linux-next/lib/zstd/compress/zstd_double_fast.c

760 lines
34 KiB
C
Raw Normal View History

zstd: import upstream v1.5.5 Import upstream zstd v1.5.5 to expose upstream's QAT integration. Import from upstream commit 58b3ef79 [0]. This is one commit before the tag v1.5.5-kernel [1], which is signed with upstream's signing key. The next patch in the series imports from v1.5.5-kernel, and is included in the series, rather than just importing directly from v1.5.5-kernel, because it is a non-trivial patch applied to improve the kernel's decompression speed. This commit contains 3 backported patches on top of v1.5.5: Two from the Linux copy of zstd, and one from upstream's `dev` branch. In addition to keeping the kernel's copy of zstd up to date, this update was requested by Intel to expose upstream zstd's external match provider API to the kernel, which allows QAT to accelerate the LZ match finding stage. This commit was generated by: export ZSTD=/path/to/repo/zstd/ export LINUX=/path/to/repo/linux/ cd "$ZSTD/contrib/linux-kernel" git checkout v1.5.5-kernel~ make import LINUX="$LINUX" I tested and benchmarked this commit on x86-64 with gcc-13.2.1 on an Intel i9-9900K by running my benchmark scripts that benchmark zstd's performance in btrfs and squashfs compressed filesystems. This commit improves compression speed, especially for higher compression levels, and regresses decompression speed. But the decompression speed regression is addressed by the next patch in the series. Component, Level, C. time delta, size delta, D. time delta Btrfs , 1, -1.9%, +0.0%, +9.5% Btrfs , 3, -5.6%, +0.0%, +7.4% Btrfs , 5, -4.9%, +0.0%, +5.0% Btrfs , 7, -5.7%, +0.0%, +5.2% Btrfs , 9, -5.7%, +0.0%, +4.0% Squashfs , 1, N/A, 0.0%, +11.6% I also boot tested with a zstd compressed kernel on i386 and aarch64. Link: https://github.com/facebook/zstd/commit/58b3ef79eb9f1e6613684ea6e5b89720660ee8b6 Link: https://github.com/facebook/zstd/tree/v1.5.5-kernel Signed-off-by: Nick Terrell <terrelln@fb.com>
2023-11-16 20:52:21 +00:00
// SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause
lib: zstd: Upgrade to latest upstream zstd version 1.4.10 Upgrade to the latest upstream zstd version 1.4.10. This patch is 100% generated from upstream zstd commit 20821a46f412 [0]. This patch is very large because it is transitioning from the custom kernel zstd to using upstream directly. The new zstd follows upstreams file structure which is different. Future update patches will be much smaller because they will only contain the changes from one upstream zstd release. As an aid for review I've created a commit [1] that shows the diff between upstream zstd as-is (which doesn't compile), and the zstd code imported in this patch. The verion of zstd in this patch is generated from upstream with changes applied by automation to replace upstreams libc dependencies, remove unnecessary portability macros, replace `/**` comments with `/*` comments, and use the kernel's xxhash instead of bundling it. The benefits of this patch are as follows: 1. Using upstream directly with automated script to generate kernel code. This allows us to update the kernel every upstream release, so the kernel gets the latest bug fixes and performance improvements, and doesn't get 3 years out of date again. The automation and the translated code are tested every upstream commit to ensure it continues to work. 2. Upgrades from a custom zstd based on 1.3.1 to 1.4.10, getting 3 years of performance improvements and bug fixes. On x86_64 I've measured 15% faster BtrFS and SquashFS decompression+read speeds, 35% faster kernel decompression, and 30% faster ZRAM decompression+read speeds. 3. Zstd-1.4.10 supports negative compression levels, which allow zstd to match or subsume lzo's performance. 4. Maintains the same kernel-specific wrapper API, so no callers have to be modified with zstd version updates. One concern that was brought up was stack usage. Upstream zstd had already removed most of its heavy stack usage functions, but I just removed the last functions that allocate arrays on the stack. I've measured the high water mark for both compression and decompression before and after this patch. Decompression is approximately neutral, using about 1.2KB of stack space. Compression levels up to 3 regressed from 1.4KB -> 1.6KB, and higher compression levels regressed from 1.5KB -> 2KB. We've added unit tests upstream to prevent further regression. I believe that this is a reasonable increase, and if it does end up causing problems, this commit can be cleanly reverted, because it only touches zstd. I chose the bulk update instead of replaying upstream commits because there have been ~3500 upstream commits since the 1.3.1 release, zstd wasn't ready to be used in the kernel as-is before a month ago, and not all upstream zstd commits build. The bulk update preserves bisectablity because bugs can be bisected to the zstd version update. At that point the update can be reverted, and we can work with upstream to find and fix the bug. Note that upstream zstd