tracing: Add 'hist' event trigger command
'hist' triggers allow users to continually aggregate trace events,
which can then be viewed afterwards by simply reading a 'hist' file
containing the aggregation in a human-readable format.
The basic idea is very simple and boils down to a mechanism whereby
trace events, rather than being exhaustively dumped in raw form and
viewed directly, are automatically 'compressed' into meaningful tables
completely defined by the user.
This is done strictly via single-line command-line commands and
without the aid of any kind of programming language or interpreter.
A surprising number of typical use cases can be accomplished by users
via this simple mechanism. In fact, a large number of the tasks that
users typically do using the more complicated script-based tracing
tools, at least during the initial stages of an investigation, can be
accomplished by simply specifying a set of keys and values to be used
in the creation of a hash table.
The Linux kernel trace event subsystem happens to provide an extensive
list of keys and values ready-made for such a purpose in the form of
the event format files associated with each trace event. By simply
consulting the format file for field names of interest and by plugging
them into the hist trigger command, users can create an endless number
of useful aggregations to help with investigating various properties
of the system. See Documentation/trace/events.txt for examples.
hist triggers are implemented on top of the existing event trigger
infrastructure, and as such are consistent with the existing triggers
from a user's perspective as well.
The basic syntax follows the existing trigger syntax. Users start an
aggregation by writing a 'hist' trigger to the event of interest's
trigger file:
# echo hist:keys=xxx [ if filter] > event/trigger
Once a hist trigger has been set up, by default it continually
aggregates every matching event into a hash table using the event key
and a value field named 'hitcount'.
To view the aggregation at any point in time, simply read the 'hist'
file in the same directory as the 'trigger' file:
# cat event/hist
The detailed syntax provides additional options for user control, and
is described exhaustively in Documentation/trace/events.txt and in the
virtual tracing/README file in the tracing subsystem.
Link: http://lkml.kernel.org/r/72d263b5e1853fe9c314953b65833c3aa75479f2.1457029949.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Tested-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Reviewed-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2016-03-03 12:54:42 -06:00
|
|
|
/*
|
|
|
|
* trace_events_hist - trace event hist triggers
|
|
|
|
*
|
|
|
|
* This program is free software; you can redistribute it and/or modify
|
|
|
|
* it under the terms of the GNU General Public License as published by
|
|
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
|
|
* (at your option) any later version.
|
|
|
|
*
|
|
|
|
* This program is distributed in the hope that it will be useful,
|
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
* GNU General Public License for more details.
|
|
|
|
*
|
|
|
|
* Copyright (C) 2015 Tom Zanussi <tom.zanussi@linux.intel.com>
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <linux/module.h>
|
|
|
|
#include <linux/kallsyms.h>
|
|
|
|
#include <linux/mutex.h>
|
|
|
|
#include <linux/slab.h>
|
|
|
|
#include <linux/stacktrace.h>
|
|
|
|
|
|
|
|
#include "tracing_map.h"
|
|
|
|
#include "trace.h"
|
|
|
|
|
|
|
|
struct hist_field;
|
|
|
|
|
|
|
|
typedef u64 (*hist_field_fn_t) (struct hist_field *field, void *event);
|
|
|
|
|
|
|
|
struct hist_field {
|
|
|
|
struct ftrace_event_field *field;
|
|
|
|
unsigned long flags;
|
|
|
|
hist_field_fn_t fn;
|
|
|
|
unsigned int size;
|
2016-03-03 12:54:44 -06:00
|
|
|
unsigned int offset;
|
tracing: Add 'hist' event trigger command
'hist' triggers allow users to continually aggregate trace events,
which can then be viewed afterwards by simply reading a 'hist' file
containing the aggregation in a human-readable format.
The basic idea is very simple and boils down to a mechanism whereby
trace events, rather than being exhaustively dumped in raw form and
viewed directly, are automatically 'compressed' into meaningful tables
completely defined by the user.
This is done strictly via single-line command-line commands and
without the aid of any kind of programming language or interpreter.
A surprising number of typical use cases can be accomplished by users
via this simple mechanism. In fact, a large number of the tasks that
users typically do using the more complicated script-based tracing
tools, at least during the initial stages of an investigation, can be
accomplished by simply specifying a set of keys and values to be used
in the creation of a hash table.
The Linux kernel trace event subsystem happens to provide an extensive
list of keys and values ready-made for such a purpose in the form of
the event format files associated with each trace event. By simply
consulting the format file for field names of interest and by plugging
them into the hist trigger command, users can create an endless number
of useful aggregations to help with investigating various properties
of the system. See Documentation/trace/events.txt for examples.
hist triggers are implemented on top of the existing event trigger
infrastructure, and as such are consistent with the existing triggers
from a user's perspective as well.
The basic syntax follows the existing trigger syntax. Users start an
aggregation by writing a 'hist' trigger to the event of interest's
trigger file:
# echo hist:keys=xxx [ if filter] > event/trigger
Once a hist trigger has been set up, by default it continually
aggregates every matching event into a hash table using the event key
and a value field named 'hitcount'.
To view the aggregation at any point in time, simply read the 'hist'
file in the same directory as the 'trigger' file:
# cat event/hist
The detailed syntax provides additional options for user control, and
is described exhaustively in Documentation/trace/events.txt and in the
virtual tracing/README file in the tracing subsystem.
Link: http://lkml.kernel.org/r/72d263b5e1853fe9c314953b65833c3aa75479f2.1457029949.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Tested-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Reviewed-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2016-03-03 12:54:42 -06:00
|
|
|
};
|
|
|
|
|
2016-03-03 12:54:52 -06:00
|
|
|
static u64 hist_field_none(struct hist_field *field, void *event)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
tracing: Add 'hist' event trigger command
'hist' triggers allow users to continually aggregate trace events,
which can then be viewed afterwards by simply reading a 'hist' file
containing the aggregation in a human-readable format.
The basic idea is very simple and boils down to a mechanism whereby
trace events, rather than being exhaustively dumped in raw form and
viewed directly, are automatically 'compressed' into meaningful tables
completely defined by the user.
This is done strictly via single-line command-line commands and
without the aid of any kind of programming language or interpreter.
A surprising number of typical use cases can be accomplished by users
via this simple mechanism. In fact, a large number of the tasks that
users typically do using the more complicated script-based tracing
tools, at least during the initial stages of an investigation, can be
accomplished by simply specifying a set of keys and values to be used
in the creation of a hash table.
The Linux kernel trace event subsystem happens to provide an extensive
list of keys and values ready-made for such a purpose in the form of
the event format files associated with each trace event. By simply
consulting the format file for field names of interest and by plugging
them into the hist trigger command, users can create an endless number
of useful aggregations to help with investigating various properties
of the system. See Documentation/trace/events.txt for examples.
hist triggers are implemented on top of the existing event trigger
infrastructure, and as such are consistent with the existing triggers
from a user's perspective as well.
The basic syntax follows the existing trigger syntax. Users start an
aggregation by writing a 'hist' trigger to the event of interest's
trigger file:
# echo hist:keys=xxx [ if filter] > event/trigger
Once a hist trigger has been set up, by default it continually
aggregates every matching event into a hash table using the event key
and a value field named 'hitcount'.
To view the aggregation at any point in time, simply read the 'hist'
file in the same directory as the 'trigger' file:
# cat event/hist
The detailed syntax provides additional options for user control, and
is described exhaustively in Documentation/trace/events.txt and in the
virtual tracing/README file in the tracing subsystem.
Link: http://lkml.kernel.org/r/72d263b5e1853fe9c314953b65833c3aa75479f2.1457029949.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Tested-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Reviewed-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2016-03-03 12:54:42 -06:00
|
|
|
static u64 hist_field_counter(struct hist_field *field, void *event)
|
|
|
|
{
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
static u64 hist_field_string(struct hist_field *hist_field, void *event)
|
|
|
|
{
|
|
|
|
char *addr = (char *)(event + hist_field->field->offset);
|
|
|
|
|
|
|
|
return (u64)(unsigned long)addr;
|
|
|
|
}
|
|
|
|
|
|
|
|
#define DEFINE_HIST_FIELD_FN(type) \
|
|
|
|
static u64 hist_field_##type(struct hist_field *hist_field, void *event)\
|
|
|
|
{ \
|
|
|
|
type *addr = (type *)(event + hist_field->field->offset); \
|
|
|
|
\
|
|
|
|
return (u64)*addr; \
|
|
|
|
}
|
|
|
|
|
|
|
|
DEFINE_HIST_FIELD_FN(s64);
|
|
|
|
DEFINE_HIST_FIELD_FN(u64);
|
|
|
|
DEFINE_HIST_FIELD_FN(s32);
|
|
|
|
DEFINE_HIST_FIELD_FN(u32);
|
|
|
|
DEFINE_HIST_FIELD_FN(s16);
|
|
|
|
DEFINE_HIST_FIELD_FN(u16);
|
|
|
|
DEFINE_HIST_FIELD_FN(s8);
|
|
|
|
DEFINE_HIST_FIELD_FN(u8);
|
|
|
|
|
|
|
|
#define for_each_hist_field(i, hist_data) \
|
|
|
|
for ((i) = 0; (i) < (hist_data)->n_fields; (i)++)
|
|
|
|
|
|
|
|
#define for_each_hist_val_field(i, hist_data) \
|
|
|
|
for ((i) = 0; (i) < (hist_data)->n_vals; (i)++)
|
|
|
|
|
|
|
|
#define for_each_hist_key_field(i, hist_data) \
|
|
|
|
for ((i) = (hist_data)->n_vals; (i) < (hist_data)->n_fields; (i)++)
|
|
|
|
|
2016-03-03 12:54:52 -06:00
|
|
|
#define HIST_STACKTRACE_DEPTH 16
|
|
|
|
#define HIST_STACKTRACE_SIZE (HIST_STACKTRACE_DEPTH * sizeof(unsigned long))
|
|
|
|
#define HIST_STACKTRACE_SKIP 5
|
|
|
|
|
tracing: Add 'hist' event trigger command
'hist' triggers allow users to continually aggregate trace events,
which can then be viewed afterwards by simply reading a 'hist' file
containing the aggregation in a human-readable format.
The basic idea is very simple and boils down to a mechanism whereby
trace events, rather than being exhaustively dumped in raw form and
viewed directly, are automatically 'compressed' into meaningful tables
completely defined by the user.
This is done strictly via single-line command-line commands and
without the aid of any kind of programming language or interpreter.
A surprising number of typical use cases can be accomplished by users
via this simple mechanism. In fact, a large number of the tasks that
users typically do using the more complicated script-based tracing
tools, at least during the initial stages of an investigation, can be
accomplished by simply specifying a set of keys and values to be used
in the creation of a hash table.
The Linux kernel trace event subsystem happens to provide an extensive
list of keys and values ready-made for such a purpose in the form of
the event format files associated with each trace event. By simply
consulting the format file for field names of interest and by plugging
them into the hist trigger command, users can create an endless number
of useful aggregations to help with investigating various properties
of the system. See Documentation/trace/events.txt for examples.
hist triggers are implemented on top of the existing event trigger
infrastructure, and as such are consistent with the existing triggers
from a user's perspective as well.
The basic syntax follows the existing trigger syntax. Users start an
aggregation by writing a 'hist' trigger to the event of interest's
trigger file:
# echo hist:keys=xxx [ if filter] > event/trigger
Once a hist trigger has been set up, by default it continually
aggregates every matching event into a hash table using the event key
and a value field named 'hitcount'.
To view the aggregation at any point in time, simply read the 'hist'
file in the same directory as the 'trigger' file:
# cat event/hist
The detailed syntax provides additional options for user control, and
is described exhaustively in Documentation/trace/events.txt and in the
virtual tracing/README file in the tracing subsystem.
Link: http://lkml.kernel.org/r/72d263b5e1853fe9c314953b65833c3aa75479f2.1457029949.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Tested-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Reviewed-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2016-03-03 12:54:42 -06:00
|
|
|
#define HITCOUNT_IDX 0
|
2016-03-03 12:54:52 -06:00
|
|
|
#define HIST_KEY_SIZE_MAX (MAX_FILTER_STR_VAL + HIST_STACKTRACE_SIZE)
|
tracing: Add 'hist' event trigger command
'hist' triggers allow users to continually aggregate trace events,
which can then be viewed afterwards by simply reading a 'hist' file
containing the aggregation in a human-readable format.
The basic idea is very simple and boils down to a mechanism whereby
trace events, rather than being exhaustively dumped in raw form and
viewed directly, are automatically 'compressed' into meaningful tables
completely defined by the user.
This is done strictly via single-line command-line commands and
without the aid of any kind of programming language or interpreter.
A surprising number of typical use cases can be accomplished by users
via this simple mechanism. In fact, a large number of the tasks that
users typically do using the more complicated script-based tracing
tools, at least during the initial stages of an investigation, can be
accomplished by simply specifying a set of keys and values to be used
in the creation of a hash table.
The Linux kernel trace event subsystem happens to provide an extensive
list of keys and values ready-made for such a purpose in the form of
the event format files associated with each trace event. By simply
consulting the format file for field names of interest and by plugging
them into the hist trigger command, users can create an endless number
of useful aggregations to help with investigating various properties
of the system. See Documentation/trace/events.txt for examples.
hist triggers are implemented on top of the existing event trigger
infrastructure, and as such are consistent with the existing triggers
from a user's perspective as well.
The basic syntax follows the existing trigger syntax. Users start an
aggregation by writing a 'hist' trigger to the event of interest's
trigger file:
# echo hist:keys=xxx [ if filter] > event/trigger
Once a hist trigger has been set up, by default it continually
aggregates every matching event into a hash table using the event key
and a value field named 'hitcount'.
To view the aggregation at any point in time, simply read the 'hist'
file in the same directory as the 'trigger' file:
# cat event/hist
The detailed syntax provides additional options for user control, and
is described exhaustively in Documentation/trace/events.txt and in the
virtual tracing/README file in the tracing subsystem.
Link: http://lkml.kernel.org/r/72d263b5e1853fe9c314953b65833c3aa75479f2.1457029949.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Tested-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Reviewed-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2016-03-03 12:54:42 -06:00
|
|
|
|
|
|
|
enum hist_field_flags {
|
2016-03-03 12:54:49 -06:00
|
|
|
HIST_FIELD_FL_HITCOUNT = 1,
|
|
|
|
HIST_FIELD_FL_KEY = 2,
|
|
|
|
HIST_FIELD_FL_STRING = 4,
|
|
|
|
HIST_FIELD_FL_HEX = 8,
|
|
|
|
HIST_FIELD_FL_SYM = 16,
|
|
|
|
HIST_FIELD_FL_SYM_OFFSET = 32,
|
2016-03-03 12:54:50 -06:00
|
|
|
HIST_FIELD_FL_EXECNAME = 64,
|
2016-03-03 12:54:51 -06:00
|
|
|
HIST_FIELD_FL_SYSCALL = 128,
|
2016-03-03 12:54:52 -06:00
|
|
|
HIST_FIELD_FL_STACKTRACE = 256,
|
tracing: Add 'hist' event trigger command
'hist' triggers allow users to continually aggregate trace events,
which can then be viewed afterwards by simply reading a 'hist' file
containing the aggregation in a human-readable format.
The basic idea is very simple and boils down to a mechanism whereby
trace events, rather than being exhaustively dumped in raw form and
viewed directly, are automatically 'compressed' into meaningful tables
completely defined by the user.
This is done strictly via single-line command-line commands and
without the aid of any kind of programming language or interpreter.
A surprising number of typical use cases can be accomplished by users
via this simple mechanism. In fact, a large number of the tasks that
users typically do using the more complicated script-based tracing
tools, at least during the initial stages of an investigation, can be
accomplished by simply specifying a set of keys and values to be used
in the creation of a hash table.
The Linux kernel trace event subsystem happens to provide an extensive
list of keys and values ready-made for such a purpose in the form of
the event format files associated with each trace event. By simply
consulting the format file for field names of interest and by plugging
them into the hist trigger command, users can create an endless number
of useful aggregations to help with investigating various properties
of the system. See Documentation/trace/events.txt for examples.
hist triggers are implemented on top of the existing event trigger
infrastructure, and as such are consistent with the existing triggers
from a user's perspective as well.
The basic syntax follows the existing trigger syntax. Users start an
aggregation by writing a 'hist' trigger to the event of interest's
trigger file:
# echo hist:keys=xxx [ if filter] > event/trigger
Once a hist trigger has been set up, by default it continually
aggregates every matching event into a hash table using the event key
and a value field named 'hitcount'.
To view the aggregation at any point in time, simply read the 'hist'
file in the same directory as the 'trigger' file:
# cat event/hist
The detailed syntax provides additional options for user control, and
is described exhaustively in Documentation/trace/events.txt and in the
virtual tracing/README file in the tracing subsystem.
Link: http://lkml.kernel.org/r/72d263b5e1853fe9c314953b65833c3aa75479f2.1457029949.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Tested-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Reviewed-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2016-03-03 12:54:42 -06:00
|
|
|
};
|
|
|
|
|
|
|
|
struct hist_trigger_attrs {
|
|
|
|
char *keys_str;
|
2016-03-03 12:54:43 -06:00
|
|
|
char *vals_str;
|
2016-03-03 12:54:45 -06:00
|
|
|
char *sort_key_str;
|
2016-03-03 12:54:46 -06:00
|
|
|
bool pause;
|
|
|
|
bool cont;
|
2016-03-03 12:54:47 -06:00
|
|
|
bool clear;
|
tracing: Add 'hist' event trigger command
'hist' triggers allow users to continually aggregate trace events,
which can then be viewed afterwards by simply reading a 'hist' file
containing the aggregation in a human-readable format.
The basic idea is very simple and boils down to a mechanism whereby
trace events, rather than being exhaustively dumped in raw form and
viewed directly, are automatically 'compressed' into meaningful tables
completely defined by the user.
This is done strictly via single-line command-line commands and
without the aid of any kind of programming language or interpreter.
A surprising number of typical use cases can be accomplished by users
via this simple mechanism. In fact, a large number of the tasks that
users typically do using the more complicated script-based tracing
tools, at least during the initial stages of an investigation, can be
accomplished by simply specifying a set of keys and values to be used
in the creation of a hash table.
The Linux kernel trace event subsystem happens to provide an extensive
list of keys and values ready-made for such a purpose in the form of
the event format files associated with each trace event. By simply
consulting the format file for field names of interest and by plugging
them into the hist trigger command, users can create an endless number
of useful aggregations to help with investigating various properties
of the system. See Documentation/trace/events.txt for examples.
hist triggers are implemented on top of the existing event trigger
infrastructure, and as such are consistent with the existing triggers
from a user's perspective as well.
The basic syntax follows the existing trigger syntax. Users start an
aggregation by writing a 'hist' trigger to the event of interest's
trigger file:
# echo hist:keys=xxx [ if filter] > event/trigger
Once a hist trigger has been set up, by default it continually
aggregates every matching event into a hash table using the event key
and a value field named 'hitcount'.
To view the aggregation at any point in time, simply read the 'hist'
file in the same directory as the 'trigger' file:
# cat event/hist
The detailed syntax provides additional options for user control, and
is described exhaustively in Documentation/trace/events.txt and in the
virtual tracing/README file in the tracing subsystem.
Link: http://lkml.kernel.org/r/72d263b5e1853fe9c314953b65833c3aa75479f2.1457029949.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Tested-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Reviewed-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2016-03-03 12:54:42 -06:00
|
|
|
unsigned int map_bits;
|
|
|
|
};
|
|
|
|
|
|
|
|
struct hist_trigger_data {
|
|
|
|
struct hist_field *fields[TRACING_MAP_FIELDS_MAX];
|
|
|
|
unsigned int n_vals;
|
|
|
|
unsigned int n_keys;
|
|
|
|
unsigned int n_fields;
|
|
|
|
unsigned int key_size;
|
|
|
|
struct tracing_map_sort_key sort_keys[TRACING_MAP_SORT_KEYS_MAX];
|
|
|
|
unsigned int n_sort_keys;
|
|
|
|
struct trace_event_file *event_file;
|
|
|
|
struct hist_trigger_attrs *attrs;
|
|
|
|
struct tracing_map *map;
|
|
|
|
};
|
|
|
|
|
|
|
|
static hist_field_fn_t select_value_fn(int field_size, int field_is_signed)
|
|
|
|
{
|
|
|
|
hist_field_fn_t fn = NULL;
|
|
|
|
|
|
|
|
switch (field_size) {
|
|
|
|
case 8:
|
|
|
|
if (field_is_signed)
|
|
|
|
fn = hist_field_s64;
|
|
|
|
else
|
|
|
|
fn = hist_field_u64;
|
|
|
|
break;
|
|
|
|
case 4:
|
|
|
|
if (field_is_signed)
|
|
|
|
fn = hist_field_s32;
|
|
|
|
else
|
|
|
|
fn = hist_field_u32;
|
|
|
|
break;
|
|
|
|
case 2:
|
|
|
|
if (field_is_signed)
|
|
|
|
fn = hist_field_s16;
|
|
|
|
else
|
|
|
|
fn = hist_field_u16;
|
|
|
|
break;
|
|
|
|
case 1:
|
|
|
|
if (field_is_signed)
|
|
|
|
fn = hist_field_s8;
|
|
|
|
else
|
|
|
|
fn = hist_field_u8;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
return fn;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int parse_map_size(char *str)
|
|
|
|
{
|
|
|
|
unsigned long size, map_bits;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
strsep(&str, "=");
|
|
|
|
if (!str) {
|
|
|
|
ret = -EINVAL;
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
|
|
|
ret = kstrtoul(str, 0, &size);
|
|
|
|
if (ret)
|
|
|
|
goto out;
|
|
|
|
|
|
|
|
map_bits = ilog2(roundup_pow_of_two(size));
|
|
|
|
if (map_bits < TRACING_MAP_BITS_MIN ||
|
|
|
|
map_bits > TRACING_MAP_BITS_MAX)
|
|
|
|
ret = -EINVAL;
|
|
|
|
else
|
|
|
|
ret = map_bits;
|
|
|
|
out:
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void destroy_hist_trigger_attrs(struct hist_trigger_attrs *attrs)
|
|
|
|
{
|
|
|
|
if (!attrs)
|
|
|
|
return;
|
|
|
|
|
2016-03-03 12:54:45 -06:00
|
|
|
kfree(attrs->sort_key_str);
|
tracing: Add 'hist' event trigger command
'hist' triggers allow users to continually aggregate trace events,
which can then be viewed afterwards by simply reading a 'hist' file
containing the aggregation in a human-readable format.
