreme cases it will wrap. The problem occurs when we split an existing VMA say to unmap a page in the middle. split_vma() will create a new VMA copying all fields from the original. As we are storing our reservation count in vm_private_data this is also copies, endowing the new VMA with a duplicate of the original VMA's reservation. Neither of the new VMAs can exhaust these reservations as they are too small, but when we unmap and close these VMAs we will incorrect credit the remainder twice and resv_huge_pages will become out of sync. This can lead to allocation failures on mappings with reservations and even to resv_huge_pages wrapping which prevents all subsequent hugepage allocations. The simple fix would be to correctly apportion the remaining reservation count when the split is made. However the only hook we have vm_ops->open only has the new VMA we do not know the identity of the preceeding VMA. Also even if we did have that VMA to hand we do not know how much of the reservation was consumed each side of the split. This patch therefore takes a different tack. We know that the whole of any private mapping (which has a reservation) has a reservation over its whole size. Any present pages represent consumed reservation. Therefore if we track the instantiated pages we can calculate the remaining reservation. This patch reuses the existing regions code to track the regions for which we have consumed reservation (ie. the instantiated pages), as each page is faulted in we record the consumption of reservation for the new page. When we need to return unused reservations at unmap time we simply count the consumed reservation region subtracting that from the whole of the map. During a VMA split the newly opened VMA will point to the same region map, as this map is offset oriented it remains valid for both of the split VMAs. This map is referenced counted so that it is removed when all VMAs which are part of the mmap are gone. Thanks to Adam Litke and Mel Gorman for their review feedback. Signed-off-by: Andy Whitcroft <apw@shadowen.org> Acked-by: Mel Gorman <mel@csn.ul.ie> Cc: Adam Litke <agl@us.ibm.com> Cc: Johannes Weiner <hannes@saeurebad.de> Cc: Andy Whitcroft <apw@shadowen.org> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Michael Kerrisk <mtk.manpages@googlemail.com> Cc: Jon Tollefson <kniht@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:32 -07:00
.open = hugetlb_vm_op_open,
hugetlb: reserve huge pages for reliable MAP_PRIVATE hugetlbfs mappings until fork() This patch reserves huge pages at mmap() time for MAP_PRIVATE mappings in a similar manner to the reservations taken for MAP_SHARED mappings. The reserve count is accounted both globally and on a per-VMA basis for private mappings. This guarantees that a process that successfully calls mmap() will successfully fault all pages in the future unless fork() is called. The characteristics of private mappings of hugetlbfs files behaviour after this patch are; 1. The process calling mmap() is guaranteed to succeed all future faults until it forks(). 2. On fork(), the parent may die due to SIGKILL on writes to the private mapping if enough pages are not available for the COW. For reasonably reliable behaviour in the face of a small huge page pool, children of hugepage-aware processes should not reference the mappings; such as might occur when fork()ing to exec(). 3. On fork(), the child VMAs inherit no reserves. Reads on pages already faulted by the parent will succeed. Successful writes will depend on enough huge pages being free in the pool. 4. Quotas of the hugetlbfs mount are checked at reserve time for the mapper and at fault time otherwise. Before this patch, all reads or writes in the child potentially needs page allocations that can later lead to the death of the parent. This applies to reads and writes of uninstantiated pages as well as COW. After the patch it is only a write to an instantiated page that causes problems. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@shadowen.org> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:23 -07:00
.close = hugetlb_vm_op_close,
};
static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
int writable)
{
pte_t entry;
if (writable) {
entry =
pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
} else {
entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
}
entry = pte_mkyoung(entry);
entry = pte_mkhuge(entry);
return entry;
}
static void set_huge_ptep_writable(struct vm_area_struct *vma,
unsigned long address, pte_t *ptep)
{
pte_t entry;
entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) {
update_mmu_cache(vma, address, ptep);
}
}
int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
struct vm_area_struct *vma)
{
pte_t *src_pte, *dst_pte, entry;
struct page *ptepage;
unsigned long addr;
int cow;
struct hstate *h = hstate_vma(vma);
unsigned long sz = huge_page_size(h);
cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
src_pte = huge_pte_offset(src, addr);
if (!src_pte)
continue;
dst_pte = huge_pte_alloc(dst, addr, sz);
if (!dst_pte)
goto nomem;
fix hugepages leak due to pagetable page sharing The shared page table code for hugetlb memory on x86 and x86_64 is causing a leak. When a user of hugepages exits using this code the system leaks some of the hugepages. ------------------------------------------------------- Part of /proc/meminfo just before database startup: HugePages_Total: 5500 HugePages_Free: 5500 HugePages_Rsvd: 0 Hugepagesize: 2048 kB Just before shutdown: HugePages_Total: 5500 HugePages_Free: 4475 HugePages_Rsvd: 0 Hugepagesize: 2048 kB After shutdown: HugePages_Total: 5500 HugePages_Free: 4988 HugePages_Rsvd: 0 Hugepagesize: 2048 kB ---------------------------------------------------------- The problem occurs durring a fork, in copy_hugetlb_page_range(). It locates the dst_pte using huge_pte_alloc(). Since huge_pte_alloc() calls huge_pmd_share() it will share the pmd page if can, yet the main loop in copy_hugetlb_page_range() does a get_page() on every hugepage. This is a violation of the shared hugepmd pagetable protocol and creates additional referenced to the hugepages causing a leak when the unmap of the VMA occurs. We can skip the entire replication of the ptes when the hugepage pagetables are shared. The attached patch skips copying the ptes and the get_page() calls if the hugetlbpage pagetable is shared. [akpm@linux-foundation.org: coding-style cleanups] Signed-off-by: Larry Woodman <lwoodman@redhat.com> Signed-off-by: Adam Litke <agl@us.ibm.com> Cc: Badari Pulavarty <pbadari@us.ibm.com> Cc: Ken Chen <kenchen@google.com> Cc: David Gibson <david@gibson.dropbear.id.au> Cc: William Lee Irwin III <wli@holomorphy.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-01-24 05:49:25 -08:00
/* If the pagetables are shared don't copy or take references */
if (dst_pte == src_pte)
continue;
spin_lock(&dst->page_table_lock);
hugetlb: fix lockdep error ============================================= [ INFO: possible recursive locking detected ] 2.6.26-rc4 #30 --------------------------------------------- heap-overflow/2250 is trying to acquire lock: (&mm->page_table_lock){--..}, at: [<c0000000000cf2e8>] .copy_hugetlb_page_range+0x108/0x280 but task is already holding lock: (&mm->page_table_lock){--..}, at: [<c0000000000cf2dc>] .copy_hugetlb_page_range+0xfc/0x280 other info that might help us debug this: 3 locks held by heap-overflow/2250: #0: (&mm->mmap_sem){----}, at: [<c000000000050e44>] .dup_mm+0x134/0x410 #1: (&mm->mmap_sem/1){--..}, at: [<c000000000050e54>] .dup_mm+0x144/0x410 #2: (&mm->page_table_lock){--..}, at: [<c0000000000cf2dc>] .copy_hugetlb_page_range+0xfc/0x280 stack backtrace: Call Trace: [c00000003b2774e0] [c000000000010ce4] .show_stack+0x74/0x1f0 (unreliable) [c00000003b2775a0] [c0000000003f10e0] .dump_stack+0x20/0x34 [c00000003b277620] [c0000000000889bc] .__lock_acquire+0xaac/0x1080 [c00000003b277740] [c000000000089000] .lock_acquire+0x70/0xb0 [c00000003b2777d0] [c0000000003ee15c] ._spin_lock+0x4c/0x80 [c00000003b277870] [c0000000000cf2e8] .copy_hugetlb_page_range+0x108/0x280 [c00000003b277950] [c0000000000bcaa8] .copy_page_range+0x558/0x790 [c00000003b277ac0] [c000000000050fe0] .dup_mm+0x2d0/0x410 [c00000003b277ba0] [c000000000051d24] .copy_process+0xb94/0x1020 [c00000003b277ca0] [c000000000052244] .do_fork+0x94/0x310 [c00000003b277db0] [c000000000011240] .sys_clone+0x60/0x80 [c00000003b277e30] [c0000000000078c4] .ppc_clone+0x8/0xc Fix is the same way that mm/memory.c copy_page_range does the lockdep annotation. Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Acked-by: Adam Litke <agl@us.ibm.com> Acked-by: Nishanth Aravamudan <nacc@us.ibm.com> Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-06-05 22:45:57 -07:00
spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
if (!huge_pte_none(huge_ptep_get(src_pte))) {
if (cow)
huge_ptep_set_wrprotect(src, addr, src_pte);
entry = huge_ptep_get(src_pte);
ptepage = pte_page(entry);
get_page(ptepage);
hugetlb, rmap: add reverse mapping for hugepage This patch adds reverse mapping feature for hugepage by introducing mapcount for shared/private-mapped hugepage and anon_vma for private-mapped hugepage. While hugepage is not currently swappable, reverse mapping can be useful for memory error handler. Without this patch, memory error handler cannot identify processes using the bad hugepage nor unmap it from them. That is: - for shared hugepage: we can collect processes using a hugepage through pagecache, but can not unmap the hugepage because of the lack of mapcount. - for privately mapped hugepage: we can neither collect processes nor unmap the hugepage. This patch solves these problems. This patch include the bug fix given by commit 23be7468e8, so reverts it. Dependency: "hugetlb: move definition of is_vm_hugetlb_page() to hugepage_inline.h" ChangeLog since May 24. - create hugetlb_inline.h and move is_vm_hugetlb_index() in it. - move functions setting up anon_vma for hugepage into mm/rmap.c. ChangeLog since May 13. - rebased to 2.6.34 - fix logic error (in case that private mapping and shared mapping coexist) - move is_vm_hugetlb_page() into include/linux/mm.h to use this function from linear_page_index() - define and use linear_hugepage_index() instead of compound_order() - use page_move_anon_rmap() in hugetlb_cow() - copy exclusive switch of __set_page_anon_rmap() into hugepage counterpart. - revert commit 24be7468 completely Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Larry Woodman <lwoodman@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com> Acked-by: Fengguang Wu <fengguang.wu@intel.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andi Kleen <ak@linux.intel.com>
2010-05-28 09:29:16 +09:00
page_dup_rmap(ptepage);
set_huge_pte_at(dst, addr, dst_pte, entry);
}
spin_unlock(&src->page_table_lock);
spin_unlock(&dst->page_table_lock);
}
return 0;
nomem:
return -ENOMEM;
}
static int is_hugetlb_entry_migration(pte_t pte)
{
swp_entry_t swp;
if (huge_pte_none(pte) || pte_present(pte))
return 0;
swp = pte_to_swp_entry(pte);
if (non_swap_entry(swp) && is_migration_entry(swp)) {
return 1;
} else
return 0;
}
static int is_hugetlb_entry_hwpoisoned(pte_t pte)
{
swp_entry_t swp;
if (huge_pte_none(pte) || pte_present(pte))
return 0;
swp = pte_to_swp_entry(pte);
if (non_swap_entry(swp) && is_hwpoison_entry(swp)) {
return 1;
} else
return 0;
}
void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
hugetlb: guarantee that COW faults for a process that called mmap(MAP_PRIVATE) on hugetlbfs will succeed After patch 2 in this series, a process that successfully calls mmap() for a MAP_PRIVATE mapping will be guaranteed to successfully fault until a process calls fork(). At that point, the next write fault from the parent could fail due to COW if the child still has a reference. We only reserve pages for the parent but a copy must be made to avoid leaking data from the parent to the child after fork(). Reserves could be taken for both parent and child at fork time to guarantee faults but if the mapping is large it is highly likely we will not have sufficient pages for the reservation, and it is common to fork only to exec() immediatly after. A failure here would be very undesirable. Note that the current behaviour of mainline with MAP_PRIVATE pages is pretty bad. The following situation is allowed to occur today. 1. Process calls mmap(MAP_PRIVATE) 2. Process calls mlock() to fault all pages and makes sure it succeeds 3. Process forks() 4. Process writes to MAP_PRIVATE mapping while child still exists 5. If the COW fails at this point, the process gets SIGKILLed even though it had taken care to ensure the pages existed This patch improves the situation by guaranteeing the reliability of the process that successfully calls mmap(). When the parent performs COW, it will try to satisfy the allocation without using reserves. If that fails the parent will steal the page leaving any children without a page. Faults from the child after that point will result in failure. If the child COW happens first, an attempt will be made to allocate the page without reserves and the child will get SIGKILLed on failure. To summarise the new behaviour: 1. If the original mapper performs COW on a private mapping with multiple references, it will attempt to allocate a hugepage from the pool or the buddy allocator without using the existing reserves. On fail, VMAs mapping the same area are traversed and the page being COW'd is unmapped where found. It will then steal the original page as the last mapper in the normal way. 2. The VMAs the pages were unmapped from are flagged to note that pages with data no longer exist. Future no-page faults on those VMAs will terminate the process as otherwise it would appear that data was corrupted. A warning is printed to the console that this situation occured. 2. If the child performs COW first, it will attempt to satisfy the COW from the pool if there are enough pages or via the buddy allocator if overcommit is allowed and the buddy allocator can satisfy the request. If it fails, the child will be killed. If the pool is large enough, existing applications will not notice that the reserves were a factor. Existing applications depending on the no-reserves been set are unlikely to exist as for much of the history of hugetlbfs, pages were prefaulted at mmap(), allocating the pages at that point or failing the mmap(). [npiggin@suse.de: fix CONFIG_HUGETLB=n build] Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@shadowen.org> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:25 -07:00
unsigned long end, struct page *ref_page)
{
struct mm_struct *mm = vma->vm_mm;
unsigned long address;
pte_t *ptep;
pte_t pte;
struct page *page;
struct page *tmp;
struct hstate *h = hstate_vma(vma);
unsigned long sz = huge_page_size(h);
/*
* A page gathering list, protected by per file i_mmap_mutex. The
* lock is used to avoid list corruption from multiple unmapping
* of the same page since we are using page->lru.
*/
LIST_HEAD(page_list);
WARN_ON(!is_vm_hugetlb_page(vma));
BUG_ON(start & ~huge_page_mask(h));
BUG_ON(end & ~huge_page_mask(h));
mmu-notifiers: core With KVM/GFP/XPMEM there isn't just the primary CPU MMU pointing to pages. There are secondary MMUs (with secondary sptes and secondary tlbs) too. sptes in the kvm case are shadow pagetables, but when I say spte in mmu-notifier context, I mean "secondary pte". In GRU case there's no actual secondary pte and there's only a secondary tlb because the GRU secondary MMU has no knowledge about sptes and every secondary tlb miss event in the MMU always generates a page fault that has to be resolved by the CPU (this is not the case of KVM where the a secondary tlb miss will walk sptes in hardware and it will refill the secondary tlb transparently to software if the corresponding spte is present). The same way zap_page_range has to invalidate the pte before freeing the page, the spte (and secondary tlb) must also be invalidated before any page is freed and reused. Currently we take a page_count pin on every page mapped by sptes, but that means the pages can't be swapped whenever they're mapped by any spte because they're part of the guest working set. Furthermore a spte unmap event can immediately lead to a page to be freed when the pin is released (so requiring the same complex and relatively slow tlb_gather smp safe logic we have in zap_page_range and that can be avoided completely if the spte unmap event doesn't require an unpin of the page previously mapped in the secondary MMU). The mmu notifiers allow kvm/GRU/XPMEM to attach to the tsk->mm and know when the VM is swapping or freeing or doing anything on the primary MMU so that the secondary MMU code can drop sptes before the pages are freed, avoiding all page pinning and allowing 100% reliable swapping of guest physical address space. Furthermore it avoids the code that teardown the mappings of the secondary MMU, to implement a logic like tlb_gather in zap_page_range that would require many IPI to flush other cpu tlbs, for each fixed number of spte unmapped. To make an example: if what happens on the primary MMU is a protection downgrade (from writeable to wrprotect) the secondary MMU mappings will be invalidated, and the next secondary-mmu-page-fault will call get_user_pages and trigger a do_wp_page through get_user_pages if it called get_user_pages with write=1, and it'll re-establishing an updated spte or secondary-tlb-mapping on the copied page. Or it will setup a readonly spte or readonly tlb mapping if it's a guest-read, if it calls get_user_pages with write=0. This is just an example. This allows to map any page pointed by any pte (and in turn visible in the primary CPU MMU), into a secondary MMU (be it a pure tlb like GRU, or an full MMU with both sptes and secondary-tlb like the shadow-pagetable layer with kvm), or a remote DMA in software like XPMEM (hence needing of schedule in XPMEM code to send the invalidate to the remote node, while no need to schedule in kvm/gru as it's an immediate event like invalidating primary-mmu pte). At least for KVM without this patch it's impossible to swap guests reliably. And having this feature and removing the page pin allows several other optimizations that simplify life considerably. Dependencies: 1) mm_take_all_locks() to register the mmu notifier when the whole VM isn't doing anything with "mm". This allows mmu notifier users to keep track if the VM is in the middle of the invalidate_range_begin/end critical section with an atomic counter incraese in range_begin and decreased in range_end. No secondary MMU page fault is allowed to map any spte or secondary tlb reference, while the VM is in the middle of range_begin/end as any page returned by get_user_pages in that critical section could later immediately be freed without any further ->invalidate_page notification (invalidate_range_begin/end works on ranges and ->invalidate_page isn't called immediately before freeing the page). To stop all page freeing and pagetable overwrites the mmap_sem must be taken in write mode and all other anon_vma/i_mmap locks must be taken too. 2) It'd be a waste to add branches in the VM if nobody could possibly run KVM/GRU/XPMEM on the kernel, so mmu notifiers will only enabled if CONFIG_KVM=m/y. In the current kernel kvm won't yet take advantage of mmu notifiers, but this already allows to compile a KVM external module against a kernel with mmu notifiers enabled and from the next pull from kvm.git we'll start using them. And GRU/XPMEM will also be able to continue the development by enabling KVM=m in their config, until they submit all GRU/XPMEM GPLv2 code to the mainline kernel. Then they can also enable MMU_NOTIFIERS in the same way KVM does it (even if KVM=n). This guarantees nobody selects MMU_NOTIFIER=y if KVM and GRU and XPMEM are all =n. The mmu_notifier_register call can fail because mm_take_all_locks may be interrupted by a signal and return -EINTR. Because mmu_notifier_reigster is used when a driver startup, a failure can be gracefully handled. Here an example of the change applied to kvm to register the mmu notifiers. Usually when a driver startups other allocations are required anyway and -ENOMEM failure paths exists already. struct kvm *kvm_arch_create_vm(void) { struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL); + int err; if (!kvm) return ERR_PTR(-ENOMEM); INIT_LIST_HEAD(&kvm->arch.active_mmu_pages); + kvm->arch.mmu_notifier.ops = &kvm_mmu_notifier_ops; + err = mmu_notifier_register(&kvm->arch.mmu_notifier, current->mm); + if (err) { + kfree(kvm); + return ERR_PTR(err); + } + return kvm; } mmu_notifier_unregister returns void and it's reliable. The patch also adds a few needed but missing includes that would prevent kernel to compile after these changes on non-x86 archs (x86 didn't need them by luck). [akpm@linux-foundation.org: coding-style fixes] [akpm@linux-foundation.org: fix mm/filemap_xip.c build] [akpm@linux-foundation.org: fix mm/mmu_notifier.c build] Signed-off-by: Andrea Arcangeli <andrea@qumranet.com> Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Christoph Lameter <cl@linux-foundation.org> Cc: Jack Steiner <steiner@sgi.com> Cc: Robin Holt <holt@sgi.com> Cc: Nick Piggin <npiggin@suse.de> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Kanoj Sarcar <kanojsarcar@yahoo.com> Cc: Roland Dreier <rdreier@cisco.com> Cc: Steve Wise <swise@opengridcomputing.com> Cc: Avi Kivity <avi@qumranet.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Anthony Liguori <aliguori@us.ibm.com> Cc: Chris Wright <chrisw@redhat.com> Cc: Marcelo Tosatti <marcelo@kvack.org> Cc: Eric Dumazet <dada1@cosmosbay.com> Cc: "Paul E. McKenney" <paulmck@us.ibm.com> Cc: Izik Eidus <izike@qumranet.com> Cc: Anthony Liguori <aliguori@us.ibm.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-28 15:46:29 -07:00
mmu_notifier_invalidate_range_start(mm, start, end);
spin_lock(&mm->page_table_lock);
for (address = start; address < end; address += sz) {
ptep = huge_pte_offset(mm, address);
if (!ptep)
continue;
[PATCH] shared page table for hugetlb page Following up with the work on shared page table done by Dave McCracken. This set of patch target shared page table for hugetlb memory only. The shared page table is particular useful in the situation of large number of independent processes sharing large shared memory segments. In the normal page case, the amount of memory saved from process' page table is quite significant. For hugetlb, the saving on page table memory is not the primary objective (as hugetlb itself already cuts down page table overhead significantly), instead, the purpose of using shared page table on hugetlb is to allow faster TLB refill and smaller cache pollution upon TLB miss. With PT sharing, pte entries are shared among hundreds of processes, the cache consumption used by all the page table is smaller and in return, application gets much higher cache hit ratio. One other effect is that cache hit ratio with hardware page walker hitting on pte in cache will be higher and this helps to reduce tlb miss latency. These two effects contribute to higher application performance. Signed-off-by: Ken Chen <kenneth.w.chen@intel.com> Acked-by: Hugh Dickins <hugh@veritas.com> Cc: Dave McCracken <dmccr@us.ibm.com> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: David Gibson <david@gibson.dropbear.id.au> Cc: Adam Litke <agl@us.ibm.com> Cc: Paul Mundt <lethal@linux-sh.org> Cc: "David S. Miller" <davem@davemloft.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-06 20:32:03 -08:00
if (huge_pmd_unshare(mm, &address, ptep))
continue;
hugetlb: guarantee that COW faults for a process that called mmap(MAP_PRIVATE) on hugetlbfs will succeed After patch 2 in this series, a process that successfully calls mmap() for a MAP_PRIVATE mapping will be guaranteed to successfully fault until a process calls fork(). At that point, the next write fault from the parent could fail due to COW if the child still has a reference. We only reserve pages for the parent but a copy must be made to avoid leaking data from the parent to the child after fork(). Reserves could be taken for both parent and child at fork time to guarantee faults but if the mapping is large it is highly likely we will not have sufficient pages for the reservation, and it is common to fork only to exec() immediatly after. A failure here would be very undesirable. Note that the current behaviour of mainline with MAP_PRIVATE pages is pretty bad. The following situation is allowed to occur today. 1. Process calls mmap(MAP_PRIVATE) 2. Process calls mlock() to fault all pages and makes sure it succeeds 3. Process forks() 4. Process writes to MAP_PRIVATE mapping while child still exists 5. If the COW fails at this point, the process gets SIGKILLed even though it had taken care to ensure the pages existed This patch improves the situation by guaranteeing the reliability of the process that successfully calls mmap(). When the parent performs COW, it will try to satisfy the allocation without using reserves. If that fails the parent will steal the page leaving any children without a page. Faults from the child after that point will result in failure. If the child COW happens first, an attempt will be made to allocate the page without reserves and the child will get SIGKILLed on failure. To summarise the new behaviour: 1. If the original mapper performs COW on a private mapping with multiple references, it will attempt to allocate a hugepage from the pool or the buddy allocator without using the existing reserves. On fail, VMAs mapping the same area are traversed and the page being COW'd is unmapped where found. It will then steal the original page as the last mapper in the normal way. 2. The VMAs the pages were unmapped from are flagged to note that pages with data no longer exist. Future no-page faults on those VMAs will terminate the process as otherwise it would appear that data was corrupted. A warning is printed to the console that this situation occured. 2. If the child performs COW first, it will attempt to satisfy the COW from the pool if there are enough pages or via the buddy allocator if overcommit is allowed and the buddy allocator can satisfy the request. If it fails, the child will be killed. If the pool is large enough, existing applications will not notice that the reserves were a factor. Existing applications depending on the no-reserves been set are unlikely to exist as for much of the history of hugetlbfs, pages were prefaulted at mmap(), allocating the pages at that point or failing the mmap(). [npiggin@suse.de: fix CONFIG_HUGETLB=n build] Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@shadowen.org> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:25 -07:00
/*
* If a reference page is supplied, it is because a specific
* page is being unmapped, not a range. Ensure the page we
* are about to unmap is the actual page of interest.