release 1.4.10 doesn't exist yet. I have cut a staging branch at 20821a46f412 [0] and will apply any changes requested to the staging branch. Once we're ready to merge this update I will cut a zstd release at the commit we merge, so we have a known zstd release in the kernel. The implementation of the kernel API is contained in zstd_compress_module.c and zstd_decompress_module.c. [0] https://github.com/facebook/zstd/commit/20821a46f4122f9abd7c7b245d28162dde8129c9 [1] https://github.com/terrelln/linux/commit/e0fa481d0e3df26918da0a13749740a1f6777574 Signed-off-by: Nick Terrell <terrelln@fb.com> Tested By: Paul Jones <paul@pauljones.id.au> Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name> Tested-by: Sedat Dilek <sedat.dilek@gmail.com> # LLVM/Clang v13.0.0 on x86-64 Tested-by: Jean-Denis Girard <jd.girard@sysnux.pf>
2020-09-11 23:37:08 +00:00
/*
zstd: import upstream v1.5.5 Import upstream zstd v1.5.5 to expose upstream's QAT integration. Import from upstream commit 58b3ef79 [0]. This is one commit before the tag v1.5.5-kernel [1], which is signed with upstream's signing key. The next patch in the series imports from v1.5.5-kernel, and is included in the series, rather than just importing directly from v1.5.5-kernel, because it is a non-trivial patch applied to improve the kernel's decompression speed. This commit contains 3 backported patches on top of v1.5.5: Two from the Linux copy of zstd, and one from upstream's `dev` branch. In addition to keeping the kernel's copy of zstd up to date, this update was requested by Intel to expose upstream zstd's external match provider API to the kernel, which allows QAT to accelerate the LZ match finding stage. This commit was generated by: export ZSTD=/path/to/repo/zstd/ export LINUX=/path/to/repo/linux/ cd "$ZSTD/contrib/linux-kernel" git checkout v1.5.5-kernel~ make import LINUX="$LINUX" I tested and benchmarked this commit on x86-64 with gcc-13.2.1 on an Intel i9-9900K by running my benchmark scripts that benchmark zstd's performance in btrfs and squashfs compressed filesystems. This commit improves compression speed, especially for higher compression levels, and regresses decompression speed. But the decompression speed regression is addressed by the next patch in the series. Component, Level, C. time delta, size delta, D. time delta Btrfs , 1, -1.9%, +0.0%, +9.5% Btrfs , 3, -5.6%, +0.0%, +7.4% Btrfs , 5, -4.9%, +0.0%, +5.0% Btrfs , 7, -5.7%, +0.0%, +5.2% Btrfs , 9, -5.7%, +0.0%, +4.0% Squashfs , 1, N/A, 0.0%, +11.6% I also boot tested with a zstd compressed kernel on i386 and aarch64. Link: https://github.com/facebook/zstd/commit/58b3ef79eb9f1e6613684ea6e5b89720660ee8b6 Link: https://github.com/facebook/zstd/tree/v1.5.5-kernel Signed-off-by: Nick Terrell <terrelln@fb.com>
2023-11-16 20:52:21 +00:00
* Copyright (c) Meta Platforms, Inc. and affiliates.
lib: zstd: Upgrade to latest upstream zstd version 1.4.10 Upgrade to the latest upstream zstd version 1.4.10. This patch is 100% generated from upstream zstd commit 20821a46f412 [0]. This patch is very large because it is transitioning from the custom kernel zstd to using upstream directly. The new zstd follows upstreams file structure which is different. Future update patches will be much smaller because they will only contain the changes from one upstream zstd release. As an aid for review I've created a commit [1] that shows the diff between upstream zstd as-is (which doesn't compile), and the zstd code imported in this patch. The verion of zstd in this patch is generated from upstream with changes applied by automation to replace upstreams libc dependencies, remove unnecessary portability macros, replace `/**` comments with `/*` comments, and use the kernel's xxhash instead of bundling it. The benefits of this patch are as follows: 1. Using upstream directly with automated script to generate kernel code. This allows us to update the kernel every upstream release, so the kernel gets the latest bug fixes and performance improvements, and doesn't get 3 years out of date again. The automation and the translated code are tested every upstream commit to ensure it continues to work. 2. Upgrades from a custom zstd based on 1.3.1 to 1.4.10, getting 3 years of performance improvements and bug fixes. On x86_64 I've measured 15% faster BtrFS and SquashFS decompression+read speeds, 35% faster kernel decompression, and 30% faster ZRAM decompression+read speeds. 3. Zstd-1.4.10 supports negative compression levels, which allow zstd to match or subsume lzo's performance. 