The basic idea is very simple and boils down to a mechanism whereby
trace events, rather than being exhaustively dumped in raw form and
viewed directly, are automatically 'compressed' into meaningful tables
completely defined by the user.
This is done strictly via single-line command-line commands and
without the aid of any kind of programming language or interpreter.
A surprising number of typical use cases can be accomplished by users
via this simple mechanism. In fact, a large number of the tasks that
users typically do using the more complicated script-based tracing
tools, at least during the initial stages of an investigation, can be
accomplished by simply specifying a set of keys and values to be used
in the creation of a hash table.
The Linux kernel trace event subsystem happens to provide an extensive
list of keys and values ready-made for such a purpose in the form of
the event format files associated with each trace event. By simply
consulting the format file for field names of interest and by plugging
them into the hist trigger command, users can create an endless number
of useful aggregations to help with investigating various properties
of the system. See Documentation/trace/events.txt for examples.
hist triggers are implemented on top of the existing event trigger
infrastructure, and as such are consistent with the existing triggers
from a user's perspective as well.
The basic syntax follows the existing trigger syntax. Users start an
aggregation by writing a 'hist' trigger to the event of interest's
trigger file:
# echo hist:keys=xxx [ if filter] > event/trigger
Once a hist trigger has been set up, by default it continually
aggregates every matching event into a hash table using the event key
and a value field named 'hitcount'.
To view the aggregation at any point in time, simply read the 'hist'
file in the same directory as the 'trigger' file:
# cat event/hist
The detailed syntax provides additional options for user control, and
is described exhaustively in Documentation/trace/events.txt and in the
virtual tracing/README file in the tracing subsystem.
Link: http://lkml.kernel.org/r/72d263b5e1853fe9c314953b65833c3aa75479f2.1457029949.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Tested-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Reviewed-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2016-03-03 12:54:42 -06:00
|
|
|
kfree(attrs->keys_str);
|
2016-03-03 12:54:43 -06:00
|
|
|
kfree(attrs->vals_str);
|
tracing: Add 'hist' event trigger command
'hist' triggers allow users to continually aggregate trace events,
which can then be viewed afterwards by simply reading a 'hist' file
containing the aggregation in a human-readable format.
The basic idea is very simple and boils down to a mechanism whereby
trace events, rather than being exhaustively dumped in raw form and
viewed directly, are automatically 'compressed' into meaningful tables
completely defined by the user.
This is done strictly via single-line command-line commands and
without the aid of any kind of programming language or interpreter.
A surprising number of typical use cases can be accomplished by users
via this simple mechanism. In fact, a large number of the tasks that
users typically do using the more complicated script-based tracing
tools, at least during the initial stages of an investigation, can be
accomplished by simply specifying a set of keys and values to be used
in the creation of a hash table.
The Linux kernel trace event subsystem happens to provide an extensive
list of keys and values ready-made for such a purpose in the form of
the event format files associated with each trace event. By simply
consulting the format file for field names of interest and by plugging
them into the hist trigger command, users can create an endless number
of useful aggregations to help with investigating various properties
of the system. See Documentation/trace/events.txt for examples.
hist triggers are implemented on top of the existing event trigger
infrastructure, and as such are consistent with the existing triggers
from a user's perspective as well.
The basic syntax follows the existing trigger syntax. Users start an
aggregation by writing a 'hist' trigger to the event of interest's
trigger file:
# echo hist:keys=xxx [ if filter] > event/trigger
Once a hist trigger has been set up, by default it continually
aggregates every matching event into a hash table using the event key
and a value field named 'hitcount'.
To view the aggregation at any point in time, simply read the 'hist'
file in the same directory as the 'trigger' file:
# cat event/hist
The detailed syntax provides additional options for user control, and
is described exhaustively in Documentation/trace/events.txt and in the
virtual tracing/README file in the tracing subsystem.
Link: http://lkml.kernel.org/r/72d263b5e1853fe9c314953b65833c3aa75479f2.1457029949.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Tested-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Reviewed-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2016-03-03 12:54:42 -06:00
|
|
|
kfree(attrs);
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct hist_trigger_attrs *parse_hist_trigger_attrs(char *trigger_str)
|
|
|
|
{
|
|
|
|
struct hist_trigger_attrs *attrs;
|
|
|
|
int ret = 0;
|
|
|
|
|
|
|
|
attrs = kzalloc(sizeof(*attrs), GFP_KERNEL);
|
|
|
|
if (!attrs)
|
|
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
|
|
|
|
while (trigger_str) {
|
|
|
|
char *str = strsep(&trigger_str, ":");
|
|
|
|
|
|
|
|
if ((strncmp(str, "key=", strlen("key=")) == 0) ||
|
|
|
|
(strncmp(str, "keys=", strlen("keys=")) == 0))
|
|
|
|
attrs->keys_str = kstrdup(str, GFP_KERNEL);
|
2016-03-03 12:54:43 -06:00
|
|
|
else if ((strncmp(str, "val=", strlen("val=")) == 0) ||
|
|
|
|
(strncmp(str, "vals=", strlen("vals=")) == 0) ||
|
|
|
|
(strncmp(str, "values=", strlen("values=")) == 0))
|
|
|
|
attrs->vals_str = kstrdup(str, GFP_KERNEL);
|
2016-03-03 12:54:45 -06:00
|
|
|
else if (strncmp(str, "sort=", strlen("sort=")) == 0)
|
|
|
|
attrs->sort_key_str = kstrdup(str, GFP_KERNEL);
|
2016-03-03 12:54:46 -06:00
|
|
|
else if (strcmp(str, "pause") == 0)
|
|
|
|
attrs->pause = true;
|
|
|
|
else if ((strcmp(str, "cont") == 0) ||
|
|
|
|
(strcmp(str, "continue") == 0))
|
|
|
|
attrs->cont = true;
|
2016-03-03 12:54:47 -06:00
|
|
|
else if (strcmp(str, "clear") == 0)
|
|
|
|
attrs->clear = true;
|
tracing: Add 'hist' event trigger command
'hist' triggers allow users to continually aggregate trace events,
which can then be viewed afterwards by simply reading a 'hist' file
containing the aggregation in a human-readable format.
The basic idea is very simple and boils down to a mechanism whereby
trace events, rather than being exhaustively dumped in raw form and
viewed directly, are automatically 'compressed' into meaningful tables
completely defined by the user.
This is done strictly via single-line command-line commands and
without the aid of any kind of programming language or interpreter.
A surprising number of typical use cases can be accomplished by users
via this simple mechanism. In fact, a large number of the tasks that
users typically do using the more complicated script-based tracing
tools, at least during the initial stages of an investigation, can be
accomplished by simply specifying a set of keys and values to be used
in the creation of a hash table.
The Linux kernel trace event subsystem happens to provide an extensive
list of keys and values ready-made for such a purpose in the form of
the event format files associated with each trace event. By simply
consulting the format file for field names of interest and by plugging
them into the hist trigger command, users can create an endless number
of useful aggregations to help with investigating various properties
of the system. See Documentation/trace/events.txt for examples.
hist triggers are implemented on top of the existing event trigger
infrastructure, and as such are consistent with the existing triggers
from a user's perspective as well.
The basic syntax follows the existing trigger syntax. Users start an
aggregation by writing a 'hist' trigger to the event of interest's
trigger file:
# echo hist:keys=xxx [ if filter] > event/trigger
Once a hist trigger has been set up, by default it continually
aggregates every matching event into a hash table using the event key
and a value field named 'hitcount'.
To view the aggregation at any point in time, simply read the 'hist'
file in the same directory as the 'trigger' file:
# cat event/hist
The detailed syntax provides additional options for user control, and
is described exhaustively in Documentation/trace/events.txt and in the
virtual tracing/README file in the tracing subsystem.
Link: http://lkml.kernel.org/r/72d263b5e1853fe9c314953b65833c3aa75479f2.1457029949.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Tested-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Reviewed-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2016-03-03 12:54:42 -06:00
|
|
|
else if (strncmp(str, "size=", strlen("size=")) == 0) {
|
|
|
|
int map_bits = parse_map_size(str);
|
|
|
|
|
|
|
|
if (map_bits < 0) {
|
|
|
|
ret = map_bits;
|
|
|
|
goto free;
|
|
|
|
}
|
|
|
|
attrs->map_bits = map_bits;
|
|
|
|
} else {
|
|
|
|
ret = -EINVAL;
|
|
|
|
goto free;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!attrs->keys_str) {
|
|
|
|
ret = -EINVAL;
|
|
|
|
goto free;
|
|
|
|
}
|
|
|
|
|
|
|
|
return attrs;
|
|
|
|
free:
|
|
|
|
destroy_hist_trigger_attrs(attrs);
|
|
|
|
|
|
|
|
return ERR_PTR(ret);
|
|
|
|
}
|
|
|
|
|
2016-03-03 12:54:50 -06:00
|
|
|
static inline void save_comm(char *comm, struct task_struct *task)
|
|
|
|
{
|
|
|
|
if (!task->pid) {
|
|
|
|
strcpy(comm, "<idle>");
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (WARN_ON_ONCE(task->pid < 0)) {
|
|
|
|
strcpy(comm, "<XXX>");
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
memcpy(comm, task->comm, TASK_COMM_LEN);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void hist_trigger_elt_comm_free(struct tracing_map_elt *elt)
|
|
|
|
{
|
|
|
|
kfree((char *)elt->private_data);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int hist_trigger_elt_comm_alloc(struct tracing_map_elt *elt)
|
|
|
|
{
|
|
|
|
struct hist_trigger_data *hist_data = elt->map->private_data;
|
|
|
|
struct hist_field *key_field;
|
|
|
|
unsigned int i;
|
|
|
|
|
|
|
|
for_each_hist_key_field(i, hist_data) {
|
|
|
|
key_field = hist_data->fields[i];
|
|
|
|
|
|
|
|
if (key_field->flags & HIST_FIELD_FL_EXECNAME) {
|
|
|
|
unsigned int size = TASK_COMM_LEN + 1;
|
|
|
|
|
|
|
|
elt->private_data = kzalloc(size, GFP_KERNEL);
|
|
|
|
if (!elt->private_data)
|
|
|
|
return -ENOMEM;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void hist_trigger_elt_comm_copy(struct tracing_map_elt *to,
|
|
|
|
struct tracing_map_elt *from)
|
|
|
|
{
|
|
|
|
char *comm_from = from->private_data;
|
|
|
|
char *comm_to = to->private_data;
|
|
|
|
|
|
|
|
if (comm_from)
|
|
|
|
memcpy(comm_to, comm_from, TASK_COMM_LEN + 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void hist_trigger_elt_comm_init(struct tracing_map_elt *elt)
|
|
|
|
{
|
|
|
|
char *comm = elt->private_data;
|
|
|
|
|
|
|
|
if (comm)
|
|
|
|
save_comm(comm, current);
|
|
|
|
}
|
|
|
|
|
|
|
|
static const struct tracing_map_ops hist_trigger_elt_comm_ops = {
|
|
|
|
.elt_alloc = hist_trigger_elt_comm_alloc,
|
|
|
|
.elt_copy = hist_trigger_elt_comm_copy,
|
|
|
|
.elt_free = hist_trigger_elt_comm_free,
|
|
|
|
.elt_init = hist_trigger_elt_comm_init,
|
|
|
|
};
|
|
|
|
|
tracing: Add 'hist' event trigger command
'hist' triggers allow users to continually aggregate trace events,
which can then be viewed afterwards by simply reading a 'hist' file
containing the aggregation in a human-readable format.
The basic idea is very simple and boils down to a mechanism whereby
trace events, rather than being exhaustively dumped in raw form and
viewed directly, are automatically 'compressed' into meaningful tables
completely defined by the user.
This is done strictly via single-line command-line commands and
without the aid of any kind of programming language or interpreter.
A surprising number of typical use cases can be accomplished by users
via this simple mechanism. In fact, a large number of the tasks that
users typically do using the more complicated script-based tracing
tools, at least during the initial stages of an investigation, can be
accomplished by simply specifying a set of keys and values to be used
in the creation of a hash table.
The Linux kernel trace event subsystem happens to provide an extensive
list of keys and values ready-made for such a purpose in the form of
the event format files associated with each trace event. By simply
consulting the format file for field names of interest and by plugging
them into the hist trigger command, users can create an endless number
of useful aggregations to help with investigating various properties
of the system. See Documentation/trace/events.txt for examples.
hist triggers are implemented on top of the existing event trigger
infrastructure, and as such are consistent with the existing triggers
from a user's perspective as well.
The basic syntax follows the existing trigger syntax. Users start an
aggregation by writing a 'hist' trigger to the event of interest's
trigger file:
# echo hist:keys=xxx [ if filter] > event/trigger
Once a hist trigger has been set up, by default it continually
aggregates every matching event into a hash table using the event key
and a value field named 'hitcount'.
To view the aggregation at any point in time, simply read the 'hist'
file in the same directory as the 'trigger' file:
# cat event/hist
The detailed syntax provides additional options for user control, and
is described exhaustively in Documentation/trace/events.txt and in the
virtual tracing/README file in the tracing subsystem.
Link: http://lkml.kernel.org/r/72d263b5e1853fe9c314953b65833c3aa75479f2.1457029949.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Tested-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Reviewed-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2016-03-03 12:54:42 -06:00
|
|
|
static void destroy_hist_field(struct hist_field *hist_field)
|
|
|
|
{
|
|
|
|
kfree(hist_field);
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct hist_field *create_hist_field(struct ftrace_event_field *field,
|
|
|
|
unsigned long flags)
|
|
|
|
{
|
|
|
|
struct hist_field *hist_field;
|
|
|
|
|
|
|
|
if (field && is_function_field(field))
|
|
|
|
return NULL;
|
|
|
|
|
|
|
|
hist_field = kzalloc(sizeof(struct hist_field), GFP_KERNEL);
|
|
|
|
if (!hist_field)
|
|
|
|
return NULL;
|
|
|
|
|
|
|
|
if (flags & HIST_FIELD_FL_HITCOUNT) {
|
|
|
|
hist_field->fn = hist_field_counter;
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
2016-03-03 12:54:52 -06:00
|
|
|
if (flags & HIST_FIELD_FL_STACKTRACE) {
|
|
|
|
hist_field->fn = hist_field_none;
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
tracing: Add 'hist' event trigger command
'hist' triggers allow users to continually aggregate trace events,
which can then be viewed afterwards by simply reading a 'hist' file
containing the aggregation in a human-readable format.
The basic idea is very simple and boils down to a mechanism whereby
trace events, rather than being exhaustively dumped in raw form and
viewed directly, are automatically 'compressed' into meaningful tables
completely defined by the user.
This is done strictly via single-line command-line commands and
without the aid of any kind of programming language or interpreter.
A surprising number of typical use cases can be accomplished by users
via this simple mechanism. In fact, a large number of the tasks that
users typically do using the more complicated script-based tracing
tools, at least during the initial stages of an investigation, can be
accomplished by simply specifying a set of keys and values to be used
in the creation of a hash table.
The Linux kernel trace event subsystem happens to provide an extensive
list of keys and values ready-made for such a purpose in the form of
the event format files associated with each trace event. By simply
consulting the format file for field names of interest and by plugging
them into the hist trigger command, users can create an endless number
of useful aggregations to help with investigating various properties
of the system. See Documentation/trace/events.txt for examples.
hist triggers are implemented on top of the existing event trigger
infrastructure, and as such are consistent with the existing triggers
from a user's perspective as well.
The basic syntax follows the existing trigger syntax. Users start an
aggregation by writing a 'hist' trigger to the event of interest's
trigger file:
# echo hist:keys=xxx [ if filter] > event/trigger
Once a hist trigger has been set up, by default it continually
aggregates every matching event into a hash table using the event key
and a value field named 'hitcount'.
To view the aggregation at any point in time, simply read the 'hist'
file in the same directory as the 'trigger' file:
# cat event/hist
The detailed syntax provides additional options for user control, and
is described exhaustively in Documentation/trace/events.txt and in the
virtual tracing/README file in the tracing subsystem.
Link: http://lkml.kernel.org/r/72d263b5e1853fe9c314953b65833c3aa75479f2.1457029949.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Tested-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Reviewed-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2016-03-03 12:54:42 -06:00
|
|
|
if (is_string_field(field)) {
|
|
|
|
flags |= HIST_FIELD_FL_STRING;
|
|
|
|
hist_field->fn = hist_field_string;
|
|
|
|
} else {
|
|
|
|
hist_field->fn = select_value_fn(field->size,
|
|
|
|
field->is_signed);
|
|
|
|
if (!hist_field->fn) {
|
|
|
|
destroy_hist_field(hist_field);
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
out:
|
|
|
|
hist_field->field = field;
|
|
|
|
hist_field->flags = flags;
|
|
|
|
|
|
|
|
return hist_field;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void destroy_hist_fields(struct hist_trigger_data *hist_data)
|
|
|
|
{
|
|
|
|
unsigned int i;
|
|
|
|
|
|
|
|
for (i = 0; i < TRACING_MAP_FIELDS_MAX; i++) {
|
|
|
|
if (hist_data->fields[i]) {
|
|
|
|
destroy_hist_field(hist_data->fields[i]);
|
|
|
|
hist_data->fields[i] = NULL;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static int create_hitcount_val(struct hist_trigger_data *hist_data)
|
|
|
|
{
|
|
|
|
hist_data->fields[HITCOUNT_IDX] =
|
|
|
|
create_hist_field(NULL, HIST_FIELD_FL_HITCOUNT);
|
|
|
|
if (!hist_data->fields[HITCOUNT_IDX])
|
|
|
|
return -ENOMEM;
|
|
|
|
|
|
|
|
hist_data->n_vals++;
|
|
|
|
|
|
|
|
if (WARN_ON(hist_data->n_vals > TRACING_MAP_VALS_MAX))
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2016-03-03 12:54:43 -06:00
|
|
|
static int create_val_field(struct hist_trigger_data *hist_data,
|
|
|
|
unsigned int val_idx,
|
|
|
|
struct trace_event_file *file,
|
|
|
|
char *field_str)
|
|
|
|
{
|
|
|
|
struct ftrace_event_field *field = NULL;
|
|
|
|
unsigned long flags = 0;
|
2016-03-03 12:54:48 -06:00
|
|
|
char *field_name;
|
2016-03-03 12:54:43 -06:00
|
|
|
int ret = 0;
|
|
|
|
|
|
|
|
if (WARN_ON(val_idx >= TRACING_MAP_VALS_MAX))
|
|
|
|
return -EINVAL;
|
2016-03-03 12:54:48 -06:00
|
|
|
|
|
|
|
field_name = strsep(&field_str, ".");
|
|
|
|
if (field_str) {
|
|
|
|
if (strcmp(field_str, "hex") == 0)
|
|
|
|
flags |= HIST_FIELD_FL_HEX;
|
|
|
|
else {
|
|
|
|
ret = -EINVAL;
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
field = trace_find_event_field(file->event_call, field_name);
|
2016-03-03 12:54:43 -06:00
|
|
|
if (!field) {
|
|
|
|
ret = -EINVAL;
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
|
|
|
hist_data->fields[val_idx] = create_hist_field(field, flags);
|
|
|
|
if (!hist_data->fields[val_idx]) {
|
|
|
|
ret = -ENOMEM;
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
|
|
|
++hist_data->n_vals;
|
|
|
|
|
|
|
|
if (WARN_ON(hist_data->n_vals > TRACING_MAP_VALS_MAX))
|
|
|
|
ret = -EINVAL;
|
|
|
|
out:
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
tracing: Add 'hist' event trigger command
'hist' triggers allow users to continually aggregate trace events,
which can then be viewed afterwards by simply reading a 'hist' file
containing the aggregation in a human-readable format.