*/
if (ref_page) {
pte = huge_ptep_get(ptep);
if (huge_pte_none(pte))
continue;
page = pte_page(pte);
if (page != ref_page)
continue;
/*
* Mark the VMA as having unmapped its page so that
* future faults in this VMA will fail rather than
* looking like data was lost
*/
set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
}
pte = huge_ptep_get_and_clear(mm, address, ptep);
if (huge_pte_none(pte))
continue;
/*
* HWPoisoned hugepage is already unmapped and dropped reference
*/
if (unlikely(is_hugetlb_entry_hwpoisoned(pte)))
continue;
page = pte_page(pte);
if (pte_dirty(pte))
set_page_dirty(page);
list_add(&page->lru, &page_list);
}
spin_unlock(&mm->page_table_lock);
flush_tlb_range(vma, start, end);
mmu-notifiers: core With KVM/GFP/XPMEM there isn't just the primary CPU MMU pointing to pages. There are secondary MMUs (with secondary sptes and secondary tlbs) too. sptes in the kvm case are shadow pagetables, but when I say spte in mmu-notifier context, I mean "secondary pte". In GRU case there's no actual secondary pte and there's only a secondary tlb because the GRU secondary MMU has no knowledge about sptes and every secondary tlb miss event in the MMU always generates a page fault that has to be resolved by the CPU (this is not the case of KVM where the a secondary tlb miss will walk sptes in hardware and it will refill the secondary tlb transparently to software if the corresponding spte is present). The same way zap_page_range has to invalidate the pte before freeing the page, the spte (and secondary tlb) must also be invalidated before any page is freed and reused. Currently we take a page_count pin on every page mapped by sptes, but that means the pages can't be swapped whenever they're mapped by any spte because they're part of the guest working set. Furthermore a spte unmap event can immediately lead to a page to be freed when the pin is released (so requiring the same complex and relatively slow tlb_gather smp safe logic we have in zap_page_range and that can be avoided completely if the spte unmap event doesn't require an unpin of the page previously mapped in the secondary MMU). The mmu notifiers allow kvm/GRU/XPMEM to attach to the tsk->mm and know when the VM is swapping or freeing or doing anything on the primary MMU so that the secondary MMU code can drop sptes before the pages are freed, avoiding all page pinning and allowing 100% reliable swapping of guest physical address space. Furthermore it avoids the code that teardown the mappings of the secondary MMU, to implement a logic like tlb_gather in zap_page_range that would require many IPI to flush other cpu tlbs, for each fixed number of spte unmapped. To make an example: if what happens on the primary MMU is a protection downgrade (from writeable to wrprotect) the secondary MMU mappings will be invalidated, and the next secondary-mmu-page-fault will call get_user_pages and trigger a do_wp_page through get_user_pages if it called get_user_pages with write=1, and it'll re-establishing an updated spte or secondary-tlb-mapping on the copied page. Or it will setup a readonly spte or readonly tlb mapping if it's a guest-read, if it calls get_user_pages with write=0. This is just an example. This allows to map any page pointed by any pte (and in turn visible in the primary CPU MMU), into a secondary MMU (be it a pure tlb like GRU, or an full MMU with both sptes and secondary-tlb like the shadow-pagetable layer with kvm), or a remote DMA in software like XPMEM (hence needing of schedule in XPMEM code to send the invalidate to the remote node, while no need to schedule in kvm/gru as it's an immediate event like invalidating primary-mmu pte). At least for KVM without this patch it's impossible to swap guests reliably. And having this feature and removing the page pin allows several other optimizations that simplify life considerably. Dependencies: 1) mm_take_all_locks() to register the mmu notifier when the whole VM isn't doing anything with "mm". This allows mmu notifier users to keep track if the VM is in the middle of the invalidate_range_begin/end critical section with an atomic counter incraese in range_begin and decreased in range_end. No secondary MMU page fault is allowed to map any spte or secondary tlb reference, while the VM is in the middle of range_begin/end as any page returned by get_user_pages in that critical section could later immediately be freed without any further ->invalidate_page notification (invalidate_range_begin/end works on ranges and ->invalidate_page isn't called immediately before freeing the page). To stop all page freeing and pagetable overwrites the mmap_sem must be taken in write mode and all other anon_vma/i_mmap locks must be taken too. 2) It'd be a waste to add branches in the VM if nobody could possibly run KVM/GRU/XPMEM on the kernel, so mmu notifiers will only enabled if CONFIG_KVM=m/y. In the current kernel kvm won't yet take advantage of mmu notifiers, but this already allows to compile a KVM external module against a kernel with mmu notifiers enabled and from the next pull from kvm.git we'll start using them. And GRU/XPMEM will also be able to continue the development by enabling KVM=m in their config, until they submit all GRU/XPMEM GPLv2 code to the mainline kernel. Then they can also enable MMU_NOTIFIERS in the same way KVM does it (even if KVM=n). This guarantees nobody selects MMU_NOTIFIER=y if KVM and GRU and XPMEM are all =n. The mmu_notifier_register call can fail because mm_take_all_locks may be interrupted by a signal and return -EINTR. Because mmu_notifier_reigster is used when a driver startup, a failure can be gracefully handled. Here an example of the change applied to kvm to register the mmu notifiers. Usually when a driver startups other allocations are required anyway and -ENOMEM failure paths exists already. struct kvm *kvm_arch_create_vm(void) { struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL); + int err; if (!kvm) return ERR_PTR(-ENOMEM); INIT_LIST_HEAD(&kvm->arch.active_mmu_pages); + kvm->arch.mmu_notifier.ops = &kvm_mmu_notifier_ops; + err = mmu_notifier_register(&kvm->arch.mmu_notifier, current->mm); + if (err) { + kfree(kvm); + return ERR_PTR(err); + } + return kvm; } mmu_notifier_unregister returns void and it's reliable. The patch also adds a few needed but missing includes that would prevent kernel to compile after these changes on non-x86 archs (x86 didn't need them by luck). [akpm@linux-foundation.org: coding-style fixes] [akpm@linux-foundation.org: fix mm/filemap_xip.c build] [akpm@linux-foundation.org: fix mm/mmu_notifier.c build] Signed-off-by: Andrea Arcangeli <andrea@qumranet.com> Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Christoph Lameter <cl@linux-foundation.org> Cc: Jack Steiner <steiner@sgi.com> Cc: Robin Holt <holt@sgi.com> Cc: Nick Piggin <npiggin@suse.de> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Kanoj Sarcar <kanojsarcar@yahoo.com> Cc: Roland Dreier <rdreier@cisco.com> Cc: Steve Wise <swise@opengridcomputing.com> Cc: Avi Kivity <avi@qumranet.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Anthony Liguori <aliguori@us.ibm.com> Cc: Chris Wright <chrisw@redhat.com> Cc: Marcelo Tosatti <marcelo@kvack.org> Cc: Eric Dumazet <dada1@cosmosbay.com> Cc: "Paul E. McKenney" <paulmck@us.ibm.com> Cc: Izik Eidus <izike@qumranet.com> Cc: Anthony Liguori <aliguori@us.ibm.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-28 15:46:29 -07:00
mmu_notifier_invalidate_range_end(mm, start, end);
list_for_each_entry_safe(page, tmp, &page_list, lru) {
hugetlb, rmap: add reverse mapping for hugepage This patch adds reverse mapping feature for hugepage by introducing mapcount for shared/private-mapped hugepage and anon_vma for private-mapped hugepage. While hugepage is not currently swappable, reverse mapping can be useful for memory error handler. Without this patch, memory error handler cannot identify processes using the bad hugepage nor unmap it from them. That is: - for shared hugepage: we can collect processes using a hugepage through pagecache, but can not unmap the hugepage because of the lack of mapcount. - for privately mapped hugepage: we can neither collect processes nor unmap the hugepage. This patch solves these problems. This patch include the bug fix given by commit 23be7468e8, so reverts it. Dependency: "hugetlb: move definition of is_vm_hugetlb_page() to hugepage_inline.h" ChangeLog since May 24. - create hugetlb_inline.h and move is_vm_hugetlb_index() in it. - move functions setting up anon_vma for hugepage into mm/rmap.c. ChangeLog since May 13. - rebased to 2.6.34 - fix logic error (in case that private mapping and shared mapping coexist) - move is_vm_hugetlb_page() into include/linux/mm.h to use this function from linear_page_index() - define and use linear_hugepage_index() instead of compound_order() - use page_move_anon_rmap() in hugetlb_cow() - copy exclusive switch of __set_page_anon_rmap() into hugepage counterpart. - revert commit 24be7468 completely Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Larry Woodman <lwoodman@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com> Acked-by: Fengguang Wu <fengguang.wu@intel.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andi Kleen <ak@linux.intel.com>
2010-05-28 09:29:16 +09:00
page_remove_rmap(page);
list_del(&page->lru);
put_page(page);
}
}
void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
hugetlb: guarantee that COW faults for a process that called mmap(MAP_PRIVATE) on hugetlbfs will succeed After patch 2 in this series, a process that successfully calls mmap() for a MAP_PRIVATE mapping will be guaranteed to successfully fault until a process calls fork(). At that point, the next write fault from the parent could fail due to COW if the child still has a reference. We only reserve pages for the parent but a copy must be made to avoid leaking data from the parent to the child after fork(). Reserves could be taken for both parent and child at fork time to guarantee faults but if the mapping is large it is highly likely we will not have sufficient pages for the reservation, and it is common to fork only to exec() immediatly after. A failure here would be very undesirable. Note that the current behaviour of mainline with MAP_PRIVATE pages is pretty bad. The following situation is allowed to occur today. 1. Process calls mmap(MAP_PRIVATE) 2. Process calls mlock() to fault all pages and makes sure it succeeds 3. Process forks() 4. Process writes to MAP_PRIVATE mapping while child still exists 5. If the COW fails at this point, the process gets SIGKILLed even though it had taken care to ensure the pages existed This patch improves the situation by guaranteeing the reliability of the process that successfully calls mmap(). When the parent performs COW, it will try to satisfy the allocation without using reserves. If that fails the parent will steal the page leaving any children without a page. Faults from the child after that point will result in failure. If the child COW happens first, an attempt will be made to allocate the page without reserves and the child will get SIGKILLed on failure. To summarise the new behaviour: 1. If the original mapper performs COW on a private mapping with multiple references, it will attempt to allocate a hugepage from the pool or the buddy allocator without using the existing reserves. On fail, VMAs mapping the same area are traversed and the page being COW'd is unmapped where found. It will then steal the original page as the last mapper in the normal way. 2. The VMAs the pages were unmapped from are flagged to note that pages with data no longer exist. Future no-page faults on those VMAs will terminate the process as otherwise it would appear that data was corrupted. A warning is printed to the console that this situation occured. 2. If the child performs COW first, it will attempt to satisfy the COW from the pool if there are enough pages or via the buddy allocator if overcommit is allowed and the buddy allocator can satisfy the request. If it fails, the child will be killed. If the pool is large enough, existing applications will not notice that the reserves were a factor. Existing applications depending on the no-reserves been set are unlikely to exist as for much of the history of hugetlbfs, pages were prefaulted at mmap(), allocating the pages at that point or failing the mmap(). [npiggin@suse.de: fix CONFIG_HUGETLB=n build] Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@shadowen.org> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:25 -07:00
unsigned long end, struct page *ref_page)
{
mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
__unmap_hugepage_range(vma, start, end, ref_page);
mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
}
hugetlb: guarantee that COW faults for a process that called mmap(MAP_PRIVATE) on hugetlbfs will succeed After patch 2 in this series, a process that successfully calls mmap() for a MAP_PRIVATE mapping will be guaranteed to successfully fault until a process calls fork(). At that point, the next write fault from the parent could fail due to COW if the child still has a reference. We only reserve pages for the parent but a copy must be made to avoid leaking data from the parent to the child after fork(). Reserves could be taken for both parent and child at fork time to guarantee faults but if the mapping is large it is highly likely we will not have sufficient pages for the reservation, and it is common to fork only to exec() immediatly after. A failure here would be very undesirable. Note that the current behaviour of mainline with MAP_PRIVATE pages is pretty bad. The following situation is allowed to occur today. 1. Process calls mmap(MAP_PRIVATE) 2. Process calls mlock() to fault all pages and makes sure it succeeds 3. Process forks() 4. Process writes to MAP_PRIVATE mapping while child still exists 5. If the COW fails at this point, the process gets SIGKILLed even though it had taken care to ensure the pages existed This patch improves the situation by guaranteeing the reliability of the process that successfully calls mmap(). When the parent performs COW, it will try to satisfy the allocation without using reserves. If that fails the parent will steal the page leaving any children without a page. Faults from the child after that point will result in failure. If the child COW happens first, an attempt will be made to allocate the page without reserves and the child will get SIGKILLed on failure. To summarise the new behaviour: 1. If the original mapper performs COW on a private mapping with multiple references, it will attempt to allocate a hugepage from the pool or the buddy allocator without using the existing reserves. On fail, VMAs mapping the same area are traversed and the page being COW'd is unmapped where found. It will then steal the original page as the last mapper in the normal way. 2. The VMAs the pages were unmapped from are flagged to note that pages with data no longer exist. Future no-page faults on those VMAs will terminate the process as otherwise it would appear that data was corrupted. A warning is printed to the console that this situation occured. 2. If the child performs COW first, it will attempt to satisfy the COW from the pool if there are enough pages or via the buddy allocator if overcommit is allowed and the buddy allocator can satisfy the request. If it fails, the child will be killed. If the pool is large enough, existing applications will not notice that the reserves were a factor. Existing applications depending on the no-reserves been set are unlikely to exist as for much of the history of hugetlbfs, pages were prefaulted at mmap(), allocating the pages at that point or failing the mmap(). [npiggin@suse.de: fix CONFIG_HUGETLB=n build] Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@shadowen.org> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:25 -07:00
/*
* This is called when the original mapper is failing to COW a MAP_PRIVATE
* mappping it owns the reserve page for. The intention is to unmap the page
* from other VMAs and let the children be SIGKILLed if they are faulting the
* same region.
*/
static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
struct page *page, unsigned long address)
hugetlb: guarantee that COW faults for a process that called mmap(MAP_PRIVATE) on hugetlbfs will succeed After patch 2 in this series, a process that successfully calls mmap() for a MAP_PRIVATE mapping will be guaranteed to successfully fault until a process calls fork(). At that point, the next write fault from the parent could fail due to COW if the child still has a reference. We only reserve pages for the parent but a copy must be made to avoid leaking data from the parent to the child after fork(). Reserves could be taken for both parent and child at fork time to guarantee faults but if the mapping is large it is highly likely we will not have sufficient pages for the reservation, and it is common to fork only to exec() immediatly after. A failure here would be very undesirable. Note that the current behaviour of mainline with MAP_PRIVATE pages is pretty bad. The following situation is allowed to occur today. 1. Process calls mmap(MAP_PRIVATE) 2. Process calls mlock() to fault all pages and makes sure it succeeds 3. Process forks() 4. Process writes to MAP_PRIVATE mapping while child still exists 5. If the COW fails at this point, the process gets SIGKILLed even though it had taken care to ensure the pages existed This patch improves the situation by guaranteeing the reliability of the process that successfully calls mmap(). When the parent performs COW, it will try to satisfy the allocation without using reserves. If that fails the parent will steal the page leaving any children without a page. Faults from the child after that point will result in failure. If the child COW happens first, an attempt will be made to allocate the page without reserves and the child will get SIGKILLed on failure. To summarise the new behaviour: 1. If the original mapper performs COW on a private mapping with multiple references, it will attempt to allocate a hugepage from the pool or the buddy allocator without using the existing reserves. On fail, VMAs mapping the same area are traversed and the page being COW'd is unmapped where found. It will then steal the original page as the last mapper in the normal way. 2. The VMAs the pages were unmapped from are flagged to note that pages with data no longer exist. Future no-page faults on those VMAs will terminate the process as otherwise it would appear that data was corrupted. A warning is printed to the console that this situation occured. 2. If the child performs COW first, it will attempt to satisfy the COW from the pool if there are enough pages or via the buddy allocator if overcommit is allowed and the buddy allocator can satisfy the request. If it fails, the child will be killed. If the pool is large enough, existing applications will not notice that the reserves were a factor. Existing applications depending on the no-reserves been set are unlikely to exist as for much of the history of hugetlbfs, pages were prefaulted at mmap(), allocating the pages at that point or failing the mmap(). [npiggin@suse.de: fix CONFIG_HUGETLB=n build] Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@shadowen.org> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:25 -07:00
{
struct hstate *h = hstate_vma(vma);
hugetlb: guarantee that COW faults for a process that called mmap(MAP_PRIVATE) on hugetlbfs will succeed After patch 2 in this series, a process that successfully calls mmap() for a MAP_PRIVATE mapping will be guaranteed to successfully fault until a process calls fork(). At that point, the next write fault from the parent could fail due to COW if the child still has a reference. We only reserve pages for the parent but a copy must be made to avoid leaking data from the parent to the child after fork(). Reserves could be taken for both parent and child at fork time to guarantee faults but if the mapping is large it is highly likely we will not have sufficient pages for the reservation, and it is common to fork only to exec() immediatly after. A failure here would be very undesirable. Note that the current behaviour of mainline with MAP_PRIVATE pages is pretty bad. The following situation is allowed to occur today. 1. Process calls mmap(MAP_PRIVATE) 2. Process calls mlock() to fault all pages and makes sure it succeeds 3. Process forks() 4. Process writes to MAP_PRIVATE mapping while child still exists 5. If the COW fails at this point, the process gets SIGKILLed even though it had taken care to ensure the pages existed This patch improves the situation by guaranteeing the reliability of the process that successfully calls mmap(). When the parent performs COW, it will try to satisfy the allocation without using reserves. If that fails the parent will steal the page leaving any children without a page. Faults from the child after that point will result in failure. If the child COW happens first, an attempt will be made to allocate the page without reserves and the child will get SIGKILLed on failure. To summarise the new behaviour: 1. If the original mapper performs COW on a private mapping with multiple references, it will attempt to allocate a hugepage from the pool or the buddy allocator without using the existing reserves. On fail, VMAs mapping the same area are traversed and the page being COW'd is unmapped where found. It will then steal the original page as the last mapper in the normal way. 2. The VMAs the pages were unmapped from are flagged to note that pages with data no longer exist. Future no-page faults on those VMAs will terminate the process as otherwise it would appear that data was corrupted. A warning is printed to the console that this situation occured. 2. If the child performs COW first, it will attempt to satisfy the COW from the pool if there are enough pages or via the buddy allocator if overcommit is allowed and the buddy allocator can satisfy the request. If it fails, the child will be killed. If the pool is large enough, existing applications will not notice that the reserves were a factor. Existing applications depending on the no-reserves been set are unlikely to exist as for much of the history of hugetlbfs, pages were prefaulted at mmap(), allocating the pages at that point or failing the mmap(). [npiggin@suse.de: fix CONFIG_HUGETLB=n build] Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@shadowen.org> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:25 -07:00
struct vm_area_struct *iter_vma;
struct address_space *mapping;
struct prio_tree_iter iter;
pgoff_t pgoff;
/*
* vm_pgoff is in PAGE_SIZE units, hence the different calculation
* from page cache lookup which is in HPAGE_SIZE units.
*/
address = address & huge_page_mask(h);
hugetlb: guarantee that COW faults for a process that called mmap(MAP_PRIVATE) on hugetlbfs will succeed After patch 2 in this series, a process that successfully calls mmap() for a MAP_PRIVATE mapping will be guaranteed to successfully fault until a process calls fork(). At that point, the next write fault from the parent could fail due to COW if the child still has a reference. We only reserve pages for the parent but a copy must be made to avoid leaking data from the parent to the child after fork(). Reserves could be taken for both parent and child at fork time to guarantee faults but if the mapping is large it is highly likely we will not have sufficient pages for the reservation, and it is common to fork only to exec() immediatly after. A failure here would be very undesirable. Note that the current behaviour of mainline with MAP_PRIVATE pages is pretty bad. The following situation is allowed to occur today. 1. Process calls mmap(MAP_PRIVATE) 2. Process calls mlock() to fault all pages and makes sure it succeeds 3. Process forks() 4. Process writes to MAP_PRIVATE mapping while child still exists 5. If the COW fails at this point, the process gets SIGKILLed even though it had taken care to ensure the pages existed This patch improves the situation by guaranteeing the reliability of the process that successfully calls mmap(). When the parent performs COW, it will try to satisfy the allocation without using reserves. If that fails the parent will steal the page leaving any children without a page. Faults from the child after that point will result in failure. If the child COW happens first, an attempt will be made to allocate the page without reserves and the child will get SIGKILLed on failure. To summarise the new behaviour: 1. If the original mapper performs COW on a private mapping with multiple references, it will attempt to allocate a hugepage from the pool or the buddy allocator without using the existing reserves. On fail, VMAs mapping the same area are traversed and the page being COW'd is unmapped where found. It will then steal the original page as the last mapper in the normal way. 2. The VMAs the pages were unmapped from are flagged to note that pages with data no longer exist. Future no-page faults on those VMAs will terminate the process as otherwise it would appear that data was corrupted. A warning is printed to the console that this situation occured. 2. If the child performs COW first, it will attempt to satisfy the COW from the pool if there are enough pages or via the buddy allocator if overcommit is allowed and the buddy allocator can satisfy the request. If it fails, the child will be killed. If the pool is large enough, existing applications will not notice that the reserves were a factor. Existing applications depending on the no-reserves been set are unlikely to exist as for much of the history of hugetlbfs, pages were prefaulted at mmap(), allocating the pages at that point or failing the mmap(). [npiggin@suse.de: fix CONFIG_HUGETLB=n build] Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@shadowen.org> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:25 -07:00
pgoff = ((address - vma->vm_start) >> PAGE_SHIFT)
+ (vma->vm_pgoff >> PAGE_SHIFT);
mapping = (struct address_space *)page_private(page);
/*
* Take the mapping lock for the duration of the table walk. As
* this mapping should be shared between all the VMAs,
* __unmap_hugepage_range() is called as the lock is already held
*/
mutex_lock(&mapping->i_mmap_mutex);
hugetlb: guarantee that COW faults for a process that called mmap(MAP_PRIVATE) on hugetlbfs will succeed After patch 2 in this series, a process that successfully calls mmap() for a MAP_PRIVATE mapping will be guaranteed to successfully fault until a process calls fork(). At that point, the next write fault from the parent could fail due to COW if the child still has a reference. We only reserve pages for the parent but a copy must be made to avoid leaking data from the parent to the child after fork(). Reserves could be taken for both parent and child at fork time to guarantee faults but if the mapping is large it is highly likely we will not have sufficient pages for the reservation, and it is common to fork only to exec() immediatly after. A failure here would be very undesirable. Note that the current behaviour of mainline with MAP_PRIVATE pages is pretty bad. The following situation is allowed to occur today. 1. Process calls mmap(MAP_PRIVATE) 2. Process calls mlock() to fault all pages and makes sure it succeeds 3. Process forks() 4. Process writes to MAP_PRIVATE mapping while child still exists 5. If the COW fails at this point, the process gets SIGKILLed even though it had taken care to ensure the pages existed This patch improves the situation by guaranteeing the reliability of the process that successfully calls mmap(). When the parent performs COW, it will try to satisfy the allocation without using reserves. If that fails the parent will steal the page leaving any children without a page. Faults from the child after that point will result in failure. If the child COW happens first, an attempt will be made to allocate the page without reserves and the child will get SIGKILLed on failure. To summarise the new behaviour: 1. If the original mapper performs COW on a private mapping with multiple references, it will attempt to allocate a hugepage from the pool or the buddy allocator without using the existing reserves. On fail, VMAs mapping the same area are traversed and the page being COW'd is unmapped where found. It will then steal the original page as the last mapper in the normal way. 2. The VMAs the pages were unmapped from are flagged to note that pages with data no longer exist. Future no-page faults on those VMAs will terminate the process as otherwise it would appear that data was corrupted. A warning is printed to the console that this situation occured. 2. If the child performs COW first, it will attempt to satisfy the COW from the pool if there are enough pages or via the buddy allocator if overcommit is allowed and the buddy allocator can satisfy the request. If it fails, the child will be killed. If the pool is large enough, existing applications will not notice that the reserves were a factor. Existing applications depending on the no-reserves been set are unlikely to exist as for much of the history of hugetlbfs, pages were prefaulted at mmap(), allocating the pages at that point or failing the mmap(). [npiggin@suse.de: fix CONFIG_HUGETLB=n build] Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@shadowen.org> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:25 -07:00
vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
/* Do not unmap the current VMA */
if (iter_vma == vma)
continue;
/*
* Unmap the page from other VMAs without their own reserves.