4. Maintains the same kernel-specific wrapper API, so no callers have to be modified with zstd version updates. One concern that was brought up was stack usage. Upstream zstd had already removed most of its heavy stack usage functions, but I just removed the last functions that allocate arrays on the stack. I've measured the high water mark for both compression and decompression before and after this patch. Decompression is approximately neutral, using about 1.2KB of stack space. Compression levels up to 3 regressed from 1.4KB -> 1.6KB, and higher compression levels regressed from 1.5KB -> 2KB. We've added unit tests upstream to prevent further regression. I believe that this is a reasonable increase, and if it does end up causing problems, this commit can be cleanly reverted, because it only touches zstd. I chose the bulk update instead of replaying upstream commits because there have been ~3500 upstream commits since the 1.3.1 release, zstd wasn't ready to be used in the kernel as-is before a month ago, and not all upstream zstd commits build. The bulk update preserves bisectablity because bugs can be bisected to the zstd version update. At that point the update can be reverted, and we can work with upstream to find and fix the bug. Note that upstream zstd release 1.4.10 doesn't exist yet. I have cut a staging branch at 20821a46f412 [0] and will apply any changes requested to the staging branch. Once we're ready to merge this update I will cut a zstd release at the commit we merge, so we have a known zstd release in the kernel. The implementation of the kernel API is contained in zstd_compress_module.c and zstd_decompress_module.c. [0] https://github.com/facebook/zstd/commit/20821a46f4122f9abd7c7b245d28162dde8129c9 [1] https://github.com/terrelln/linux/commit/e0fa481d0e3df26918da0a13749740a1f6777574 Signed-off-by: Nick Terrell <terrelln@fb.com> Tested By: Paul Jones <paul@pauljones.id.au> Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name> Tested-by: Sedat Dilek <sedat.dilek@gmail.com> # LLVM/Clang v13.0.0 on x86-64 Tested-by: Jean-Denis Girard <jd.girard@sysnux.pf>
2020-09-11 23:37:08 +00:00
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#include "zstd_compress_internal.h"
#include "zstd_double_fast.h"
zstd: import upstream v1.5.5 Import upstream zstd v1.5.5 to expose upstream's QAT integration. Import from upstream commit 58b3ef79 [0]. This is one commit before the tag v1.5.5-kernel [1], which is signed with upstream's signing key. The next patch in the series imports from v1.5.5-kernel, and is included in the series, rather than just importing directly from v1.5.5-kernel, because it is a non-trivial patch applied to improve the kernel's decompression speed. This commit contains 3 backported patches on top of v1.5.5: Two from the Linux copy of zstd, and one from upstream's `dev` branch. In addition to keeping the kernel's copy of zstd up to date, this update was requested by Intel to expose upstream zstd's external match provider API to the kernel, which allows QAT to accelerate the LZ match finding stage. This commit was generated by: export ZSTD=/path/to/repo/zstd/ export LINUX=/path/to/repo/linux/ cd "$ZSTD/contrib/linux-kernel" git checkout v1.5.5-kernel~ make import LINUX="$LINUX" I tested and benchmarked this commit on x86-64 with gcc-13.2.1 on an Intel i9-9900K by running my benchmark scripts that benchmark zstd's performance in btrfs and squashfs compressed filesystems. This commit improves compression speed, especially for higher compression levels, and regresses decompression speed. But the decompression speed regression is addressed by the next patch in the series. Component, Level, C. time delta, size delta, D. time delta Btrfs , 1, -1.9%, +0.0%, +9.5% Btrfs , 3, -5.6%, +0.0%, +7.4% Btrfs , 5, -4.9%, +0.0%, +5.0% Btrfs , 7, -5.7%, +0.0%, +5.2% Btrfs , 9, -5.7%, +0.0%, +4.0% Squashfs , 1, N/A, 0.0%, +11.6% I also boot tested with a zstd compressed kernel on i386 and aarch64. Link: https://github.com/facebook/zstd/commit/58b3ef79eb9f1e6613684ea6e5b89720660ee8b6 Link: https://github.com/facebook/zstd/tree/v1.5.5-kernel Signed-off-by: Nick Terrell <terrelln@fb.com>
2023-11-16 20:52:21 +00:00
static void ZSTD_fillDoubleHashTableForCDict(ZSTD_matchState_t* ms,
void const* end, ZSTD_dictTableLoadMethod_e dtlm)
{
const ZSTD_compressionParameters* const cParams = &ms->cParams;
U32* const hashLarge = ms->hashTable;
U32 const hBitsL = cParams->hashLog + ZSTD_SHORT_CACHE_TAG_BITS;
U32 const mls = cParams->minMatch;
U32* const hashSmall = ms->chainTable;
U32 const hBitsS = cParams->chainLog + ZSTD_SHORT_CACHE_TAG_BITS;
const BYTE* const base = ms->window.base;
const BYTE* ip = base + ms->nextToUpdate;
const BYTE* const iend = ((const BYTE*)end) - HASH_READ_SIZE;
const U32 fastHashFillStep = 3;
lib: zstd: Upgrade to latest upstream zstd version 1.4.10 Upgrade to the latest upstream zstd version 1.4.10. This patch is 100% generated from upstream zstd commit 20821a46f412 [0]. This patch is very large because it is transitioning from the custom kernel zstd to using upstream directly. The new zstd follows upstreams file structure which is different. Future update patches will be much smaller because they will only contain the changes from one upstream zstd release. As an aid for review I've created a commit [1] that shows the diff between upstream zstd as-is (which doesn't compile), and the zstd code imported in this patch. The verion of zstd in this patch is generated from upstream with changes applied by automation to replace upstreams libc dependencies, remove