The basic idea is very simple and boils down to a mechanism whereby
trace events, rather than being exhaustively dumped in raw form and
viewed directly, are automatically 'compressed' into meaningful tables
completely defined by the user.
This is done strictly via single-line command-line commands and
without the aid of any kind of programming language or interpreter.
A surprising number of typical use cases can be accomplished by users
via this simple mechanism. In fact, a large number of the tasks that
users typically do using the more complicated script-based tracing
tools, at least during the initial stages of an investigation, can be
accomplished by simply specifying a set of keys and values to be used
in the creation of a hash table.
The Linux kernel trace event subsystem happens to provide an extensive
list of keys and values ready-made for such a purpose in the form of
the event format files associated with each trace event. By simply
consulting the format file for field names of interest and by plugging
them into the hist trigger command, users can create an endless number
of useful aggregations to help with investigating various properties
of the system. See Documentation/trace/events.txt for examples.
hist triggers are implemented on top of the existing event trigger
infrastructure, and as such are consistent with the existing triggers
from a user's perspective as well.
The basic syntax follows the existing trigger syntax. Users start an
aggregation by writing a 'hist' trigger to the event of interest's
trigger file:
# echo hist:keys=xxx [ if filter] > event/trigger
Once a hist trigger has been set up, by default it continually
aggregates every matching event into a hash table using the event key
and a value field named 'hitcount'.
To view the aggregation at any point in time, simply read the 'hist'
file in the same directory as the 'trigger' file:
# cat event/hist
The detailed syntax provides additional options for user control, and
is described exhaustively in Documentation/trace/events.txt and in the
virtual tracing/README file in the tracing subsystem.
Link: http://lkml.kernel.org/r/72d263b5e1853fe9c314953b65833c3aa75479f2.1457029949.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Tested-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Reviewed-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2016-03-03 12:54:42 -06:00
|
|
|
static int create_val_fields(struct hist_trigger_data *hist_data,
|
|
|
|
struct trace_event_file *file)
|
|
|
|
{
|
2016-03-03 12:54:43 -06:00
|
|
|
char *fields_str, *field_str;
|
|
|
|
unsigned int i, j;
|
tracing: Add 'hist' event trigger command
'hist' triggers allow users to continually aggregate trace events,
which can then be viewed afterwards by simply reading a 'hist' file
containing the aggregation in a human-readable format.
The basic idea is very simple and boils down to a mechanism whereby
trace events, rather than being exhaustively dumped in raw form and
viewed directly, are automatically 'compressed' into meaningful tables
completely defined by the user.
This is done strictly via single-line command-line commands and
without the aid of any kind of programming language or interpreter.
A surprising number of typical use cases can be accomplished by users
via this simple mechanism. In fact, a large number of the tasks that
users typically do using the more complicated script-based tracing
tools, at least during the initial stages of an investigation, can be
accomplished by simply specifying a set of keys and values to be used
in the creation of a hash table.
The Linux kernel trace event subsystem happens to provide an extensive
list of keys and values ready-made for such a purpose in the form of
the event format files associated with each trace event. By simply
consulting the format file for field names of interest and by plugging
them into the hist trigger command, users can create an endless number
of useful aggregations to help with investigating various properties
of the system. See Documentation/trace/events.txt for examples.
hist triggers are implemented on top of the existing event trigger
infrastructure, and as such are consistent with the existing triggers
from a user's perspective as well.
The basic syntax follows the existing trigger syntax. Users start an
aggregation by writing a 'hist' trigger to the event of interest's
trigger file:
# echo hist:keys=xxx [ if filter] > event/trigger
Once a hist trigger has been set up, by default it continually
aggregates every matching event into a hash table using the event key
and a value field named 'hitcount'.
To view the aggregation at any point in time, simply read the 'hist'
file in the same directory as the 'trigger' file:
# cat event/hist
The detailed syntax provides additional options for user control, and
is described exhaustively in Documentation/trace/events.txt and in the
virtual tracing/README file in the tracing subsystem.
Link: http://lkml.kernel.org/r/72d263b5e1853fe9c314953b65833c3aa75479f2.1457029949.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Tested-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Reviewed-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2016-03-03 12:54:42 -06:00
|
|
|
int ret;
|
|
|
|
|
|
|
|
ret = create_hitcount_val(hist_data);
|
2016-03-03 12:54:43 -06:00
|
|
|
if (ret)
|
|
|
|
goto out;
|
tracing: Add 'hist' event trigger command
'hist' triggers allow users to continually aggregate trace events,
which can then be viewed afterwards by simply reading a 'hist' file
containing the aggregation in a human-readable format.
The basic idea is very simple and boils down to a mechanism whereby
trace events, rather than being exhaustively dumped in raw form and
viewed directly, are automatically 'compressed' into meaningful tables
completely defined by the user.
This is done strictly via single-line command-line commands and
without the aid of any kind of programming language or interpreter.
A surprising number of typical use cases can be accomplished by users
via this simple mechanism. In fact, a large number of the tasks that
users typically do using the more complicated script-based tracing
tools, at least during the initial stages of an investigation, can be
accomplished by simply specifying a set of keys and values to be used
in the creation of a hash table.
The Linux kernel trace event subsystem happens to provide an extensive
list of keys and values ready-made for such a purpose in the form of
the event format files associated with each trace event. By simply
consulting the format file for field names of interest and by plugging
them into the hist trigger command, users can create an endless number
of useful aggregations to help with investigating various properties
of the system. See Documentation/trace/events.txt for examples.
hist triggers are implemented on top of the existing event trigger
infrastructure, and as such are consistent with the existing triggers
from a user's perspective as well.
The basic syntax follows the existing trigger syntax. Users start an
aggregation by writing a 'hist' trigger to the event of interest's
trigger file:
# echo hist:keys=xxx [ if filter] > event/trigger
Once a hist trigger has been set up, by default it continually
aggregates every matching event into a hash table using the event key
and a value field named 'hitcount'.
To view the aggregation at any point in time, simply read the 'hist'
file in the same directory as the 'trigger' file:
# cat event/hist
The detailed syntax provides additional options for user control, and
is described exhaustively in Documentation/trace/events.txt and in the
virtual tracing/README file in the tracing subsystem.
Link: http://lkml.kernel.org/r/72d263b5e1853fe9c314953b65833c3aa75479f2.1457029949.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Tested-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Reviewed-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2016-03-03 12:54:42 -06:00
|
|
|
|
2016-03-03 12:54:43 -06:00
|
|
|
fields_str = hist_data->attrs->vals_str;
|
|
|
|
if (!fields_str)
|
|
|
|
goto out;
|
|
|
|
|
|
|
|
strsep(&fields_str, "=");
|
|
|
|
if (!fields_str)
|
|
|
|
goto out;
|
|
|
|
|
|
|
|
for (i = 0, j = 1; i < TRACING_MAP_VALS_MAX &&
|
|
|
|
j < TRACING_MAP_VALS_MAX; i++) {
|
|
|
|
field_str = strsep(&fields_str, ",");
|
|
|
|
if (!field_str)
|
|
|
|
break;
|
|
|
|
if (strcmp(field_str, "hitcount") == 0)
|
|
|
|
continue;
|
|
|
|
ret = create_val_field(hist_data, j++, file, field_str);
|
|
|
|
if (ret)
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
if (fields_str && (strcmp(fields_str, "hitcount") != 0))
|
|
|
|
ret = -EINVAL;
|
|
|
|
out:
|
tracing: Add 'hist' event trigger command
'hist' triggers allow users to continually aggregate trace events,
which can then be viewed afterwards by simply reading a 'hist' file
containing the aggregation in a human-readable format.
The basic idea is very simple and boils down to a mechanism whereby
trace events, rather than being exhaustively dumped in raw form and
viewed directly, are automatically 'compressed' into meaningful tables
completely defined by the user.
This is done strictly via single-line command-line commands and
without the aid of any kind of programming language or interpreter.
A surprising number of typical use cases can be accomplished by users
via this simple mechanism. In fact, a large number of the tasks that
users typically do using the more complicated script-based tracing
tools, at least during the initial stages of an investigation, can be
accomplished by simply specifying a set of keys and values to be used
in the creation of a hash table.
The Linux kernel trace event subsystem happens to provide an extensive
list of keys and values ready-made for such a purpose in the form of
the event format files associated with each trace event. By simply
consulting the format file for field names of interest and by plugging
them into the hist trigger command, users can create an endless number
of useful aggregations to help with investigating various properties
of the system. See Documentation/trace/events.txt for examples.
hist triggers are implemented on top of the existing event trigger
infrastructure, and as such are consistent with the existing triggers
from a user's perspective as well.
The basic syntax follows the existing trigger syntax. Users start an
aggregation by writing a 'hist' trigger to the event of interest's
trigger file:
# echo hist:keys=xxx [ if filter] > event/trigger
Once a hist trigger has been set up, by default it continually
aggregates every matching event into a hash table using the event key
and a value field named 'hitcount'.
To view the aggregation at any point in time, simply read the 'hist'
file in the same directory as the 'trigger' file:
# cat event/hist
The detailed syntax provides additional options for user control, and
is described exhaustively in Documentation/trace/events.txt and in the
virtual tracing/README file in the tracing subsystem.
Link: http://lkml.kernel.org/r/72d263b5e1853fe9c314953b65833c3aa75479f2.1457029949.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Tested-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Reviewed-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2016-03-03 12:54:42 -06:00
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int create_key_field(struct hist_trigger_data *hist_data,
|
|
|
|
unsigned int key_idx,
|
2016-03-03 12:54:44 -06:00
|
|
|
unsigned int key_offset,
|
tracing: Add 'hist' event trigger command
'hist' triggers allow users to continually aggregate trace events,
which can then be viewed afterwards by simply reading a 'hist' file
containing the aggregation in a human-readable format.
The basic idea is very simple and boils down to a mechanism whereby
trace events, rather than being exhaustively dumped in raw form and
viewed directly, are automatically 'compressed' into meaningful tables
completely defined by the user.
This is done strictly via single-line command-line commands and
without the aid of any kind of programming language or interpreter.
A surprising number of typical use cases can be accomplished by users
via this simple mechanism. In fact, a large number of the tasks that
users typically do using the more complicated script-based tracing
tools, at least during the initial stages of an investigation, can be
accomplished by simply specifying a set of keys and values to be used
in the creation of a hash table.
The Linux kernel trace event subsystem happens to provide an extensive
list of keys and values ready-made for such a purpose in the form of
the event format files associated with each trace event. By simply
consulting the format file for field names of interest and by plugging
them into the hist trigger command, users can create an endless number
of useful aggregations to help with investigating various properties
of the system. See Documentation/trace/events.txt for examples.
hist triggers are implemented on top of the existing event trigger
infrastructure, and as such are consistent with the existing triggers
from a user's perspective as well.
The basic syntax follows the existing trigger syntax. Users start an
aggregation by writing a 'hist' trigger to the event of interest's
trigger file:
# echo hist:keys=xxx [ if filter] > event/trigger
Once a hist trigger has been set up, by default it continually
aggregates every matching event into a hash table using the event key
and a value field named 'hitcount'.
To view the aggregation at any point in time, simply read the 'hist'
file in the same directory as the 'trigger' file:
# cat event/hist
The detailed syntax provides additional options for user control, and
is described exhaustively in Documentation/trace/events.txt and in the
virtual tracing/README file in the tracing subsystem.
Link: http://lkml.kernel.org/r/72d263b5e1853fe9c314953b65833c3aa75479f2.1457029949.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Tested-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Reviewed-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2016-03-03 12:54:42 -06:00
|
|
|
struct trace_event_file *file,
|
|
|
|
char *field_str)
|
|
|
|
{
|
|
|
|
struct ftrace_event_field *field = NULL;
|
|
|
|
unsigned long flags = 0;
|
|
|
|
unsigned int key_size;
|
|
|
|
int ret = 0;
|
|
|
|
|
|
|
|
if (WARN_ON(key_idx >= TRACING_MAP_FIELDS_MAX))
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
flags |= HIST_FIELD_FL_KEY;
|
|
|
|
|
2016-03-03 12:54:52 -06:00
|
|
|
if (strcmp(field_str, "stacktrace") == 0) {
|
|
|
|
flags |= HIST_FIELD_FL_STACKTRACE;
|
|
|
|
key_size = sizeof(unsigned long) * HIST_STACKTRACE_DEPTH;
|
|
|
|
} else {
|
|
|
|
char *field_name = strsep(&field_str, ".");
|
|
|
|
|
|
|
|
if (field_str) {
|
|
|
|
if (strcmp(field_str, "hex") == 0)
|
|
|
|
flags |= HIST_FIELD_FL_HEX;
|
|
|
|
else if (strcmp(field_str, "sym") == 0)
|
|
|
|
flags |= HIST_FIELD_FL_SYM;
|
|
|
|
else if (strcmp(field_str, "sym-offset") == 0)
|
|
|
|
flags |= HIST_FIELD_FL_SYM_OFFSET;
|
|
|
|
else if ((strcmp(field_str, "execname") == 0) &&
|
|
|
|
(strcmp(field_name, "common_pid") == 0))
|
|
|
|
flags |= HIST_FIELD_FL_EXECNAME;
|
|
|
|
else if (strcmp(field_str, "syscall") == 0)
|
|
|
|
flags |= HIST_FIELD_FL_SYSCALL;
|
|
|
|
else {
|
|
|
|
ret = -EINVAL;
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
field = trace_find_event_field(file->event_call, field_name);
|
|
|
|
if (!field) {
|
2016-03-03 12:54:48 -06:00
|
|
|
ret = -EINVAL;
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
2016-03-03 12:54:52 -06:00
|
|
|
key_size = field->size;
|
tracing: Add 'hist' event trigger command
'hist' triggers allow users to continually aggregate trace events,
which can then be viewed afterwards by simply reading a 'hist' file
containing the aggregation in a human-readable format.
The basic idea is very simple and boils down to a mechanism whereby
trace events, rather than being exhaustively dumped in raw form and
viewed directly, are automatically 'compressed' into meaningful tables
completely defined by the user.
This is done strictly via single-line command-line commands and
without the aid of any kind of programming language or interpreter.
A surprising number of typical use cases can be accomplished by users
via this simple mechanism. In fact, a large number of the tasks that
users typically do using the more complicated script-based tracing
tools, at least during the initial stages of an investigation, can be
accomplished by simply specifying a set of keys and values to be used
in the creation of a hash table.
The Linux kernel trace event subsystem happens to provide an extensive
list of keys and values ready-made for such a purpose in the form of
the event format files associated with each trace event. By simply
consulting the format file for field names of interest and by plugging
them into the hist trigger command, users can create an endless number
of useful aggregations to help with investigating various properties
of the system. See Documentation/trace/events.txt for examples.
hist triggers are implemented on top of the existing event trigger
infrastructure, and as such are consistent with the existing triggers
from a user's perspective as well.
The basic syntax follows the existing trigger syntax. Users start an
aggregation by writing a 'hist' trigger to the event of interest's
trigger file:
# echo hist:keys=xxx [ if filter] > event/trigger
Once a hist trigger has been set up, by default it continually
aggregates every matching event into a hash table using the event key
and a value field named 'hitcount'.
To view the aggregation at any point in time, simply read the 'hist'
file in the same directory as the 'trigger' file:
# cat event/hist
The detailed syntax provides additional options for user control, and
is described exhaustively in Documentation/trace/events.txt and in the
virtual tracing/README file in the tracing subsystem.
Link: http://lkml.kernel.org/r/72d263b5e1853fe9c314953b65833c3aa75479f2.1457029949.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Tested-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Reviewed-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2016-03-03 12:54:42 -06:00
|
|
|
}
|
|
|
|
|
|
|
|
hist_data->fields[key_idx] = create_hist_field(field, flags);
|
|
|
|
if (!hist_data->fields[key_idx]) {
|
|
|
|
ret = -ENOMEM;
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
|
|
|
key_size = ALIGN(key_size, sizeof(u64));
|
|
|
|
hist_data->fields[key_idx]->size = key_size;
|
2016-03-03 12:54:44 -06:00
|
|
|
hist_data->fields[key_idx]->offset = key_offset;
|
|
|
|
hist_data->key_size += key_size;
|
tracing: Add 'hist' event trigger command
'hist' triggers allow users to continually aggregate trace events,
which can then be viewed afterwards by simply reading a 'hist' file
containing the aggregation in a human-readable format.
The basic idea is very simple and boils down to a mechanism whereby
trace events, rather than being exhaustively dumped in raw form and
viewed directly, are automatically 'compressed' into meaningful tables
completely defined by the user.
This is done strictly via single-line command-line commands and
without the aid of any kind of programming language or interpreter.
A surprising number of typical use cases can be accomplished by users
via this simple mechanism. In fact, a large number of the tasks that
users typically do using the more complicated script-based tracing
tools, at least during the initial stages of an investigation, can be
accomplished by simply specifying a set of keys and values to be used
in the creation of a hash table.
The Linux kernel trace event subsystem happens to provide an extensive
list of keys and values ready-made for such a purpose in the form of
the event format files associated with each trace event. By simply
consulting the format file for field names of interest and by plugging
them into the hist trigger command, users can create an endless number
of useful aggregations to help with investigating various properties
of the system. See Documentation/trace/events.txt for examples.
hist triggers are implemented on top of the existing event trigger
infrastructure, and as such are consistent with the existing triggers
from a user's perspective as well.
The basic syntax follows the existing trigger syntax. Users start an
aggregation by writing a 'hist' trigger to the event of interest's
trigger file:
# echo hist:keys=xxx [ if filter] > event/trigger
Once a hist trigger has been set up, by default it continually
aggregates every matching event into a hash table using the event key
and a value field named 'hitcount'.
To view the aggregation at any point in time, simply read the 'hist'
file in the same directory as the 'trigger' file:
# cat event/hist
The detailed syntax provides additional options for user control, and
is described exhaustively in Documentation/trace/events.txt and in the
virtual tracing/README file in the tracing subsystem.
Link: http://lkml.kernel.org/r/72d263b5e1853fe9c314953b65833c3aa75479f2.1457029949.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Tested-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Reviewed-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2016-03-03 12:54:42 -06:00
|
|
|
if (hist_data->key_size > HIST_KEY_SIZE_MAX) {
|
|
|
|
ret = -EINVAL;
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
|
|
|
hist_data->n_keys++;
|
|
|
|
|
|
|
|
if (WARN_ON(hist_data->n_keys > TRACING_MAP_KEYS_MAX))
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
ret = key_size;
|
|
|
|
out:
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int create_key_fields(struct hist_trigger_data *hist_data,
|
|
|
|
struct trace_event_file *file)
|
|
|
|
{
|
2016-03-03 12:54:44 -06:00
|
|
|
unsigned int i, key_offset = 0, n_vals = hist_data->n_vals;
|
tracing: Add 'hist' event trigger command
'hist' triggers allow users to continually aggregate trace events,
which can then be viewed afterwards by simply reading a 'hist' file
containing the aggregation in a human-readable format.
The basic idea is very simple and boils down to a mechanism whereby
trace events, rather than being exhaustively dumped in raw form and
viewed directly, are automatically 'compressed' into meaningful tables
completely defined by the user.
This is done strictly via single-line command-line commands and
without the aid of any kind of programming language or interpreter.
A surprising number of typical use cases can be accomplished by users
via this simple mechanism. In fact, a large number of the tasks that
users typically do using the more complicated script-based tracing
tools, at least during the initial stages of an investigation, can be
accomplished by simply specifying a set of keys and values to be used
in the creation of a hash table.
The Linux kernel trace event subsystem happens to provide an extensive
list of keys and values ready-made for such a purpose in the form of
the event format files associated with each trace event. By simply
consulting the format file for field names of interest and by plugging
them into the hist trigger command, users can create an endless number
of useful aggregations to help with investigating various properties
of the system. See Documentation/trace/events.txt for examples.
hist triggers are implemented on top of the existing event trigger
infrastructure, and as such are consistent with the existing triggers
from a user's perspective as well.
The basic syntax follows the existing trigger syntax. Users start an
aggregation by writing a 'hist' trigger to the event of interest's
trigger file:
# echo hist:keys=xxx [ if filter] > event/trigger
Once a hist trigger has been set up, by default it continually
aggregates every matching event into a hash table using the event key
and a value field named 'hitcount'.
To view the aggregation at any point in time, simply read the 'hist'
file in the same directory as the 'trigger' file:
# cat event/hist
The detailed syntax provides additional options for user control, and
is described exhaustively in Documentation/trace/events.txt and in the
virtual tracing/README file in the tracing subsystem.