* They get marked to be SIGKILLed if they fault in these
* areas. This is because a future no-page fault on this VMA
* could insert a zeroed page instead of the data existing
* from the time of fork. This would look like data corruption
*/
if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
__unmap_hugepage_range(iter_vma,
address, address + huge_page_size(h),
hugetlb: guarantee that COW faults for a process that called mmap(MAP_PRIVATE) on hugetlbfs will succeed After patch 2 in this series, a process that successfully calls mmap() for a MAP_PRIVATE mapping will be guaranteed to successfully fault until a process calls fork(). At that point, the next write fault from the parent could fail due to COW if the child still has a reference. We only reserve pages for the parent but a copy must be made to avoid leaking data from the parent to the child after fork(). Reserves could be taken for both parent and child at fork time to guarantee faults but if the mapping is large it is highly likely we will not have sufficient pages for the reservation, and it is common to fork only to exec() immediatly after. A failure here would be very undesirable. Note that the current behaviour of mainline with MAP_PRIVATE pages is pretty bad. The following situation is allowed to occur today. 1. Process calls mmap(MAP_PRIVATE) 2. Process calls mlock() to fault all pages and makes sure it succeeds 3. Process forks() 4. Process writes to MAP_PRIVATE mapping while child still exists 5. If the COW fails at this point, the process gets SIGKILLed even though it had taken care to ensure the pages existed This patch improves the situation by guaranteeing the reliability of the process that successfully calls mmap(). When the parent performs COW, it will try to satisfy the allocation without using reserves. If that fails the parent will steal the page leaving any children without a page. Faults from the child after that point will result in failure. If the child COW happens first, an attempt will be made to allocate the page without reserves and the child will get SIGKILLed on failure. To summarise the new behaviour: 1. If the original mapper performs COW on a private mapping with multiple references, it will attempt to allocate a hugepage from the pool or the buddy allocator without using the existing reserves. On fail, VMAs mapping the same area are traversed and the page being COW'd is unmapped where found. It will then steal the original page as the last mapper in the normal way. 2. The VMAs the pages were unmapped from are flagged to note that pages with data no longer exist. Future no-page faults on those VMAs will terminate the process as otherwise it would appear that data was corrupted. A warning is printed to the console that this situation occured. 2. If the child performs COW first, it will attempt to satisfy the COW from the pool if there are enough pages or via the buddy allocator if overcommit is allowed and the buddy allocator can satisfy the request. If it fails, the child will be killed. If the pool is large enough, existing applications will not notice that the reserves were a factor. Existing applications depending on the no-reserves been set are unlikely to exist as for much of the history of hugetlbfs, pages were prefaulted at mmap(), allocating the pages at that point or failing the mmap(). [npiggin@suse.de: fix CONFIG_HUGETLB=n build] Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@shadowen.org> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:25 -07:00
page);
}
mutex_unlock(&mapping->i_mmap_mutex);
hugetlb: guarantee that COW faults for a process that called mmap(MAP_PRIVATE) on hugetlbfs will succeed After patch 2 in this series, a process that successfully calls mmap() for a MAP_PRIVATE mapping will be guaranteed to successfully fault until a process calls fork(). At that point, the next write fault from the parent could fail due to COW if the child still has a reference. We only reserve pages for the parent but a copy must be made to avoid leaking data from the parent to the child after fork(). Reserves could be taken for both parent and child at fork time to guarantee faults but if the mapping is large it is highly likely we will not have sufficient pages for the reservation, and it is common to fork only to exec() immediatly after. A failure here would be very undesirable. Note that the current behaviour of mainline with MAP_PRIVATE pages is pretty bad. The following situation is allowed to occur today. 1. Process calls mmap(MAP_PRIVATE) 2. Process calls mlock() to fault all pages and makes sure it succeeds 3. Process forks() 4. Process writes to MAP_PRIVATE mapping while child still exists 5. If the COW fails at this point, the process gets SIGKILLed even though it had taken care to ensure the pages existed This patch improves the situation by guaranteeing the reliability of the process that successfully calls mmap(). When the parent performs COW, it will try to satisfy the allocation without using reserves. If that fails the parent will steal the page leaving any children without a page. Faults from the child after that point will result in failure. If the child COW happens first, an attempt will be made to allocate the page without reserves and the child will get SIGKILLed on failure. To summarise the new behaviour: 1. If the original mapper performs COW on a private mapping with multiple references, it will attempt to allocate a hugepage from the pool or the buddy allocator without using the existing reserves. On fail, VMAs mapping the same area are traversed and the page being COW'd is unmapped where found. It will then steal the original page as the last mapper in the normal way. 2. The VMAs the pages were unmapped from are flagged to note that pages with data no longer exist. Future no-page faults on those VMAs will terminate the process as otherwise it would appear that data was corrupted. A warning is printed to the console that this situation occured. 2. If the child performs COW first, it will attempt to satisfy the COW from the pool if there are enough pages or via the buddy allocator if overcommit is allowed and the buddy allocator can satisfy the request. If it fails, the child will be killed. If the pool is large enough, existing applications will not notice that the reserves were a factor. Existing applications depending on the no-reserves been set are unlikely to exist as for much of the history of hugetlbfs, pages were prefaulted at mmap(), allocating the pages at that point or failing the mmap(). [npiggin@suse.de: fix CONFIG_HUGETLB=n build] Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@shadowen.org> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:25 -07:00
return 1;
}
hugetlb, rmap: add reverse mapping for hugepage This patch adds reverse mapping feature for hugepage by introducing mapcount for shared/private-mapped hugepage and anon_vma for private-mapped hugepage. While hugepage is not currently swappable, reverse mapping can be useful for memory error handler. Without this patch, memory error handler cannot identify processes using the bad hugepage nor unmap it from them. That is: - for shared hugepage: we can collect processes using a hugepage through pagecache, but can not unmap the hugepage because of the lack of mapcount. - for privately mapped hugepage: we can neither collect processes nor unmap the hugepage. This patch solves these problems. This patch include the bug fix given by commit 23be7468e8, so reverts it. Dependency: "hugetlb: move definition of is_vm_hugetlb_page() to hugepage_inline.h" ChangeLog since May 24. - create hugetlb_inline.h and move is_vm_hugetlb_index() in it. - move functions setting up anon_vma for hugepage into mm/rmap.c. ChangeLog since May 13. - rebased to 2.6.34 - fix logic error (in case that private mapping and shared mapping coexist) - move is_vm_hugetlb_page() into include/linux/mm.h to use this function from linear_page_index() - define and use linear_hugepage_index() instead of compound_order() - use page_move_anon_rmap() in hugetlb_cow() - copy exclusive switch of __set_page_anon_rmap() into hugepage counterpart. - revert commit 24be7468 completely Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Larry Woodman <lwoodman@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com> Acked-by: Fengguang Wu <fengguang.wu@intel.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andi Kleen <ak@linux.intel.com>
2010-05-28 09:29:16 +09:00
/*
* Hugetlb_cow() should be called with page lock of the original hugepage held.
*/
static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
hugetlb: guarantee that COW faults for a process that called mmap(MAP_PRIVATE) on hugetlbfs will succeed After patch 2 in this series, a process that successfully calls mmap() for a MAP_PRIVATE mapping will be guaranteed to successfully fault until a process calls fork(). At that point, the next write fault from the parent could fail due to COW if the child still has a reference. We only reserve pages for the parent but a copy must be made to avoid leaking data from the parent to the child after fork(). Reserves could be taken for both parent and child at fork time to guarantee faults but if the mapping is large it is highly likely we will not have sufficient pages for the reservation, and it is common to fork only to exec() immediatly after. A failure here would be very undesirable. Note that the current behaviour of mainline with MAP_PRIVATE pages is pretty bad. The following situation is allowed to occur today. 1. Process calls mmap(MAP_PRIVATE) 2. Process calls mlock() to fault all pages and makes sure it succeeds 3. Process forks() 4. Process writes to MAP_PRIVATE mapping while child still exists 5. If the COW fails at this point, the process gets SIGKILLed even though it had taken care to ensure the pages existed This patch improves the situation by guaranteeing the reliability of the process that successfully calls mmap(). When the parent performs COW, it will try to satisfy the allocation without using reserves. If that fails the parent will steal the page leaving any children without a page. Faults from the child after that point will result in failure. If the child COW happens first, an attempt will be made to allocate the page without reserves and the child will get SIGKILLed on failure. To summarise the new behaviour: 1. If the original mapper performs COW on a private mapping with multiple references, it will attempt to allocate a hugepage from the pool or the buddy allocator without using the existing reserves. On fail, VMAs mapping the same area are traversed and the page being COW'd is unmapped where found. It will then steal the original page as the last mapper in the normal way. 2. The VMAs the pages were unmapped from are flagged to note that pages with data no longer exist. Future no-page faults on those VMAs will terminate the process as otherwise it would appear that data was corrupted. A warning is printed to the console that this situation occured. 2. If the child performs COW first, it will attempt to satisfy the COW from the pool if there are enough pages or via the buddy allocator if overcommit is allowed and the buddy allocator can satisfy the request. If it fails, the child will be killed. If the pool is large enough, existing applications will not notice that the reserves were a factor. Existing applications depending on the no-reserves been set are unlikely to exist as for much of the history of hugetlbfs, pages were prefaulted at mmap(), allocating the pages at that point or failing the mmap(). [npiggin@suse.de: fix CONFIG_HUGETLB=n build] Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@shadowen.org> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:25 -07:00
unsigned long address, pte_t *ptep, pte_t pte,
struct page *pagecache_page)
{
struct hstate *h = hstate_vma(vma);
struct page *old_page, *new_page;
int avoidcopy;
hugetlb: guarantee that COW faults for a process that called mmap(MAP_PRIVATE) on hugetlbfs will succeed After patch 2 in this series, a process that successfully calls mmap() for a MAP_PRIVATE mapping will be guaranteed to successfully fault until a process calls fork(). At that point, the next write fault from the parent could fail due to COW if the child still has a reference. We only reserve pages for the parent but a copy must be made to avoid leaking data from the parent to the child after fork(). Reserves could be taken for both parent and child at fork time to guarantee faults but if the mapping is large it is highly likely we will not have sufficient pages for the reservation, and it is common to fork only to exec() immediatly after. A failure here would be very undesirable. Note that the current behaviour of mainline with MAP_PRIVATE pages is pretty bad. The following situation is allowed to occur today. 1. Process calls mmap(MAP_PRIVATE) 2. Process calls mlock() to fault all pages and makes sure it succeeds 3. Process forks() 4. Process writes to MAP_PRIVATE mapping while child still exists 5. If the COW fails at this point, the process gets SIGKILLed even though it had taken care to ensure the pages existed This patch improves the situation by guaranteeing the reliability of the process that successfully calls mmap(). When the parent performs COW, it will try to satisfy the allocation without using reserves. If that fails the parent will steal the page leaving any children without a page. Faults from the child after that point will result in failure. If the child COW happens first, an attempt will be made to allocate the page without reserves and the child will get SIGKILLed on failure. To summarise the new behaviour: 1. If the original mapper performs COW on a private mapping with multiple references, it will attempt to allocate a hugepage from the pool or the buddy allocator without using the existing reserves. On fail, VMAs mapping the same area are traversed and the page being COW'd is unmapped where found. It will then steal the original page as the last mapper in the normal way. 2. The VMAs the pages were unmapped from are flagged to note that pages with data no longer exist. Future no-page faults on those VMAs will terminate the process as otherwise it would appear that data was corrupted. A warning is printed to the console that this situation occured. 2. If the child performs COW first, it will attempt to satisfy the COW from the pool if there are enough pages or via the buddy allocator if overcommit is allowed and the buddy allocator can satisfy the request. If it fails, the child will be killed. If the pool is large enough, existing applications will not notice that the reserves were a factor. Existing applications depending on the no-reserves been set are unlikely to exist as for much of the history of hugetlbfs, pages were prefaulted at mmap(), allocating the pages at that point or failing the mmap(). [npiggin@suse.de: fix CONFIG_HUGETLB=n build] Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@shadowen.org> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:25 -07:00
int outside_reserve = 0;
old_page = pte_page(pte);
hugetlb: guarantee that COW faults for a process that called mmap(MAP_PRIVATE) on hugetlbfs will succeed After patch 2 in this series, a process that successfully calls mmap() for a MAP_PRIVATE mapping will be guaranteed to successfully fault until a process calls fork(). At that point, the next write fault from the parent could fail due to COW if the child still has a reference. We only reserve pages for the parent but a copy must be made to avoid leaking data from the parent to the child after fork(). Reserves could be taken for both parent and child at fork time to guarantee faults but if the mapping is large it is highly likely we will not have sufficient pages for the reservation, and it is common to fork only to exec() immediatly after. A failure here would be very undesirable. Note that the current behaviour of mainline with MAP_PRIVATE pages is pretty bad. The following situation is allowed to occur today. 1. Process calls mmap(MAP_PRIVATE) 2. Process calls mlock() to fault all pages and makes sure it succeeds 3. Process forks() 4. Process writes to MAP_PRIVATE mapping while child still exists 5. If the COW fails at this point, the process gets SIGKILLed even though it had taken care to ensure the pages existed This patch improves the situation by guaranteeing the reliability of the process that successfully calls mmap(). When the parent performs COW, it will try to satisfy the allocation without using reserves. If that fails the parent will steal the page leaving any children without a page. Faults from the child after that point will result in failure. If the child COW happens first, an attempt will be made to allocate the page without reserves and the child will get SIGKILLed on failure. To summarise the new behaviour: 1. If the original mapper performs COW on a private mapping with multiple references, it will attempt to allocate a hugepage from the pool or the buddy allocator without using the existing reserves. On fail, VMAs mapping the same area are traversed and the page being COW'd is unmapped where found. It will then steal the original page as the last mapper in the normal way. 2. The VMAs the pages were unmapped from are flagged to note that pages with data no longer exist. Future no-page faults on those VMAs will terminate the process as otherwise it would appear that data was corrupted. A warning is printed to the console that this situation occured. 2. If the child performs COW first, it will attempt to satisfy the COW from the pool if there are enough pages or via the buddy allocator if overcommit is allowed and the buddy allocator can satisfy the request. If it fails, the child will be killed. If the pool is large enough, existing applications will not notice that the reserves were a factor. Existing applications depending on the no-reserves been set are unlikely to exist as for much of the history of hugetlbfs, pages were prefaulted at mmap(), allocating the pages at that point or failing the mmap(). [npiggin@suse.de: fix CONFIG_HUGETLB=n build] Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@shadowen.org> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:25 -07:00
retry_avoidcopy:
/* If no-one else is actually using this page, avoid the copy
* and just make the page writable */
hugetlb, rmap: add reverse mapping for hugepage This patch adds reverse mapping feature for hugepage by introducing mapcount for shared/private-mapped hugepage and anon_vma for private-mapped hugepage. While hugepage is not currently swappable, reverse mapping can be useful for memory error handler. Without this patch, memory error handler cannot identify processes using the bad hugepage nor unmap it from them. That is: - for shared hugepage: we can collect processes using a hugepage through pagecache, but can not unmap the hugepage because of the lack of mapcount. - for privately mapped hugepage: we can neither collect processes nor unmap the hugepage. This patch solves these problems. This patch include the bug fix given by commit 23be7468e8, so reverts it. Dependency: "hugetlb: move definition of is_vm_hugetlb_page() to hugepage_inline.h" ChangeLog since May 24. - create hugetlb_inline.h and move is_vm_hugetlb_index() in it. - move functions setting up anon_vma for hugepage into mm/rmap.c. ChangeLog since May 13. - rebased to 2.6.34 - fix logic error (in case that private mapping and shared mapping coexist) - move is_vm_hugetlb_page() into include/linux/mm.h to use this function from linear_page_index() - define and use linear_hugepage_index() instead of compound_order() - use page_move_anon_rmap() in hugetlb_cow() - copy exclusive switch of __set_page_anon_rmap() into hugepage counterpart. - revert commit 24be7468 completely Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Larry Woodman <lwoodman@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com> Acked-by: Fengguang Wu <fengguang.wu@intel.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andi Kleen <ak@linux.intel.com>
2010-05-28 09:29:16 +09:00
avoidcopy = (page_mapcount(old_page) == 1);
if (avoidcopy) {
if (PageAnon(old_page))
page_move_anon_rmap(old_page, vma, address);
set_huge_ptep_writable(vma, address, ptep);
mm: fault feedback #2 This patch completes Linus's wish that the fault return codes be made into bit flags, which I agree makes everything nicer. This requires requires all handle_mm_fault callers to be modified (possibly the modifications should go further and do things like fault accounting in handle_mm_fault -- however that would be for another patch). [akpm@linux-foundation.org: fix alpha build] [akpm@linux-foundation.org: fix s390 build] [akpm@linux-foundation.org: fix sparc build] [akpm@linux-foundation.org: fix sparc64 build] [akpm@linux-foundation.org: fix ia64 build] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Richard Henderson <rth@twiddle.net> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Ian Molton <spyro@f2s.com> Cc: Bryan Wu <bryan.wu@analog.com> Cc: Mikael Starvik <starvik@axis.com> Cc: David Howells <dhowells@redhat.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Hirokazu Takata <takata@linux-m32r.org> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Roman Zippel <zippel@linux-m68k.org> Cc: Greg Ungerer <gerg@uclinux.org> Cc: Matthew Wilcox <willy@debian.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Paul Mundt <lethal@linux-sh.org> Cc: Kazumoto Kojima <kkojima@rr.iij4u.or.jp> Cc: Richard Curnow <rc@rc0.org.uk> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Jeff Dike <jdike@addtoit.com> Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it> Cc: Miles Bader <uclinux-v850@lsi.nec.co.jp> Cc: Chris Zankel <chris@zankel.net> Acked-by: Kyle McMartin <kyle@mcmartin.ca> Acked-by: Haavard Skinnemoen <hskinnemoen@atmel.com> Acked-by: Ralf Baechle <ralf@linux-mips.org> Acked-by: Andi Kleen <ak@muc.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> [ Still apparently needs some ARM and PPC loving - Linus ] Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-19 01:47:05 -07:00
return 0;
}
hugetlb: guarantee that COW faults for a process that called mmap(MAP_PRIVATE) on hugetlbfs will succeed After patch 2 in this series, a process that successfully calls mmap() for a MAP_PRIVATE mapping will be guaranteed to successfully fault until a process calls fork(). At that point, the next write fault from the parent could fail due to COW if the child still has a reference. We only reserve pages for the parent but a copy must be made to avoid leaking data from the parent to the child after fork(). Reserves could be taken for both parent and child at fork time to guarantee faults but if the mapping is large it is highly likely we will not have sufficient pages for the reservation, and it is common to fork only to exec() immediatly after. A failure here would be very undesirable. Note that the current behaviour of mainline with MAP_PRIVATE pages is pretty bad. The following situation is allowed to occur today. 1. Process calls mmap(MAP_PRIVATE) 2. Process calls mlock() to fault all pages and makes sure it succeeds 3. Process forks() 4. Process writes to MAP_PRIVATE mapping while child still exists 5. If the COW fails at this point, the process gets SIGKILLed even though it had taken care to ensure the pages existed This patch improves the situation by guaranteeing the reliability of the process that successfully calls mmap(). When the parent performs COW, it will try to satisfy the allocation without using reserves. If that fails the parent will steal the page leaving any children without a page. Faults from the child after that point will result in failure. If the child COW happens first, an attempt will be made to allocate the page without reserves and the child will get SIGKILLed on failure. To summarise the new behaviour: 1. If the original mapper performs COW on a private mapping with multiple references, it will attempt to allocate a hugepage from the pool or the buddy allocator without using the existing reserves. On fail, VMAs mapping the same area are traversed and the page being COW'd is unmapped where found. It will then steal the original page as the last mapper in the normal way. 2. The VMAs the pages were unmapped from are flagged to note that pages with data no longer exist. Future no-page faults on those VMAs will terminate the process as otherwise it would appear that data was corrupted. A warning is printed to the console that this situation occured. 2. If the child performs COW first, it will attempt to satisfy the COW from the pool if there are enough pages or via the buddy allocator if overcommit is allowed and the buddy allocator can satisfy the request. If it fails, the child will be killed. If the pool is large enough, existing applications will not notice that the reserves were a factor. Existing applications depending on the no-reserves been set are unlikely to exist as for much of the history of hugetlbfs, pages were prefaulted at mmap(), allocating the pages at that point or failing the mmap(). [npiggin@suse.de: fix CONFIG_HUGETLB=n build] Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@shadowen.org> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:25 -07:00
/*
* If the process that created a MAP_PRIVATE mapping is about to
* perform a COW due to a shared page count, attempt to satisfy
* the allocation without using the existing reserves. The pagecache
* page is used to determine if the reserve at this address was
* consumed or not. If reserves were used, a partial faulted mapping
* at the time of fork() could consume its reserves on COW instead
* of the full address range.