unnecessary portability macros, replace `/**` comments with `/*` comments, and use the kernel's xxhash instead of bundling it. The benefits of this patch are as follows: 1. Using upstream directly with automated script to generate kernel code. This allows us to update the kernel every upstream release, so the kernel gets the latest bug fixes and performance improvements, and doesn't get 3 years out of date again. The automation and the translated code are tested every upstream commit to ensure it continues to work. 2. Upgrades from a custom zstd based on 1.3.1 to 1.4.10, getting 3 years of performance improvements and bug fixes. On x86_64 I've measured 15% faster BtrFS and SquashFS decompression+read speeds, 35% faster kernel decompression, and 30% faster ZRAM decompression+read speeds. 3. Zstd-1.4.10 supports negative compression levels, which allow zstd to match or subsume lzo's performance. 4. Maintains the same kernel-specific wrapper API, so no callers have to be modified with zstd version updates. One concern that was brought up was stack usage. Upstream zstd had already removed most of its heavy stack usage functions, but I just removed the last functions that allocate arrays on the stack. I've measured the high water mark for both compression and decompression before and after this patch. Decompression is approximately neutral, using about 1.2KB of stack space. Compression levels up to 3 regressed from 1.4KB -> 1.6KB, and higher compression levels regressed from 1.5KB -> 2KB. We've added unit tests upstream to prevent further regression. I believe that this is a reasonable increase, and if it does end up causing problems, this commit can be cleanly reverted, because it only touches zstd. I chose the bulk update instead of replaying upstream commits because there have been ~3500 upstream commits since the 1.3.1 release, zstd wasn't ready to be used in the kernel as-is before a month ago, and not all upstream zstd commits build. The bulk update preserves bisectablity because bugs can be bisected to the zstd version update. At that point the update can be reverted, and we can work with upstream to find and fix the bug. Note that upstream zstd release 1.4.10 doesn't exist yet. I have cut a staging branch at 20821a46f412 [0] and will apply any changes requested to the staging branch. Once we're ready to merge this update I will cut a zstd release at the commit we merge, so we have a known zstd release in the kernel. The implementation of the kernel API is contained in zstd_compress_module.c and zstd_decompress_module.c. [0] https://github.com/facebook/zstd/commit/20821a46f4122f9abd7c7b245d28162dde8129c9 [1] https://github.com/terrelln/linux/commit/e0fa481d0e3df26918da0a13749740a1f6777574 Signed-off-by: Nick Terrell <terrelln@fb.com> Tested By: Paul Jones <paul@pauljones.id.au> Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name> Tested-by: Sedat Dilek <sedat.dilek@gmail.com> # LLVM/Clang v13.0.0 on x86-64 Tested-by: Jean-Denis Girard <jd.girard@sysnux.pf>
2020-09-11 23:37:08 +00:00
zstd: import upstream v1.5.5 Import upstream zstd v1.5.5 to expose upstream's QAT integration. Import from upstream commit 58b3ef79 [0]. This is one commit before the tag v1.5.5-kernel [1], which is signed with upstream's signing key. The next patch in the series imports from v1.5.5-kernel, and is included in the series, rather than just importing directly from v1.5.5-kernel, because it is a non-trivial patch applied to improve the kernel's decompression speed. This commit contains 3 backported patches on top of v1.5.5: Two from the Linux copy of zstd, and one from upstream's `dev` branch. In addition to keeping the kernel's copy of zstd up to date, this update was requested by Intel to expose upstream zstd's external match provider API to the kernel, which allows QAT to accelerate the LZ match finding stage. This commit was generated by: export ZSTD=/path/to/repo/zstd/ export LINUX=/path/to/repo/linux/ cd "$ZSTD/contrib/linux-kernel" git checkout v1.5.5-kernel~ make import LINUX="$LINUX" I tested and benchmarked this commit on x86-64 with gcc-13.2.1 on an Intel i9-9900K by running my benchmark scripts that benchmark zstd's performance in btrfs and squashfs compressed filesystems. This commit improves compression speed, especially for higher compression levels, and regresses decompression speed. But the decompression speed regression is addressed by the next patch in the series. Component, Level, C. time delta, size delta, D. time delta Btrfs , 1, -1.9%, +0.0%, +9.5% Btrfs , 3, -5.6%, +0.0%, +7.4% Btrfs , 5, -4.9%, +0.0%, +5.0% Btrfs , 7, -5.7%, +0.0%, +5.2% Btrfs , 9, -5.7%, +0.0%, +4.0% Squashfs , 1, N/A, 0.0%, +11.6% I also boot tested with a zstd compressed kernel on i386 and aarch64. Link: https://github.com/facebook/zstd/commit/58b3ef79eb9f1e6613684ea6e5b89720660ee8b6 Link: https://github.com/facebook/zstd/tree/v1.5.5-kernel Signed-off-by: Nick Terrell <terrelln@fb.com>
2023-11-16 20:52:21 +00:00
/* Always insert every fastHashFillStep position into the hash tables.