Link: http://lkml.kernel.org/r/72d263b5e1853fe9c314953b65833c3aa75479f2.1457029949.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Tested-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Reviewed-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2016-03-03 12:54:42 -06:00
|
|
|
char *fields_str, *field_str;
|
|
|
|
int ret = -EINVAL;
|
|
|
|
|
|
|
|
fields_str = hist_data->attrs->keys_str;
|
|
|
|
if (!fields_str)
|
|
|
|
goto out;
|
|
|
|
|
|
|
|
strsep(&fields_str, "=");
|
|
|
|
if (!fields_str)
|
|
|
|
goto out;
|
|
|
|
|
2016-03-03 12:54:44 -06:00
|
|
|
for (i = n_vals; i < n_vals + TRACING_MAP_KEYS_MAX; i++) {
|
tracing: Add 'hist' event trigger command
'hist' triggers allow users to continually aggregate trace events,
which can then be viewed afterwards by simply reading a 'hist' file
containing the aggregation in a human-readable format.
The basic idea is very simple and boils down to a mechanism whereby
trace events, rather than being exhaustively dumped in raw form and
viewed directly, are automatically 'compressed' into meaningful tables
completely defined by the user.
This is done strictly via single-line command-line commands and
without the aid of any kind of programming language or interpreter.
A surprising number of typical use cases can be accomplished by users
via this simple mechanism. In fact, a large number of the tasks that
users typically do using the more complicated script-based tracing
tools, at least during the initial stages of an investigation, can be
accomplished by simply specifying a set of keys and values to be used
in the creation of a hash table.
The Linux kernel trace event subsystem happens to provide an extensive
list of keys and values ready-made for such a purpose in the form of
the event format files associated with each trace event. By simply
consulting the format file for field names of interest and by plugging
them into the hist trigger command, users can create an endless number
of useful aggregations to help with investigating various properties
of the system. See Documentation/trace/events.txt for examples.
hist triggers are implemented on top of the existing event trigger
infrastructure, and as such are consistent with the existing triggers
from a user's perspective as well.
The basic syntax follows the existing trigger syntax. Users start an
aggregation by writing a 'hist' trigger to the event of interest's
trigger file:
# echo hist:keys=xxx [ if filter] > event/trigger
Once a hist trigger has been set up, by default it continually
aggregates every matching event into a hash table using the event key
and a value field named 'hitcount'.
To view the aggregation at any point in time, simply read the 'hist'
file in the same directory as the 'trigger' file:
# cat event/hist
The detailed syntax provides additional options for user control, and
is described exhaustively in Documentation/trace/events.txt and in the
virtual tracing/README file in the tracing subsystem.
Link: http://lkml.kernel.org/r/72d263b5e1853fe9c314953b65833c3aa75479f2.1457029949.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Tested-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Reviewed-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2016-03-03 12:54:42 -06:00
|
|
|
field_str = strsep(&fields_str, ",");
|
|
|
|
if (!field_str)
|
|
|
|
break;
|
2016-03-03 12:54:44 -06:00
|
|
|
ret = create_key_field(hist_data, i, key_offset,
|
|
|
|
file, field_str);
|
tracing: Add 'hist' event trigger command
'hist' triggers allow users to continually aggregate trace events,
which can then be viewed afterwards by simply reading a 'hist' file
containing the aggregation in a human-readable format.
The basic idea is very simple and boils down to a mechanism whereby
trace events, rather than being exhaustively dumped in raw form and
viewed directly, are automatically 'compressed' into meaningful tables
completely defined by the user.
This is done strictly via single-line command-line commands and
without the aid of any kind of programming language or interpreter.
A surprising number of typical use cases can be accomplished by users
via this simple mechanism. In fact, a large number of the tasks that
users typically do using the more complicated script-based tracing
tools, at least during the initial stages of an investigation, can be
accomplished by simply specifying a set of keys and values to be used
in the creation of a hash table.
The Linux kernel trace event subsystem happens to provide an extensive
list of keys and values ready-made for such a purpose in the form of
the event format files associated with each trace event. By simply
consulting the format file for field names of interest and by plugging
them into the hist trigger command, users can create an endless number
of useful aggregations to help with investigating various properties
of the system. See Documentation/trace/events.txt for examples.
hist triggers are implemented on top of the existing event trigger
infrastructure, and as such are consistent with the existing triggers
from a user's perspective as well.
The basic syntax follows the existing trigger syntax. Users start an
aggregation by writing a 'hist' trigger to the event of interest's
trigger file:
# echo hist:keys=xxx [ if filter] > event/trigger
Once a hist trigger has been set up, by default it continually
aggregates every matching event into a hash table using the event key
and a value field named 'hitcount'.
To view the aggregation at any point in time, simply read the 'hist'
file in the same directory as the 'trigger' file:
# cat event/hist
The detailed syntax provides additional options for user control, and
is described exhaustively in Documentation/trace/events.txt and in the
virtual tracing/README file in the tracing subsystem.
Link: http://lkml.kernel.org/r/72d263b5e1853fe9c314953b65833c3aa75479f2.1457029949.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Tested-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Reviewed-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2016-03-03 12:54:42 -06:00
|
|
|
if (ret < 0)
|
|
|
|
goto out;
|
2016-03-03 12:54:44 -06:00
|
|
|
key_offset += ret;
|
tracing: Add 'hist' event trigger command
'hist' triggers allow users to continually aggregate trace events,
which can then be viewed afterwards by simply reading a 'hist' file
containing the aggregation in a human-readable format.
The basic idea is very simple and boils down to a mechanism whereby
trace events, rather than being exhaustively dumped in raw form and
viewed directly, are automatically 'compressed' into meaningful tables
completely defined by the user.
This is done strictly via single-line command-line commands and
without the aid of any kind of programming language or interpreter.
A surprising number of typical use cases can be accomplished by users
via this simple mechanism. In fact, a large number of the tasks that
users typically do using the more complicated script-based tracing
tools, at least during the initial stages of an investigation, can be
accomplished by simply specifying a set of keys and values to be used
in the creation of a hash table.
The Linux kernel trace event subsystem happens to provide an extensive
list of keys and values ready-made for such a purpose in the form of
the event format files associated with each trace event. By simply
consulting the format file for field names of interest and by plugging
them into the hist trigger command, users can create an endless number
of useful aggregations to help with investigating various properties
of the system. See Documentation/trace/events.txt for examples.
hist triggers are implemented on top of the existing event trigger
infrastructure, and as such are consistent with the existing triggers
from a user's perspective as well.
The basic syntax follows the existing trigger syntax. Users start an
aggregation by writing a 'hist' trigger to the event of interest's
trigger file:
# echo hist:keys=xxx [ if filter] > event/trigger
Once a hist trigger has been set up, by default it continually
aggregates every matching event into a hash table using the event key
and a value field named 'hitcount'.
To view the aggregation at any point in time, simply read the 'hist'
file in the same directory as the 'trigger' file:
# cat event/hist
The detailed syntax provides additional options for user control, and
is described exhaustively in Documentation/trace/events.txt and in the
virtual tracing/README file in the tracing subsystem.
Link: http://lkml.kernel.org/r/72d263b5e1853fe9c314953b65833c3aa75479f2.1457029949.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Tested-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Reviewed-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2016-03-03 12:54:42 -06:00
|
|
|
}
|
|
|
|
if (fields_str) {
|
|
|
|
ret = -EINVAL;
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
ret = 0;
|
|
|
|
out:
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int create_hist_fields(struct hist_trigger_data *hist_data,
|
|
|
|
struct trace_event_file *file)
|
|
|
|
{
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
ret = create_val_fields(hist_data, file);
|
|
|
|
if (ret)
|
|
|
|
goto out;
|
|
|
|
|
|
|
|
ret = create_key_fields(hist_data, file);
|
|
|
|
if (ret)
|
|
|
|
goto out;
|
|
|
|
|
|
|
|
hist_data->n_fields = hist_data->n_vals + hist_data->n_keys;
|
|
|
|
out:
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
2016-03-03 12:54:45 -06:00
|
|
|
static int is_descending(const char *str)
|
|
|
|
{
|
|
|
|
if (!str)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
if (strcmp(str, "descending") == 0)
|
|
|
|
return 1;
|
|
|
|
|
|
|
|
if (strcmp(str, "ascending") == 0)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
|
tracing: Add 'hist' event trigger command
'hist' triggers allow users to continually aggregate trace events,
which can then be viewed afterwards by simply reading a 'hist' file
containing the aggregation in a human-readable format.
The basic idea is very simple and boils down to a mechanism whereby
trace events, rather than being exhaustively dumped in raw form and
viewed directly, are automatically 'compressed' into meaningful tables
completely defined by the user.
This is done strictly via single-line command-line commands and
without the aid of any kind of programming language or interpreter.
A surprising number of typical use cases can be accomplished by users
via this simple mechanism. In fact, a large number of the tasks that
users typically do using the more complicated script-based tracing
tools, at least during the initial stages of an investigation, can be
accomplished by simply specifying a set of keys and values to be used
in the creation of a hash table.
The Linux kernel trace event subsystem happens to provide an extensive
list of keys and values ready-made for such a purpose in the form of
the event format files associated with each trace event. By simply
consulting the format file for field names of interest and by plugging
them into the hist trigger command, users can create an endless number
of useful aggregations to help with investigating various properties
of the system. See Documentation/trace/events.txt for examples.
hist triggers are implemented on top of the existing event trigger
infrastructure, and as such are consistent with the existing triggers
from a user's perspective as well.
The basic syntax follows the existing trigger syntax. Users start an
aggregation by writing a 'hist' trigger to the event of interest's
trigger file:
# echo hist:keys=xxx [ if filter] > event/trigger
Once a hist trigger has been set up, by default it continually
aggregates every matching event into a hash table using the event key
and a value field named 'hitcount'.
To view the aggregation at any point in time, simply read the 'hist'
file in the same directory as the 'trigger' file:
# cat event/hist
The detailed syntax provides additional options for user control, and
is described exhaustively in Documentation/trace/events.txt and in the
virtual tracing/README file in the tracing subsystem.
Link: http://lkml.kernel.org/r/72d263b5e1853fe9c314953b65833c3aa75479f2.1457029949.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Tested-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Reviewed-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2016-03-03 12:54:42 -06:00
|
|
|
static int create_sort_keys(struct hist_trigger_data *hist_data)
|
|
|
|
{
|
2016-03-03 12:54:45 -06:00
|
|
|
char *fields_str = hist_data->attrs->sort_key_str;
|
|
|
|
struct ftrace_event_field *field = NULL;
|
|
|
|
struct tracing_map_sort_key *sort_key;
|
|
|
|
int descending, ret = 0;
|
|
|
|
unsigned int i, j;
|
|
|
|
|
|
|
|
hist_data->n_sort_keys = 1; /* we always have at least one, hitcount */
|
|
|
|
|
|
|
|
if (!fields_str)
|
|
|
|
goto out;
|
|
|
|
|
|
|
|
strsep(&fields_str, "=");
|
|
|
|
if (!fields_str) {
|
|
|
|
ret = -EINVAL;
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
|
|
|
for (i = 0; i < TRACING_MAP_SORT_KEYS_MAX; i++) {
|
|
|
|
char *field_str, *field_name;
|
|
|
|
|
|
|
|
sort_key = &hist_data->sort_keys[i];
|
|
|
|
|
|
|
|
field_str = strsep(&fields_str, ",");
|
|
|
|
if (!field_str) {
|
|
|
|
if (i == 0)
|
|
|
|
ret = -EINVAL;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
if ((i == TRACING_MAP_SORT_KEYS_MAX - 1) && fields_str) {
|
|
|
|
ret = -EINVAL;
|
|
|
|
break;
|
|
|
|
}
|
tracing: Add 'hist' event trigger command
'hist' triggers allow users to continually aggregate trace events,
which can then be viewed afterwards by simply reading a 'hist' file
containing the aggregation in a human-readable format.
The basic idea is very simple and boils down to a mechanism whereby
trace events, rather than being exhaustively dumped in raw form and
viewed directly, are automatically 'compressed' into meaningful tables
completely defined by the user.
This is done strictly via single-line command-line commands and
without the aid of any kind of programming language or interpreter.
A surprising number of typical use cases can be accomplished by users
via this simple mechanism. In fact, a large number of the tasks that
users typically do using the more complicated script-based tracing
tools, at least during the initial stages of an investigation, can be
accomplished by simply specifying a set of keys and values to be used
in the creation of a hash table.
The Linux kernel trace event subsystem happens to provide an extensive
list of keys and values ready-made for such a purpose in the form of
the event format files associated with each trace event. By simply
consulting the format file for field names of interest and by plugging
them into the hist trigger command, users can create an endless number
of useful aggregations to help with investigating various properties
of the system. See Documentation/trace/events.txt for examples.
hist triggers are implemented on top of the existing event trigger
infrastructure, and as such are consistent with the existing triggers
from a user's perspective as well.
The basic syntax follows the existing trigger syntax. Users start an
aggregation by writing a 'hist' trigger to the event of interest's
trigger file:
# echo hist:keys=xxx [ if filter] > event/trigger
Once a hist trigger has been set up, by default it continually
aggregates every matching event into a hash table using the event key
and a value field named 'hitcount'.
To view the aggregation at any point in time, simply read the 'hist'
file in the same directory as the 'trigger' file:
# cat event/hist
The detailed syntax provides additional options for user control, and
is described exhaustively in Documentation/trace/events.txt and in the
virtual tracing/README file in the tracing subsystem.
Link: http://lkml.kernel.org/r/72d263b5e1853fe9c314953b65833c3aa75479f2.1457029949.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Tested-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Reviewed-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2016-03-03 12:54:42 -06:00
|
|
|
|
2016-03-03 12:54:45 -06:00
|
|
|
field_name = strsep(&field_str, ".");
|
|
|
|
if (!field_name) {
|
|
|
|
ret = -EINVAL;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (strcmp(field_name, "hitcount") == 0) {
|
|
|
|
descending = is_descending(field_str);
|
|
|
|
if (descending < 0) {
|
|
|
|
ret = descending;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
sort_key->descending = descending;
|
|
|
|
continue;
|
|
|
|
}
|
tracing: Add 'hist' event trigger command
'hist' triggers allow users to continually aggregate trace events,
which can then be viewed afterwards by simply reading a 'hist' file
containing the aggregation in a human-readable format.
The basic idea is very simple and boils down to a mechanism whereby
trace events, rather than being exhaustively dumped in raw form and
viewed directly, are automatically 'compressed' into meaningful tables
completely defined by the user.
This is done strictly via single-line command-line commands and
without the aid of any kind of programming language or interpreter.
A surprising number of typical use cases can be accomplished by users
via this simple mechanism. In fact, a large number of the tasks that
users typically do using the more complicated script-based tracing
tools, at least during the initial stages of an investigation, can be
accomplished by simply specifying a set of keys and values to be used
in the creation of a hash table.
The Linux kernel trace event subsystem happens to provide an extensive
list of keys and values ready-made for such a purpose in the form of
the event format files associated with each trace event. By simply
consulting the format file for field names of interest and by plugging
them into the hist trigger command, users can create an endless number
of useful aggregations to help with investigating various properties
of the system. See Documentation/trace/events.txt for examples.
hist triggers are implemented on top of the existing event trigger
infrastructure, and as such are consistent with the existing triggers
from a user's perspective as well.
The basic syntax follows the existing trigger syntax. Users start an
aggregation by writing a 'hist' trigger to the event of interest's
trigger file:
# echo hist:keys=xxx [ if filter] > event/trigger
Once a hist trigger has been set up, by default it continually
aggregates every matching event into a hash table using the event key
and a value field named 'hitcount'.
To view the aggregation at any point in time, simply read the 'hist'
file in the same directory as the 'trigger' file:
# cat event/hist
The detailed syntax provides additional options for user control, and
is described exhaustively in Documentation/trace/events.txt and in the
virtual tracing/README file in the tracing subsystem.
Link: http://lkml.kernel.org/r/72d263b5e1853fe9c314953b65833c3aa75479f2.1457029949.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Tested-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Reviewed-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2016-03-03 12:54:42 -06:00
|
|
|
|
2016-03-03 12:54:45 -06:00
|
|
|
for (j = 1; j < hist_data->n_fields; j++) {
|
|
|
|
field = hist_data->fields[j]->field;
|
|
|
|
if (field && (strcmp(field_name, field->name) == 0)) {
|
|
|
|
sort_key->field_idx = j;
|
|
|
|
descending = is_descending(field_str);
|
|
|
|
if (descending < 0) {
|
|
|
|
ret = descending;
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
sort_key->descending = descending;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (j == hist_data->n_fields) {
|
|
|
|
ret = -EINVAL;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
hist_data->n_sort_keys = i;
|
|
|
|
out:
|
tracing: Add 'hist' event trigger command
'hist' triggers allow users to continually aggregate trace events,
which can then be viewed afterwards by simply reading a 'hist' file
containing the aggregation in a human-readable format.
The basic idea is very simple and boils down to a mechanism whereby
trace events, rather than being exhaustively dumped in raw form and
viewed directly, are automatically 'compressed' into meaningful tables
completely defined by the user.
This is done strictly via single-line command-line commands and
without the aid of any kind of programming language or interpreter.
A surprising number of typical use cases can be accomplished by users
via this simple mechanism. In fact, a large number of the tasks that
users typically do using the more complicated script-based tracing
tools, at least during the initial stages of an investigation, can be
accomplished by simply specifying a set of keys and values to be used
in the creation of a hash table.
The Linux kernel trace event subsystem happens to provide an extensive
list of keys and values ready-made for such a purpose in the form of
the event format files associated with each trace event. By simply
consulting the format file for field names of interest and by plugging
them into the hist trigger command, users can create an endless number
of useful aggregations to help with investigating various properties
of the system. See Documentation/trace/events.txt for examples.
hist triggers are implemented on top of the existing event trigger
infrastructure, and as such are consistent with the existing triggers
from a user's perspective as well.
The basic syntax follows the existing trigger syntax. Users start an
aggregation by writing a 'hist' trigger to the event of interest's
trigger file:
# echo hist:keys=xxx [ if filter] > event/trigger
Once a hist trigger has been set up, by default it continually
aggregates every matching event into a hash table using the event key
and a value field named 'hitcount'.
To view the aggregation at any point in time, simply read the 'hist'
file in the same directory as the 'trigger' file:
# cat event/hist
The detailed syntax provides additional options for user control, and
is described exhaustively in Documentation/trace/events.txt and in the
virtual tracing/README file in the tracing subsystem.
Link: http://lkml.kernel.org/r/72d263b5e1853fe9c314953b65833c3aa75479f2.1457029949.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Tested-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Reviewed-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2016-03-03 12:54:42 -06:00
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void destroy_hist_data(struct hist_trigger_data *hist_data)
|
|
|
|
{
|
|
|
|
destroy_hist_trigger_attrs(hist_data->attrs);
|
|
|
|
destroy_hist_fields(hist_data);
|
|
|
|
tracing_map_destroy(hist_data->map);
|
|
|
|
kfree(hist_data);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int create_tracing_map_fields(struct hist_trigger_data *hist_data)
|
|
|
|
{
|
|
|
|
struct tracing_map *map = hist_data->map;
|
|
|
|
struct ftrace_event_field *field;
|
|
|
|
struct hist_field *hist_field;
|
|
|
|
unsigned int i, idx;
|
|
|
|
|
|
|
|
for_each_hist_field(i, hist_data) {
|
|
|
|
hist_field = hist_data->fields[i];
|
|
|
|
if (hist_field->flags & HIST_FIELD_FL_KEY) {
|
|
|
|
tracing_map_cmp_fn_t cmp_fn;
|
|
|
|
|
|
|
|
field = hist_field->field;
|
|
|
|
|
2016-03-03 12:54:52 -06:00
|
|
|
if (hist_field->flags & HIST_FIELD_FL_STACKTRACE)
|
|
|
|
cmp_fn = tracing_map_cmp_none;
|
|
|
|
else if (is_string_field(field))
|
tracing: Add 'hist' event trigger command
'hist' triggers allow users to continually aggregate trace events,
which can then be viewed afterwards by simply reading a 'hist' file
containing the aggregation in a human-readable format.
The basic idea is very simple and boils down to a mechanism whereby
trace events, rather than being exhaustively dumped in raw form and
viewed directly, are automatically 'compressed' into meaningful tables
completely defined by the user.
This is done strictly via single-line command-line commands and
without the aid of any kind of programming language or interpreter.
A surprising number of typical use cases can be accomplished by users
via this simple mechanism. In fact, a large number of the tasks that
users typically do using the more complicated script-based tracing
tools, at least during the initial stages of an investigation, can be
accomplished by simply specifying a set of keys and values to be used
in the creation of a hash table.
The Linux kernel trace event subsystem happens to provide an extensive
list of keys and values ready-made for such a purpose in the form of
the event format files associated with each trace event. By simply
consulting the format file for field names of interest and by plugging
them into the hist trigger command, users can create an endless number
of useful aggregations to help with investigating various properties
of the system. See Documentation/trace/events.txt for examples.
hist triggers are implemented on top of the existing event trigger
infrastructure, and as such are consistent with the existing triggers
from a user's perspective as well.