*/
mm: account for MAP_SHARED mappings using VM_MAYSHARE and not VM_SHARED in hugetlbfs Addresses http://bugzilla.kernel.org/show_bug.cgi?id=13302 hugetlbfs reserves huge pages but does not fault them at mmap() time to ensure that future faults succeed. The reservation behaviour differs depending on whether the mapping was mapped MAP_SHARED or MAP_PRIVATE. For MAP_SHARED mappings, hugepages are reserved when mmap() is first called and are tracked based on information associated with the inode. Other processes mapping MAP_SHARED use the same reservation. MAP_PRIVATE track the reservations based on the VMA created as part of the mmap() operation. Each process mapping MAP_PRIVATE must make its own reservation. hugetlbfs currently checks if a VMA is MAP_SHARED with the VM_SHARED flag and not VM_MAYSHARE. For file-backed mappings, such as hugetlbfs, VM_SHARED is set only if the mapping is MAP_SHARED and the file was opened read-write. If a shared memory mapping was mapped shared-read-write for populating of data and mapped shared-read-only by other processes, then hugetlbfs would account for the mapping as if it was MAP_PRIVATE. This causes processes to fail to map the file MAP_SHARED even though it should succeed as the reservation is there. This patch alters mm/hugetlb.c and replaces VM_SHARED with VM_MAYSHARE when the intent of the code was to check whether the VMA was mapped MAP_SHARED or MAP_PRIVATE. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: Ingo Molnar <mingo@elte.hu> Cc: <stable@kernel.org> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: <starlight@binnacle.cx> Cc: Eric B Munson <ebmunson@us.ibm.com> Cc: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@canonical.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-05-28 14:34:40 -07:00
if (!(vma->vm_flags & VM_MAYSHARE) &&
hugetlb: guarantee that COW faults for a process that called mmap(MAP_PRIVATE) on hugetlbfs will succeed After patch 2 in this series, a process that successfully calls mmap() for a MAP_PRIVATE mapping will be guaranteed to successfully fault until a process calls fork(). At that point, the next write fault from the parent could fail due to COW if the child still has a reference. We only reserve pages for the parent but a copy must be made to avoid leaking data from the parent to the child after fork(). Reserves could be taken for both parent and child at fork time to guarantee faults but if the mapping is large it is highly likely we will not have sufficient pages for the reservation, and it is common to fork only to exec() immediatly after. A failure here would be very undesirable. Note that the current behaviour of mainline with MAP_PRIVATE pages is pretty bad. The following situation is allowed to occur today. 1. Process calls mmap(MAP_PRIVATE) 2. Process calls mlock() to fault all pages and makes sure it succeeds 3. Process forks() 4. Process writes to MAP_PRIVATE mapping while child still exists 5. If the COW fails at this point, the process gets SIGKILLed even though it had taken care to ensure the pages existed This patch improves the situation by guaranteeing the reliability of the process that successfully calls mmap(). When the parent performs COW, it will try to satisfy the allocation without using reserves. If that fails the parent will steal the page leaving any children without a page. Faults from the child after that point will result in failure. If the child COW happens first, an attempt will be made to allocate the page without reserves and the child will get SIGKILLed on failure. To summarise the new behaviour: 1. If the original mapper performs COW on a private mapping with multiple references, it will attempt to allocate a hugepage from the pool or the buddy allocator without using the existing reserves. On fail, VMAs mapping the same area are traversed and the page being COW'd is unmapped where found. It will then steal the original page as the last mapper in the normal way. 2. The VMAs the pages were unmapped from are flagged to note that pages with data no longer exist. Future no-page faults on those VMAs will terminate the process as otherwise it would appear that data was corrupted. A warning is printed to the console that this situation occured. 2. If the child performs COW first, it will attempt to satisfy the COW from the pool if there are enough pages or via the buddy allocator if overcommit is allowed and the buddy allocator can satisfy the request. If it fails, the child will be killed. If the pool is large enough, existing applications will not notice that the reserves were a factor. Existing applications depending on the no-reserves been set are unlikely to exist as for much of the history of hugetlbfs, pages were prefaulted at mmap(), allocating the pages at that point or failing the mmap(). [npiggin@suse.de: fix CONFIG_HUGETLB=n build] Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@shadowen.org> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:25 -07:00
is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
old_page != pagecache_page)
outside_reserve = 1;
page_cache_get(old_page);
hugetlb: prevent deadlock in __unmap_hugepage_range() when alloc_huge_page() fails hugetlb_fault() takes the mm->page_table_lock spinlock then calls hugetlb_cow(). If the alloc_huge_page() in hugetlb_cow() fails due to an insufficient huge page pool it calls unmap_ref_private() with the mm->page_table_lock held. unmap_ref_private() then calls unmap_hugepage_range() which tries to acquire the mm->page_table_lock. [<ffffffff810928c3>] print_circular_bug_tail+0x80/0x9f [<ffffffff8109280b>] ? check_noncircular+0xb0/0xe8 [<ffffffff810935e0>] __lock_acquire+0x956/0xc0e [<ffffffff81093986>] lock_acquire+0xee/0x12e [<ffffffff8111a7a6>] ? unmap_hugepage_range+0x3e/0x84 [<ffffffff8111a7a6>] ? unmap_hugepage_range+0x3e/0x84 [<ffffffff814c348d>] _spin_lock+0x40/0x89 [<ffffffff8111a7a6>] ? unmap_hugepage_range+0x3e/0x84 [<ffffffff8111afee>] ? alloc_huge_page+0x218/0x318 [<ffffffff8111a7a6>] unmap_hugepage_range+0x3e/0x84 [<ffffffff8111b2d0>] hugetlb_cow+0x1e2/0x3f4 [<ffffffff8111b935>] ? hugetlb_fault+0x453/0x4f6 [<ffffffff8111b962>] hugetlb_fault+0x480/0x4f6 [<ffffffff8111baee>] follow_hugetlb_page+0x116/0x2d9 [<ffffffff814c31a7>] ? _spin_unlock_irq+0x3a/0x5c [<ffffffff81107b4d>] __get_user_pages+0x2a3/0x427 [<ffffffff81107d0f>] get_user_pages+0x3e/0x54 [<ffffffff81040b8b>] get_user_pages_fast+0x170/0x1b5 [<ffffffff81160352>] dio_get_page+0x64/0x14a [<ffffffff8116112a>] __blockdev_direct_IO+0x4b7/0xb31 [<ffffffff8115ef91>] blkdev_direct_IO+0x58/0x6e [<ffffffff8115e0a4>] ? blkdev_get_blocks+0x0/0xb8 [<ffffffff810ed2c5>] generic_file_aio_read+0xdd/0x528 [<ffffffff81219da3>] ? avc_has_perm+0x66/0x8c [<ffffffff81132842>] do_sync_read+0xf5/0x146 [<ffffffff8107da00>] ? autoremove_wake_function+0x0/0x5a [<ffffffff81211857>] ? security_file_permission+0x24/0x3a [<ffffffff81132fd8>] vfs_read+0xb5/0x126 [<ffffffff81133f6b>] ? fget_light+0x5e/0xf8 [<ffffffff81133131>] sys_read+0x54/0x8c [<ffffffff81011e42>] system_call_fastpath+0x16/0x1b This can be fixed by dropping the mm->page_table_lock around the call to unmap_ref_private() if alloc_huge_page() fails, its dropped right below in the normal path anyway. However, earlier in the that function, it's also possible to call into the page allocator with the same spinlock held. What this patch does is drop the spinlock before the page allocator is potentially entered. The check for page allocation failure can be made without the page_table_lock as well as the copy of the huge page. Even if the PTE changed while the spinlock was held, the consequence is that a huge page is copied unnecessarily. This resolves both the double taking of the lock and sleeping with the spinlock held. [mel@csn.ul.ie: Cover also the case where process can sleep with spinlock] Signed-off-by: Larry Woodman <lwooman@redhat.com> Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@shadowen.org> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-14 17:59:37 -08:00
/* Drop page_table_lock as buddy allocator may be called */
spin_unlock(&mm->page_table_lock);
hugetlb: guarantee that COW faults for a process that called mmap(MAP_PRIVATE) on hugetlbfs will succeed After patch 2 in this series, a process that successfully calls mmap() for a MAP_PRIVATE mapping will be guaranteed to successfully fault until a process calls fork(). At that point, the next write fault from the parent could fail due to COW if the child still has a reference. We only reserve pages for the parent but a copy must be made to avoid leaking data from the parent to the child after fork(). Reserves could be taken for both parent and child at fork time to guarantee faults but if the mapping is large it is highly likely we will not have sufficient pages for the reservation, and it is common to fork only to exec() immediatly after. A failure here would be very undesirable. Note that the current behaviour of mainline with MAP_PRIVATE pages is pretty bad. The following situation is allowed to occur today. 1. Process calls mmap(MAP_PRIVATE) 2. Process calls mlock() to fault all pages and makes sure it succeeds 3. Process forks() 4. Process writes to MAP_PRIVATE mapping while child still exists 5. If the COW fails at this point, the process gets SIGKILLed even though it had taken care to ensure the pages existed This patch improves the situation by guaranteeing the reliability of the process that successfully calls mmap(). When the parent performs COW, it will try to satisfy the allocation without using reserves. If that fails the parent will steal the page leaving any children without a page. Faults from the child after that point will result in failure. If the child COW happens first, an attempt will be made to allocate the page without reserves and the child will get SIGKILLed on failure. To summarise the new behaviour: 1. If the original mapper performs COW on a private mapping with multiple references, it will attempt to allocate a hugepage from the pool or the buddy allocator without using the existing reserves. On fail, VMAs mapping the same area are traversed and the page being COW'd is unmapped where found. It will then steal the original page as the last mapper in the normal way. 2. The VMAs the pages were unmapped from are flagged to note that pages with data no longer exist. Future no-page faults on those VMAs will terminate the process as otherwise it would appear that data was corrupted. A warning is printed to the console that this situation occured. 2. If the child performs COW first, it will attempt to satisfy the COW from the pool if there are enough pages or via the buddy allocator if overcommit is allowed and the buddy allocator can satisfy the request. If it fails, the child will be killed. If the pool is large enough, existing applications will not notice that the reserves were a factor. Existing applications depending on the no-reserves been set are unlikely to exist as for much of the history of hugetlbfs, pages were prefaulted at mmap(), allocating the pages at that point or failing the mmap(). [npiggin@suse.de: fix CONFIG_HUGETLB=n build] Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@shadowen.org> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:25 -07:00
new_page = alloc_huge_page(vma, address, outside_reserve);
if (IS_ERR(new_page)) {
page_cache_release(old_page);
hugetlb: guarantee that COW faults for a process that called mmap(MAP_PRIVATE) on hugetlbfs will succeed After patch 2 in this series, a process that successfully calls mmap() for a MAP_PRIVATE mapping will be guaranteed to successfully fault until a process calls fork(). At that point, the next write fault from the parent could fail due to COW if the child still has a reference. We only reserve pages for the parent but a copy must be made to avoid leaking data from the parent to the child after fork(). Reserves could be taken for both parent and child at fork time to guarantee faults but if the mapping is large it is highly likely we will not have sufficient pages for the reservation, and it is common to fork only to exec() immediatly after. A failure here would be very undesirable. Note that the current behaviour of mainline with MAP_PRIVATE pages is pretty bad. The following situation is allowed to occur today. 1. Process calls mmap(MAP_PRIVATE) 2. Process calls mlock() to fault all pages and makes sure it succeeds 3. Process forks() 4. Process writes to MAP_PRIVATE mapping while child still exists 5. If the COW fails at this point, the process gets SIGKILLed even though it had taken care to ensure the pages existed This patch improves the situation by guaranteeing the reliability of the process that successfully calls mmap(). When the parent performs COW, it will try to satisfy the allocation without using reserves. If that fails the parent will steal the page leaving any children without a page. Faults from the child after that point will result in failure. If the child COW happens first, an attempt will be made to allocate the page without reserves and the child will get SIGKILLed on failure. To summarise the new behaviour: 1. If the original mapper performs COW on a private mapping with multiple references, it will attempt to allocate a hugepage from the pool or the buddy allocator without using the existing reserves. On fail, VMAs mapping the same area are traversed and the page being COW'd is unmapped where found. It will then steal the original page as the last mapper in the normal way. 2. The VMAs the pages were unmapped from are flagged to note that pages with data no longer exist. Future no-page faults on those VMAs will terminate the process as otherwise it would appear that data was corrupted. A warning is printed to the console that this situation occured. 2. If the child performs COW first, it will attempt to satisfy the COW from the pool if there are enough pages or via the buddy allocator if overcommit is allowed and the buddy allocator can satisfy the request. If it fails, the child will be killed. If the pool is large enough, existing applications will not notice that the reserves were a factor. Existing applications depending on the no-reserves been set are unlikely to exist as for much of the history of hugetlbfs, pages were prefaulted at mmap(), allocating the pages at that point or failing the mmap(). [npiggin@suse.de: fix CONFIG_HUGETLB=n build] Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@shadowen.org> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:25 -07:00
/*
* If a process owning a MAP_PRIVATE mapping fails to COW,
* it is due to references held by a child and an insufficient
* huge page pool. To guarantee the original mappers
* reliability, unmap the page from child processes. The child
* may get SIGKILLed if it later faults.
*/
if (outside_reserve) {
BUG_ON(huge_pte_none(pte));
if (unmap_ref_private(mm, vma, old_page, address)) {
BUG_ON(page_count(old_page) != 1);
BUG_ON(huge_pte_none(pte));
hugetlb: prevent deadlock in __unmap_hugepage_range() when alloc_huge_page() fails hugetlb_fault() takes the mm->page_table_lock spinlock then calls hugetlb_cow(). If the alloc_huge_page() in hugetlb_cow() fails due to an insufficient huge page pool it calls unmap_ref_private() with the mm->page_table_lock held. unmap_ref_private() then calls unmap_hugepage_range() which tries to acquire the mm->page_table_lock. [<ffffffff810928c3>] print_circular_bug_tail+0x80/0x9f [<ffffffff8109280b>] ? check_noncircular+0xb0/0xe8 [<ffffffff810935e0>] __lock_acquire+0x956/0xc0e [<ffffffff81093986>] lock_acquire+0xee/0x12e [<ffffffff8111a7a6>] ? unmap_hugepage_range+0x3e/0x84 [<ffffffff8111a7a6>] ? unmap_hugepage_range+0x3e/0x84 [<ffffffff814c348d>] _spin_lock+0x40/0x89 [<ffffffff8111a7a6>] ? unmap_hugepage_range+0x3e/0x84 [<ffffffff8111afee>] ? alloc_huge_page+0x218/0x318 [<ffffffff8111a7a6>] unmap_hugepage_range+0x3e/0x84 [<ffffffff8111b2d0>] hugetlb_cow+0x1e2/0x3f4 [<ffffffff8111b935>] ? hugetlb_fault+0x453/0x4f6 [<ffffffff8111b962>] hugetlb_fault+0x480/0x4f6 [<ffffffff8111baee>] follow_hugetlb_page+0x116/0x2d9 [<ffffffff814c31a7>] ? _spin_unlock_irq+0x3a/0x5c [<ffffffff81107b4d>] __get_user_pages+0x2a3/0x427 [<ffffffff81107d0f>] get_user_pages+0x3e/0x54 [<ffffffff81040b8b>] get_user_pages_fast+0x170/0x1b5 [<ffffffff81160352>] dio_get_page+0x64/0x14a [<ffffffff8116112a>] __blockdev_direct_IO+0x4b7/0xb31 [<ffffffff8115ef91>] blkdev_direct_IO+0x58/0x6e [<ffffffff8115e0a4>] ? blkdev_get_blocks+0x0/0xb8 [<ffffffff810ed2c5>] generic_file_aio_read+0xdd/0x528 [<ffffffff81219da3>] ? avc_has_perm+0x66/0x8c [<ffffffff81132842>] do_sync_read+0xf5/0x146 [<ffffffff8107da00>] ? autoremove_wake_function+0x0/0x5a [<ffffffff81211857>] ? security_file_permission+0x24/0x3a [<ffffffff81132fd8>] vfs_read+0xb5/0x126 [<ffffffff81133f6b>] ? fget_light+0x5e/0xf8 [<ffffffff81133131>] sys_read+0x54/0x8c [<ffffffff81011e42>] system_call_fastpath+0x16/0x1b This can be fixed by dropping the mm->page_table_lock around the call to unmap_ref_private() if alloc_huge_page() fails, its dropped right below in the normal path anyway. However, earlier in the that function, it's also possible to call into the page allocator with the same spinlock held. What this patch does is drop the spinlock before the page allocator is potentially entered. The check for page allocation failure can be made without the page_table_lock as well as the copy of the huge page. Even if the PTE changed while the spinlock was held, the consequence is that a huge page is copied unnecessarily. This resolves both the double taking of the lock and sleeping with the spinlock held. [mel@csn.ul.ie: Cover also the case where process can sleep with spinlock] Signed-off-by: Larry Woodman <lwooman@redhat.com> Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@shadowen.org> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-14 17:59:37 -08:00
spin_lock(&mm->page_table_lock);
hugetlb: guarantee that COW faults for a process that called mmap(MAP_PRIVATE) on hugetlbfs will succeed After patch 2 in this series, a process that successfully calls mmap() for a MAP_PRIVATE mapping will be guaranteed to successfully fault until a process calls fork(). At that point, the next write fault from the parent could fail due to COW if the child still has a reference. We only reserve pages for the parent but a copy must be made to avoid leaking data from the parent to the child after fork(). Reserves could be taken for both parent and child at fork time to guarantee faults but if the mapping is large it is highly likely we will not have sufficient pages for the reservation, and it is common to fork only to exec() immediatly after. A failure here would be very undesirable. Note that the current behaviour of mainline with MAP_PRIVATE pages is pretty bad. The following situation is allowed to occur today. 1. Process calls mmap(MAP_PRIVATE) 2. Process calls mlock() to fault all pages and makes sure it succeeds 3. Process forks() 4. Process writes to MAP_PRIVATE mapping while child still exists 5. If the COW fails at this point, the process gets SIGKILLed even though it had taken care to ensure the pages existed This patch improves the situation by guaranteeing the reliability of the process that successfully calls mmap(). When the parent performs COW, it will try to satisfy the allocation without using reserves. If that fails the parent will steal the page leaving any children without a page. Faults from the child after that point will result in failure. If the child COW happens first, an attempt will be made to allocate the page without reserves and the child will get SIGKILLed on failure. To summarise the new behaviour: 1. If the original mapper performs COW on a private mapping with multiple references, it will attempt to allocate a hugepage from the pool or the buddy allocator without using the existing reserves. On fail, VMAs mapping the same area are traversed and the page being COW'd is unmapped where found. It will then steal the original page as the last mapper in the normal way. 2. The VMAs the pages were unmapped from are flagged to note that pages with data no longer exist. Future no-page faults on those VMAs will terminate the process as otherwise it would appear that data was corrupted. A warning is printed to the console that this situation occured. 2. If the child performs COW first, it will attempt to satisfy the COW from the pool if there are enough pages or via the buddy allocator if overcommit is allowed and the buddy allocator can satisfy the request. If it fails, the child will be killed. If the pool is large enough, existing applications will not notice that the reserves were a factor. Existing applications depending on the no-reserves been set are unlikely to exist as for much of the history of hugetlbfs, pages were prefaulted at mmap(), allocating the pages at that point or failing the mmap(). [npiggin@suse.de: fix CONFIG_HUGETLB=n build] Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@shadowen.org> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:25 -07:00
goto retry_avoidcopy;
}
WARN_ON_ONCE(1);
}
hugetlb: prevent deadlock in __unmap_hugepage_range() when alloc_huge_page() fails hugetlb_fault() takes the mm->page_table_lock spinlock then calls hugetlb_cow(). If the alloc_huge_page() in hugetlb_cow() fails due to an insufficient huge page pool it calls unmap_ref_private() with the mm->page_table_lock held. unmap_ref_private() then calls unmap_hugepage_range() which tries to acquire the mm->page_table_lock. [<ffffffff810928c3>] print_circular_bug_tail+0x80/0x9f [<ffffffff8109280b>] ? check_noncircular+0xb0/0xe8 [<ffffffff810935e0>] __lock_acquire+0x956/0xc0e [<ffffffff81093986>] lock_acquire+0xee/0x12e [<ffffffff8111a7a6>] ? unmap_hugepage_range+0x3e/0x84 [<ffffffff8111a7a6>] ? unmap_hugepage_range+0x3e/0x84 [<ffffffff814c348d>] _spin_lock+0x40/0x89 [<ffffffff8111a7a6>] ? unmap_hugepage_range+0x3e/0x84 [<ffffffff8111afee>] ? alloc_huge_page+0x218/0x318 [<ffffffff8111a7a6>] unmap_hugepage_range+0x3e/0x84 [<ffffffff8111b2d0>] hugetlb_cow+0x1e2/0x3f4 [<ffffffff8111b935>] ? hugetlb_fault+0x453/0x4f6 [<ffffffff8111b962>] hugetlb_fault+0x480/0x4f6 [<ffffffff8111baee>] follow_hugetlb_page+0x116/0x2d9 [<ffffffff814c31a7>] ? _spin_unlock_irq+0x3a/0x5c [<ffffffff81107b4d>] __get_user_pages+0x2a3/0x427 [<ffffffff81107d0f>] get_user_pages+0x3e/0x54 [<ffffffff81040b8b>] get_user_pages_fast+0x170/0x1b5 [<ffffffff81160352>] dio_get_page+0x64/0x14a [<ffffffff8116112a>] __blockdev_direct_IO+0x4b7/0xb31 [<ffffffff8115ef91>] blkdev_direct_IO+0x58/0x6e [<ffffffff8115e0a4>] ? blkdev_get_blocks+0x0/0xb8 [<ffffffff810ed2c5>] generic_file_aio_read+0xdd/0x528 [<ffffffff81219da3>] ? avc_has_perm+0x66/0x8c [<ffffffff81132842>] do_sync_read+0xf5/0x146 [<ffffffff8107da00>] ? autoremove_wake_function+0x0/0x5a [<ffffffff81211857>] ? security_file_permission+0x24/0x3a [<ffffffff81132fd8>] vfs_read+0xb5/0x126 [<ffffffff81133f6b>] ? fget_light+0x5e/0xf8 [<ffffffff81133131>] sys_read+0x54/0x8c [<ffffffff81011e42>] system_call_fastpath+0x16/0x1b This can be fixed by dropping the mm->page_table_lock around the call to unmap_ref_private() if alloc_huge_page() fails, its dropped right below in the normal path anyway. However, earlier in the that function, it's also possible to call into the page allocator with the same spinlock held. What this patch does is drop the spinlock before the page allocator is potentially entered. The check for page allocation failure can be made without the page_table_lock as well as the copy of the huge page. Even if the PTE changed while the spinlock was held, the consequence is that a huge page is copied unnecessarily. This resolves both the double taking of the lock and sleeping with the spinlock held. [mel@csn.ul.ie: Cover also the case where process can sleep with spinlock] Signed-off-by: Larry Woodman <lwooman@redhat.com> Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@shadowen.org> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-14 17:59:37 -08:00
/* Caller expects lock to be held */
spin_lock(&mm->page_table_lock);
return -PTR_ERR(new_page);
}
hugetlb, rmap: add reverse mapping for hugepage This patch adds reverse mapping feature for hugepage by introducing mapcount for shared/private-mapped hugepage and anon_vma for private-mapped hugepage. While hugepage is not currently swappable, reverse mapping can be useful for memory error handler. Without this patch, memory error handler cannot identify processes using the bad hugepage nor unmap it from them. That is: - for shared hugepage: we can collect processes using a hugepage through pagecache, but can not unmap the hugepage because of the lack of mapcount. - for privately mapped hugepage: we can neither collect processes nor unmap the hugepage. This patch solves these problems. This patch include the bug fix given by commit 23be7468e8, so reverts it. Dependency: "hugetlb: move definition of is_vm_hugetlb_page() to hugepage_inline.h" ChangeLog since May 24. - create hugetlb_inline.h and move is_vm_hugetlb_index() in it. - move functions setting up anon_vma for hugepage into mm/rmap.c. ChangeLog since May 13. - rebased to 2.6.34 - fix logic error (in case that private mapping and shared mapping coexist) - move is_vm_hugetlb_page() into include/linux/mm.h to use this function from linear_page_index() - define and use linear_hugepage_index() instead of compound_order() - use page_move_anon_rmap() in hugetlb_cow() - copy exclusive switch of __set_page_anon_rmap() into hugepage counterpart. - revert commit 24be7468 completely Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Larry Woodman <lwoodman@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com> Acked-by: Fengguang Wu <fengguang.wu@intel.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andi Kleen <ak@linux.intel.com>
2010-05-28 09:29:16 +09:00
/*
* When the original hugepage is shared one, it does not have
* anon_vma prepared.