* Insert the other positions into the large hash table if their entry
* is empty.
*/
for (; ip + fastHashFillStep - 1 <= iend; ip += fastHashFillStep) {
U32 const curr = (U32)(ip - base);
U32 i;
for (i = 0; i < fastHashFillStep; ++i) {
size_t const smHashAndTag = ZSTD_hashPtr(ip + i, hBitsS, mls);
size_t const lgHashAndTag = ZSTD_hashPtr(ip + i, hBitsL, 8);
if (i == 0) {
ZSTD_writeTaggedIndex(hashSmall, smHashAndTag, curr + i);
}
if (i == 0 || hashLarge[lgHashAndTag >> ZSTD_SHORT_CACHE_TAG_BITS] == 0) {
ZSTD_writeTaggedIndex(hashLarge, lgHashAndTag, curr + i);
}
/* Only load extra positions for ZSTD_dtlm_full */
if (dtlm == ZSTD_dtlm_fast)
break;
} }
}
static void ZSTD_fillDoubleHashTableForCCtx(ZSTD_matchState_t* ms,
lib: zstd: Upgrade to latest upstream zstd version 1.4.10 Upgrade to the latest upstream zstd version 1.4.10. This patch is 100% generated from upstream zstd commit 20821a46f412 [0]. This patch is very large because it is transitioning from the custom kernel zstd to using upstream directly. The new zstd follows upstreams file structure which is different. Future update patches will be much smaller because they will only contain the changes from one upstream zstd release. As an aid for review I've created a commit [1] that shows the diff between upstream zstd as-is (which doesn't compile), and the zstd code imported in this patch. The verion of zstd in this patch is generated from upstream with changes applied by automation to replace upstreams libc dependencies, remove unnecessary portability macros, replace `/**` comments with `/*` comments, and use the kernel's xxhash instead of bundling it. The benefits of this patch are as follows: 1. Using upstream directly with automated script to generate kernel code. This allows us to update the kernel every upstream release, so the kernel gets the latest bug fixes and performance improvements, and doesn't get 3 years out of date again. The automation and the translated code are tested every upstream commit to ensure it continues to work. 2. Upgrades from a custom zstd based on 1.3.1 to 1.4.10, getting 3 years of performance improvements and bug fixes. On x86_64 I've measured 15% faster BtrFS and SquashFS decompression+read speeds, 35% faster kernel decompression, and 30% faster ZRAM decompression+read speeds. 3. Zstd-1.4.10 supports negative compression levels, which allow zstd to match or subsume lzo's performance. 4. Maintains the same kernel-specific wrapper API, so no callers have to be modified with zstd version updates. One concern that was brought up was stack usage. Upstream zstd had already removed most of its heavy stack usage functions, but I just removed the last functions that allocate arrays on the stack. I've measured the high water mark for both compression and decompression before and after this patch. Decompression is approximately neutral, using about 1.2KB of stack space. Compression levels up to 3 regressed from 1.4KB -> 1.6KB, and higher compression levels regressed from 1.5KB -> 2KB. We've added unit tests upstream to prevent further regression. I believe that this is a reasonable increase, and if it does end up causing problems, this commit can be cleanly reverted, because it only touches zstd. I chose the bulk update instead of replaying upstream commits because there have been ~3500 upstream commits since the 1.3.1 release, zstd wasn't ready to be used in the kernel as-is before a month ago, and not all upstream zstd commits build. The bulk update preserves bisectablity because bugs can be bisected to the zstd version update. At that point the update can be reverted, and we can work with upstream to find and fix the bug. Note that upstream zstd release 1.4.10 doesn't exist yet. I have cut a staging branch at 20821a46f412 [0] and will apply any changes requested to the staging branch. Once we're ready to merge this update I will cut a zstd release at the commit we merge, so we have a known zstd release in the kernel. The implementation of the kernel API is contained in zstd_compress_module.c and zstd_decompress_module.c. [0] https://github.com/facebook/zstd/commit/20821a46f4122f9abd7c7b245d28162dde8129c9 [1] https://github.com/terrelln/linux/commit/e0fa481d0e3df26918da0a13749740a1f6777574 Signed-off-by: Nick Terrell <terrelln@fb.com> Tested By: Paul Jones <paul@pauljones.id.au> Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name> Tested-by: Sedat Dilek <sedat.dilek@gmail.com> # LLVM/Clang v13.0.0 on x86-64 Tested-by: Jean-Denis Girard <jd.girard@sysnux.pf>