The basic syntax follows the existing trigger syntax. Users start an
aggregation by writing a 'hist' trigger to the event of interest's
trigger file:
# echo hist:keys=xxx [ if filter] > event/trigger
Once a hist trigger has been set up, by default it continually
aggregates every matching event into a hash table using the event key
and a value field named 'hitcount'.
To view the aggregation at any point in time, simply read the 'hist'
file in the same directory as the 'trigger' file:
# cat event/hist
The detailed syntax provides additional options for user control, and
is described exhaustively in Documentation/trace/events.txt and in the
virtual tracing/README file in the tracing subsystem.
Link: http://lkml.kernel.org/r/72d263b5e1853fe9c314953b65833c3aa75479f2.1457029949.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Tested-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Reviewed-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2016-03-03 12:54:42 -06:00
|
|
|
cmp_fn = tracing_map_cmp_string;
|
|
|
|
else
|
|
|
|
cmp_fn = tracing_map_cmp_num(field->size,
|
|
|
|
field->is_signed);
|
2016-03-03 12:54:44 -06:00
|
|
|
idx = tracing_map_add_key_field(map,
|
|
|
|
hist_field->offset,
|
|
|
|
cmp_fn);
|
|
|
|
|
tracing: Add 'hist' event trigger command
'hist' triggers allow users to continually aggregate trace events,
which can then be viewed afterwards by simply reading a 'hist' file
containing the aggregation in a human-readable format.
The basic idea is very simple and boils down to a mechanism whereby
trace events, rather than being exhaustively dumped in raw form and
viewed directly, are automatically 'compressed' into meaningful tables
completely defined by the user.
This is done strictly via single-line command-line commands and
without the aid of any kind of programming language or interpreter.
A surprising number of typical use cases can be accomplished by users
via this simple mechanism. In fact, a large number of the tasks that
users typically do using the more complicated script-based tracing
tools, at least during the initial stages of an investigation, can be
accomplished by simply specifying a set of keys and values to be used
in the creation of a hash table.
The Linux kernel trace event subsystem happens to provide an extensive
list of keys and values ready-made for such a purpose in the form of
the event format files associated with each trace event. By simply
consulting the format file for field names of interest and by plugging
them into the hist trigger command, users can create an endless number
of useful aggregations to help with investigating various properties
of the system. See Documentation/trace/events.txt for examples.
hist triggers are implemented on top of the existing event trigger
infrastructure, and as such are consistent with the existing triggers
from a user's perspective as well.
The basic syntax follows the existing trigger syntax. Users start an
aggregation by writing a 'hist' trigger to the event of interest's
trigger file:
# echo hist:keys=xxx [ if filter] > event/trigger
Once a hist trigger has been set up, by default it continually
aggregates every matching event into a hash table using the event key
and a value field named 'hitcount'.
To view the aggregation at any point in time, simply read the 'hist'
file in the same directory as the 'trigger' file:
# cat event/hist
The detailed syntax provides additional options for user control, and
is described exhaustively in Documentation/trace/events.txt and in the
virtual tracing/README file in the tracing subsystem.
Link: http://lkml.kernel.org/r/72d263b5e1853fe9c314953b65833c3aa75479f2.1457029949.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Tested-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Reviewed-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2016-03-03 12:54:42 -06:00
|
|
|
} else
|
|
|
|
idx = tracing_map_add_sum_field(map);
|
|
|
|
|
|
|
|
if (idx < 0)
|
|
|
|
return idx;
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2016-03-03 12:54:50 -06:00
|
|
|
static bool need_tracing_map_ops(struct hist_trigger_data *hist_data)
|
|
|
|
{
|
|
|
|
struct hist_field *key_field;
|
|
|
|
unsigned int i;
|
|
|
|
|
|
|
|
for_each_hist_key_field(i, hist_data) {
|
|
|
|
key_field = hist_data->fields[i];
|
|
|
|
|
|
|
|
if (key_field->flags & HIST_FIELD_FL_EXECNAME)
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
tracing: Add 'hist' event trigger command
'hist' triggers allow users to continually aggregate trace events,
which can then be viewed afterwards by simply reading a 'hist' file
containing the aggregation in a human-readable format.
The basic idea is very simple and boils down to a mechanism whereby
trace events, rather than being exhaustively dumped in raw form and
viewed directly, are automatically 'compressed' into meaningful tables
completely defined by the user.
This is done strictly via single-line command-line commands and
without the aid of any kind of programming language or interpreter.
A surprising number of typical use cases can be accomplished by users
via this simple mechanism. In fact, a large number of the tasks that
users typically do using the more complicated script-based tracing
tools, at least during the initial stages of an investigation, can be
accomplished by simply specifying a set of keys and values to be used
in the creation of a hash table.
The Linux kernel trace event subsystem happens to provide an extensive
list of keys and values ready-made for such a purpose in the form of
the event format files associated with each trace event. By simply
consulting the format file for field names of interest and by plugging
them into the hist trigger command, users can create an endless number
of useful aggregations to help with investigating various properties
of the system. See Documentation/trace/events.txt for examples.
hist triggers are implemented on top of the existing event trigger
infrastructure, and as such are consistent with the existing triggers
from a user's perspective as well.
The basic syntax follows the existing trigger syntax. Users start an
aggregation by writing a 'hist' trigger to the event of interest's
trigger file:
# echo hist:keys=xxx [ if filter] > event/trigger
Once a hist trigger has been set up, by default it continually
aggregates every matching event into a hash table using the event key
and a value field named 'hitcount'.
To view the aggregation at any point in time, simply read the 'hist'
file in the same directory as the 'trigger' file:
# cat event/hist
The detailed syntax provides additional options for user control, and
is described exhaustively in Documentation/trace/events.txt and in the
virtual tracing/README file in the tracing subsystem.
Link: http://lkml.kernel.org/r/72d263b5e1853fe9c314953b65833c3aa75479f2.1457029949.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Tested-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Reviewed-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2016-03-03 12:54:42 -06:00
|
|
|
static struct hist_trigger_data *
|
|
|
|
create_hist_data(unsigned int map_bits,
|
|
|
|
struct hist_trigger_attrs *attrs,
|
|
|
|
struct trace_event_file *file)
|
|
|
|
{
|
2016-03-03 12:54:50 -06:00
|
|
|
const struct tracing_map_ops *map_ops = NULL;
|
tracing: Add 'hist' event trigger command
'hist' triggers allow users to continually aggregate trace events,
which can then be viewed afterwards by simply reading a 'hist' file
containing the aggregation in a human-readable format.
The basic idea is very simple and boils down to a mechanism whereby
trace events, rather than being exhaustively dumped in raw form and
viewed directly, are automatically 'compressed' into meaningful tables
completely defined by the user.
This is done strictly via single-line command-line commands and
without the aid of any kind of programming language or interpreter.
A surprising number of typical use cases can be accomplished by users
via this simple mechanism. In fact, a large number of the tasks that
users typically do using the more complicated script-based tracing
tools, at least during the initial stages of an investigation, can be
accomplished by simply specifying a set of keys and values to be used
in the creation of a hash table.
The Linux kernel trace event subsystem happens to provide an extensive
list of keys and values ready-made for such a purpose in the form of
the event format files associated with each trace event. By simply
consulting the format file for field names of interest and by plugging
them into the hist trigger command, users can create an endless number
of useful aggregations to help with investigating various properties
of the system. See Documentation/trace/events.txt for examples.
hist triggers are implemented on top of the existing event trigger
infrastructure, and as such are consistent with the existing triggers
from a user's perspective as well.
The basic syntax follows the existing trigger syntax. Users start an
aggregation by writing a 'hist' trigger to the event of interest's
trigger file:
# echo hist:keys=xxx [ if filter] > event/trigger
Once a hist trigger has been set up, by default it continually
aggregates every matching event into a hash table using the event key
and a value field named 'hitcount'.
To view the aggregation at any point in time, simply read the 'hist'
file in the same directory as the 'trigger' file:
# cat event/hist
The detailed syntax provides additional options for user control, and
is described exhaustively in Documentation/trace/events.txt and in the
virtual tracing/README file in the tracing subsystem.
Link: http://lkml.kernel.org/r/72d263b5e1853fe9c314953b65833c3aa75479f2.1457029949.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Tested-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Reviewed-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2016-03-03 12:54:42 -06:00
|
|
|
struct hist_trigger_data *hist_data;
|
|
|
|
int ret = 0;
|
|
|
|
|
|
|
|
hist_data = kzalloc(sizeof(*hist_data), GFP_KERNEL);
|
|
|
|
if (!hist_data)
|
|
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
|
|
|
|
hist_data->attrs = attrs;
|
|
|
|
|
|
|
|
ret = create_hist_fields(hist_data, file);
|
|
|
|
if (ret)
|
|
|
|
goto free;
|
|
|
|
|
|
|
|
ret = create_sort_keys(hist_data);
|
|
|
|
if (ret)
|
|
|
|
goto free;
|
|
|
|
|
2016-03-03 12:54:50 -06:00
|
|
|
if (need_tracing_map_ops(hist_data))
|
|
|
|
map_ops = &hist_trigger_elt_comm_ops;
|
|
|
|
|
tracing: Add 'hist' event trigger command
'hist' triggers allow users to continually aggregate trace events,
which can then be viewed afterwards by simply reading a 'hist' file
containing the aggregation in a human-readable format.
The basic idea is very simple and boils down to a mechanism whereby
trace events, rather than being exhaustively dumped in raw form and
viewed directly, are automatically 'compressed' into meaningful tables
completely defined by the user.
This is done strictly via single-line command-line commands and
without the aid of any kind of programming language or interpreter.
A surprising number of typical use cases can be accomplished by users
via this simple mechanism. In fact, a large number of the tasks that
users typically do using the more complicated script-based tracing
tools, at least during the initial stages of an investigation, can be
accomplished by simply specifying a set of keys and values to be used
in the creation of a hash table.
The Linux kernel trace event subsystem happens to provide an extensive
list of keys and values ready-made for such a purpose in the form of
the event format files associated with each trace event. By simply
consulting the format file for field names of interest and by plugging
them into the hist trigger command, users can create an endless number
of useful aggregations to help with investigating various properties
of the system. See Documentation/trace/events.txt for examples.
hist triggers are implemented on top of the existing event trigger
infrastructure, and as such are consistent with the existing triggers
from a user's perspective as well.
The basic syntax follows the existing trigger syntax. Users start an
aggregation by writing a 'hist' trigger to the event of interest's
trigger file:
# echo hist:keys=xxx [ if filter] > event/trigger
Once a hist trigger has been set up, by default it continually
aggregates every matching event into a hash table using the event key
and a value field named 'hitcount'.
To view the aggregation at any point in time, simply read the 'hist'
file in the same directory as the 'trigger' file:
# cat event/hist
The detailed syntax provides additional options for user control, and
is described exhaustively in Documentation/trace/events.txt and in the
virtual tracing/README file in the tracing subsystem.
Link: http://lkml.kernel.org/r/72d263b5e1853fe9c314953b65833c3aa75479f2.1457029949.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Tested-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Reviewed-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2016-03-03 12:54:42 -06:00
|
|
|
hist_data->map = tracing_map_create(map_bits, hist_data->key_size,
|
2016-03-03 12:54:50 -06:00
|
|
|
map_ops, hist_data);
|
tracing: Add 'hist' event trigger command
'hist' triggers allow users to continually aggregate trace events,
which can then be viewed afterwards by simply reading a 'hist' file
containing the aggregation in a human-readable format.
The basic idea is very simple and boils down to a mechanism whereby
trace events, rather than being exhaustively dumped in raw form and
viewed directly, are automatically 'compressed' into meaningful tables
completely defined by the user.
This is done strictly via single-line command-line commands and
without the aid of any kind of programming language or interpreter.
A surprising number of typical use cases can be accomplished by users
via this simple mechanism. In fact, a large number of the tasks that
users typically do using the more complicated script-based tracing
tools, at least during the initial stages of an investigation, can be
accomplished by simply specifying a set of keys and values to be used
in the creation of a hash table.
The Linux kernel trace event subsystem happens to provide an extensive
list of keys and values ready-made for such a purpose in the form of
the event format files associated with each trace event. By simply
consulting the format file for field names of interest and by plugging
them into the hist trigger command, users can create an endless number
of useful aggregations to help with investigating various properties
of the system. See Documentation/trace/events.txt for examples.
hist triggers are implemented on top of the existing event trigger
infrastructure, and as such are consistent with the existing triggers
from a user's perspective as well.
The basic syntax follows the existing trigger syntax. Users start an
aggregation by writing a 'hist' trigger to the event of interest's
trigger file:
# echo hist:keys=xxx [ if filter] > event/trigger
Once a hist trigger has been set up, by default it continually
aggregates every matching event into a hash table using the event key
and a value field named 'hitcount'.
To view the aggregation at any point in time, simply read the 'hist'
file in the same directory as the 'trigger' file:
# cat event/hist
The detailed syntax provides additional options for user control, and
is described exhaustively in Documentation/trace/events.txt and in the
virtual tracing/README file in the tracing subsystem.
Link: http://lkml.kernel.org/r/72d263b5e1853fe9c314953b65833c3aa75479f2.1457029949.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Tested-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Reviewed-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2016-03-03 12:54:42 -06:00
|
|
|
if (IS_ERR(hist_data->map)) {
|
|
|
|
ret = PTR_ERR(hist_data->map);
|
|
|
|
hist_data->map = NULL;
|
|
|
|
goto free;
|
|
|
|
}
|
|
|
|
|
|
|
|
ret = create_tracing_map_fields(hist_data);
|
|
|
|
if (ret)
|
|
|
|
goto free;
|
|
|
|
|
|
|
|
ret = tracing_map_init(hist_data->map);
|
|
|
|
if (ret)
|
|
|
|
goto free;
|
|
|
|
|
|
|
|
hist_data->event_file = file;
|
|
|
|
out:
|
|
|
|
return hist_data;
|
|
|
|
free:
|
|
|
|
hist_data->attrs = NULL;
|
|
|
|
|
|
|
|
destroy_hist_data(hist_data);
|
|
|
|
|
|
|
|
hist_data = ERR_PTR(ret);
|
|
|
|
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void hist_trigger_elt_update(struct hist_trigger_data *hist_data,
|
|
|
|
struct tracing_map_elt *elt,
|
|
|
|
void *rec)
|
|
|
|
{
|
|
|
|
struct hist_field *hist_field;
|
|
|
|
unsigned int i;
|
|
|
|
u64 hist_val;
|
|
|
|
|
|
|
|
for_each_hist_val_field(i, hist_data) {
|
|
|
|
hist_field = hist_data->fields[i];
|
|
|
|
hist_val = hist_field->fn(hist_field, rec);
|
|
|
|
tracing_map_update_sum(elt, i, hist_val);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void event_hist_trigger(struct event_trigger_data *data, void *rec)
|
|
|
|
{
|
|
|
|
struct hist_trigger_data *hist_data = data->private_data;
|
2016-03-03 12:54:52 -06:00
|
|
|
unsigned long entries[HIST_STACKTRACE_DEPTH];
|
2016-03-03 12:54:44 -06:00
|
|
|
char compound_key[HIST_KEY_SIZE_MAX];
|
2016-03-03 12:54:52 -06:00
|
|
|
struct stack_trace stacktrace;
|
tracing: Add 'hist' event trigger command
'hist' triggers allow users to continually aggregate trace events,
which can then be viewed afterwards by simply reading a 'hist' file
containing the aggregation in a human-readable format.
The basic idea is very simple and boils down to a mechanism whereby
trace events, rather than being exhaustively dumped in raw form and
viewed directly, are automatically 'compressed' into meaningful tables
completely defined by the user.
This is done strictly via single-line command-line commands and
without the aid of any kind of programming language or interpreter.
A surprising number of typical use cases can be accomplished by users
via this simple mechanism. In fact, a large number of the tasks that
users typically do using the more complicated script-based tracing
tools, at least during the initial stages of an investigation, can be
accomplished by simply specifying a set of keys and values to be used
in the creation of a hash table.
The Linux kernel trace event subsystem happens to provide an extensive
list of keys and values ready-made for such a purpose in the form of
the event format files associated with each trace event. By simply
consulting the format file for field names of interest and by plugging
them into the hist trigger command, users can create an endless number
of useful aggregations to help with investigating various properties
of the system. See Documentation/trace/events.txt for examples.
hist triggers are implemented on top of the existing event trigger
infrastructure, and as such are consistent with the existing triggers
from a user's perspective as well.
The basic syntax follows the existing trigger syntax. Users start an
aggregation by writing a 'hist' trigger to the event of interest's
trigger file:
# echo hist:keys=xxx [ if filter] > event/trigger
Once a hist trigger has been set up, by default it continually
aggregates every matching event into a hash table using the event key
and a value field named 'hitcount'.
To view the aggregation at any point in time, simply read the 'hist'
file in the same directory as the 'trigger' file:
# cat event/hist
The detailed syntax provides additional options for user control, and
is described exhaustively in Documentation/trace/events.txt and in the
virtual tracing/README file in the tracing subsystem.
Link: http://lkml.kernel.org/r/72d263b5e1853fe9c314953b65833c3aa75479f2.1457029949.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Tested-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Reviewed-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2016-03-03 12:54:42 -06:00
|
|
|
struct hist_field *key_field;
|
|
|
|
struct tracing_map_elt *elt;
|
|
|
|
u64 field_contents;
|
|
|
|
void *key = NULL;
|
|
|
|
unsigned int i;
|
|
|
|
|
2016-03-03 12:54:44 -06:00
|
|
|
if (hist_data->n_keys > 1)
|
|
|
|
memset(compound_key, 0, hist_data->key_size);
|
|
|
|
|
tracing: Add 'hist' event trigger command
'hist' triggers allow users to continually aggregate trace events,
which can then be viewed afterwards by simply reading a 'hist' file
containing the aggregation in a human-readable format.
The basic idea is very simple and boils down to a mechanism whereby
trace events, rather than being exhaustively dumped in raw form and
viewed directly, are automatically 'compressed' into meaningful tables
completely defined by the user.
This is done strictly via single-line command-line commands and
without the aid of any kind of programming language or interpreter.
A surprising number of typical use cases can be accomplished by users
via this simple mechanism. In fact, a large number of the tasks that
users typically do using the more complicated script-based tracing
tools, at least during the initial stages of an investigation, can be
accomplished by simply specifying a set of keys and values to be used
in the creation of a hash table.
The Linux kernel trace event subsystem happens to provide an extensive
list of keys and values ready-made for such a purpose in the form of
the event format files associated with each trace event. By simply
consulting the format file for field names of interest and by plugging
them into the hist trigger command, users can create an endless number
of useful aggregations to help with investigating various properties
of the system. See Documentation/trace/events.txt for examples.
hist triggers are implemented on top of the existing event trigger
infrastructure, and as such are consistent with the existing triggers
from a user's perspective as well.
The basic syntax follows the existing trigger syntax. Users start an
aggregation by writing a 'hist' trigger to the event of interest's
trigger file:
# echo hist:keys=xxx [ if filter] > event/trigger
Once a hist trigger has been set up, by default it continually
aggregates every matching event into a hash table using the event key
and a value field named 'hitcount'.
To view the aggregation at any point in time, simply read the 'hist'
file in the same directory as the 'trigger' file:
# cat event/hist
The detailed syntax provides additional options for user control, and
is described exhaustively in Documentation/trace/events.txt and in the
virtual tracing/README file in the tracing subsystem.
Link: http://lkml.kernel.org/r/72d263b5e1853fe9c314953b65833c3aa75479f2.1457029949.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Tested-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Reviewed-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2016-03-03 12:54:42 -06:00
|
|
|
for_each_hist_key_field(i, hist_data) {
|
|
|
|
key_field = hist_data->fields[i];
|
|
|
|
|
2016-03-03 12:54:52 -06:00
|
|
|
if (key_field->flags & HIST_FIELD_FL_STACKTRACE) {
|
|
|
|
stacktrace.max_entries = HIST_STACKTRACE_DEPTH;
|
|
|
|
stacktrace.entries = entries;
|
|
|
|
stacktrace.nr_entries = 0;
|
|
|
|
stacktrace.skip = HIST_STACKTRACE_SKIP;
|
2016-03-03 12:54:44 -06:00
|
|
|
|
2016-03-03 12:54:52 -06:00
|
|
|
memset(stacktrace.entries, 0, HIST_STACKTRACE_SIZE);
|
|
|
|
save_stack_trace(&stacktrace);
|
|
|
|
|
|
|
|
key = entries;
|
|
|
|
} else {
|
|
|
|
field_contents = key_field->fn(key_field, rec);
|
|
|
|
if (key_field->flags & HIST_FIELD_FL_STRING)
|
|
|
|
key = (void *)(unsigned long)field_contents;
|
|
|
|
else
|
|
|
|
key = (void *)&field_contents;
|
|
|
|
|
|
|
|
if (hist_data->n_keys > 1) {
|
|
|
|
memcpy(compound_key + key_field->offset, key,
|
|
|
|
key_field->size);
|
|
|
|
}
|
2016-03-03 12:54:44 -06:00
|
|
|
}
|
tracing: Add 'hist' event trigger command
'hist' triggers allow users to continually aggregate trace events,
which can then be viewed afterwards by simply reading a 'hist' file
containing the aggregation in a human-readable format.