*/
if (unlikely(anon_vma_prepare(vma))) {
/* Caller expects lock to be held */
spin_lock(&mm->page_table_lock);
hugetlb, rmap: add reverse mapping for hugepage This patch adds reverse mapping feature for hugepage by introducing mapcount for shared/private-mapped hugepage and anon_vma for private-mapped hugepage. While hugepage is not currently swappable, reverse mapping can be useful for memory error handler. Without this patch, memory error handler cannot identify processes using the bad hugepage nor unmap it from them. That is: - for shared hugepage: we can collect processes using a hugepage through pagecache, but can not unmap the hugepage because of the lack of mapcount. - for privately mapped hugepage: we can neither collect processes nor unmap the hugepage. This patch solves these problems. This patch include the bug fix given by commit 23be7468e8, so reverts it. Dependency: "hugetlb: move definition of is_vm_hugetlb_page() to hugepage_inline.h" ChangeLog since May 24. - create hugetlb_inline.h and move is_vm_hugetlb_index() in it. - move functions setting up anon_vma for hugepage into mm/rmap.c. ChangeLog since May 13. - rebased to 2.6.34 - fix logic error (in case that private mapping and shared mapping coexist) - move is_vm_hugetlb_page() into include/linux/mm.h to use this function from linear_page_index() - define and use linear_hugepage_index() instead of compound_order() - use page_move_anon_rmap() in hugetlb_cow() - copy exclusive switch of __set_page_anon_rmap() into hugepage counterpart. - revert commit 24be7468 completely Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Larry Woodman <lwoodman@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com> Acked-by: Fengguang Wu <fengguang.wu@intel.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andi Kleen <ak@linux.intel.com>
2010-05-28 09:29:16 +09:00
return VM_FAULT_OOM;
}
hugetlb, rmap: add reverse mapping for hugepage This patch adds reverse mapping feature for hugepage by introducing mapcount for shared/private-mapped hugepage and anon_vma for private-mapped hugepage. While hugepage is not currently swappable, reverse mapping can be useful for memory error handler. Without this patch, memory error handler cannot identify processes using the bad hugepage nor unmap it from them. That is: - for shared hugepage: we can collect processes using a hugepage through pagecache, but can not unmap the hugepage because of the lack of mapcount. - for privately mapped hugepage: we can neither collect processes nor unmap the hugepage. This patch solves these problems. This patch include the bug fix given by commit 23be7468e8, so reverts it. Dependency: "hugetlb: move definition of is_vm_hugetlb_page() to hugepage_inline.h" ChangeLog since May 24. - create hugetlb_inline.h and move is_vm_hugetlb_index() in it. - move functions setting up anon_vma for hugepage into mm/rmap.c. ChangeLog since May 13. - rebased to 2.6.34 - fix logic error (in case that private mapping and shared mapping coexist) - move is_vm_hugetlb_page() into include/linux/mm.h to use this function from linear_page_index() - define and use linear_hugepage_index() instead of compound_order() - use page_move_anon_rmap() in hugetlb_cow() - copy exclusive switch of __set_page_anon_rmap() into hugepage counterpart. - revert commit 24be7468 completely Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Larry Woodman <lwoodman@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com> Acked-by: Fengguang Wu <fengguang.wu@intel.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andi Kleen <ak@linux.intel.com>
2010-05-28 09:29:16 +09:00
copy_user_huge_page(new_page, old_page, address, vma,
pages_per_huge_page(h));
mm: fix PageUptodate data race After running SetPageUptodate, preceeding stores to the page contents to actually bring it uptodate may not be ordered with the store to set the page uptodate. Therefore, another CPU which checks PageUptodate is true, then reads the page contents can get stale data. Fix this by having an smp_wmb before SetPageUptodate, and smp_rmb after PageUptodate. Many places that test PageUptodate, do so with the page locked, and this would be enough to ensure memory ordering in those places if SetPageUptodate were only called while the page is locked. Unfortunately that is not always the case for some filesystems, but it could be an idea for the future. Also bring the handling of anonymous page uptodateness in line with that of file backed page management, by marking anon pages as uptodate when they _are_ uptodate, rather than when our implementation requires that they be marked as such. Doing allows us to get rid of the smp_wmb's in the page copying functions, which were especially added for anonymous pages for an analogous memory ordering problem. Both file and anonymous pages are handled with the same barriers. FAQ: Q. Why not do this in flush_dcache_page? A. Firstly, flush_dcache_page handles only one side (the smb side) of the ordering protocol; we'd still need smp_rmb somewhere. Secondly, hiding away memory barriers in a completely unrelated function is nasty; at least in the PageUptodate macros, they are located together with (half) the operations involved in the ordering. Thirdly, the smp_wmb is only required when first bringing the page uptodate, wheras flush_dcache_page should be called each time it is written to through the kernel mapping. It is logically the wrong place to put it. Q. Why does this increase my text size / reduce my performance / etc. A. Because it is adding the necessary instructions to eliminate the data-race. Q. Can it be improved? A. Yes, eg. if you were to create a rule that all SetPageUptodate operations run under the page lock, we could avoid the smp_rmb places where PageUptodate is queried under the page lock. Requires audit of all filesystems and at least some would need reworking. That's great you're interested, I'm eagerly awaiting your patches. Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-04 22:29:34 -08:00
__SetPageUptodate(new_page);
hugetlb: prevent deadlock in __unmap_hugepage_range() when alloc_huge_page() fails hugetlb_fault() takes the mm->page_table_lock spinlock then calls hugetlb_cow(). If the alloc_huge_page() in hugetlb_cow() fails due to an insufficient huge page pool it calls unmap_ref_private() with the mm->page_table_lock held. unmap_ref_private() then calls unmap_hugepage_range() which tries to acquire the mm->page_table_lock. [<ffffffff810928c3>] print_circular_bug_tail+0x80/0x9f [<ffffffff8109280b>] ? check_noncircular+0xb0/0xe8 [<ffffffff810935e0>] __lock_acquire+0x956/0xc0e [<ffffffff81093986>] lock_acquire+0xee/0x12e [<ffffffff8111a7a6>] ? unmap_hugepage_range+0x3e/0x84 [<ffffffff8111a7a6>] ? unmap_hugepage_range+0x3e/0x84 [<ffffffff814c348d>] _spin_lock+0x40/0x89 [<ffffffff8111a7a6>] ? unmap_hugepage_range+0x3e/0x84 [<ffffffff8111afee>] ? alloc_huge_page+0x218/0x318 [<ffffffff8111a7a6>] unmap_hugepage_range+0x3e/0x84 [<ffffffff8111b2d0>] hugetlb_cow+0x1e2/0x3f4 [<ffffffff8111b935>] ? hugetlb_fault+0x453/0x4f6 [<ffffffff8111b962>] hugetlb_fault+0x480/0x4f6 [<ffffffff8111baee>] follow_hugetlb_page+0x116/0x2d9 [<ffffffff814c31a7>] ? _spin_unlock_irq+0x3a/0x5c [<ffffffff81107b4d>] __get_user_pages+0x2a3/0x427 [<ffffffff81107d0f>] get_user_pages+0x3e/0x54 [<ffffffff81040b8b>] get_user_pages_fast+0x170/0x1b5 [<ffffffff81160352>] dio_get_page+0x64/0x14a [<ffffffff8116112a>] __blockdev_direct_IO+0x4b7/0xb31 [<ffffffff8115ef91>] blkdev_direct_IO+0x58/0x6e [<ffffffff8115e0a4>] ? blkdev_get_blocks+0x0/0xb8 [<ffffffff810ed2c5>] generic_file_aio_read+0xdd/0x528 [<ffffffff81219da3>] ? avc_has_perm+0x66/0x8c [<ffffffff81132842>] do_sync_read+0xf5/0x146 [<ffffffff8107da00>] ? autoremove_wake_function+0x0/0x5a [<ffffffff81211857>] ? security_file_permission+0x24/0x3a [<ffffffff81132fd8>] vfs_read+0xb5/0x126 [<ffffffff81133f6b>] ? fget_light+0x5e/0xf8 [<ffffffff81133131>] sys_read+0x54/0x8c [<ffffffff81011e42>] system_call_fastpath+0x16/0x1b This can be fixed by dropping the mm->page_table_lock around the call to unmap_ref_private() if alloc_huge_page() fails, its dropped right below in the normal path anyway. However, earlier in the that function, it's also possible to call into the page allocator with the same spinlock held. What this patch does is drop the spinlock before the page allocator is potentially entered. The check for page allocation failure can be made without the page_table_lock as well as the copy of the huge page. Even if the PTE changed while the spinlock was held, the consequence is that a huge page is copied unnecessarily. This resolves both the double taking of the lock and sleeping with the spinlock held. [mel@csn.ul.ie: Cover also the case where process can sleep with spinlock] Signed-off-by: Larry Woodman <lwooman@redhat.com> Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@shadowen.org> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-14 17:59:37 -08:00
/*
* Retake the page_table_lock to check for racing updates
* before the page tables are altered
*/
spin_lock(&mm->page_table_lock);
ptep = huge_pte_offset(mm, address & huge_page_mask(h));
if (likely(pte_same(huge_ptep_get(ptep), pte))) {
/* Break COW */
mmu_notifier_invalidate_range_start(mm,
address & huge_page_mask(h),
(address & huge_page_mask(h)) + huge_page_size(h));
huge_ptep_clear_flush(vma, address, ptep);
set_huge_pte_at(mm, address, ptep,
make_huge_pte(vma, new_page, 1));
hugetlb, rmap: add reverse mapping for hugepage This patch adds reverse mapping feature for hugepage by introducing mapcount for shared/private-mapped hugepage and anon_vma for private-mapped hugepage. While hugepage is not currently swappable, reverse mapping can be useful for memory error handler. Without this patch, memory error handler cannot identify processes using the bad hugepage nor unmap it from them. That is: - for shared hugepage: we can collect processes using a hugepage through pagecache, but can not unmap the hugepage because of the lack of mapcount. - for privately mapped hugepage: we can neither collect processes nor unmap the hugepage. This patch solves these problems. This patch include the bug fix given by commit 23be7468e8, so reverts it. Dependency: "hugetlb: move definition of is_vm_hugetlb_page() to hugepage_inline.h" ChangeLog since May 24. - create hugetlb_inline.h and move is_vm_hugetlb_index() in it. - move functions setting up anon_vma for hugepage into mm/rmap.c. ChangeLog since May 13. - rebased to 2.6.34 - fix logic error (in case that private mapping and shared mapping coexist) - move is_vm_hugetlb_page() into include/linux/mm.h to use this function from linear_page_index() - define and use linear_hugepage_index() instead of compound_order() - use page_move_anon_rmap() in hugetlb_cow() - copy exclusive switch of __set_page_anon_rmap() into hugepage counterpart. - revert commit 24be7468 completely Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Larry Woodman <lwoodman@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com> Acked-by: Fengguang Wu <fengguang.wu@intel.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andi Kleen <ak@linux.intel.com>
2010-05-28 09:29:16 +09:00
page_remove_rmap(old_page);
hugepage_add_new_anon_rmap(new_page, vma, address);
/* Make the old page be freed below */
new_page = old_page;
mmu_notifier_invalidate_range_end(mm,
address & huge_page_mask(h),
(address & huge_page_mask(h)) + huge_page_size(h));
}
page_cache_release(new_page);
page_cache_release(old_page);
mm: fault feedback #2 This patch completes Linus's wish that the fault return codes be made into bit flags, which I agree makes everything nicer. This requires requires all handle_mm_fault callers to be modified (possibly the modifications should go further and do things like fault accounting in handle_mm_fault -- however that would be for another patch). [akpm@linux-foundation.org: fix alpha build] [akpm@linux-foundation.org: fix s390 build] [akpm@linux-foundation.org: fix sparc build] [akpm@linux-foundation.org: fix sparc64 build] [akpm@linux-foundation.org: fix ia64 build] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Richard Henderson <rth@twiddle.net> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Ian Molton <spyro@f2s.com> Cc: Bryan Wu <bryan.wu@analog.com> Cc: Mikael Starvik <starvik@axis.com> Cc: David Howells <dhowells@redhat.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Hirokazu Takata <takata@linux-m32r.org> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Roman Zippel <zippel@linux-m68k.org> Cc: Greg Ungerer <gerg@uclinux.org> Cc: Matthew Wilcox <willy@debian.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Paul Mundt <lethal@linux-sh.org> Cc: Kazumoto Kojima <kkojima@rr.iij4u.or.jp> Cc: Richard Curnow <rc@rc0.org.uk> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Jeff Dike <jdike@addtoit.com> Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it> Cc: Miles Bader <uclinux-v850@lsi.nec.co.jp> Cc: Chris Zankel <chris@zankel.net> Acked-by: Kyle McMartin <kyle@mcmartin.ca> Acked-by: Haavard Skinnemoen <hskinnemoen@atmel.com> Acked-by: Ralf Baechle <ralf@linux-mips.org> Acked-by: Andi Kleen <ak@muc.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> [ Still apparently needs some ARM and PPC loving - Linus ] Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-19 01:47:05 -07:00
return 0;
}
hugetlb: guarantee that COW faults for a process that called mmap(MAP_PRIVATE) on hugetlbfs will succeed After patch 2 in this series, a process that successfully calls mmap() for a MAP_PRIVATE mapping will be guaranteed to successfully fault until a process calls fork(). At that point, the next write fault from the parent could fail due to COW if the child still has a reference. We only reserve pages for the parent but a copy must be made to avoid leaking data from the parent to the child after fork(). Reserves could be taken for both parent and child at fork time to guarantee faults but if the mapping is large it is highly likely we will not have sufficient pages for the reservation, and it is common to fork only to exec() immediatly after. A failure here would be very undesirable. Note that the current behaviour of mainline with MAP_PRIVATE pages is pretty bad. The following situation is allowed to occur today. 1. Process calls mmap(MAP_PRIVATE) 2. Process calls mlock() to fault all pages and makes sure it succeeds 3. Process forks() 4. Process writes to MAP_PRIVATE mapping while child still exists 5. If the COW fails at this point, the process gets SIGKILLed even though it had taken care to ensure the pages existed This patch improves the situation by guaranteeing the reliability of the process that successfully calls mmap(). When the parent performs COW, it will try to satisfy the allocation without using reserves. If that fails the parent will steal the page leaving any children without a page. Faults from the child after that point will result in failure. If the child COW happens first, an attempt will be made to allocate the page without reserves and the child will get SIGKILLed on failure. To summarise the new behaviour: 1. If the original mapper performs COW on a private mapping with multiple references, it will attempt to allocate a hugepage from the pool or the buddy allocator without using the existing reserves. On fail, VMAs mapping the same area are traversed and the page being COW'd is unmapped where found. It will then steal the original page as the last mapper in the normal way. 2. The VMAs the pages were unmapped from are flagged to note that pages with data no longer exist. Future no-page faults on those VMAs will terminate the process as otherwise it would appear that data was corrupted. A warning is printed to the console that this situation occured. 2. If the child performs COW first, it will attempt to satisfy the COW from the pool if there are enough pages or via the buddy allocator if overcommit is allowed and the buddy allocator can satisfy the request. If it fails, the child will be killed. If the pool is large enough, existing applications will not notice that the reserves were a factor. Existing applications depending on the no-reserves been set are unlikely to exist as for much of the history of hugetlbfs, pages were prefaulted at mmap(), allocating the pages at that point or failing the mmap(). [npiggin@suse.de: fix CONFIG_HUGETLB=n build] Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@shadowen.org> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:25 -07:00
/* Return the pagecache page at a given address within a VMA */
static struct page *hugetlbfs_pagecache_page(struct hstate *h,
struct vm_area_struct *vma, unsigned long address)
hugetlb: guarantee that COW faults for a process that called mmap(MAP_PRIVATE) on hugetlbfs will succeed After patch 2 in this series, a process that successfully calls mmap() for a MAP_PRIVATE mapping will be guaranteed to successfully fault until a process calls fork(). At that point, the next write fault from the parent could fail due to COW if the child still has a reference. We only reserve pages for the parent but a copy must be made to avoid leaking data from the parent to the child after fork(). Reserves could be taken for both parent and child at fork time to guarantee faults but if the mapping is large it is highly likely we will not have sufficient pages for the reservation, and it is common to fork only to exec() immediatly after. A failure here would be very undesirable. Note that the current behaviour of mainline with MAP_PRIVATE pages is pretty bad. The following situation is allowed to occur today. 1. Process calls mmap(MAP_PRIVATE) 2. Process calls mlock() to fault all pages and makes sure it succeeds 3. Process forks() 4. Process writes to MAP_PRIVATE mapping while child still exists 5. If the COW fails at this point, the process gets SIGKILLed even though it had taken care to ensure the pages existed This patch improves the situation by guaranteeing the reliability of the process that successfully calls mmap(). When the parent performs COW, it will try to satisfy the allocation without using reserves. If that fails the parent will steal the page leaving any children without a page. Faults from the child after that point will result in failure. If the child COW happens first, an attempt will be made to allocate the page without reserves and the child will get SIGKILLed on failure. To summarise the new behaviour: 1. If the original mapper performs COW on a private mapping with multiple references, it will attempt to allocate a hugepage from the pool or the buddy allocator without using the existing reserves. On fail, VMAs mapping the same area are traversed and the page being COW'd is unmapped where found. It will then steal the original page as the last mapper in the normal way. 2. The VMAs the pages were unmapped from are flagged to note that pages with data no longer exist. Future no-page faults on those VMAs will terminate the process as otherwise it would appear that data was corrupted. A warning is printed to the console that this situation occured. 2. If the child performs COW first, it will attempt to satisfy the COW from the pool if there are enough pages or via the buddy allocator if overcommit is allowed and the buddy allocator can satisfy the request. If it fails, the child will be killed. If the pool is large enough, existing applications will not notice that the reserves were a factor. Existing applications depending on the no-reserves been set are unlikely to exist as for much of the history of hugetlbfs, pages were prefaulted at mmap(), allocating the pages at that point or failing the mmap(). [npiggin@suse.de: fix CONFIG_HUGETLB=n build] Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@shadowen.org> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:25 -07:00
{
struct address_space *mapping;
pgoff_t idx;
hugetlb: guarantee that COW faults for a process that called mmap(MAP_PRIVATE) on hugetlbfs will succeed After patch 2 in this series, a process that successfully calls mmap() for a MAP_PRIVATE mapping will be guaranteed to successfully fault until a process calls fork(). At that point, the next write fault from the parent could fail due to COW if the child still has a reference. We only reserve pages for the parent but a copy must be made to avoid leaking data from the parent to the child after fork(). Reserves could be taken for both parent and child at fork time to guarantee faults but if the mapping is large it is highly likely we will not have sufficient pages for the reservation, and it is common to fork only to exec() immediatly after. A failure here would be very undesirable. Note that the current behaviour of mainline with MAP_PRIVATE pages is pretty bad. The following situation is allowed to occur today. 1. Process calls mmap(MAP_PRIVATE) 2. Process calls mlock() to fault all pages and makes sure it succeeds 3. Process forks() 4. Process writes to MAP_PRIVATE mapping while child still exists 5. If the COW fails at this point, the process gets SIGKILLed even though it had taken care to ensure the pages existed This patch improves the situation by guaranteeing the reliability of the process that successfully calls mmap(). When the parent performs COW, it will try to satisfy the allocation without using reserves. If that fails the parent will steal the page leaving any children without a page. Faults from the child after that point will result in failure. If the child COW happens first, an attempt will be made to allocate the page without reserves and the child will get SIGKILLed on failure. To summarise the new behaviour: 1. If the original mapper performs COW on a private mapping with multiple references, it will attempt to allocate a hugepage from the pool or the buddy allocator without using the existing reserves. On fail, VMAs mapping the same area are traversed and the page being COW'd is unmapped where found. It will then steal the original page as the last mapper in the normal way. 2. The VMAs the pages were unmapped from are flagged to note that pages with data no longer exist. Future no-page faults on those VMAs will terminate the process as otherwise it would appear that data was corrupted. A warning is printed to the console that this situation occured. 2. If the child performs COW first, it will attempt to satisfy the COW from the pool if there are enough pages or via the buddy allocator if overcommit is allowed and the buddy allocator can satisfy the request. If it fails, the child will be killed. If the pool is large enough, existing applications will not notice that the reserves were a factor. Existing applications depending on the no-reserves been set are unlikely to exist as for much of the history of hugetlbfs, pages were prefaulted at mmap(), allocating the pages at that point or failing the mmap(). [npiggin@suse.de: fix CONFIG_HUGETLB=n build] Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@shadowen.org> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:25 -07:00
mapping = vma->vm_file->f_mapping;
idx = vma_hugecache_offset(h, vma, address);
hugetlb: guarantee that COW faults for a process that called mmap(MAP_PRIVATE) on hugetlbfs will succeed After patch 2 in this series, a process that successfully calls mmap() for a MAP_PRIVATE mapping will be guaranteed to successfully fault until a process calls fork(). At that point, the next write fault from the parent could fail due to COW if the child still has a reference. We only reserve pages for the parent but a copy must be made to avoid leaking data from the parent to the child after fork(). Reserves could be taken for both parent and child at fork time to guarantee faults but if the mapping is large it is highly likely we will not have sufficient pages for the reservation, and it is common to fork only to exec() immediatly after. A failure here would be very undesirable. Note that the current behaviour of mainline with MAP_PRIVATE pages is pretty bad. The following situation is allowed to occur today. 1. Process calls mmap(MAP_PRIVATE) 2. Process calls mlock() to fault all pages and makes sure it succeeds 3. Process forks() 4. Process writes to MAP_PRIVATE mapping while child still exists 5. If the COW fails at this point, the process gets SIGKILLed even though it had taken care to ensure the pages existed This patch improves the situation by guaranteeing the reliability of the process that successfully calls mmap(). When the parent performs COW, it will try to satisfy the allocation without using reserves. If that fails the parent will steal the page leaving any children without a page. Faults from the child after that point will result in failure. If the child COW happens first, an attempt will be made to allocate the page without reserves and the child will get SIGKILLed on failure. To summarise the new behaviour: 1. If the original mapper performs COW on a private mapping with multiple references, it will attempt to allocate a hugepage from the pool or the buddy allocator without using the existing reserves. On fail, VMAs mapping the same area are traversed and the page being COW'd is unmapped where found. It will then steal the original page as the last mapper in the normal way. 2. The VMAs the pages were unmapped from are flagged to note that pages with data no longer exist. Future no-page faults on those VMAs will terminate the process as otherwise it would appear that data was corrupted. A warning is printed to the console that this situation occured. 2. If the child performs COW first, it will attempt to satisfy the COW from the pool if there are enough pages or via the buddy allocator if overcommit is allowed and the buddy allocator can satisfy the request. If it fails, the child will be killed. If the pool is large enough, existing applications will not notice that the reserves were a factor. Existing applications depending on the no-reserves been set are unlikely to exist as for much of the history of hugetlbfs, pages were prefaulted at mmap(), allocating the pages at that point or failing the mmap(). [npiggin@suse.de: fix CONFIG_HUGETLB=n build] Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@shadowen.org> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:25 -07:00
return find_lock_page(mapping, idx);
}
/*
* Return whether there is a pagecache page to back given address within VMA.
* Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
*/
static bool hugetlbfs_pagecache_present(struct hstate *h,
struct vm_area_struct *vma, unsigned long address)
{
struct address_space *mapping;
pgoff_t idx;
struct page *page;
mapping = vma->vm_file->f_mapping;
idx = vma_hugecache_offset(h, vma, address);
page = find_get_page(mapping, idx);
if (page)
put_page(page);
return page != NULL;
}
static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
unsigned long address, pte_t *ptep, unsigned int flags)
{
struct hstate *h = hstate_vma(vma);
int ret = VM_FAULT_SIGBUS;
pgoff_t idx;
unsigned long size;
struct page *page;
struct address_space *mapping;
pte_t new_pte;
hugetlb: guarantee that COW faults for a process that called mmap(MAP_PRIVATE) on hugetlbfs will succeed After patch 2 in this series, a process that successfully calls mmap() for a MAP_PRIVATE mapping will be guaranteed to successfully fault until a process calls fork(). At that point, the next write fault from the parent could fail due to COW if the child still has a reference. We only reserve pages for the parent but a copy must be made to avoid leaking data from the parent to the child after fork(). Reserves could be taken for both parent and child at fork time to guarantee faults but if the mapping is large it is highly likely we will not have sufficient pages for the reservation, and it is common to fork only to exec() immediatly after. A failure here would be very undesirable. Note that the current behaviour of mainline with MAP_PRIVATE pages is pretty bad. The following situation is allowed to occur today. 1. Process calls mmap(MAP_PRIVATE) 2. Process calls mlock() to fault all pages and makes sure it succeeds 3. Process forks() 4. Process writes to MAP_PRIVATE mapping while child still exists 5. If the COW fails at this point, the process gets SIGKILLed even though it had taken care to ensure the pages existed This patch improves the situation by guaranteeing the reliability of the process that successfully calls mmap(). When the parent performs COW, it will try to satisfy the allocation without using reserves. If that fails the parent will steal the page leaving any children without a page. Faults from the child after that point will result in failure. If the child COW happens first, an attempt will be made to allocate the page without reserves and the child will get SIGKILLed on failure. To summarise the new behaviour: 1. If the original mapper performs COW on a private mapping with multiple references, it will attempt to allocate a hugepage from the pool or the buddy allocator without using the existing reserves. On fail, VMAs mapping the same area are traversed and the page being COW'd is unmapped where found. It will then steal the original page as the last mapper in the normal way. 2. The VMAs the pages were unmapped from are flagged to note that pages with data no longer exist. Future no-page faults on those VMAs will terminate the process as otherwise it would appear that data was corrupted. A warning is printed to the console that this situation occured. 2. If the child performs COW first, it will attempt to satisfy the COW from the pool if there are enough pages or via the buddy allocator if overcommit is allowed and the buddy allocator can satisfy the request. If it fails, the child will be killed. If the pool is large enough, existing applications will not notice that the reserves were a factor. Existing applications depending on the no-reserves been set are unlikely to exist as for much of the history of hugetlbfs, pages were prefaulted at mmap(), allocating the pages at that point or failing the mmap(). [npiggin@suse.de: fix CONFIG_HUGETLB=n build] Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@shadowen.org> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:25 -07:00
/*
* Currently, we are forced to kill the process in the event the
* original mapper has unmapped pages from the child due to a failed
* COW. Warn that such a situation has occurred as it may not be obvious
hugetlb: guarantee that COW faults for a process that called mmap(MAP_PRIVATE) on hugetlbfs will succeed After patch 2 in this series, a process that successfully calls mmap() for a MAP_PRIVATE mapping will be guaranteed to successfully fault until a process calls fork(). At that point, the next write fault from the parent could fail due to COW if the child still has a reference. We only reserve pages for the parent but a copy must be made to avoid leaking data from the parent to the child after fork(). Reserves could be taken for both parent and child at fork time to guarantee faults but if the mapping is large it is highly likely we will not have sufficient pages for the reservation, and it is common to fork only to exec() immediatly after. A failure here would be very undesirable. Note that the current behaviour of mainline with MAP_PRIVATE pages is pretty bad. The following situation is allowed to occur today. 1. Process calls mmap(MAP_PRIVATE) 2. Process calls mlock() to fault all pages and makes sure it succeeds 3. Process forks() 4. Process writes to MAP_PRIVATE mapping while child still exists 5. If the COW fails at this point, the process gets SIGKILLed even though it had taken care to ensure the pages existed This patch improves the situation by guaranteeing the reliability of the process that successfully calls mmap(). When the parent performs COW, it will try to satisfy the allocation without using reserves. If that fails the parent will steal the page leaving any children without a page. Faults from the child after that point will result in failure. If the child COW happens first, an attempt will be made to allocate the page without reserves and the child will get SIGKILLed on failure. To summarise the new behaviour: 1. If the original mapper performs COW on a private mapping with multiple references, it will attempt to allocate a hugepage from the pool or the buddy allocator without using the existing reserves. On fail, VMAs mapping the same area are traversed and the page being COW'd is unmapped where found. It will then steal the original page as the last mapper in the normal way. 2. The VMAs the pages were unmapped from are flagged to note that pages with data no longer exist. Future no-page faults on those VMAs will terminate the process as otherwise it would appear that data was corrupted. A warning is printed to the console that this situation occured. 2. If the child performs COW first, it will attempt to satisfy the COW from the pool if there are enough pages or via the buddy allocator if overcommit is allowed and the buddy allocator can satisfy the request. If it fails, the child will be killed. If the pool is large enough, existing applications will not notice that the reserves were a factor. Existing applications depending on the no-reserves been set are unlikely to exist as for much of the history of hugetlbfs, pages were prefaulted at mmap(), allocating the pages at that point or failing the mmap(). [npiggin@suse.de: fix CONFIG_HUGETLB=n build] Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@shadowen.org> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:25 -07:00
*/
if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
printk(KERN_WARNING
"PID %d killed due to inadequate hugepage pool\n",
current->pid);
return ret;
}
mapping = vma->vm_file->f_mapping;
idx = vma_hugecache_offset(h, vma, address);
/*
* Use page lock to guard against racing truncation
* before we get page_table_lock.
*/
retry:
page = find_lock_page(mapping, idx);
if (!page) {
size = i_size_read(mapping->host) >> huge_page_shift(h);
if (idx >= size)
goto out;
hugetlb: guarantee that COW faults for a process that called mmap(MAP_PRIVATE) on hugetlbfs will succeed After patch 2 in this series, a process that successfully calls mmap() for a MAP_PRIVATE mapping will be guaranteed to successfully fault until a process calls fork(). At that point, the next write fault from the parent could fail due to COW if the child still has a reference. We only reserve pages for the parent but a copy must be made to avoid leaking data from the parent to the child after fork(). Reserves could be taken for both parent and child at fork time to guarantee faults but if the mapping is large it is highly likely we will not have sufficient pages for the reservation, and it is common to fork only to exec() immediatly after. A failure here would be very undesirable. Note that the current behaviour of mainline with MAP_PRIVATE pages is pretty bad. The following situation is allowed to occur today. 1. Process calls mmap(MAP_PRIVATE) 2. Process calls mlock() to fault all pages and makes sure it succeeds 3. Process forks() 4. Process writes to MAP_PRIVATE mapping while child still exists 5. If the COW fails at this point, the process gets SIGKILLed even though it had taken care to ensure the pages existed This patch improves the situation by guaranteeing the reliability of the process that successfully calls mmap(). When the parent performs COW, it will try to satisfy the allocation without using reserves. If that fails the parent will steal the page leaving any children without a page. Faults from the child after that point will result in failure. If the child COW happens first, an attempt will be made to allocate the page without reserves and the child will get SIGKILLed on failure. To summarise the new behaviour: 1. If the original mapper performs COW on a private mapping with multiple references, it will attempt to allocate a hugepage from the pool or the buddy allocator without using the existing reserves. On fail, VMAs mapping the same area are traversed and the page being COW'd is unmapped where found. It will then steal the original page as the last mapper in the normal way. 2. The VMAs the pages were unmapped from are flagged to note that pages with data no longer exist. Future no-page faults on those VMAs will terminate the process as otherwise it would appear that data was corrupted. A warning is printed to the console that this situation occured. 2. If the child performs COW first, it will attempt to satisfy the COW from the pool if there are enough pages or via the buddy allocator if overcommit is allowed and the buddy allocator can satisfy the request. If it fails, the child will be killed. If the pool is large enough, existing applications will not notice that the reserves were a factor. Existing applications depending on the no-reserves been set are unlikely to exist as for much of the history of hugetlbfs, pages were prefaulted at mmap(), allocating the pages at that point or failing the mmap(). [npiggin@suse.de: fix CONFIG_HUGETLB=n build] Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@shadowen.org> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:25 -07:00
page = alloc_huge_page(vma, address, 0);
if (IS_ERR(page)) {
ret = -PTR_ERR(page);
goto out;
}
clear_huge_page(page, address, pages_per_huge_page(h));
mm: fix PageUptodate data race After running SetPageUptodate, preceeding stores to the page contents to actually bring it uptodate may not be ordered with the store to set the page uptodate. Therefore, another CPU which checks PageUptodate is true, then reads the page contents can get stale data. Fix this by having an smp_wmb before SetPageUptodate, and smp_rmb after PageUptodate. Many places that test PageUptodate, do so with the page locked, and this would be enough to ensure memory ordering in those places if SetPageUptodate were only called while the page is locked. Unfortunately that is not always the case for some filesystems, but it could be an idea for the future. Also bring the handling of anonymous page uptodateness in line with that of file backed page management, by marking anon pages as uptodate when they _are_ uptodate, rather than when our implementation requires that they be marked as such. Doing allows us to get rid of the smp_wmb's in the page copying functions, which were especially added for anonymous pages for an analogous memory ordering problem. Both file and anonymous pages are handled with the same barriers. FAQ: Q. Why not do this in flush_dcache_page? A. Firstly, flush_dcache_page handles only one side (the smb side) of the ordering protocol; we'd still need smp_rmb somewhere. Secondly, hiding away memory barriers in a completely unrelated function is nasty; at least in the PageUptodate macros, they are located together with (half) the operations involved in the ordering. Thirdly, the smp_wmb is only required when first bringing the page uptodate, wheras flush_dcache_page should be called each time it is written to through the kernel mapping. It is logically the wrong place to put it. Q. Why does this increase my text size / reduce my performance / etc. A. Because it is adding the necessary instructions to eliminate the data-race. Q. Can it be improved? A. Yes, eg. if you were to create a rule that all SetPageUptodate operations run under the page lock, we could avoid the smp_rmb places where PageUptodate is queried under the page lock. Requires audit of all filesystems and at least some would need reworking. That's great you're interested, I'm eagerly awaiting your patches. Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-04 22:29:34 -08:00
__SetPageUptodate(page);
mm: account for MAP_SHARED mappings using VM_MAYSHARE and not VM_SHARED in hugetlbfs Addresses http://bugzilla.kernel.org/show_bug.cgi?id=13302 hugetlbfs reserves huge pages but does not fault them at mmap() time to ensure that future faults succeed. The reservation behaviour differs depending on whether the mapping was mapped MAP_SHARED or MAP_PRIVATE. For MAP_SHARED mappings, hugepages are reserved when mmap() is first called and are tracked based on information associated with the inode. Other processes mapping MAP_SHARED use the same reservation. MAP_PRIVATE track the reservations based on the VMA created as part of the mmap() operation. Each process mapping MAP_PRIVATE must make its own reservation. hugetlbfs currently checks if a VMA is MAP_SHARED with the VM_SHARED flag and not VM_MAYSHARE. For file-backed mappings, such as hugetlbfs, VM_SHARED is set only if the mapping is MAP_SHARED and the file was opened read-write. If a shared memory mapping was mapped shared-read-write for populating of data and mapped shared-read-only by other processes, then hugetlbfs would account for the mapping as if it was MAP_PRIVATE. This causes processes to fail to map the file MAP_SHARED even though it should succeed as the reservation is there. This patch alters mm/hugetlb.c and replaces VM_SHARED with VM_MAYSHARE when the intent of the code was to check whether the VMA was mapped MAP_SHARED or MAP_PRIVATE. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: Ingo Molnar <mingo@elte.hu> Cc: <stable@kernel.org> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: <starlight@binnacle.cx> Cc: Eric B Munson <ebmunson@us.ibm.com> Cc: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@canonical.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-05-28 14:34:40 -07:00
if (vma->vm_flags & VM_MAYSHARE) {
int err;
struct inode *inode = mapping->host;
err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
if (err) {
put_page(page);
if (err == -EEXIST)
goto retry;
goto out;
}
spin_lock(&inode->i_lock);
inode->i_blocks += blocks_per_huge_page(h);
spin_unlock(&inode->i_lock);
hugetlb, rmap: add reverse mapping for hugepage This patch adds reverse mapping feature for hugepage by introducing mapcount for shared/private-mapped hugepage and anon_vma for private-mapped hugepage. While hugepage is not currently swappable, reverse mapping can be useful for memory error handler. Without this patch, memory error handler cannot identify processes using the bad hugepage nor unmap it from them. That is: - for shared hugepage: we can collect processes using a hugepage through pagecache, but can not unmap the hugepage because of the lack of mapcount. - for privately mapped hugepage: we can neither collect processes nor unmap the hugepage. This patch solves these problems. This patch include the bug fix given by commit 23be7468e8, so reverts it. Dependency: "hugetlb: move definition of is_vm_hugetlb_page() to hugepage_inline.h" ChangeLog since May 24. - create hugetlb_inline.h and move is_vm_hugetlb_index() in it. - move functions setting up anon_vma for hugepage into mm/rmap.c. ChangeLog since May 13. - rebased to 2.6.34 - fix logic error (in case that private mapping and shared mapping coexist) - move is_vm_hugetlb_page() into include/linux/mm.h to use this function from linear_page_index() - define and use linear_hugepage_index() instead of compound_order() - use page_move_anon_rmap() in hugetlb_cow() - copy exclusive switch of __set_page_anon_rmap() into hugepage counterpart. - revert commit 24be7468 completely Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Larry Woodman <lwoodman@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com> Acked-by: Fengguang Wu <fengguang.wu@intel.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andi Kleen <ak@linux.intel.com>
2010-05-28 09:29:16 +09:00
page_dup_rmap(page);
} else {
lock_page(page);
hugetlb, rmap: add reverse mapping for hugepage This patch adds reverse mapping feature for hugepage by introducing mapcount for shared/private-mapped hugepage and anon_vma for private-mapped hugepage. While hugepage is not currently swappable, reverse mapping can be useful for memory error handler. Without this patch, memory error handler cannot identify processes using the bad hugepage nor unmap it from them. That is: - for shared hugepage: we can collect processes using a hugepage through pagecache, but can not unmap the hugepage because of the lack of mapcount. - for privately mapped hugepage: we can neither collect processes nor unmap the hugepage. This patch solves these problems. This patch include the bug fix given by commit 23be7468e8, so reverts it. Dependency: "hugetlb: move definition of is_vm_hugetlb_page() to hugepage_inline.h" ChangeLog since May 24. - create hugetlb_inline.h and move is_vm_hugetlb_index() in it. - move functions setting up anon_vma for hugepage into mm/rmap.c. ChangeLog since May 13. - rebased to 2.6.34 - fix logic error (in case that private mapping and shared mapping coexist) - move is_vm_hugetlb_page() into include/linux/mm.h to use this function from linear_page_index() - define and use linear_hugepage_index() instead of compound_order() - use page_move_anon_rmap() in hugetlb_cow() - copy exclusive switch of __set_page_anon_rmap() into hugepage counterpart. - revert commit 24be7468 completely Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Larry Woodman <lwoodman@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com> Acked-by: Fengguang Wu <fengguang.wu@intel.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andi Kleen <ak@linux.intel.com>
2010-05-28 09:29:16 +09:00
if (unlikely(anon_vma_prepare(vma))) {
ret = VM_FAULT_OOM;
goto backout_unlocked;
}
hugepage_add_new_anon_rmap(page, vma, address);
}
hugetlb, rmap: add reverse mapping for hugepage This patch adds reverse mapping feature for hugepage by introducing mapcount for shared/private-mapped hugepage and anon_vma for private-mapped hugepage. While hugepage is not currently swappable, reverse mapping can be useful for memory error handler. Without this patch, memory error handler cannot identify processes using the bad hugepage nor unmap it from them. That is: - for shared hugepage: we can collect processes using a hugepage through pagecache, but can not unmap the hugepage because of the lack of mapcount. - for privately mapped hugepage: we can neither collect processes nor unmap the hugepage. This patch solves these problems. This patch include the bug fix given by commit 23be7468e8, so reverts it. Dependency: "hugetlb: move definition of is_vm_hugetlb_page() to hugepage_inline.h" ChangeLog since May 24. - create hugetlb_inline.h and move is_vm_hugetlb_index() in it. - move functions setting up anon_vma for hugepage into mm/rmap.c. ChangeLog since May 13. - rebased to 2.6.34 - fix logic error (in case that private mapping and shared mapping coexist) - move is_vm_hugetlb_page() into include/linux/mm.h to use this function from linear_page_index() - define and use linear_hugepage_index() instead of compound_order() - use page_move_anon_rmap() in hugetlb_cow() - copy exclusive switch of __set_page_anon_rmap() into hugepage counterpart. - revert commit 24be7468 completely Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Larry Woodman <lwoodman@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com> Acked-by: Fengguang Wu <fengguang.wu@intel.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andi Kleen <ak@linux.intel.com>
2010-05-28 09:29:16 +09:00
} else {
/*
* If memory error occurs between mmap() and fault, some process
* don't have hwpoisoned swap entry for errored virtual address.
* So we need to block hugepage fault by PG_hwpoison bit check.
*/
if (unlikely(PageHWPoison(page))) {
ret = VM_FAULT_HWPOISON |
VM_FAULT_SET_HINDEX(h - hstates);
goto backout_unlocked;
}
hugetlb, rmap: add reverse mapping for hugepage This patch adds reverse mapping feature for hugepage by introducing mapcount for shared/private-mapped hugepage and anon_vma for private-mapped hugepage. While hugepage is not currently swappable, reverse mapping can be useful for memory error handler. Without this patch, memory error handler cannot identify processes using the bad hugepage nor unmap it from them. That is: - for shared hugepage: we can collect processes using a hugepage through pagecache, but can not unmap the hugepage because of the lack of mapcount. - for privately mapped hugepage: we can neither collect processes nor unmap the hugepage. This patch solves these problems. This patch include the bug fix given by commit 23be7468e8, so reverts it. Dependency: "hugetlb: move definition of is_vm_hugetlb_page() to hugepage_inline.h" ChangeLog since May 24. - create hugetlb_inline.h and move is_vm_hugetlb_index() in it. - move functions setting up anon_vma for hugepage into mm/rmap.c. ChangeLog since May 13. - rebased to 2.6.34 - fix logic error (in case that private mapping and shared mapping coexist) - move is_vm_hugetlb_page() into include/linux/mm.h to use this function from linear_page_index() - define and use linear_hugepage_index() instead of compound_order() - use page_move_anon_rmap() in hugetlb_cow() - copy exclusive switch of __set_page_anon_rmap() into hugepage counterpart. - revert commit 24be7468 completely Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Larry Woodman <lwoodman@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com> Acked-by: Fengguang Wu <fengguang.wu@intel.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andi Kleen <ak@linux.intel.com>
2010-05-28 09:29:16 +09:00
page_dup_rmap(page);
}
/*
* If we are going to COW a private mapping later, we examine the
* pending reservations for this page now. This will ensure that
* any allocations necessary to record that reservation occur outside
* the spinlock.
*/
if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
if (vma_needs_reservation(h, vma, address) < 0) {
ret = VM_FAULT_OOM;
goto backout_unlocked;
}
spin_lock(&mm->page_table_lock);
size = i_size_read(mapping->host) >> huge_page_shift(h);
if (idx >= size)
goto backout;
mm: fault feedback #2 This patch completes Linus's wish that the fault return codes be made into bit flags, which I agree makes everything nicer. This requires requires all handle_mm_fault callers to be modified (possibly the modifications should go further and do things like fault accounting in handle_mm_fault -- however that would be for another patch). [akpm@linux-foundation.org: fix alpha build] [akpm@linux-foundation.org: fix s390 build] [akpm@linux-foundation.org: fix sparc build] [akpm@linux-foundation.org: fix sparc64 build] [akpm@linux-foundation.org: fix ia64 build] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Richard Henderson <rth@twiddle.net> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Ian Molton <spyro@f2s.com> Cc: Bryan Wu <bryan.wu@analog.com> Cc: Mikael Starvik <starvik@axis.com> Cc: David Howells <dhowells@redhat.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Hirokazu Takata <takata@linux-m32r.org> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Roman Zippel <zippel@linux-m68k.org> Cc: Greg Ungerer <gerg@uclinux.org> Cc: Matthew Wilcox <willy@debian.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Paul Mundt <lethal@linux-sh.org> Cc: Kazumoto Kojima <kkojima@rr.iij4u.or.jp> Cc: Richard Curnow <rc@rc0.org.uk> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Jeff Dike <jdike@addtoit.com> Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it> Cc: Miles Bader <uclinux-v850@lsi.nec.co.jp> Cc: Chris Zankel <chris@zankel.net> Acked-by: Kyle McMartin <kyle@mcmartin.ca> Acked-by: Haavard Skinnemoen <hskinnemoen@atmel.com> Acked-by: Ralf Baechle <ralf@linux-mips.org> Acked-by: Andi Kleen <ak@muc.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> [ Still apparently needs some ARM and PPC loving - Linus ] Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-19 01:47:05 -07:00
ret = 0;
if (!huge_pte_none(huge_ptep_get(ptep)))
goto backout;
new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
&& (vma->vm_flags & VM_SHARED)));
set_huge_pte_at(mm, address, ptep, new_pte);
if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
/* Optimization, do the COW without a second fault */
hugetlb: guarantee that COW faults for a process that called mmap(MAP_PRIVATE) on hugetlbfs will succeed After patch 2 in this series, a process that successfully calls mmap() for a MAP_PRIVATE mapping will be guaranteed to successfully fault until a process calls fork(). At that point, the next write fault from the parent could fail due to COW if the child still has a reference. We only reserve pages for the parent but a copy must be made to avoid leaking data from the parent to the child after fork(). Reserves could be taken for both parent and child at fork time to guarantee faults but if the mapping is large it is highly likely we will not have sufficient pages for the reservation, and it is common to fork only to exec() immediatly after. A failure here would be very undesirable. Note that the current behaviour of mainline with MAP_PRIVATE pages is pretty bad. The following situation is allowed to occur today. 1. Process calls mmap(MAP_PRIVATE) 2. Process calls mlock() to fault all pages and makes sure it succeeds 3. Process forks() 4. Process writes to MAP_PRIVATE mapping while child still exists 5. If the COW fails at this point, the process gets SIGKILLed even though it had taken care to ensure the pages existed This patch improves the situation by guaranteeing the reliability of the process that successfully calls mmap(). When the parent performs COW, it will try to satisfy the allocation without using reserves. If that fails the parent will steal the page leaving any children without a page. Faults from the child after that point will result in failure. If the child COW happens first, an attempt will be made to allocate the page without reserves and the child will get SIGKILLed on failure. To summarise the new behaviour: 1. If the original mapper performs COW on a private mapping with multiple references, it will attempt to allocate a hugepage from the pool or the buddy allocator without using the existing reserves. On fail, VMAs mapping the same area are traversed and the page being COW'd is unmapped where found. It will then steal the original page as the last mapper in the normal way. 2. The VMAs the pages were unmapped from are flagged to note that pages with data no longer exist. Future no-page faults on those VMAs will terminate the process as otherwise it would appear that data was corrupted. A warning is printed to the console that this situation occured. 2. If the child performs COW first, it will attempt to satisfy the COW from the pool if there are enough pages or via the buddy allocator if overcommit is allowed and the buddy allocator can satisfy the request. If it fails, the child will be killed. If the pool is large enough, existing applications will not notice that the reserves were a factor. Existing applications depending on the no-reserves been set are unlikely to exist as for much of the history of hugetlbfs, pages were prefaulted at mmap(), allocating the pages at that point or failing the mmap(). [npiggin@suse.de: fix CONFIG_HUGETLB=n build] Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@shadowen.org> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:25 -07:00
ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
}
spin_unlock(&mm->page_table_lock);
unlock_page(page);
out:
return ret;
backout:
spin_unlock(&mm->page_table_lock);
backout_unlocked:
unlock_page(page);
put_page(page);
goto out;
}
int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
unsigned long address, unsigned int flags)
{
pte_t *ptep;
pte_t entry;
int ret;
hugetlb, rmap: add reverse mapping for hugepage This patch adds reverse mapping feature for hugepage by introducing mapcount for shared/private-mapped hugepage and anon_vma for private-mapped hugepage. While hugepage is not currently swappable, reverse mapping can be useful for memory error handler. Without this patch, memory error handler cannot identify processes using the bad hugepage nor unmap it from them. That is: - for shared hugepage: we can collect processes using a hugepage through pagecache, but can not unmap the hugepage because of the lack of mapcount. - for privately mapped hugepage: we can neither collect processes nor unmap the hugepage. This patch solves these problems. This patch include the bug fix given by commit 23be7468e8, so reverts it. Dependency: "hugetlb: move definition of is_vm_hugetlb_page() to hugepage_inline.h" ChangeLog since May 24. - create hugetlb_inline.h and move is_vm_hugetlb_index() in it. - move functions setting up anon_vma for hugepage into mm/rmap.c. ChangeLog since May 13. - rebased to 2.6.34 - fix logic error (in case that private mapping and shared mapping coexist) - move is_vm_hugetlb_page() into include/linux/mm.h to use this function from linear_page_index() - define and use linear_hugepage_index() instead of compound_order() - use page_move_anon_rmap() in hugetlb_cow() - copy exclusive switch of __set_page_anon_rmap() into hugepage counterpart. - revert commit 24be7468 completely Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Larry Woodman <lwoodman@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com> Acked-by: Fengguang Wu <fengguang.wu@intel.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andi Kleen <ak@linux.intel.com>
2010-05-28 09:29:16 +09:00
struct page *page = NULL;
struct page *pagecache_page = NULL;
[PATCH] hugepage: serialize hugepage allocation and instantiation Currently, no lock or mutex is held between allocating a hugepage and inserting it into the pagetables / page cache. When we do go to insert the page into pagetables or page cache, we recheck and may free the newly allocated hugepage. However, since the number of hugepages in the system is strictly limited, and it's usualy to want to use all of them, this can still lead to spurious allocation failures. For example, suppose two processes are both mapping (MAP_SHARED) the same hugepage file, large enough to consume the entire available hugepage pool. If they race instantiating the last page in the mapping, they will both attempt to allocate the last available hugepage. One will fail, of course, returning OOM from the fault and thus causing the process to be killed, despite the fact that the entire mapping can, in fact, be instantiated. The patch fixes this race by the simple method of adding a (sleeping) mutex to serialize the hugepage fault path between allocation and insertion into pagetables and/or page cache. It would be possible to avoid the serialization by catching the allocation failures, waiting on some condition, then rechecking to see if someone else has instantiated the page for us. Given the likely frequency of hugepage instantiations, it seems very doubtful it's worth the extra complexity. This patch causes no regression on the libhugetlbfs testsuite, and one test, which can trigger this race now passes where it previously failed. Actually, the test still sometimes fails, though less often and only as a shmat() failure, rather processes getting OOM killed by the VM. The dodgy heuristic tests in fs/hugetlbfs/inode.c for whether there's enough hugepage space aren't protected by the new mutex, and would be ugly to do so, so there's still a race there. Another patch to replace those tests with something saner for this reason as well as others coming... Signed-off-by: David Gibson <dwg@au1.ibm.com> Cc: William Lee Irwin III <wli@holomorphy.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-22 00:08:53 -08:00
static DEFINE_MUTEX(hugetlb_instantiation_mutex);
struct hstate *h = hstate_vma(vma);
ptep = huge_pte_offset(mm, address);
if (ptep) {
entry = huge_ptep_get(ptep);
if (unlikely(is_hugetlb_entry_migration(entry))) {
migration_entry_wait(mm, (pmd_t *)ptep, address);
return 0;
} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
return VM_FAULT_HWPOISON_LARGE |
VM_FAULT_SET_HINDEX(h - hstates);
}
ptep = huge_pte_alloc(mm, address, huge_page_size(h));
if (!ptep)
return VM_FAULT_OOM;
[PATCH] hugepage: serialize hugepage allocation and instantiation Currently, no lock or mutex is held between allocating a hugepage and inserting it into the pagetables / page cache. When we do go to insert the page into pagetables or page cache, we recheck and may free the newly allocated hugepage. However, since the number of hugepages in the system is strictly limited, and it's usualy to want to use all of them, this can still lead to spurious allocation failures. For example, suppose two processes are both mapping (MAP_SHARED) the same hugepage file, large enough to consume the entire available hugepage pool. If they race instantiating the last page in the mapping, they will both attempt to allocate the last available hugepage. One will fail, of course, returning OOM from the fault and thus causing the process to be killed, despite the fact that the entire mapping can, in fact, be instantiated. The patch fixes this race by the simple method of adding a (sleeping) mutex to serialize the hugepage fault path between allocation and insertion into pagetables and/or page cache. It would be possible to avoid the serialization by catching the allocation failures, waiting on some condition, then rechecking to see if someone else has instantiated the page for us. Given the likely frequency of hugepage instantiations, it seems very doubtful it's worth the extra complexity. This patch causes no regression on the libhugetlbfs testsuite, and one test, which can trigger this race now passes where it previously failed. Actually, the test still sometimes fails, though less often and only as a shmat() failure, rather processes getting OOM killed by the VM. The dodgy heuristic tests in fs/hugetlbfs/inode.c for whether there's enough hugepage space aren't protected by the new mutex, and would be ugly to do so, so there's still a race there. Another patch to replace those tests with something saner for this reason as well as others coming... Signed-off-by: David Gibson <dwg@au1.ibm.com> Cc: William Lee Irwin III <wli@holomorphy.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-22 00:08:53 -08:00
/*
* Serialize hugepage allocation and instantiation, so that we don't
* get spurious allocation failures if two CPUs race to instantiate
* the same page in the page cache.