2020-09-11 23:37:08 +00:00
void const* end, ZSTD_dictTableLoadMethod_e dtlm)
{
const ZSTD_compressionParameters* const cParams = &ms->cParams;
U32* const hashLarge = ms->hashTable;
U32 const hBitsL = cParams->hashLog;
U32 const mls = cParams->minMatch;
U32* const hashSmall = ms->chainTable;
U32 const hBitsS = cParams->chainLog;
const BYTE* const base = ms->window.base;
const BYTE* ip = base + ms->nextToUpdate;
const BYTE* const iend = ((const BYTE*)end) - HASH_READ_SIZE;
const U32 fastHashFillStep = 3;
/* Always insert every fastHashFillStep position into the hash tables.
* Insert the other positions into the large hash table if their entry
* is empty.
*/
for (; ip + fastHashFillStep - 1 <= iend; ip += fastHashFillStep) {
U32 const curr = (U32)(ip - base);
U32 i;
for (i = 0; i < fastHashFillStep; ++i) {
size_t const smHash = ZSTD_hashPtr(ip + i, hBitsS, mls);
size_t const lgHash = ZSTD_hashPtr(ip + i, hBitsL, 8);
if (i == 0)
hashSmall[smHash] = curr + i;
if (i == 0 || hashLarge[lgHash] == 0)
hashLarge[lgHash] = curr + i;
/* Only load extra positions for ZSTD_dtlm_full */
if (dtlm == ZSTD_dtlm_fast)
break;
zstd: import upstream v1.5.5 Import upstream zstd v1.5.5 to expose upstream's QAT integration. Import from upstream commit 58b3ef79 [0]. This is one commit before the tag v1.5.5-kernel [1], which is signed with upstream's signing key. The next patch in the series imports from v1.5.5-kernel, and is included in the series, rather than just importing directly from v1.5.5-kernel, because it is a non-trivial patch applied to improve the kernel's decompression speed. This commit contains 3 backported patches on top of v1.5.5: Two from the Linux copy of zstd, and one from upstream's `dev` branch. In addition to keeping the kernel's copy of zstd up to date, this update was requested by Intel to expose upstream zstd's external match provider API to the kernel, which allows QAT to accelerate the LZ match finding stage. This commit was generated by: export ZSTD=/path/to/repo/zstd/ export LINUX=/path/to/repo/linux/ cd "$ZSTD/contrib/linux-kernel" git checkout v1.5.5-kernel~ make import LINUX="$LINUX" I tested and benchmarked this commit on x86-64 with gcc-13.2.1 on an Intel i9-9900K by running my benchmark scripts that benchmark zstd's performance in btrfs and squashfs compressed filesystems. This commit improves compression speed, especially for higher compression levels, and regresses decompression speed. But the decompression speed regression is addressed by the next patch in the series. Component, Level, C. time delta, size delta, D. time delta Btrfs , 1, -1.9%, +0.0%, +9.5% Btrfs , 3, -5.6%, +0.0%, +7.4% Btrfs , 5, -4.9%, +0.0%, +5.0% Btrfs , 7, -5.7%, +0.0%, +5.2% Btrfs , 9, -5.7%, +0.0%, +4.0% Squashfs , 1, N/A, 0.0%, +11.6% I also boot tested with a zstd compressed kernel on i386 and aarch64. Link: https://github.com/facebook/zstd/commit/58b3ef79eb9f1e6613684ea6e5b89720660ee8b6 Link: https://github.com/facebook/zstd/tree/v1.5.5-kernel Signed-off-by: Nick Terrell <terrelln@fb.com>
2023-11-16 20:52:21 +00:00
} }
}
void ZSTD_fillDoubleHashTable(ZSTD_matchState_t* ms,
const void* const end,
ZSTD_dictTableLoadMethod_e dtlm,
ZSTD_tableFillPurpose_e tfp)
{
if (tfp == ZSTD_tfp_forCDict) {
ZSTD_fillDoubleHashTableForCDict(ms, end, dtlm);
} else {
ZSTD_fillDoubleHashTableForCCtx(ms, end, dtlm);
}