The basic idea is very simple and boils down to a mechanism whereby
trace events, rather than being exhaustively dumped in raw form and
viewed directly, are automatically 'compressed' into meaningful tables
completely defined by the user.
This is done strictly via single-line command-line commands and
without the aid of any kind of programming language or interpreter.
A surprising number of typical use cases can be accomplished by users
via this simple mechanism. In fact, a large number of the tasks that
users typically do using the more complicated script-based tracing
tools, at least during the initial stages of an investigation, can be
accomplished by simply specifying a set of keys and values to be used
in the creation of a hash table.
The Linux kernel trace event subsystem happens to provide an extensive
list of keys and values ready-made for such a purpose in the form of
the event format files associated with each trace event. By simply
consulting the format file for field names of interest and by plugging
them into the hist trigger command, users can create an endless number
of useful aggregations to help with investigating various properties
of the system. See Documentation/trace/events.txt for examples.
hist triggers are implemented on top of the existing event trigger
infrastructure, and as such are consistent with the existing triggers
from a user's perspective as well.
The basic syntax follows the existing trigger syntax. Users start an
aggregation by writing a 'hist' trigger to the event of interest's
trigger file:
# echo hist:keys=xxx [ if filter] > event/trigger
Once a hist trigger has been set up, by default it continually
aggregates every matching event into a hash table using the event key
and a value field named 'hitcount'.
To view the aggregation at any point in time, simply read the 'hist'
file in the same directory as the 'trigger' file:
# cat event/hist
The detailed syntax provides additional options for user control, and
is described exhaustively in Documentation/trace/events.txt and in the
virtual tracing/README file in the tracing subsystem.
Link: http://lkml.kernel.org/r/72d263b5e1853fe9c314953b65833c3aa75479f2.1457029949.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Tested-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Reviewed-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2016-03-03 12:54:42 -06:00
|
|
|
}
|
|
|
|
|
2016-03-03 12:54:44 -06:00
|
|
|
if (hist_data->n_keys > 1)
|
|
|
|
key = compound_key;
|
|
|
|
|
tracing: Add 'hist' event trigger command
'hist' triggers allow users to continually aggregate trace events,
which can then be viewed afterwards by simply reading a 'hist' file
containing the aggregation in a human-readable format.
The basic idea is very simple and boils down to a mechanism whereby
trace events, rather than being exhaustively dumped in raw form and
viewed directly, are automatically 'compressed' into meaningful tables
completely defined by the user.
This is done strictly via single-line command-line commands and
without the aid of any kind of programming language or interpreter.
A surprising number of typical use cases can be accomplished by users
via this simple mechanism. In fact, a large number of the tasks that
users typically do using the more complicated script-based tracing
tools, at least during the initial stages of an investigation, can be
accomplished by simply specifying a set of keys and values to be used
in the creation of a hash table.
The Linux kernel trace event subsystem happens to provide an extensive
list of keys and values ready-made for such a purpose in the form of
the event format files associated with each trace event. By simply
consulting the format file for field names of interest and by plugging
them into the hist trigger command, users can create an endless number
of useful aggregations to help with investigating various properties
of the system. See Documentation/trace/events.txt for examples.
hist triggers are implemented on top of the existing event trigger
infrastructure, and as such are consistent with the existing triggers
from a user's perspective as well.
The basic syntax follows the existing trigger syntax. Users start an
aggregation by writing a 'hist' trigger to the event of interest's
trigger file:
# echo hist:keys=xxx [ if filter] > event/trigger
Once a hist trigger has been set up, by default it continually
aggregates every matching event into a hash table using the event key
and a value field named 'hitcount'.
To view the aggregation at any point in time, simply read the 'hist'
file in the same directory as the 'trigger' file:
# cat event/hist
The detailed syntax provides additional options for user control, and
is described exhaustively in Documentation/trace/events.txt and in the
virtual tracing/README file in the tracing subsystem.
Link: http://lkml.kernel.org/r/72d263b5e1853fe9c314953b65833c3aa75479f2.1457029949.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Tested-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Reviewed-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2016-03-03 12:54:42 -06:00
|
|
|
elt = tracing_map_insert(hist_data->map, key);
|
|
|
|
if (elt)
|
|
|
|
hist_trigger_elt_update(hist_data, elt, rec);
|
|
|
|
}
|
|
|
|
|
2016-03-03 12:54:52 -06:00
|
|
|
static void hist_trigger_stacktrace_print(struct seq_file *m,
|
|
|
|
unsigned long *stacktrace_entries,
|
|
|
|
unsigned int max_entries)
|
|
|
|
{
|
|
|
|
char str[KSYM_SYMBOL_LEN];
|
|
|
|
unsigned int spaces = 8;
|
|
|
|
unsigned int i;
|
|
|
|
|
|
|
|
for (i = 0; i < max_entries; i++) {
|
|
|
|
if (stacktrace_entries[i] == ULONG_MAX)
|
|
|
|
return;
|
|
|
|
|
|
|
|
seq_printf(m, "%*c", 1 + spaces, ' ');
|
|
|
|
sprint_symbol(str, stacktrace_entries[i]);
|
|
|
|
seq_printf(m, "%s\n", str);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
tracing: Add 'hist' event trigger command
'hist' triggers allow users to continually aggregate trace events,
which can then be viewed afterwards by simply reading a 'hist' file
containing the aggregation in a human-readable format.
The basic idea is very simple and boils down to a mechanism whereby
trace events, rather than being exhaustively dumped in raw form and
viewed directly, are automatically 'compressed' into meaningful tables
completely defined by the user.
This is done strictly via single-line command-line commands and
without the aid of any kind of programming language or interpreter.
A surprising number of typical use cases can be accomplished by users
via this simple mechanism. In fact, a large number of the tasks that
users typically do using the more complicated script-based tracing
tools, at least during the initial stages of an investigation, can be
accomplished by simply specifying a set of keys and values to be used
in the creation of a hash table.
The Linux kernel trace event subsystem happens to provide an extensive
list of keys and values ready-made for such a purpose in the form of
the event format files associated with each trace event. By simply
consulting the format file for field names of interest and by plugging
them into the hist trigger command, users can create an endless number
of useful aggregations to help with investigating various properties
of the system. See Documentation/trace/events.txt for examples.
hist triggers are implemented on top of the existing event trigger
infrastructure, and as such are consistent with the existing triggers
from a user's perspective as well.
The basic syntax follows the existing trigger syntax. Users start an
aggregation by writing a 'hist' trigger to the event of interest's
trigger file:
# echo hist:keys=xxx [ if filter] > event/trigger
Once a hist trigger has been set up, by default it continually
aggregates every matching event into a hash table using the event key
and a value field named 'hitcount'.
To view the aggregation at any point in time, simply read the 'hist'
file in the same directory as the 'trigger' file:
# cat event/hist
The detailed syntax provides additional options for user control, and
is described exhaustively in Documentation/trace/events.txt and in the
virtual tracing/README file in the tracing subsystem.
Link: http://lkml.kernel.org/r/72d263b5e1853fe9c314953b65833c3aa75479f2.1457029949.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Tested-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Reviewed-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2016-03-03 12:54:42 -06:00
|
|
|
static void
|
|
|
|
hist_trigger_entry_print(struct seq_file *m,
|
|
|
|
struct hist_trigger_data *hist_data, void *key,
|
|
|
|
struct tracing_map_elt *elt)
|
|
|
|
{
|
|
|
|
struct hist_field *key_field;
|
2016-03-03 12:54:49 -06:00
|
|
|
char str[KSYM_SYMBOL_LEN];
|
2016-03-03 12:54:52 -06:00
|
|
|
bool multiline = false;
|
tracing: Add 'hist' event trigger command
'hist' triggers allow users to continually aggregate trace events,
which can then be viewed afterwards by simply reading a 'hist' file
containing the aggregation in a human-readable format.
The basic idea is very simple and boils down to a mechanism whereby
trace events, rather than being exhaustively dumped in raw form and
viewed directly, are automatically 'compressed' into meaningful tables
completely defined by the user.
This is done strictly via single-line command-line commands and
without the aid of any kind of programming language or interpreter.
A surprising number of typical use cases can be accomplished by users
via this simple mechanism. In fact, a large number of the tasks that
users typically do using the more complicated script-based tracing
tools, at least during the initial stages of an investigation, can be
accomplished by simply specifying a set of keys and values to be used
in the creation of a hash table.
The Linux kernel trace event subsystem happens to provide an extensive
list of keys and values ready-made for such a purpose in the form of
the event format files associated with each trace event. By simply
consulting the format file for field names of interest and by plugging
them into the hist trigger command, users can create an endless number
of useful aggregations to help with investigating various properties
of the system. See Documentation/trace/events.txt for examples.
hist triggers are implemented on top of the existing event trigger
infrastructure, and as such are consistent with the existing triggers
from a user's perspective as well.
The basic syntax follows the existing trigger syntax. Users start an
aggregation by writing a 'hist' trigger to the event of interest's
trigger file:
# echo hist:keys=xxx [ if filter] > event/trigger
Once a hist trigger has been set up, by default it continually
aggregates every matching event into a hash table using the event key
and a value field named 'hitcount'.
To view the aggregation at any point in time, simply read the 'hist'
file in the same directory as the 'trigger' file:
# cat event/hist
The detailed syntax provides additional options for user control, and
is described exhaustively in Documentation/trace/events.txt and in the
virtual tracing/README file in the tracing subsystem.
Link: http://lkml.kernel.org/r/72d263b5e1853fe9c314953b65833c3aa75479f2.1457029949.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Tested-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Reviewed-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2016-03-03 12:54:42 -06:00
|
|
|
unsigned int i;
|
|
|
|
u64 uval;
|
|
|
|
|
|
|
|
seq_puts(m, "{ ");
|
|
|
|
|
|
|
|
for_each_hist_key_field(i, hist_data) {
|
|
|
|
key_field = hist_data->fields[i];
|
|
|
|
|
|
|
|
if (i > hist_data->n_vals)
|
|
|
|
seq_puts(m, ", ");
|
|
|
|
|
2016-03-03 12:54:48 -06:00
|
|
|
if (key_field->flags & HIST_FIELD_FL_HEX) {
|
|
|
|
uval = *(u64 *)(key + key_field->offset);
|
|
|
|
seq_printf(m, "%s: %llx",
|
|
|
|
key_field->field->name, uval);
|
2016-03-03 12:54:49 -06:00
|
|
|
} else if (key_field->flags & HIST_FIELD_FL_SYM) {
|
|
|
|
uval = *(u64 *)(key + key_field->offset);
|
|
|
|
sprint_symbol_no_offset(str, uval);
|
|
|
|
seq_printf(m, "%s: [%llx] %-45s",
|
|
|
|
key_field->field->name, uval, str);
|
|
|
|
} else if (key_field->flags & HIST_FIELD_FL_SYM_OFFSET) {
|
|
|
|
uval = *(u64 *)(key + key_field->offset);
|
|
|
|
sprint_symbol(str, uval);
|
|
|
|
seq_printf(m, "%s: [%llx] %-55s",
|
|
|
|
key_field->field->name, uval, str);
|
2016-03-03 12:54:50 -06:00
|
|
|
} else if (key_field->flags & HIST_FIELD_FL_EXECNAME) {
|
|
|
|
char *comm = elt->private_data;
|
|
|
|
|
|
|
|
uval = *(u64 *)(key + key_field->offset);
|
|
|
|
seq_printf(m, "%s: %-16s[%10llu]",
|
|
|
|
key_field->field->name, comm, uval);
|
2016-03-03 12:54:51 -06:00
|
|
|
} else if (key_field->flags & HIST_FIELD_FL_SYSCALL) {
|
|
|
|
const char *syscall_name;
|
|
|
|
|
|
|
|
uval = *(u64 *)(key + key_field->offset);
|
|
|
|
syscall_name = get_syscall_name(uval);
|
|
|
|
if (!syscall_name)
|
|
|
|
syscall_name = "unknown_syscall";
|
|
|
|
|
|
|
|
seq_printf(m, "%s: %-30s[%3llu]",
|
|
|
|
key_field->field->name, syscall_name, uval);
|
2016-03-03 12:54:52 -06:00
|
|
|
} else if (key_field->flags & HIST_FIELD_FL_STACKTRACE) {
|
|
|
|
seq_puts(m, "stacktrace:\n");
|
|
|
|
hist_trigger_stacktrace_print(m,
|
|
|
|
key + key_field->offset,
|
|
|
|
HIST_STACKTRACE_DEPTH);
|
|
|
|
multiline = true;
|
2016-03-03 12:54:48 -06:00
|
|
|
} else if (key_field->flags & HIST_FIELD_FL_STRING) {
|
tracing: Add 'hist' event trigger command
'hist' triggers allow users to continually aggregate trace events,
which can then be viewed afterwards by simply reading a 'hist' file
containing the aggregation in a human-readable format.
The basic idea is very simple and boils down to a mechanism whereby
trace events, rather than being exhaustively dumped in raw form and
viewed directly, are automatically 'compressed' into meaningful tables
completely defined by the user.
This is done strictly via single-line command-line commands and
without the aid of any kind of programming language or interpreter.
A surprising number of typical use cases can be accomplished by users
via this simple mechanism. In fact, a large number of the tasks that
users typically do using the more complicated script-based tracing
tools, at least during the initial stages of an investigation, can be
accomplished by simply specifying a set of keys and values to be used
in the creation of a hash table.
The Linux kernel trace event subsystem happens to provide an extensive
list of keys and values ready-made for such a purpose in the form of
the event format files associated with each trace event. By simply
consulting the format file for field names of interest and by plugging
them into the hist trigger command, users can create an endless number
of useful aggregations to help with investigating various properties
of the system. See Documentation/trace/events.txt for examples.
hist triggers are implemented on top of the existing event trigger
infrastructure, and as such are consistent with the existing triggers
from a user's perspective as well.
The basic syntax follows the existing trigger syntax. Users start an
aggregation by writing a 'hist' trigger to the event of interest's
trigger file:
# echo hist:keys=xxx [ if filter] > event/trigger
Once a hist trigger has been set up, by default it continually
aggregates every matching event into a hash table using the event key
and a value field named 'hitcount'.
To view the aggregation at any point in time, simply read the 'hist'
file in the same directory as the 'trigger' file:
# cat event/hist
The detailed syntax provides additional options for user control, and
is described exhaustively in Documentation/trace/events.txt and in the
virtual tracing/README file in the tracing subsystem.
Link: http://lkml.kernel.org/r/72d263b5e1853fe9c314953b65833c3aa75479f2.1457029949.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Tested-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Reviewed-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2016-03-03 12:54:42 -06:00
|
|
|
seq_printf(m, "%s: %-50s", key_field->field->name,
|
2016-03-03 12:54:44 -06:00
|
|
|
(char *)(key + key_field->offset));
|
tracing: Add 'hist' event trigger command
'hist' triggers allow users to continually aggregate trace events,
which can then be viewed afterwards by simply reading a 'hist' file
containing the aggregation in a human-readable format.
The basic idea is very simple and boils down to a mechanism whereby
trace events, rather than being exhaustively dumped in raw form and
viewed directly, are automatically 'compressed' into meaningful tables
completely defined by the user.
This is done strictly via single-line command-line commands and
without the aid of any kind of programming language or interpreter.
A surprising number of typical use cases can be accomplished by users
via this simple mechanism. In fact, a large number of the tasks that
users typically do using the more complicated script-based tracing
tools, at least during the initial stages of an investigation, can be
accomplished by simply specifying a set of keys and values to be used
in the creation of a hash table.
The Linux kernel trace event subsystem happens to provide an extensive
list of keys and values ready-made for such a purpose in the form of
the event format files associated with each trace event. By simply
consulting the format file for field names of interest and by plugging
them into the hist trigger command, users can create an endless number
of useful aggregations to help with investigating various properties
of the system. See Documentation/trace/events.txt for examples.
hist triggers are implemented on top of the existing event trigger
infrastructure, and as such are consistent with the existing triggers
from a user's perspective as well.
The basic syntax follows the existing trigger syntax. Users start an
aggregation by writing a 'hist' trigger to the event of interest's
trigger file:
# echo hist:keys=xxx [ if filter] > event/trigger
Once a hist trigger has been set up, by default it continually
aggregates every matching event into a hash table using the event key
and a value field named 'hitcount'.
To view the aggregation at any point in time, simply read the 'hist'
file in the same directory as the 'trigger' file:
# cat event/hist
The detailed syntax provides additional options for user control, and
is described exhaustively in Documentation/trace/events.txt and in the
virtual tracing/README file in the tracing subsystem.
Link: http://lkml.kernel.org/r/72d263b5e1853fe9c314953b65833c3aa75479f2.1457029949.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Tested-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Reviewed-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2016-03-03 12:54:42 -06:00
|
|
|
} else {
|
2016-03-03 12:54:44 -06:00
|
|
|
uval = *(u64 *)(key + key_field->offset);
|
|
|
|
seq_printf(m, "%s: %10llu", key_field->field->name,
|
|
|
|
uval);
|
tracing: Add 'hist' event trigger command
'hist' triggers allow users to continually aggregate trace events,
which can then be viewed afterwards by simply reading a 'hist' file
containing the aggregation in a human-readable format.
The basic idea is very simple and boils down to a mechanism whereby
trace events, rather than being exhaustively dumped in raw form and
viewed directly, are automatically 'compressed' into meaningful tables
completely defined by the user.
This is done strictly via single-line command-line commands and
without the aid of any kind of programming language or interpreter.
A surprising number of typical use cases can be accomplished by users
via this simple mechanism. In fact, a large number of the tasks that
users typically do using the more complicated script-based tracing
tools, at least during the initial stages of an investigation, can be
accomplished by simply specifying a set of keys and values to be used
in the creation of a hash table.
The Linux kernel trace event subsystem happens to provide an extensive
list of keys and values ready-made for such a purpose in the form of
the event format files associated with each trace event. By simply
consulting the format file for field names of interest and by plugging
them into the hist trigger command, users can create an endless number
of useful aggregations to help with investigating various properties
of the system. See Documentation/trace/events.txt for examples.
hist triggers are implemented on top of the existing event trigger
infrastructure, and as such are consistent with the existing triggers
from a user's perspective as well.
The basic syntax follows the existing trigger syntax. Users start an
aggregation by writing a 'hist' trigger to the event of interest's
trigger file:
# echo hist:keys=xxx [ if filter] > event/trigger
Once a hist trigger has been set up, by default it continually
aggregates every matching event into a hash table using the event key
and a value field named 'hitcount'.
To view the aggregation at any point in time, simply read the 'hist'
file in the same directory as the 'trigger' file:
# cat event/hist
The detailed syntax provides additional options for user control, and
is described exhaustively in Documentation/trace/events.txt and in the
virtual tracing/README file in the tracing subsystem.
Link: http://lkml.kernel.org/r/72d263b5e1853fe9c314953b65833c3aa75479f2.1457029949.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Tested-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Reviewed-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2016-03-03 12:54:42 -06:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2016-03-03 12:54:52 -06:00
|
|
|
if (!multiline)
|
|
|
|
seq_puts(m, " ");
|
|
|
|
|
|
|
|
seq_puts(m, "}");
|
tracing: Add 'hist' event trigger command
'hist' triggers allow users to continually aggregate trace events,
which can then be viewed afterwards by simply reading a 'hist' file
containing the aggregation in a human-readable format.
The basic idea is very simple and boils down to a mechanism whereby
trace events, rather than being exhaustively dumped in raw form and
viewed directly, are automatically 'compressed' into meaningful tables
completely defined by the user.
This is done strictly via single-line command-line commands and
without the aid of any kind of programming language or interpreter.
A surprising number of typical use cases can be accomplished by users
via this simple mechanism. In fact, a large number of the tasks that
users typically do using the more complicated script-based tracing
tools, at least during the initial stages of an investigation, can be
accomplished by simply specifying a set of keys and values to be used
in the creation of a hash table.
The Linux kernel trace event subsystem happens to provide an extensive
list of keys and values ready-made for such a purpose in the form of
the event format files associated with each trace event. By simply
consulting the format file for field names of interest and by plugging
them into the hist trigger command, users can create an endless number
of useful aggregations to help with investigating various properties
of the system. See Documentation/trace/events.txt for examples.
hist triggers are implemented on top of the existing event trigger
infrastructure, and as such are consistent with the existing triggers
from a user's perspective as well.
The basic syntax follows the existing trigger syntax. Users start an
aggregation by writing a 'hist' trigger to the event of interest's
trigger file:
# echo hist:keys=xxx [ if filter] > event/trigger
Once a hist trigger has been set up, by default it continually
aggregates every matching event into a hash table using the event key
and a value field named 'hitcount'.