*/
mutex_lock(&hugetlb_instantiation_mutex);
entry = huge_ptep_get(ptep);
if (huge_pte_none(entry)) {
ret = hugetlb_no_page(mm, vma, address, ptep, flags);
goto out_mutex;
[PATCH] hugepage: serialize hugepage allocation and instantiation Currently, no lock or mutex is held between allocating a hugepage and inserting it into the pagetables / page cache. When we do go to insert the page into pagetables or page cache, we recheck and may free the newly allocated hugepage. However, since the number of hugepages in the system is strictly limited, and it's usualy to want to use all of them, this can still lead to spurious allocation failures. For example, suppose two processes are both mapping (MAP_SHARED) the same hugepage file, large enough to consume the entire available hugepage pool. If they race instantiating the last page in the mapping, they will both attempt to allocate the last available hugepage. One will fail, of course, returning OOM from the fault and thus causing the process to be killed, despite the fact that the entire mapping can, in fact, be instantiated. The patch fixes this race by the simple method of adding a (sleeping) mutex to serialize the hugepage fault path between allocation and insertion into pagetables and/or page cache. It would be possible to avoid the serialization by catching the allocation failures, waiting on some condition, then rechecking to see if someone else has instantiated the page for us. Given the likely frequency of hugepage instantiations, it seems very doubtful it's worth the extra complexity. This patch causes no regression on the libhugetlbfs testsuite, and one test, which can trigger this race now passes where it previously failed. Actually, the test still sometimes fails, though less often and only as a shmat() failure, rather processes getting OOM killed by the VM. The dodgy heuristic tests in fs/hugetlbfs/inode.c for whether there's enough hugepage space aren't protected by the new mutex, and would be ugly to do so, so there's still a race there. Another patch to replace those tests with something saner for this reason as well as others coming... Signed-off-by: David Gibson <dwg@au1.ibm.com> Cc: William Lee Irwin III <wli@holomorphy.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-22 00:08:53 -08:00
}
mm: fault feedback #2 This patch completes Linus's wish that the fault return codes be made into bit flags, which I agree makes everything nicer. This requires requires all handle_mm_fault callers to be modified (possibly the modifications should go further and do things like fault accounting in handle_mm_fault -- however that would be for another patch). [akpm@linux-foundation.org: fix alpha build] [akpm@linux-foundation.org: fix s390 build] [akpm@linux-foundation.org: fix sparc build] [akpm@linux-foundation.org: fix sparc64 build] [akpm@linux-foundation.org: fix ia64 build] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Richard Henderson <rth@twiddle.net> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Ian Molton <spyro@f2s.com> Cc: Bryan Wu <bryan.wu@analog.com> Cc: Mikael Starvik <starvik@axis.com> Cc: David Howells <dhowells@redhat.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Hirokazu Takata <takata@linux-m32r.org> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Roman Zippel <zippel@linux-m68k.org> Cc: Greg Ungerer <gerg@uclinux.org> Cc: Matthew Wilcox <willy@debian.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Paul Mundt <lethal@linux-sh.org> Cc: Kazumoto Kojima <kkojima@rr.iij4u.or.jp> Cc: Richard Curnow <rc@rc0.org.uk> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Jeff Dike <jdike@addtoit.com> Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it> Cc: Miles Bader <uclinux-v850@lsi.nec.co.jp> Cc: Chris Zankel <chris@zankel.net> Acked-by: Kyle McMartin <kyle@mcmartin.ca> Acked-by: Haavard Skinnemoen <hskinnemoen@atmel.com> Acked-by: Ralf Baechle <ralf@linux-mips.org> Acked-by: Andi Kleen <ak@muc.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> [ Still apparently needs some ARM and PPC loving - Linus ] Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-19 01:47:05 -07:00
ret = 0;
/*
* If we are going to COW the mapping later, we examine the pending
* reservations for this page now. This will ensure that any
* allocations necessary to record that reservation occur outside the
* spinlock. For private mappings, we also lookup the pagecache
* page now as it is used to determine if a reservation has been
* consumed.
*/
if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) {
if (vma_needs_reservation(h, vma, address) < 0) {
ret = VM_FAULT_OOM;
goto out_mutex;
}
mm: account for MAP_SHARED mappings using VM_MAYSHARE and not VM_SHARED in hugetlbfs Addresses http://bugzilla.kernel.org/show_bug.cgi?id=13302 hugetlbfs reserves huge pages but does not fault them at mmap() time to ensure that future faults succeed. The reservation behaviour differs depending on whether the mapping was mapped MAP_SHARED or MAP_PRIVATE. For MAP_SHARED mappings, hugepages are reserved when mmap() is first called and are tracked based on information associated with the inode. Other processes mapping MAP_SHARED use the same reservation. MAP_PRIVATE track the reservations based on the VMA created as part of the mmap() operation. Each process mapping MAP_PRIVATE must make its own reservation. hugetlbfs currently checks if a VMA is MAP_SHARED with the VM_SHARED flag and not VM_MAYSHARE. For file-backed mappings, such as hugetlbfs, VM_SHARED is set only if the mapping is MAP_SHARED and the file was opened read-write. If a shared memory mapping was mapped shared-read-write for populating of data and mapped shared-read-only by other processes, then hugetlbfs would account for the mapping as if it was MAP_PRIVATE. This causes processes to fail to map the file MAP_SHARED even though it should succeed as the reservation is there. This patch alters mm/hugetlb.c and replaces VM_SHARED with VM_MAYSHARE when the intent of the code was to check whether the VMA was mapped MAP_SHARED or MAP_PRIVATE. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: Ingo Molnar <mingo@elte.hu> Cc: <stable@kernel.org> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: <starlight@binnacle.cx> Cc: Eric B Munson <ebmunson@us.ibm.com> Cc: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@canonical.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-05-28 14:34:40 -07:00
if (!(vma->vm_flags & VM_MAYSHARE))
pagecache_page = hugetlbfs_pagecache_page(h,
vma, address);
}
/*
* hugetlb_cow() requires page locks of pte_page(entry) and
* pagecache_page, so here we need take the former one
* when page != pagecache_page or !pagecache_page.
* Note that locking order is always pagecache_page -> page,
* so no worry about deadlock.
*/
page = pte_page(entry);
if (page != pagecache_page)
hugetlb, rmap: add reverse mapping for hugepage This patch adds reverse mapping feature for hugepage by introducing mapcount for shared/private-mapped hugepage and anon_vma for private-mapped hugepage. While hugepage is not currently swappable, reverse mapping can be useful for memory error handler. Without this patch, memory error handler cannot identify processes using the bad hugepage nor unmap it from them. That is: - for shared hugepage: we can collect processes using a hugepage through pagecache, but can not unmap the hugepage because of the lack of mapcount. - for privately mapped hugepage: we can neither collect processes nor unmap the hugepage. This patch solves these problems. This patch include the bug fix given by commit 23be7468e8, so reverts it. Dependency: "hugetlb: move definition of is_vm_hugetlb_page() to hugepage_inline.h" ChangeLog since May 24. - create hugetlb_inline.h and move is_vm_hugetlb_index() in it. - move functions setting up anon_vma for hugepage into mm/rmap.c. ChangeLog since May 13. - rebased to 2.6.34 - fix logic error (in case that private mapping and shared mapping coexist) - move is_vm_hugetlb_page() into include/linux/mm.h to use this function from linear_page_index() - define and use linear_hugepage_index() instead of compound_order() - use page_move_anon_rmap() in hugetlb_cow() - copy exclusive switch of __set_page_anon_rmap() into hugepage counterpart. - revert commit 24be7468 completely Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Larry Woodman <lwoodman@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com> Acked-by: Fengguang Wu <fengguang.wu@intel.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andi Kleen <ak@linux.intel.com>
2010-05-28 09:29:16 +09:00
lock_page(page);
spin_lock(&mm->page_table_lock);
/* Check for a racing update before calling hugetlb_cow */
if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
goto out_page_table_lock;
if (flags & FAULT_FLAG_WRITE) {
if (!pte_write(entry)) {
ret = hugetlb_cow(mm, vma, address, ptep, entry,
pagecache_page);
goto out_page_table_lock;
}
entry = pte_mkdirty(entry);
}
entry = pte_mkyoung(entry);
if (huge_ptep_set_access_flags(vma, address, ptep, entry,
flags & FAULT_FLAG_WRITE))
update_mmu_cache(vma, address, ptep);
out_page_table_lock:
spin_unlock(&mm->page_table_lock);
if (pagecache_page) {
unlock_page(pagecache_page);
put_page(pagecache_page);
}
if (page != pagecache_page)
unlock_page(page);
out_mutex:
[PATCH] hugepage: serialize hugepage allocation and instantiation Currently, no lock or mutex is held between allocating a hugepage and inserting it into the pagetables / page cache. When we do go to insert the page into pagetables or page cache, we recheck and may free the newly allocated hugepage. However, since the number of hugepages in the system is strictly limited, and it's usualy to want to use all of them, this can still lead to spurious allocation failures. For example, suppose two processes are both mapping (MAP_SHARED) the same hugepage file, large enough to consume the entire available hugepage pool. If they race instantiating the last page in the mapping, they will both attempt to allocate the last available hugepage. One will fail, of course, returning OOM from the fault and thus causing the process to be killed, despite the fact that the entire mapping can, in fact, be instantiated. The patch fixes this race by the simple method of adding a (sleeping) mutex to serialize the hugepage fault path between allocation and insertion into pagetables and/or page cache. It would be possible to avoid the serialization by catching the allocation failures, waiting on some condition, then rechecking to see if someone else has instantiated the page for us. Given the likely frequency of hugepage instantiations, it seems very doubtful it's worth the extra complexity. This patch causes no regression on the libhugetlbfs testsuite, and one test, which can trigger this race now passes where it previously failed. Actually, the test still sometimes fails, though less often and only as a shmat() failure, rather processes getting OOM killed by the VM. The dodgy heuristic tests in fs/hugetlbfs/inode.c for whether there's enough hugepage space aren't protected by the new mutex, and would be ugly to do so, so there's still a race there. Another patch to replace those tests with something saner for this reason as well as others coming... Signed-off-by: David Gibson <dwg@au1.ibm.com> Cc: William Lee Irwin III <wli@holomorphy.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-22 00:08:53 -08:00
mutex_unlock(&hugetlb_instantiation_mutex);
return ret;
}
/* Can be overriden by architectures */
__attribute__((weak)) struct page *
follow_huge_pud(struct mm_struct *mm, unsigned long address,
pud_t *pud, int write)
{
BUG();
return NULL;
}
int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
struct page **pages, struct vm_area_struct **vmas,
unsigned long *position, int *length, int i,
unsigned int flags)
{
unsigned long pfn_offset;
unsigned long vaddr = *position;
int remainder = *length;
struct hstate *h = hstate_vma(vma);
spin_lock(&mm->page_table_lock);
while (vaddr < vma->vm_end && remainder) {
pte_t *pte;
int absent;
struct page *page;
/*
* Some archs (sparc64, sh*) have multiple pte_ts to
* each hugepage. We have to make sure we get the
* first, for the page indexing below to work.
*/
pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
absent = !pte || huge_pte_none(huge_ptep_get(pte));
/*
* When coredumping, it suits get_dump_page if we just return
* an error where there's an empty slot with no huge pagecache
* to back it. This way, we avoid allocating a hugepage, and
* the sparse dumpfile avoids allocating disk blocks, but its
* huge holes still show up with zeroes where they need to be.
*/
if (absent && (flags & FOLL_DUMP) &&
!hugetlbfs_pagecache_present(h, vma, vaddr)) {
remainder = 0;
break;
}
if (absent ||
((flags & FOLL_WRITE) && !pte_write(huge_ptep_get(pte)))) {
int ret;
spin_unlock(&mm->page_table_lock);
ret = hugetlb_fault(mm, vma, vaddr,
(flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
spin_lock(&mm->page_table_lock);
if (!(ret & VM_FAULT_ERROR))
continue;
remainder = 0;
break;
}
pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
page = pte_page(huge_ptep_get(pte));
same_page:
if (pages) {
pages[i] = mem_map_offset(page, pfn_offset);
get_page(pages[i]);
}
if (vmas)
vmas[i] = vma;
vaddr += PAGE_SIZE;
++pfn_offset;
--remainder;
++i;
if (vaddr < vma->vm_end && remainder &&
pfn_offset < pages_per_huge_page(h)) {
/*
* We use pfn_offset to avoid touching the pageframes
* of this compound page.