lib: zstd: Upgrade to latest upstream zstd version 1.4.10 Upgrade to the latest upstream zstd version 1.4.10. This patch is 100% generated from upstream zstd commit 20821a46f412 [0]. This patch is very large because it is transitioning from the custom kernel zstd to using upstream directly. The new zstd follows upstreams file structure which is different. Future update patches will be much smaller because they will only contain the changes from one upstream zstd release. As an aid for review I've created a commit [1] that shows the diff between upstream zstd as-is (which doesn't compile), and the zstd code imported in this patch. The verion of zstd in this patch is generated from upstream with changes applied by automation to replace upstreams libc dependencies, remove unnecessary portability macros, replace `/**` comments with `/*` comments, and use the kernel's xxhash instead of bundling it. The benefits of this patch are as follows: 1. Using upstream directly with automated script to generate kernel code. This allows us to update the kernel every upstream release, so the kernel gets the latest bug fixes and performance improvements, and doesn't get 3 years out of date again. The automation and the translated code are tested every upstream commit to ensure it continues to work. 2. Upgrades from a custom zstd based on 1.3.1 to 1.4.10, getting 3 years of performance improvements and bug fixes. On x86_64 I've measured 15% faster BtrFS and SquashFS decompression+read speeds, 35% faster kernel decompression, and 30% faster ZRAM decompression+read speeds. 3. Zstd-1.4.10 supports negative compression levels, which allow zstd to match or subsume lzo's performance. 4. Maintains the same kernel-specific wrapper API, so no callers have to be modified with zstd version updates. One concern that was brought up was stack usage. Upstream zstd had already removed most of its heavy stack usage functions, but I just removed the last functions that allocate arrays on the stack. I've measured the high water mark for both compression and decompression before and after this patch. Decompression is approximately neutral, using about 1.2KB of stack space. Compression levels up to 3 regressed from 1.4KB -> 1.6KB, and higher compression levels regressed from 1.5KB -> 2KB. We've added unit tests upstream to prevent further regression. I believe that this is a reasonable increase, and if it does end up causing problems, this commit can be cleanly reverted, because it only touches zstd. I chose the bulk update instead of replaying upstream commits because there have been ~3500 upstream commits since the 1.3.1 release, zstd wasn't ready to be used in the kernel as-is before a month ago, and not all upstream zstd commits build. The bulk update preserves bisectablity because bugs can be bisected to the zstd version update. At that point the update can be reverted, and we can work with upstream to find and fix the bug. Note that upstream zstd release 1.4.10 doesn't exist yet. I have cut a staging branch at 20821a46f412 [0] and will apply any changes requested to the staging branch. Once we're ready to merge this update I will cut a zstd release at the commit we merge, so we have a known zstd release in the kernel. The implementation of the kernel API is contained in zstd_compress_module.c and zstd_decompress_module.c. [0] https://github.com/facebook/zstd/commit/20821a46f4122f9abd7c7b245d28162dde8129c9 [1] https://github.com/terrelln/linux/commit/e0fa481d0e3df26918da0a13749740a1f6777574 Signed-off-by: Nick Terrell <terrelln@fb.com> Tested By: Paul Jones <paul@pauljones.id.au> Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name> Tested-by: Sedat Dilek <sedat.dilek@gmail.com> # LLVM/Clang v13.0.0 on x86-64 Tested-by: Jean-Denis Girard <jd.girard@sysnux.pf>
2020-09-11 23:37:08 +00:00
}
FORCE_INLINE_TEMPLATE
size_t ZSTD_compressBlock_doubleFast_noDict_generic(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize, U32 const mls /* template */)
{
ZSTD_compressionParameters const* cParams = &ms->cParams;
U32* const hashLong = ms->hashTable;
const U32 hBitsL = cParams->hashLog;
U32* const hashSmall = ms->chainTable;
const U32 hBitsS = cParams->chainLog;
const BYTE* const base = ms->window.base;
const BYTE* const istart = (const BYTE*)src;
const BYTE* anchor = istart;
const U32 endIndex = (U32)((size_t)(istart - base) + srcSize);
/* presumes that, if there is a dictionary, it must be using Attach mode */
const U32 prefixLowestIndex = ZSTD_getLowestPrefixIndex(ms, endIndex, cParams->windowLog);