To view the aggregation at any point in time, simply read the 'hist'
file in the same directory as the 'trigger' file:
# cat event/hist
The detailed syntax provides additional options for user control, and
is described exhaustively in Documentation/trace/events.txt and in the
virtual tracing/README file in the tracing subsystem.
Link: http://lkml.kernel.org/r/72d263b5e1853fe9c314953b65833c3aa75479f2.1457029949.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Tested-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Reviewed-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2016-03-03 12:54:42 -06:00
|
|
|
|
|
|
|
seq_printf(m, " hitcount: %10llu",
|
|
|
|
tracing_map_read_sum(elt, HITCOUNT_IDX));
|
|
|
|
|
2016-03-03 12:54:43 -06:00
|
|
|
for (i = 1; i < hist_data->n_vals; i++) {
|
2016-03-03 12:54:48 -06:00
|
|
|
if (hist_data->fields[i]->flags & HIST_FIELD_FL_HEX) {
|
|
|
|
seq_printf(m, " %s: %10llx",
|
|
|
|
hist_data->fields[i]->field->name,
|
|
|
|
tracing_map_read_sum(elt, i));
|
|
|
|
} else {
|
|
|
|
seq_printf(m, " %s: %10llu",
|
|
|
|
hist_data->fields[i]->field->name,
|
|
|
|
tracing_map_read_sum(elt, i));
|
|
|
|
}
|
2016-03-03 12:54:43 -06:00
|
|
|
}
|
|
|
|
|
tracing: Add 'hist' event trigger command
'hist' triggers allow users to continually aggregate trace events,
which can then be viewed afterwards by simply reading a 'hist' file
containing the aggregation in a human-readable format.
The basic idea is very simple and boils down to a mechanism whereby
trace events, rather than being exhaustively dumped in raw form and
viewed directly, are automatically 'compressed' into meaningful tables
completely defined by the user.
This is done strictly via single-line command-line commands and
without the aid of any kind of programming language or interpreter.
A surprising number of typical use cases can be accomplished by users
via this simple mechanism. In fact, a large number of the tasks that
users typically do using the more complicated script-based tracing
tools, at least during the initial stages of an investigation, can be
accomplished by simply specifying a set of keys and values to be used
in the creation of a hash table.
The Linux kernel trace event subsystem happens to provide an extensive
list of keys and values ready-made for such a purpose in the form of
the event format files associated with each trace event. By simply
consulting the format file for field names of interest and by plugging
them into the hist trigger command, users can create an endless number
of useful aggregations to help with investigating various properties
of the system. See Documentation/trace/events.txt for examples.
hist triggers are implemented on top of the existing event trigger
infrastructure, and as such are consistent with the existing triggers
from a user's perspective as well.
The basic syntax follows the existing trigger syntax. Users start an
aggregation by writing a 'hist' trigger to the event of interest's
trigger file:
# echo hist:keys=xxx [ if filter] > event/trigger
Once a hist trigger has been set up, by default it continually
aggregates every matching event into a hash table using the event key
and a value field named 'hitcount'.
To view the aggregation at any point in time, simply read the 'hist'
file in the same directory as the 'trigger' file:
# cat event/hist
The detailed syntax provides additional options for user control, and
is described exhaustively in Documentation/trace/events.txt and in the
virtual tracing/README file in the tracing subsystem.
Link: http://lkml.kernel.org/r/72d263b5e1853fe9c314953b65833c3aa75479f2.1457029949.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Tested-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Reviewed-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2016-03-03 12:54:42 -06:00
|
|
|
seq_puts(m, "\n");
|
|
|
|
}
|
|
|
|
|
|
|
|
static int print_entries(struct seq_file *m,
|
|
|
|
struct hist_trigger_data *hist_data)
|
|
|
|
{
|
|
|
|
struct tracing_map_sort_entry **sort_entries = NULL;
|
|
|
|
struct tracing_map *map = hist_data->map;
|
|
|
|
unsigned int i, n_entries;
|
|
|
|
|
|
|
|
n_entries = tracing_map_sort_entries(map, hist_data->sort_keys,
|
|
|
|
hist_data->n_sort_keys,
|
|
|
|
&sort_entries);
|
|
|
|
if (n_entries < 0)
|
|
|
|
return n_entries;
|
|
|
|
|
|
|
|
for (i = 0; i < n_entries; i++)
|
|
|
|
hist_trigger_entry_print(m, hist_data,
|
|
|
|
sort_entries[i]->key,
|
|
|
|
sort_entries[i]->elt);
|
|
|
|
|
|
|
|
tracing_map_destroy_sort_entries(sort_entries, n_entries);
|
|
|
|
|
|
|
|
return n_entries;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int hist_show(struct seq_file *m, void *v)
|
|
|
|
{
|
|
|
|
struct event_trigger_data *test, *data = NULL;
|
|
|
|
struct trace_event_file *event_file;
|
|
|
|
struct hist_trigger_data *hist_data;
|
|
|
|
int n_entries, ret = 0;
|
|
|
|
|
|
|
|
mutex_lock(&event_mutex);
|
|
|
|
|
|
|
|
event_file = event_file_data(m->private);
|
|
|
|
if (unlikely(!event_file)) {
|
|
|
|
ret = -ENODEV;
|
|
|
|
goto out_unlock;
|
|
|
|
}
|
|
|
|
|
|
|
|
list_for_each_entry_rcu(test, &event_file->triggers, list) {
|
|
|
|
if (test->cmd_ops->trigger_type == ETT_EVENT_HIST) {
|
|
|
|
data = test;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (!data)
|
|
|
|
goto out_unlock;
|
|
|
|
|
|
|
|
seq_puts(m, "# event histogram\n#\n# trigger info: ");
|
|
|
|
data->ops->print(m, data->ops, data);
|
|
|
|
seq_puts(m, "\n");
|
|
|
|
|
|
|
|
hist_data = data->private_data;
|
|
|
|
n_entries = print_entries(m, hist_data);
|
|
|
|
if (n_entries < 0) {
|
|
|
|
ret = n_entries;
|
|
|
|
n_entries = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
seq_printf(m, "\nTotals:\n Hits: %llu\n Entries: %u\n Dropped: %llu\n",
|
|
|
|
(u64)atomic64_read(&hist_data->map->hits),
|
|
|
|
n_entries, (u64)atomic64_read(&hist_data->map->drops));
|
|
|
|
out_unlock:
|
|
|
|
mutex_unlock(&event_mutex);
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int event_hist_open(struct inode *inode, struct file *file)
|
|
|
|
{
|
|
|
|
return single_open(file, hist_show, file);
|
|
|
|
}
|
|
|
|
|
|
|
|
const struct file_operations event_hist_fops = {
|
|
|
|
.open = event_hist_open,
|
|
|
|
.read = seq_read,
|
|
|
|
.llseek = seq_lseek,
|
|
|
|
.release = single_release,
|
|
|
|
};
|
|
|
|
|
2016-03-03 12:54:48 -06:00
|
|
|
static const char *get_hist_field_flags(struct hist_field *hist_field)
|
|
|
|
{
|
|
|
|
const char *flags_str = NULL;
|
|
|
|
|
|
|
|
if (hist_field->flags & HIST_FIELD_FL_HEX)
|
|
|
|
flags_str = "hex";
|
2016-03-03 12:54:49 -06:00
|
|
|
else if (hist_field->flags & HIST_FIELD_FL_SYM)
|
|
|
|
flags_str = "sym";
|
|
|
|
else if (hist_field->flags & HIST_FIELD_FL_SYM_OFFSET)
|
|
|
|
flags_str = "sym-offset";
|
2016-03-03 12:54:50 -06:00
|
|
|
else if (hist_field->flags & HIST_FIELD_FL_EXECNAME)
|
|
|
|
flags_str = "execname";
|
2016-03-03 12:54:51 -06:00
|
|
|
else if (hist_field->flags & HIST_FIELD_FL_SYSCALL)
|
|
|
|
flags_str = "syscall";
|
2016-03-03 12:54:48 -06:00
|
|
|
|
|
|
|
return flags_str;
|
|
|
|
}
|
|
|
|
|
tracing: Add 'hist' event trigger command
'hist' triggers allow users to continually aggregate trace events,
which can then be viewed afterwards by simply reading a 'hist' file
containing the aggregation in a human-readable format.
The basic idea is very simple and boils down to a mechanism whereby
trace events, rather than being exhaustively dumped in raw form and
viewed directly, are automatically 'compressed' into meaningful tables
completely defined by the user.
This is done strictly via single-line command-line commands and
without the aid of any kind of programming language or interpreter.
A surprising number of typical use cases can be accomplished by users
via this simple mechanism. In fact, a large number of the tasks that
users typically do using the more complicated script-based tracing
tools, at least during the initial stages of an investigation, can be
accomplished by simply specifying a set of keys and values to be used
in the creation of a hash table.
The Linux kernel trace event subsystem happens to provide an extensive
list of keys and values ready-made for such a purpose in the form of
the event format files associated with each trace event. By simply
consulting the format file for field names of interest and by plugging
them into the hist trigger command, users can create an endless number
of useful aggregations to help with investigating various properties
of the system. See Documentation/trace/events.txt for examples.
hist triggers are implemented on top of the existing event trigger
infrastructure, and as such are consistent with the existing triggers
from a user's perspective as well.
The basic syntax follows the existing trigger syntax. Users start an
aggregation by writing a 'hist' trigger to the event of interest's
trigger file:
# echo hist:keys=xxx [ if filter] > event/trigger
Once a hist trigger has been set up, by default it continually
aggregates every matching event into a hash table using the event key
and a value field named 'hitcount'.
To view the aggregation at any point in time, simply read the 'hist'
file in the same directory as the 'trigger' file:
# cat event/hist
The detailed syntax provides additional options for user control, and
is described exhaustively in Documentation/trace/events.txt and in the
virtual tracing/README file in the tracing subsystem.
Link: http://lkml.kernel.org/r/72d263b5e1853fe9c314953b65833c3aa75479f2.1457029949.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Tested-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Reviewed-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2016-03-03 12:54:42 -06:00
|
|
|
static void hist_field_print(struct seq_file *m, struct hist_field *hist_field)
|
|
|
|
{
|
|
|
|
seq_printf(m, "%s", hist_field->field->name);
|
2016-03-03 12:54:48 -06:00
|
|
|
if (hist_field->flags) {
|
|
|
|
const char *flags_str = get_hist_field_flags(hist_field);
|
|
|
|
|
|
|
|
if (flags_str)
|
|
|
|
seq_printf(m, ".%s", flags_str);
|
|
|
|
}
|
tracing: Add 'hist' event trigger command
'hist' triggers allow users to continually aggregate trace events,
which can then be viewed afterwards by simply reading a 'hist' file
containing the aggregation in a human-readable format.
The basic idea is very simple and boils down to a mechanism whereby
trace events, rather than being exhaustively dumped in raw form and
viewed directly, are automatically 'compressed' into meaningful tables
completely defined by the user.
This is done strictly via single-line command-line commands and
without the aid of any kind of programming language or interpreter.
A surprising number of typical use cases can be accomplished by users
via this simple mechanism. In fact, a large number of the tasks that
users typically do using the more complicated script-based tracing
tools, at least during the initial stages of an investigation, can be
accomplished by simply specifying a set of keys and values to be used
in the creation of a hash table.
The Linux kernel trace event subsystem happens to provide an extensive
list of keys and values ready-made for such a purpose in the form of
the event format files associated with each trace event. By simply
consulting the format file for field names of interest and by plugging
them into the hist trigger command, users can create an endless number
of useful aggregations to help with investigating various properties
of the system. See Documentation/trace/events.txt for examples.
hist triggers are implemented on top of the existing event trigger
infrastructure, and as such are consistent with the existing triggers
from a user's perspective as well.
The basic syntax follows the existing trigger syntax. Users start an
aggregation by writing a 'hist' trigger to the event of interest's
trigger file:
# echo hist:keys=xxx [ if filter] > event/trigger
Once a hist trigger has been set up, by default it continually
aggregates every matching event into a hash table using the event key
and a value field named 'hitcount'.
To view the aggregation at any point in time, simply read the 'hist'
file in the same directory as the 'trigger' file:
# cat event/hist
The detailed syntax provides additional options for user control, and
is described exhaustively in Documentation/trace/events.txt and in the
virtual tracing/README file in the tracing subsystem.
Link: http://lkml.kernel.org/r/72d263b5e1853fe9c314953b65833c3aa75479f2.1457029949.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Tested-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Reviewed-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2016-03-03 12:54:42 -06:00
|
|
|
}
|
|
|
|
|
|
|
|
static int event_hist_trigger_print(struct seq_file *m,
|
|
|
|
struct event_trigger_ops *ops,
|
|
|
|
struct event_trigger_data *data)
|
|
|
|
{
|
|
|
|
struct hist_trigger_data *hist_data = data->private_data;
|
|
|
|
struct hist_field *key_field;
|
|
|
|
unsigned int i;
|
|
|
|
|
|
|
|
seq_puts(m, "hist:keys=");
|
|
|
|
|
|
|
|
for_each_hist_key_field(i, hist_data) {
|
|
|
|
key_field = hist_data->fields[i];
|
|
|
|
|
|
|
|
if (i > hist_data->n_vals)
|
|
|
|
seq_puts(m, ",");
|
|
|
|
|
2016-03-03 12:54:52 -06:00
|
|
|
if (key_field->flags & HIST_FIELD_FL_STACKTRACE)
|
|
|
|
seq_puts(m, "stacktrace");
|
|
|
|
else
|
|
|
|
hist_field_print(m, key_field);
|
tracing: Add 'hist' event trigger command
'hist' triggers allow users to continually aggregate trace events,
which can then be viewed afterwards by simply reading a 'hist' file
containing the aggregation in a human-readable format.
The basic idea is very simple and boils down to a mechanism whereby
trace events, rather than being exhaustively dumped in raw form and
viewed directly, are automatically 'compressed' into meaningful tables
completely defined by the user.
This is done strictly via single-line command-line commands and
without the aid of any kind of programming language or interpreter.
A surprising number of typical use cases can be accomplished by users
via this simple mechanism. In fact, a large number of the tasks that
users typically do using the more complicated script-based tracing
tools, at least during the initial stages of an investigation, can be
accomplished by simply specifying a set of keys and values to be used
in the creation of a hash table.
The Linux kernel trace event subsystem happens to provide an extensive
list of keys and values ready-made for such a purpose in the form of
the event format files associated with each trace event. By simply
consulting the format file for field names of interest and by plugging
them into the hist trigger command, users can create an endless number
of useful aggregations to help with investigating various properties
of the system. See Documentation/trace/events.txt for examples.
hist triggers are implemented on top of the existing event trigger
infrastructure, and as such are consistent with the existing triggers
from a user's perspective as well.
The basic syntax follows the existing trigger syntax. Users start an
aggregation by writing a 'hist' trigger to the event of interest's
trigger file:
# echo hist:keys=xxx [ if filter] > event/trigger
Once a hist trigger has been set up, by default it continually
aggregates every matching event into a hash table using the event key
and a value field named 'hitcount'.
To view the aggregation at any point in time, simply read the 'hist'
file in the same directory as the 'trigger' file:
# cat event/hist
The detailed syntax provides additional options for user control, and
is described exhaustively in Documentation/trace/events.txt and in the
virtual tracing/README file in the tracing subsystem.
Link: http://lkml.kernel.org/r/72d263b5e1853fe9c314953b65833c3aa75479f2.1457029949.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Tested-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Reviewed-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2016-03-03 12:54:42 -06:00
|
|
|
}
|
|
|
|
|
|
|
|
seq_puts(m, ":vals=");
|
2016-03-03 12:54:43 -06:00
|
|
|
|
|
|
|
for_each_hist_val_field(i, hist_data) {
|
|
|
|
if (i == HITCOUNT_IDX)
|
|
|
|
seq_puts(m, "hitcount");
|
|
|
|
else {
|
|
|
|
seq_puts(m, ",");
|
|
|
|
hist_field_print(m, hist_data->fields[i]);
|
|
|
|
}
|
|
|
|
}
|
tracing: Add 'hist' event trigger command
'hist' triggers allow users to continually aggregate trace events,
which can then be viewed afterwards by simply reading a 'hist' file
containing the aggregation in a human-readable format.
The basic idea is very simple and boils down to a mechanism whereby
trace events, rather than being exhaustively dumped in raw form and
viewed directly, are automatically 'compressed' into meaningful tables
completely defined by the user.
This is done strictly via single-line command-line commands and
without the aid of any kind of programming language or interpreter.
A surprising number of typical use cases can be accomplished by users
via this simple mechanism. In fact, a large number of the tasks that
users typically do using the more complicated script-based tracing
tools, at least during the initial stages of an investigation, can be
accomplished by simply specifying a set of keys and values to be used
in the creation of a hash table.
The Linux kernel trace event subsystem happens to provide an extensive
list of keys and values ready-made for such a purpose in the form of
the event format files associated with each trace event. By simply
consulting the format file for field names of interest and by plugging
them into the hist trigger command, users can create an endless number
of useful aggregations to help with investigating various properties
of the system. See Documentation/trace/events.txt for examples.
hist triggers are implemented on top of the existing event trigger
infrastructure, and as such are consistent with the existing triggers
from a user's perspective as well.
The basic syntax follows the existing trigger syntax. Users start an
aggregation by writing a 'hist' trigger to the event of interest's
trigger file:
# echo hist:keys=xxx [ if filter] > event/trigger
Once a hist trigger has been set up, by default it continually
aggregates every matching event into a hash table using the event key
and a value field named 'hitcount'.
To view the aggregation at any point in time, simply read the 'hist'
file in the same directory as the 'trigger' file:
# cat event/hist
The detailed syntax provides additional options for user control, and
is described exhaustively in Documentation/trace/events.txt and in the
virtual tracing/README file in the tracing subsystem.
Link: http://lkml.kernel.org/r/72d263b5e1853fe9c314953b65833c3aa75479f2.1457029949.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Tested-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Reviewed-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2016-03-03 12:54:42 -06:00
|
|
|
|
|
|
|
seq_puts(m, ":sort=");
|
2016-03-03 12:54:45 -06:00
|
|
|
|
|
|
|
for (i = 0; i < hist_data->n_sort_keys; i++) {
|
|
|
|
struct tracing_map_sort_key *sort_key;
|
|
|
|
|
|
|
|
sort_key = &hist_data->sort_keys[i];
|
|
|
|
|
|
|
|
if (i > 0)
|
|
|
|
seq_puts(m, ",");
|
|
|
|
|
|
|
|
if (sort_key->field_idx == HITCOUNT_IDX)
|
|
|
|
seq_puts(m, "hitcount");
|
|
|
|
else {
|
|
|
|
unsigned int idx = sort_key->field_idx;
|
|
|
|
|
|
|
|
if (WARN_ON(idx >= TRACING_MAP_FIELDS_MAX))
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
hist_field_print(m, hist_data->fields[idx]);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (sort_key->descending)
|
|
|
|
seq_puts(m, ".descending");
|
|
|
|
}
|
tracing: Add 'hist' event trigger command
'hist' triggers allow users to continually aggregate trace events,
which can then be viewed afterwards by simply reading a 'hist' file
containing the aggregation in a human-readable format.
The basic idea is very simple and boils down to a mechanism whereby
trace events, rather than being exhaustively dumped in raw form and
viewed directly, are automatically 'compressed' into meaningful tables
completely defined by the user.
This is done strictly via single-line command-line commands and
without the aid of any kind of programming language or interpreter.
A surprising number of typical use cases can be accomplished by users
via this simple mechanism. In fact, a large number of the tasks that
users typically do using the more complicated script-based tracing
tools, at least during the initial stages of an investigation, can be
accomplished by simply specifying a set of keys and values to be used
in the creation of a hash table.
The Linux kernel trace event subsystem happens to provide an extensive
list of keys and values ready-made for such a purpose in the form of
the event format files associated with each trace event. By simply
consulting the format file for field names of interest and by plugging
them into the hist trigger command, users can create an endless number
of useful aggregations to help with investigating various properties
of the system. See Documentation/trace/events.txt for examples.
hist triggers are implemented on top of the existing event trigger
infrastructure, and as such are consistent with the existing triggers
from a user's perspective as well.
The basic syntax follows the existing trigger syntax. Users start an
aggregation by writing a 'hist' trigger to the event of interest's
trigger file:
# echo hist:keys=xxx [ if filter] > event/trigger
Once a hist trigger has been set up, by default it continually
aggregates every matching event into a hash table using the event key
and a value field named 'hitcount'.
To view the aggregation at any point in time, simply read the 'hist'
file in the same directory as the 'trigger' file:
# cat event/hist
The detailed syntax provides additional options for user control, and
is described exhaustively in Documentation/trace/events.txt and in the
virtual tracing/README file in the tracing subsystem.