*/
goto same_page;
}
}
spin_unlock(&mm->page_table_lock);
*length = remainder;
*position = vaddr;
return i ? i : -EFAULT;
}
[PATCH] Enable mprotect on huge pages 2.6.16-rc3 uses hugetlb on-demand paging, but it doesn_t support hugetlb mprotect. From: David Gibson <david@gibson.dropbear.id.au> Remove a test from the mprotect() path which checks that the mprotect()ed range on a hugepage VMA is hugepage aligned (yes, really, the sense of is_aligned_hugepage_range() is the opposite of what you'd guess :-/). In fact, we don't need this test. If the given addresses match the beginning/end of a hugepage VMA they must already be suitably aligned. If they don't, then mprotect_fixup() will attempt to split the VMA. The very first test in split_vma() will check for a badly aligned address on a hugepage VMA and return -EINVAL if necessary. From: "Chen, Kenneth W" <kenneth.w.chen@intel.com> On i386 and x86-64, pte flag _PAGE_PSE collides with _PAGE_PROTNONE. The identify of hugetlb pte is lost when changing page protection via mprotect. A page fault occurs later will trigger a bug check in huge_pte_alloc(). The fix is to always make new pte a hugetlb pte and also to clean up legacy code where _PAGE_PRESENT is forced on in the pre-faulting day. Signed-off-by: Zhang Yanmin <yanmin.zhang@intel.com> Cc: David Gibson <david@gibson.dropbear.id.au> Cc: "David S. Miller" <davem@davemloft.net> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: William Lee Irwin III <wli@holomorphy.com> Signed-off-by: Ken Chen <kenneth.w.chen@intel.com> Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Cc: Andi Kleen <ak@muc.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-22 00:08:50 -08:00
void hugetlb_change_protection(struct vm_area_struct *vma,
unsigned long address, unsigned long end, pgprot_t newprot)
{
struct mm_struct *mm = vma->vm_mm;
unsigned long start = address;
pte_t *ptep;
pte_t pte;
struct hstate *h = hstate_vma(vma);
[PATCH] Enable mprotect on huge pages 2.6.16-rc3 uses hugetlb on-demand paging, but it doesn_t support hugetlb mprotect. From: David Gibson <david@gibson.dropbear.id.au> Remove a test from the mprotect() path which checks that the mprotect()ed range on a hugepage VMA is hugepage aligned (yes, really, the sense of is_aligned_hugepage_range() is the opposite of what you'd guess :-/). In fact, we don't need this test. If the given addresses match the beginning/end of a hugepage VMA they must already be suitably aligned. If they don't, then mprotect_fixup() will attempt to split the VMA. The very first test in split_vma() will check for a badly aligned address on a hugepage VMA and return -EINVAL if necessary. From: "Chen, Kenneth W" <kenneth.w.chen@intel.com> On i386 and x86-64, pte flag _PAGE_PSE collides with _PAGE_PROTNONE. The identify of hugetlb pte is lost when changing page protection via mprotect. A page fault occurs later will trigger a bug check in huge_pte_alloc(). The fix is to always make new pte a hugetlb pte and also to clean up legacy code where _PAGE_PRESENT is forced on in the pre-faulting day. Signed-off-by: Zhang Yanmin <yanmin.zhang@intel.com> Cc: David Gibson <david@gibson.dropbear.id.au> Cc: "David S. Miller" <davem@davemloft.net> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: William Lee Irwin III <wli@holomorphy.com> Signed-off-by: Ken Chen <kenneth.w.chen@intel.com> Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Cc: Andi Kleen <ak@muc.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-22 00:08:50 -08:00
BUG_ON(address >= end);
flush_cache_range(vma, address, end);
mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
[PATCH] Enable mprotect on huge pages 2.6.16-rc3 uses hugetlb on-demand paging, but it doesn_t support hugetlb mprotect. From: David Gibson <david@gibson.dropbear.id.au> Remove a test from the mprotect() path which checks that the mprotect()ed range on a hugepage VMA is hugepage aligned (yes, really, the sense of is_aligned_hugepage_range() is the opposite of what you'd guess :-/). In fact, we don't need this test. If the given addresses match the beginning/end of a hugepage VMA they must already be suitably aligned. If they don't, then mprotect_fixup() will attempt to split the VMA. The very first test in split_vma() will check for a badly aligned address on a hugepage VMA and return -EINVAL if necessary. From: "Chen, Kenneth W" <kenneth.w.chen@intel.com> On i386 and x86-64, pte flag _PAGE_PSE collides with _PAGE_PROTNONE. The identify of hugetlb pte is lost when changing page protection via mprotect. A page fault occurs later will trigger a bug check in huge_pte_alloc(). The fix is to always make new pte a hugetlb pte and also to clean up legacy code where _PAGE_PRESENT is forced on in the pre-faulting day. Signed-off-by: Zhang Yanmin <yanmin.zhang@intel.com> Cc: David Gibson <david@gibson.dropbear.id.au> Cc: "David S. Miller" <davem@davemloft.net> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: William Lee Irwin III <wli@holomorphy.com> Signed-off-by: Ken Chen <kenneth.w.chen@intel.com> Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Cc: Andi Kleen <ak@muc.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-22 00:08:50 -08:00
spin_lock(&mm->page_table_lock);
for (; address < end; address += huge_page_size(h)) {
[PATCH] Enable mprotect on huge pages 2.6.16-rc3 uses hugetlb on-demand paging, but it doesn_t support hugetlb mprotect. From: David Gibson <david@gibson.dropbear.id.au> Remove a test from the mprotect() path which checks that the mprotect()ed range on a hugepage VMA is hugepage aligned (yes, really, the sense of is_aligned_hugepage_range() is the opposite of what you'd guess :-/). In fact, we don't need this test. If the given addresses match the beginning/end of a hugepage VMA they must already be suitably aligned. If they don't, then mprotect_fixup() will attempt to split the VMA. The very first test in split_vma() will check for a badly aligned address on a hugepage VMA and return -EINVAL if necessary. From: "Chen, Kenneth W" <kenneth.w.chen@intel.com> On i386 and x86-64, pte flag _PAGE_PSE collides with _PAGE_PROTNONE. The identify of hugetlb pte is lost when changing page protection via mprotect. A page fault occurs later will trigger a bug check in huge_pte_alloc(). The fix is to always make new pte a hugetlb pte and also to clean up legacy code where _PAGE_PRESENT is forced on in the pre-faulting day. Signed-off-by: Zhang Yanmin <yanmin.zhang@intel.com> Cc: David Gibson <david@gibson.dropbear.id.au> Cc: "David S. Miller" <davem@davemloft.net> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: William Lee Irwin III <wli@holomorphy.com> Signed-off-by: Ken Chen <kenneth.w.chen@intel.com> Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Cc: Andi Kleen <ak@muc.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-22 00:08:50 -08:00
ptep = huge_pte_offset(mm, address);
if (!ptep)
continue;
[PATCH] shared page table for hugetlb page Following up with the work on shared page table done by Dave McCracken. This set of patch target shared page table for hugetlb memory only. The shared page table is particular useful in the situation of large number of independent processes sharing large shared memory segments. In the normal page case, the amount of memory saved from process' page table is quite significant. For hugetlb, the saving on page table memory is not the primary objective (as hugetlb itself already cuts down page table overhead significantly), instead, the purpose of using shared page table on hugetlb is to allow faster TLB refill and smaller cache pollution upon TLB miss. With PT sharing, pte entries are shared among hundreds of processes, the cache consumption used by all the page table is smaller and in return, application gets much higher cache hit ratio. One other effect is that cache hit ratio with hardware page walker hitting on pte in cache will be higher and this helps to reduce tlb miss latency. These two effects contribute to higher application performance. Signed-off-by: Ken Chen <kenneth.w.chen@intel.com> Acked-by: Hugh Dickins <hugh@veritas.com> Cc: Dave McCracken <dmccr@us.ibm.com> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: David Gibson <david@gibson.dropbear.id.au> Cc: Adam Litke <agl@us.ibm.com> Cc: Paul Mundt <lethal@linux-sh.org> Cc: "David S. Miller" <davem@davemloft.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-06 20:32:03 -08:00
if (huge_pmd_unshare(mm, &address, ptep))
continue;
if (!huge_pte_none(huge_ptep_get(ptep))) {
[PATCH] Enable mprotect on huge pages 2.6.16-rc3 uses hugetlb on-demand paging, but it doesn_t support hugetlb mprotect. From: David Gibson <david@gibson.dropbear.id.au> Remove a test from the mprotect() path which checks that the mprotect()ed range on a hugepage VMA is hugepage aligned (yes, really, the sense of is_aligned_hugepage_range() is the opposite of what you'd guess :-/). In fact, we don't need this test. If the given addresses match the beginning/end of a hugepage VMA they must already be suitably aligned. If they don't, then mprotect_fixup() will attempt to split the VMA. The very first test in split_vma() will check for a badly aligned address on a hugepage VMA and return -EINVAL if necessary. From: "Chen, Kenneth W" <kenneth.w.chen@intel.com> On i386 and x86-64, pte flag _PAGE_PSE collides with _PAGE_PROTNONE. The identify of hugetlb pte is lost when changing page protection via mprotect. A page fault occurs later will trigger a bug check in huge_pte_alloc(). The fix is to always make new pte a hugetlb pte and also to clean up legacy code where _PAGE_PRESENT is forced on in the pre-faulting day. Signed-off-by: Zhang Yanmin <yanmin.zhang@intel.com> Cc: David Gibson <david@gibson.dropbear.id.au> Cc: "David S. Miller" <davem@davemloft.net> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: William Lee Irwin III <wli@holomorphy.com> Signed-off-by: Ken Chen <kenneth.w.chen@intel.com> Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Cc: Andi Kleen <ak@muc.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-22 00:08:50 -08:00
pte = huge_ptep_get_and_clear(mm, address, ptep);
pte = pte_mkhuge(pte_modify(pte, newprot));
set_huge_pte_at(mm, address, ptep, pte);
}
}
spin_unlock(&mm->page_table_lock);
mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
[PATCH] Enable mprotect on huge pages 2.6.16-rc3 uses hugetlb on-demand paging, but it doesn_t support hugetlb mprotect. From: David Gibson <david@gibson.dropbear.id.au> Remove a test from the mprotect() path which checks that the mprotect()ed range on a hugepage VMA is hugepage aligned (yes, really, the sense of is_aligned_hugepage_range() is the opposite of what you'd guess :-/). In fact, we don't need this test. If the given addresses match the beginning/end of a hugepage VMA they must already be suitably aligned. If they don't, then mprotect_fixup() will attempt to split the VMA. The very first test in split_vma() will check for a badly aligned address on a hugepage VMA and return -EINVAL if necessary. From: "Chen, Kenneth W" <kenneth.w.chen@intel.com> On i386 and x86-64, pte flag _PAGE_PSE collides with _PAGE_PROTNONE. The identify of hugetlb pte is lost when changing page protection via mprotect. A page fault occurs later will trigger a bug check in huge_pte_alloc(). The fix is to always make new pte a hugetlb pte and also to clean up legacy code where _PAGE_PRESENT is forced on in the pre-faulting day. Signed-off-by: Zhang Yanmin <yanmin.zhang@intel.com> Cc: David Gibson <david@gibson.dropbear.id.au> Cc: "David S. Miller" <davem@davemloft.net> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: William Lee Irwin III <wli@holomorphy.com> Signed-off-by: Ken Chen <kenneth.w.chen@intel.com> Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Cc: Andi Kleen <ak@muc.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-22 00:08:50 -08:00
flush_tlb_range(vma, start, end);
}
hugetlb: reserve huge pages for reliable MAP_PRIVATE hugetlbfs mappings until fork() This patch reserves huge pages at mmap() time for MAP_PRIVATE mappings in a similar manner to the reservations taken for MAP_SHARED mappings. The reserve count is accounted both globally and on a per-VMA basis for private mappings. This guarantees that a process that successfully calls mmap() will successfully fault all pages in the future unless fork() is called. The characteristics of private mappings of hugetlbfs files behaviour after this patch are; 1. The process calling mmap() is guaranteed to succeed all future faults until it forks(). 2. On fork(), the parent may die due to SIGKILL on writes to the private mapping if enough pages are not available for the COW. For reasonably reliable behaviour in the face of a small huge page pool, children of hugepage-aware processes should not reference the mappings; such as might occur when fork()ing to exec(). 3. On fork(), the child VMAs inherit no reserves. Reads on pages already faulted by the parent will succeed. Successful writes will depend on enough huge pages being free in the pool. 4. Quotas of the hugetlbfs mount are checked at reserve time for the mapper and at fault time otherwise. Before this patch, all reads or writes in the child potentially needs page allocations that can later lead to the death of the parent. This applies to reads and writes of uninstantiated pages as well as COW. After the patch it is only a write to an instantiated page that causes problems. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@shadowen.org> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:23 -07:00
int hugetlb_reserve_pages(struct inode *inode,
long from, long to,
Do not account for the address space used by hugetlbfs using VM_ACCOUNT When overcommit is disabled, the core VM accounts for pages used by anonymous shared, private mappings and special mappings. It keeps track of VMAs that should be accounted for with VM_ACCOUNT and VMAs that never had a reserve with VM_NORESERVE. Overcommit for hugetlbfs is much riskier than overcommit for base pages due to contiguity requirements. It avoids overcommiting on both shared and private mappings using reservation counters that are checked and updated during mmap(). This ensures (within limits) that hugepages exist in the future when faults occurs or it is too easy to applications to be SIGKILLed. As hugetlbfs makes its own reservations of a different unit to the base page size, VM_ACCOUNT should never be set. Even if the units were correct, we would double account for the usage in the core VM and hugetlbfs. VM_NORESERVE may be set because an application can request no reserves be made for hugetlbfs at the risk of getting killed later. With commit fc8744adc870a8d4366908221508bb113d8b72ee, VM_NORESERVE and VM_ACCOUNT are getting unconditionally set for hugetlbfs-backed mappings. This breaks the accounting for both the core VM and hugetlbfs, can trigger an OOM storm when hugepage pools are too small lockups and corrupted counters otherwise are used. This patch brings hugetlbfs more in line with how the core VM treats VM_NORESERVE but prevents VM_ACCOUNT being set. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-02-10 14:02:27 +00:00
struct vm_area_struct *vma,
int acctflag)
{
long ret, chg;
struct hstate *h = hstate_inode(inode);
/*
* Only apply hugepage reservation if asked. At fault time, an
* attempt will be made for VM_NORESERVE to allocate a page
* and filesystem quota without using reserves
*/
if (acctflag & VM_NORESERVE)
return 0;
hugetlb: reserve huge pages for reliable MAP_PRIVATE hugetlbfs mappings until fork() This patch reserves huge pages at mmap() time for MAP_PRIVATE mappings in a similar manner to the reservations taken for MAP_SHARED mappings. The reserve count is accounted both globally and on a per-VMA basis for private mappings. This guarantees that a process that successfully calls mmap() will successfully fault all pages in the future unless fork() is called. The characteristics of private mappings of hugetlbfs files behaviour after this patch are; 1. The process calling mmap() is guaranteed to succeed all future faults until it forks(). 2. On fork(), the parent may die due to SIGKILL on writes to the private mapping if enough pages are not available for the COW. For reasonably reliable behaviour in the face of a small huge page pool, children of hugepage-aware processes should not reference the mappings; such as might occur when fork()ing to exec(). 3. On fork(), the child VMAs inherit no reserves. Reads on pages already faulted by the parent will succeed. Successful writes will depend on enough huge pages being free in the pool. 4. Quotas of the hugetlbfs mount are checked at reserve time for the mapper and at fault time otherwise. Before this patch, all reads or writes in the child potentially needs page allocations that can later lead to the death of the parent. This applies to reads and writes of uninstantiated pages as well as COW. After the patch it is only a write to an instantiated page that causes problems. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@shadowen.org> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:23 -07:00
/*
* Shared mappings base their reservation on the number of pages that
* are already allocated on behalf of the file. Private mappings need
* to reserve the full area even if read-only as mprotect() may be
* called to make the mapping read-write. Assume !vma is a shm mapping
*/
mm: account for MAP_SHARED mappings using VM_MAYSHARE and not VM_SHARED in hugetlbfs Addresses http://bugzilla.kernel.org/show_bug.cgi?id=13302 hugetlbfs reserves huge pages but does not fault them at mmap() time to ensure that future faults succeed. The reservation behaviour differs depending on whether the mapping was mapped MAP_SHARED or MAP_PRIVATE. For MAP_SHARED mappings, hugepages are reserved when mmap() is first called and are tracked based on information associated with the inode. Other processes mapping MAP_SHARED use the same reservation. MAP_PRIVATE track the reservations based on the VMA created as part of the mmap() operation. Each process mapping MAP_PRIVATE must make its own reservation. hugetlbfs currently checks if a VMA is MAP_SHARED with the VM_SHARED flag and not VM_MAYSHARE. For file-backed mappings, such as hugetlbfs, VM_SHARED is set only if the mapping is MAP_SHARED and the file was opened read-write. If a shared memory mapping was mapped shared-read-write for populating of data and mapped shared-read-only by other processes, then hugetlbfs would account for the mapping as if it was MAP_PRIVATE. This causes processes to fail to map the file MAP_SHARED even though it should succeed as the reservation is there. This patch alters mm/hugetlb.c and replaces VM_SHARED with VM_MAYSHARE when the intent of the code was to check whether the VMA was mapped MAP_SHARED or MAP_PRIVATE. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: Ingo Molnar <mingo@elte.hu> Cc: <stable@kernel.org> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: <starlight@binnacle.cx> Cc: Eric B Munson <ebmunson@us.ibm.com> Cc: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@canonical.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-05-28 14:34:40 -07:00
if (!vma || vma->vm_flags & VM_MAYSHARE)
hugetlb: reserve huge pages for reliable MAP_PRIVATE hugetlbfs mappings until fork() This patch reserves huge pages at mmap() time for MAP_PRIVATE mappings in a similar manner to the reservations taken for MAP_SHARED mappings. The reserve count is accounted both globally and on a per-VMA basis for private mappings. This guarantees that a process that successfully calls mmap() will successfully fault all pages in the future unless fork() is called. The characteristics of private mappings of hugetlbfs files behaviour after this patch are; 1. The process calling mmap() is guaranteed to succeed all future faults until it forks(). 2. On fork(), the parent may die due to SIGKILL on writes to the private mapping if enough pages are not available for the COW. For reasonably reliable behaviour in the face of a small huge page pool, children of hugepage-aware processes should not reference the mappings; such as might occur when fork()ing to exec(). 3. On fork(), the child VMAs inherit no reserves. Reads on pages already faulted by the parent will succeed. Successful writes will depend on enough huge pages being free in the pool. 4. Quotas of the hugetlbfs mount are checked at reserve time for the mapper and at fault time otherwise. Before this patch, all reads or writes in the child potentially needs page allocations that can later lead to the death of the parent. This applies to reads and writes of uninstantiated pages as well as COW. After the patch it is only a write to an instantiated page that causes problems. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@shadowen.org> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:23 -07:00
chg = region_chg(&inode->i_mapping->private_list, from, to);
else {
struct resv_map *resv_map = resv_map_alloc();
if (!resv_map)
return -ENOMEM;
hugetlb: reserve huge pages for reliable MAP_PRIVATE hugetlbfs mappings until fork() This patch reserves huge pages at mmap() time for MAP_PRIVATE mappings in a similar manner to the reservations taken for MAP_SHARED mappings. The reserve count is accounted both globally and on a per-VMA basis for private mappings. This guarantees that a process that successfully calls mmap() will successfully fault all pages in the future unless fork() is called. The characteristics of private mappings of hugetlbfs files behaviour after this patch are; 1. The process calling mmap() is guaranteed to succeed all future faults until it forks(). 2. On fork(), the parent may die due to SIGKILL on writes to the private mapping if enough pages are not available for the COW. For reasonably reliable behaviour in the face of a small huge page pool, children of hugepage-aware processes should not reference the mappings; such as might occur when fork()ing to exec(). 3. On fork(), the child VMAs inherit no reserves. Reads on pages already faulted by the parent will succeed. Successful writes will depend on enough huge pages being free in the pool. 4. Quotas of the hugetlbfs mount are checked at reserve time for the mapper and at fault time otherwise. Before this patch, all reads or writes in the child potentially needs page allocations that can later lead to the death of the parent. This applies to reads and writes of uninstantiated pages as well as COW. After the patch it is only a write to an instantiated page that causes problems. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@shadowen.org> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:23 -07:00
chg = to - from;
hugetlb reservations: fix hugetlb MAP_PRIVATE reservations across vma splits When a hugetlb mapping with a reservation is split, a new VMA is cloned from the original. This new VMA is a direct copy of the original including the reservation count. When this pair of VMAs are unmapped we will incorrect double account the unused reservation and the overall reservation count will be incorrect, in extreme cases it will wrap. The problem occurs when we split an existing VMA say to unmap a page in the middle. split_vma() will create a new VMA copying all fields from the original. As we are storing our reservation count in vm_private_data this is also copies, endowing the new VMA with a duplicate of the original VMA's reservation. Neither of the new VMAs can exhaust these reservations as they are too small, but when we unmap and close these VMAs we will incorrect credit the remainder twice and resv_huge_pages will become out of sync. This can lead to allocation failures on mappings with reservations and even to resv_huge_pages wrapping which prevents all subsequent hugepage allocations. The simple fix would be to correctly apportion the remaining reservation count when the split is made. However the only hook we have vm_ops->open only has the new VMA we do not know the identity of the preceeding VMA. Also even if we did have that VMA to hand we do not know how much of the reservation was consumed each side of the split. This patch therefore takes a different tack. We know that the whole of any private mapping (which has a reservation) has a reservation over its whole size. Any present pages represent consumed reservation. Therefore if we track the instantiated pages we can calculate the remaining reservation. This patch reuses the existing regions code to track the regions for which we have consumed reservation (ie. the instantiated pages), as each page is faulted in we record the consumption of reservation for the new page. When we need to return unused reservations at unmap time we simply count the consumed reservation region subtracting that from the whole of the map. During a VMA split the newly opened VMA will point to the same region map, as this map is offset oriented it remains valid for both of the split VMAs. This map is referenced counted so that it is removed when all VMAs which are part of the mmap are gone. Thanks to Adam Litke and Mel Gorman for their review feedback. Signed-off-by: Andy Whitcroft <apw@shadowen.org> Acked-by: Mel Gorman <mel@csn.ul.ie> Cc: Adam Litke <agl@us.ibm.com> Cc: Johannes Weiner <hannes@saeurebad.de> Cc: Andy Whitcroft <apw@shadowen.org> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Michael Kerrisk <mtk.manpages@googlemail.com> Cc: Jon Tollefson <kniht@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:32 -07:00
set_vma_resv_map(vma, resv_map);
set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
}
if (chg < 0)
return chg;
/* There must be enough filesystem quota for the mapping */
if (hugetlb_get_quota(inode->i_mapping, chg))
return -ENOSPC;
Do not account for the address space used by hugetlbfs using VM_ACCOUNT When overcommit is disabled, the core VM accounts for pages used by anonymous shared, private mappings and special mappings. It keeps track of VMAs that should be accounted for with VM_ACCOUNT and VMAs that never had a reserve with VM_NORESERVE. Overcommit for hugetlbfs is much riskier than overcommit for base pages due to contiguity requirements. It avoids overcommiting on both shared and private mappings using reservation counters that are checked and updated during mmap(). This ensures (within limits) that hugepages exist in the future when faults occurs or it is too easy to applications to be SIGKILLed. As hugetlbfs makes its own reservations of a different unit to the base page size, VM_ACCOUNT should never be set. Even if the units were correct, we would double account for the usage in the core VM and hugetlbfs. VM_NORESERVE may be set because an application can request no reserves be made for hugetlbfs at the risk of getting killed later. With commit fc8744adc870a8d4366908221508bb113d8b72ee, VM_NORESERVE and VM_ACCOUNT are getting unconditionally set for hugetlbfs-backed mappings. This breaks the accounting for both the core VM and hugetlbfs, can trigger an OOM storm when hugepage pools are too small lockups and corrupted counters otherwise are used. This patch brings hugetlbfs more in line with how the core VM treats VM_NORESERVE but prevents VM_ACCOUNT being set. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-02-10 14:02:27 +00:00
/*
* Check enough hugepages are available for the reservation.
* Hand back the quota if there are not
Do not account for the address space used by hugetlbfs using VM_ACCOUNT When overcommit is disabled, the core VM accounts for pages used by anonymous shared, private mappings and special mappings. It keeps track of VMAs that should be accounted for with VM_ACCOUNT and VMAs that never had a reserve with VM_NORESERVE. Overcommit for hugetlbfs is much riskier than overcommit for base pages due to contiguity requirements. It avoids overcommiting on both shared and private mappings using reservation counters that are checked and updated during mmap(). This ensures (within limits) that hugepages exist in the future when faults occurs or it is too easy to applications to be SIGKILLed. As hugetlbfs makes its own reservations of a different unit to the base page size, VM_ACCOUNT should never be set. Even if the units were correct, we would double account for the usage in the core VM and hugetlbfs. VM_NORESERVE may be set because an application can request no reserves be made for hugetlbfs at the risk of getting killed later. With commit fc8744adc870a8d4366908221508bb113d8b72ee, VM_NORESERVE and VM_ACCOUNT are getting unconditionally set for hugetlbfs-backed mappings. This breaks the accounting for both the core VM and hugetlbfs, can trigger an OOM storm when hugepage pools are too small lockups and corrupted counters otherwise are used. This patch brings hugetlbfs more in line with how the core VM treats VM_NORESERVE but prevents VM_ACCOUNT being set. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-02-10 14:02:27 +00:00
*/
ret = hugetlb_acct_memory(h, chg);
if (ret < 0) {
hugetlb_put_quota(inode->i_mapping, chg);
return ret;
}
/*
* Account for the reservations made. Shared mappings record regions
* that have reservations as they are shared by multiple VMAs.
* When the last VMA disappears, the region map says how much
* the reservation was and the page cache tells how much of
* the reservation was consumed. Private mappings are per-VMA and
* only the consumed reservations are tracked. When the VMA
* disappears, the original reservation is the VMA size and the
* consumed reservations are stored in the map. Hence, nothing
* else has to be done for private mappings here
*/
mm: account for MAP_SHARED mappings using VM_MAYSHARE and not VM_SHARED in hugetlbfs Addresses http://bugzilla.kernel.org/show_bug.cgi?id=13302 hugetlbfs reserves huge pages but does not fault them at mmap() time to ensure that future faults succeed. The reservation behaviour differs depending on whether the mapping was mapped MAP_SHARED or MAP_PRIVATE. For MAP_SHARED mappings, hugepages are reserved when mmap() is first called and are tracked based on information associated with the inode. Other processes mapping MAP_SHARED use the same reservation. MAP_PRIVATE track the reservations based on the VMA created as part of the mmap() operation. Each process mapping MAP_PRIVATE must make its own reservation. hugetlbfs currently checks if a VMA is MAP_SHARED with the VM_SHARED flag and not VM_MAYSHARE. For file-backed mappings, such as hugetlbfs, VM_SHARED is set only if the mapping is MAP_SHARED and the file was opened read-write. If a shared memory mapping was mapped shared-read-write for populating of data and mapped shared-read-only by other processes, then hugetlbfs would account for the mapping as if it was MAP_PRIVATE. This causes processes to fail to map the file MAP_SHARED even though it should succeed as the reservation is there. This patch alters mm/hugetlb.c and replaces VM_SHARED with VM_MAYSHARE when the intent of the code was to check whether the VMA was mapped MAP_SHARED or MAP_PRIVATE. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: Ingo Molnar <mingo@elte.hu> Cc: <stable@kernel.org> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: <starlight@binnacle.cx> Cc: Eric B Munson <ebmunson@us.ibm.com> Cc: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@canonical.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-05-28 14:34:40 -07:00
if (!vma || vma->vm_flags & VM_MAYSHARE)
hugetlb: reserve huge pages for reliable MAP_PRIVATE hugetlbfs mappings until fork() This patch reserves huge pages at mmap() time for MAP_PRIVATE mappings in a similar manner to the reservations taken for MAP_SHARED mappings. The reserve count is accounted both globally and on a per-VMA basis for private mappings. This guarantees that a process that successfully calls mmap() will successfully fault all pages in the future unless fork() is called. The characteristics of private mappings of hugetlbfs files behaviour after this patch are; 1. The process calling mmap() is guaranteed to succeed all future faults until it forks(). 2. On fork(), the parent may die due to SIGKILL on writes to the private mapping if enough pages are not available for the COW. For reasonably reliable behaviour in the face of a small huge page pool, children of hugepage-aware processes should not reference the mappings; such as might occur when fork()ing to exec(). 3. On fork(), the child VMAs inherit no reserves. Reads on pages already faulted by the parent will succeed. Successful writes will depend on enough huge pages being free in the pool. 4. Quotas of the hugetlbfs mount are checked at reserve time for the mapper and at fault time otherwise. Before this patch, all reads or writes in the child potentially needs page allocations that can later lead to the death of the parent. This applies to reads and writes of uninstantiated pages as well as COW. After the patch it is only a write to an instantiated page that causes problems. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@shadowen.org> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-23 21:27:23 -07:00
region_add(&inode->i_mapping->private_list, from, to);
return 0;
}
void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
{
struct hstate *h = hstate_inode(inode);
long chg = region_truncate(&inode->i_mapping->private_list, offset);
spin_lock(&inode->i_lock);
inode->i_blocks -= (blocks_per_huge_page(h) * freed);
spin_unlock(&inode->i_lock);
hugetlb_put_quota(inode->i_mapping, (chg - freed));
hugetlb_acct_memory(h, -(chg - freed));
}
#ifdef CONFIG_MEMORY_FAILURE
/* Should be called in hugetlb_lock */
static int is_hugepage_on_freelist(struct page *hpage)
{
struct page *page;
struct page *tmp;
struct hstate *h = page_hstate(hpage);
int nid = page_to_nid(hpage);
list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
if (page == hpage)
return 1;
return 0;
}
/*
* This function is called from memory failure code.
* Assume the caller holds page lock of the head page.
*/
int dequeue_hwpoisoned_huge_page(struct page *hpage)
{
struct hstate *h = page_hstate(hpage);
int nid = page_to_nid(hpage);
int ret = -EBUSY;
spin_lock(&hugetlb_lock);
if (is_hugepage_on_freelist(hpage)) {
list_del(&hpage->lru);
set_page_refcounted(hpage);
h->free_huge_pages--;
h->free_huge_pages_node[nid]--;
ret = 0;
}
spin_unlock(&hugetlb_lock);
return ret;
}
#endif