Link: http://lkml.kernel.org/r/72d263b5e1853fe9c314953b65833c3aa75479f2.1457029949.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Tested-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Reviewed-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2016-03-03 12:54:42 -06:00
|
|
|
|
|
|
|
seq_printf(m, ":size=%u", (1 << hist_data->map->map_bits));
|
|
|
|
|
|
|
|
if (data->filter_str)
|
|
|
|
seq_printf(m, " if %s", data->filter_str);
|
|
|
|
|
2016-03-03 12:54:46 -06:00
|
|
|
if (data->paused)
|
|
|
|
seq_puts(m, " [paused]");
|
|
|
|
else
|
|
|
|
seq_puts(m, " [active]");
|
tracing: Add 'hist' event trigger command
'hist' triggers allow users to continually aggregate trace events,
which can then be viewed afterwards by simply reading a 'hist' file
containing the aggregation in a human-readable format.
The basic idea is very simple and boils down to a mechanism whereby
trace events, rather than being exhaustively dumped in raw form and
viewed directly, are automatically 'compressed' into meaningful tables
completely defined by the user.
This is done strictly via single-line command-line commands and
without the aid of any kind of programming language or interpreter.
A surprising number of typical use cases can be accomplished by users
via this simple mechanism. In fact, a large number of the tasks that
users typically do using the more complicated script-based tracing
tools, at least during the initial stages of an investigation, can be
accomplished by simply specifying a set of keys and values to be used
in the creation of a hash table.
The Linux kernel trace event subsystem happens to provide an extensive
list of keys and values ready-made for such a purpose in the form of
the event format files associated with each trace event. By simply
consulting the format file for field names of interest and by plugging
them into the hist trigger command, users can create an endless number
of useful aggregations to help with investigating various properties
of the system. See Documentation/trace/events.txt for examples.
hist triggers are implemented on top of the existing event trigger
infrastructure, and as such are consistent with the existing triggers
from a user's perspective as well.
The basic syntax follows the existing trigger syntax. Users start an
aggregation by writing a 'hist' trigger to the event of interest's
trigger file:
# echo hist:keys=xxx [ if filter] > event/trigger
Once a hist trigger has been set up, by default it continually
aggregates every matching event into a hash table using the event key
and a value field named 'hitcount'.
To view the aggregation at any point in time, simply read the 'hist'
file in the same directory as the 'trigger' file:
# cat event/hist
The detailed syntax provides additional options for user control, and
is described exhaustively in Documentation/trace/events.txt and in the
virtual tracing/README file in the tracing subsystem.
Link: http://lkml.kernel.org/r/72d263b5e1853fe9c314953b65833c3aa75479f2.1457029949.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Tested-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Reviewed-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2016-03-03 12:54:42 -06:00
|
|
|
|
|
|
|
seq_putc(m, '\n');
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void event_hist_trigger_free(struct event_trigger_ops *ops,
|
|
|
|
struct event_trigger_data *data)
|
|
|
|
{
|
|
|
|
struct hist_trigger_data *hist_data = data->private_data;
|
|
|
|
|
|
|
|
if (WARN_ON_ONCE(data->ref <= 0))
|
|
|
|
return;
|
|
|
|
|
|
|
|
data->ref--;
|
|
|
|
if (!data->ref) {
|
|
|
|
trigger_data_free(data);
|
|
|
|
destroy_hist_data(hist_data);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct event_trigger_ops event_hist_trigger_ops = {
|
|
|
|
.func = event_hist_trigger,
|
|
|
|
.print = event_hist_trigger_print,
|
|
|
|
.init = event_trigger_init,
|
|
|
|
.free = event_hist_trigger_free,
|
|
|
|
};
|
|
|
|
|
|
|
|
static struct event_trigger_ops *event_hist_get_trigger_ops(char *cmd,
|
|
|
|
char *param)
|
|
|
|
{
|
|
|
|
return &event_hist_trigger_ops;
|
|
|
|
}
|
|
|
|
|
2016-03-03 12:54:47 -06:00
|
|
|
static void hist_clear(struct event_trigger_data *data)
|
|
|
|
{
|
|
|
|
struct hist_trigger_data *hist_data = data->private_data;
|
|
|
|
bool paused;
|
|
|
|
|
|
|
|
paused = data->paused;
|
|
|
|
data->paused = true;
|
|
|
|
|
|
|
|
synchronize_sched();
|
|
|
|
|
|
|
|
tracing_map_clear(hist_data->map);
|
|
|
|
|
|
|
|
data->paused = paused;
|
|
|
|
}
|
|
|
|
|
tracing: Add 'hist' event trigger command
'hist' triggers allow users to continually aggregate trace events,
which can then be viewed afterwards by simply reading a 'hist' file
containing the aggregation in a human-readable format.
The basic idea is very simple and boils down to a mechanism whereby
trace events, rather than being exhaustively dumped in raw form and
viewed directly, are automatically 'compressed' into meaningful tables
completely defined by the user.
This is done strictly via single-line command-line commands and
without the aid of any kind of programming language or interpreter.
A surprising number of typical use cases can be accomplished by users
via this simple mechanism. In fact, a large number of the tasks that
users typically do using the more complicated script-based tracing
tools, at least during the initial stages of an investigation, can be
accomplished by simply specifying a set of keys and values to be used
in the creation of a hash table.
The Linux kernel trace event subsystem happens to provide an extensive
list of keys and values ready-made for such a purpose in the form of
the event format files associated with each trace event. By simply
consulting the format file for field names of interest and by plugging
them into the hist trigger command, users can create an endless number
of useful aggregations to help with investigating various properties
of the system. See Documentation/trace/events.txt for examples.
hist triggers are implemented on top of the existing event trigger
infrastructure, and as such are consistent with the existing triggers
from a user's perspective as well.
The basic syntax follows the existing trigger syntax. Users start an
aggregation by writing a 'hist' trigger to the event of interest's
trigger file:
# echo hist:keys=xxx [ if filter] > event/trigger
Once a hist trigger has been set up, by default it continually
aggregates every matching event into a hash table using the event key
and a value field named 'hitcount'.
To view the aggregation at any point in time, simply read the 'hist'
file in the same directory as the 'trigger' file:
# cat event/hist
The detailed syntax provides additional options for user control, and
is described exhaustively in Documentation/trace/events.txt and in the
virtual tracing/README file in the tracing subsystem.
Link: http://lkml.kernel.org/r/72d263b5e1853fe9c314953b65833c3aa75479f2.1457029949.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Tested-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Reviewed-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2016-03-03 12:54:42 -06:00
|
|
|
static int hist_register_trigger(char *glob, struct event_trigger_ops *ops,
|
|
|
|
struct event_trigger_data *data,
|
|
|
|
struct trace_event_file *file)
|
|
|
|
{
|
2016-03-03 12:54:46 -06:00
|
|
|
struct hist_trigger_data *hist_data = data->private_data;
|
tracing: Add 'hist' event trigger command
'hist' triggers allow users to continually aggregate trace events,
which can then be viewed afterwards by simply reading a 'hist' file
containing the aggregation in a human-readable format.
The basic idea is very simple and boils down to a mechanism whereby
trace events, rather than being exhaustively dumped in raw form and
viewed directly, are automatically 'compressed' into meaningful tables
completely defined by the user.
This is done strictly via single-line command-line commands and
without the aid of any kind of programming language or interpreter.
A surprising number of typical use cases can be accomplished by users
via this simple mechanism. In fact, a large number of the tasks that
users typically do using the more complicated script-based tracing
tools, at least during the initial stages of an investigation, can be
accomplished by simply specifying a set of keys and values to be used
in the creation of a hash table.
The Linux kernel trace event subsystem happens to provide an extensive
list of keys and values ready-made for such a purpose in the form of
the event format files associated with each trace event. By simply
consulting the format file for field names of interest and by plugging
them into the hist trigger command, users can create an endless number
of useful aggregations to help with investigating various properties
of the system. See Documentation/trace/events.txt for examples.
hist triggers are implemented on top of the existing event trigger
infrastructure, and as such are consistent with the existing triggers
from a user's perspective as well.
The basic syntax follows the existing trigger syntax. Users start an
aggregation by writing a 'hist' trigger to the event of interest's
trigger file:
# echo hist:keys=xxx [ if filter] > event/trigger
Once a hist trigger has been set up, by default it continually
aggregates every matching event into a hash table using the event key
and a value field named 'hitcount'.
To view the aggregation at any point in time, simply read the 'hist'
file in the same directory as the 'trigger' file:
# cat event/hist
The detailed syntax provides additional options for user control, and
is described exhaustively in Documentation/trace/events.txt and in the
virtual tracing/README file in the tracing subsystem.
Link: http://lkml.kernel.org/r/72d263b5e1853fe9c314953b65833c3aa75479f2.1457029949.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Tested-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Reviewed-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2016-03-03 12:54:42 -06:00
|
|
|
struct event_trigger_data *test;
|
|
|
|
int ret = 0;
|
|
|
|
|
|
|
|
list_for_each_entry_rcu(test, &file->triggers, list) {
|
|
|
|
if (test->cmd_ops->trigger_type == ETT_EVENT_HIST) {
|
2016-03-03 12:54:46 -06:00
|
|
|
if (hist_data->attrs->pause)
|
|
|
|
test->paused = true;
|
|
|
|
else if (hist_data->attrs->cont)
|
|
|
|
test->paused = false;
|
2016-03-03 12:54:47 -06:00
|
|
|
else if (hist_data->attrs->clear)
|
|
|
|
hist_clear(test);
|
2016-03-03 12:54:46 -06:00
|
|
|
else
|
|
|
|
ret = -EEXIST;
|
tracing: Add 'hist' event trigger command
'hist' triggers allow users to continually aggregate trace events,
which can then be viewed afterwards by simply reading a 'hist' file
containing the aggregation in a human-readable format.
The basic idea is very simple and boils down to a mechanism whereby
trace events, rather than being exhaustively dumped in raw form and
viewed directly, are automatically 'compressed' into meaningful tables
completely defined by the user.
This is done strictly via single-line command-line commands and
without the aid of any kind of programming language or interpreter.
A surprising number of typical use cases can be accomplished by users
via this simple mechanism. In fact, a large number of the tasks that
users typically do using the more complicated script-based tracing
tools, at least during the initial stages of an investigation, can be
accomplished by simply specifying a set of keys and values to be used
in the creation of a hash table.
The Linux kernel trace event subsystem happens to provide an extensive
list of keys and values ready-made for such a purpose in the form of
the event format files associated with each trace event. By simply
consulting the format file for field names of interest and by plugging
them into the hist trigger command, users can create an endless number
of useful aggregations to help with investigating various properties
of the system. See Documentation/trace/events.txt for examples.
hist triggers are implemented on top of the existing event trigger
infrastructure, and as such are consistent with the existing triggers
from a user's perspective as well.
The basic syntax follows the existing trigger syntax. Users start an
aggregation by writing a 'hist' trigger to the event of interest's
trigger file:
# echo hist:keys=xxx [ if filter] > event/trigger
Once a hist trigger has been set up, by default it continually
aggregates every matching event into a hash table using the event key
and a value field named 'hitcount'.
To view the aggregation at any point in time, simply read the 'hist'
file in the same directory as the 'trigger' file:
# cat event/hist
The detailed syntax provides additional options for user control, and
is described exhaustively in Documentation/trace/events.txt and in the
virtual tracing/README file in the tracing subsystem.
Link: http://lkml.kernel.org/r/72d263b5e1853fe9c314953b65833c3aa75479f2.1457029949.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Tested-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Reviewed-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2016-03-03 12:54:42 -06:00
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2016-03-03 12:54:47 -06:00
|
|
|
if (hist_data->attrs->cont || hist_data->attrs->clear) {
|
2016-03-03 12:54:46 -06:00
|
|
|
ret = -ENOENT;
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (hist_data->attrs->pause)
|
|
|
|
data->paused = true;
|
|
|
|
|
tracing: Add 'hist' event trigger command
'hist' triggers allow users to continually aggregate trace events,
which can then be viewed afterwards by simply reading a 'hist' file
containing the aggregation in a human-readable format.
The basic idea is very simple and boils down to a mechanism whereby
trace events, rather than being exhaustively dumped in raw form and
viewed directly, are automatically 'compressed' into meaningful tables
completely defined by the user.
This is done strictly via single-line command-line commands and
without the aid of any kind of programming language or interpreter.
A surprising number of typical use cases can be accomplished by users
via this simple mechanism. In fact, a large number of the tasks that
users typically do using the more complicated script-based tracing
tools, at least during the initial stages of an investigation, can be
accomplished by simply specifying a set of keys and values to be used
in the creation of a hash table.
The Linux kernel trace event subsystem happens to provide an extensive
list of keys and values ready-made for such a purpose in the form of
the event format files associated with each trace event. By simply
consulting the format file for field names of interest and by plugging
them into the hist trigger command, users can create an endless number
of useful aggregations to help with investigating various properties
of the system. See Documentation/trace/events.txt for examples.
hist triggers are implemented on top of the existing event trigger
infrastructure, and as such are consistent with the existing triggers
from a user's perspective as well.
The basic syntax follows the existing trigger syntax. Users start an
aggregation by writing a 'hist' trigger to the event of interest's
trigger file:
# echo hist:keys=xxx [ if filter] > event/trigger
Once a hist trigger has been set up, by default it continually
aggregates every matching event into a hash table using the event key
and a value field named 'hitcount'.
To view the aggregation at any point in time, simply read the 'hist'
file in the same directory as the 'trigger' file:
# cat event/hist
The detailed syntax provides additional options for user control, and
is described exhaustively in Documentation/trace/events.txt and in the
virtual tracing/README file in the tracing subsystem.
Link: http://lkml.kernel.org/r/72d263b5e1853fe9c314953b65833c3aa75479f2.1457029949.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Tested-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Reviewed-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2016-03-03 12:54:42 -06:00
|
|
|
if (data->ops->init) {
|
|
|
|
ret = data->ops->init(data->ops, data);
|
|
|
|
if (ret < 0)
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
|
|
|
list_add_rcu(&data->list, &file->triggers);
|
|
|
|
ret++;
|
|
|
|
|
|
|
|
update_cond_flag(file);
|
|
|
|
if (trace_event_trigger_enable_disable(file, 1) < 0) {
|
|
|
|
list_del_rcu(&data->list);
|
|
|
|
update_cond_flag(file);
|
|
|
|
ret--;
|
|
|
|
}
|
|
|
|
out:
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int event_hist_trigger_func(struct event_command *cmd_ops,
|
|
|
|
struct trace_event_file *file,
|
|
|
|
char *glob, char *cmd, char *param)
|
|
|
|
{
|
|
|
|
unsigned int hist_trigger_bits = TRACING_MAP_BITS_DEFAULT;
|
|
|
|
struct event_trigger_data *trigger_data;
|
|
|
|
struct hist_trigger_attrs *attrs;
|
|
|
|
struct event_trigger_ops *trigger_ops;
|
|
|
|
struct hist_trigger_data *hist_data;
|
|
|
|
char *trigger;
|
|
|
|
int ret = 0;
|
|
|
|
|
|
|
|
if (!param)
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
/* separate the trigger from the filter (k:v [if filter]) */
|
|
|
|
trigger = strsep(¶m, " \t");
|
|
|
|
if (!trigger)
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
attrs = parse_hist_trigger_attrs(trigger);
|
|
|
|
if (IS_ERR(attrs))
|
|
|
|
return PTR_ERR(attrs);
|
|
|
|
|
|
|
|
if (attrs->map_bits)
|
|
|
|
hist_trigger_bits = attrs->map_bits;
|
|
|
|
|
|
|
|
hist_data = create_hist_data(hist_trigger_bits, attrs, file);
|
|
|
|
if (IS_ERR(hist_data)) {
|
|
|
|
destroy_hist_trigger_attrs(attrs);
|
|
|
|
return PTR_ERR(hist_data);
|
|
|
|
}
|
|
|
|
|
|
|
|
trigger_ops = cmd_ops->get_trigger_ops(cmd, trigger);
|
|
|
|
|
|
|
|
ret = -ENOMEM;
|
|
|
|
trigger_data = kzalloc(sizeof(*trigger_data), GFP_KERNEL);
|
|
|
|
if (!trigger_data)
|
|
|
|
goto out_free;
|
|
|
|
|
|
|
|
trigger_data->count = -1;
|
|
|
|
trigger_data->ops = trigger_ops;
|
|
|
|
trigger_data->cmd_ops = cmd_ops;
|
|
|
|
|
|
|
|
INIT_LIST_HEAD(&trigger_data->list);
|
|
|
|
RCU_INIT_POINTER(trigger_data->filter, NULL);
|
|
|
|
|
|
|
|
trigger_data->private_data = hist_data;
|
|
|
|
|
|
|
|
if (glob[0] == '!') {
|
|
|
|
cmd_ops->unreg(glob+1, trigger_ops, trigger_data, file);
|
|
|
|
ret = 0;
|
|
|
|
goto out_free;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!param) /* if param is non-empty, it's supposed to be a filter */
|
|
|
|
goto out_reg;
|
|
|
|
|
|
|
|
if (!cmd_ops->set_filter)
|
|
|
|
goto out_reg;
|
|
|
|
|
|
|
|
ret = cmd_ops->set_filter(param, trigger_data, file);
|
|
|
|
if (ret < 0)
|
|
|
|
goto out_free;
|
|
|
|
out_reg:
|
|
|
|
ret = cmd_ops->reg(glob, trigger_ops, trigger_data, file);
|
|
|
|
/*
|
|
|
|
* The above returns on success the # of triggers registered,
|
|
|
|
* but if it didn't register any it returns zero. Consider no
|
|
|
|
* triggers registered a failure too.
|
|
|
|
*/
|
|
|
|
if (!ret) {
|
2016-03-03 12:54:47 -06:00
|
|
|
if (!(attrs->pause || attrs->cont || attrs->clear))
|
2016-03-03 12:54:46 -06:00
|
|
|
ret = -ENOENT;
|
tracing: Add 'hist' event trigger command
'hist' triggers allow users to continually aggregate trace events,
which can then be viewed afterwards by simply reading a 'hist' file
containing the aggregation in a human-readable format.
The basic idea is very simple and boils down to a mechanism whereby
trace events, rather than being exhaustively dumped in raw form and
viewed directly, are automatically 'compressed' into meaningful tables
completely defined by the user.
This is done strictly via single-line command-line commands and
without the aid of any kind of programming language or interpreter.
A surprising number of typical use cases can be accomplished by users
via this simple mechanism. In fact, a large number of the tasks that
users typically do using the more complicated script-based tracing
tools, at least during the initial stages of an investigation, can be
accomplished by simply specifying a set of keys and values to be used
in the creation of a hash table.
The Linux kernel trace event subsystem happens to provide an extensive
list of keys and values ready-made for such a purpose in the form of
the event format files associated with each trace event. By simply
consulting the format file for field names of interest and by plugging
them into the hist trigger command, users can create an endless number
of useful aggregations to help with investigating various properties
of the system. See Documentation/trace/events.txt for examples.
hist triggers are implemented on top of the existing event trigger
infrastructure, and as such are consistent with the existing triggers
from a user's perspective as well.
The basic syntax follows the existing trigger syntax. Users start an
aggregation by writing a 'hist' trigger to the event of interest's
trigger file:
# echo hist:keys=xxx [ if filter] > event/trigger
Once a hist trigger has been set up, by default it continually
aggregates every matching event into a hash table using the event key
and a value field named 'hitcount'.
To view the aggregation at any point in time, simply read the 'hist'
file in the same directory as the 'trigger' file:
# cat event/hist
The detailed syntax provides additional options for user control, and
is described exhaustively in Documentation/trace/events.txt and in the
virtual tracing/README file in the tracing subsystem.
Link: http://lkml.kernel.org/r/72d263b5e1853fe9c314953b65833c3aa75479f2.1457029949.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Tested-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Reviewed-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2016-03-03 12:54:42 -06:00
|
|
|
goto out_free;
|
|
|
|
} else if (ret < 0)
|
|
|
|
goto out_free;
|
|
|
|
/* Just return zero, not the number of registered triggers */
|
|
|
|
ret = 0;
|
|
|
|
out:
|
|
|
|
return ret;
|
|
|
|
out_free:
|
|
|
|
if (cmd_ops->set_filter)
|
|
|
|
cmd_ops->set_filter(NULL, trigger_data, NULL);
|
|
|
|
|
|
|
|
kfree(trigger_data);
|
|
|
|
|
|
|
|
destroy_hist_data(hist_data);
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct event_command trigger_hist_cmd = {
|
|
|
|
.name = "hist",
|
|
|
|
.trigger_type = ETT_EVENT_HIST,
|
|
|
|
.flags = EVENT_CMD_FL_NEEDS_REC,
|
|
|
|
.func = event_hist_trigger_func,
|
|
|
|
.reg = hist_register_trigger,
|
|
|
|
.unreg = unregister_trigger,
|
|
|
|
.get_trigger_ops = event_hist_get_trigger_ops,
|
|
|
|
.set_filter = set_trigger_filter,
|
|
|
|
};
|
|
|
|
|
|
|
|
__init int register_trigger_hist_cmd(void)
|
|
|
|
{
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
ret = register_event_command(&trigger_hist_cmd);
|
|
|
|
WARN_ON(ret < 0);
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|