const BYTE* const prefixLowest = base + prefixLowestIndex;
const BYTE* const iend = istart + srcSize;
const BYTE* const ilimit = iend - HASH_READ_SIZE;
U32 offset_1=rep[0], offset_2=rep[1];
zstd: import upstream v1.5.5 Import upstream zstd v1.5.5 to expose upstream's QAT integration. Import from upstream commit 58b3ef79 [0]. This is one commit before the tag v1.5.5-kernel [1], which is signed with upstream's signing key. The next patch in the series imports from v1.5.5-kernel, and is included in the series, rather than just importing directly from v1.5.5-kernel, because it is a non-trivial patch applied to improve the kernel's decompression speed. This commit contains 3 backported patches on top of v1.5.5: Two from the Linux copy of zstd, and one from upstream's `dev` branch. In addition to keeping the kernel's copy of zstd up to date, this update was requested by Intel to expose upstream zstd's external match provider API to the kernel, which allows QAT to accelerate the LZ match finding stage. This commit was generated by: export ZSTD=/path/to/repo/zstd/ export LINUX=/path/to/repo/linux/ cd "$ZSTD/contrib/linux-kernel" git checkout v1.5.5-kernel~ make import LINUX="$LINUX" I tested and benchmarked this commit on x86-64 with gcc-13.2.1 on an Intel i9-9900K by running my benchmark scripts that benchmark zstd's performance in btrfs and squashfs compressed filesystems. This commit improves compression speed, especially for higher compression levels, and regresses decompression speed. But the decompression speed regression is addressed by the next patch in the series. Component, Level, C. time delta, size delta, D. time delta Btrfs , 1, -1.9%, +0.0%, +9.5% Btrfs , 3, -5.6%, +0.0%, +7.4% Btrfs , 5, -4.9%, +0.0%, +5.0% Btrfs , 7, -5.7%, +0.0%, +5.2% Btrfs , 9, -5.7%, +0.0%, +4.0% Squashfs , 1, N/A, 0.0%, +11.6% I also boot tested with a zstd compressed kernel on i386 and aarch64. Link: https://github.com/facebook/zstd/commit/58b3ef79eb9f1e6613684ea6e5b89720660ee8b6 Link: https://github.com/facebook/zstd/tree/v1.5.5-kernel Signed-off-by: Nick Terrell <terrelln@fb.com>
2023-11-16 20:52:21 +00:00
U32 offsetSaved1 = 0, offsetSaved2 = 0;
size_t mLength;
U32 offset;
U32 curr;
/* how many positions to search before increasing step size */
const size_t kStepIncr = 1 << kSearchStrength;
/* the position at which to increment the step size if no match is found */
const BYTE* nextStep;
size_t step; /* the current step size */
size_t hl0; /* the long hash at ip */
size_t hl1; /* the long hash at ip1 */
U32 idxl0; /* the long match index for ip */
U32 idxl1; /* the long match index for ip1 */
const BYTE* matchl0; /* the long match for ip */
const BYTE* matchs0; /* the short match for ip */
const BYTE* matchl1; /* the long match for ip1 */
const BYTE* ip = istart; /* the current position */
const BYTE* ip1; /* the next position */
DEBUGLOG(5, "ZSTD_compressBlock_doubleFast_noDict_generic");
/* init */
ip += ((ip - prefixLowest) == 0);
{
U32 const current = (U32)(ip - base);
U32 const windowLow = ZSTD_getLowestPrefixIndex(ms, current, cParams->windowLog);
U32 const maxRep = current - windowLow;
zstd: import upstream v1.5.5 Import upstream zstd v1.5.5 to expose upstream's QAT integration. Import from upstream commit 58b3ef79 [0]. This is one commit before the tag v1.5.5-kernel [1], which is signed with upstream's signing key. The next patch in the series imports from v1.5.5-kernel, and is included in the series, rather than just importing directly from v1.5.5-kernel, because it is a non-trivial patch applied to improve the kernel's decompression speed. This commit contains 3 backported patches on top of v1.5.5: Two from the Linux copy of zstd, and one from upstream's `dev` branch. In addition to keeping the kernel's copy of zstd up to date, this update was requested by Intel to expose upstream zstd's external match provider API to the kernel, which allows QAT to accelerate the LZ match finding stage. This commit was generated by: export ZSTD=/path/to/repo/zstd/ export LINUX=/path/to/repo/linux/ cd "$ZSTD/contrib/linux-kernel" git checkout v1.5.5-kernel~ make import LINUX="$LINUX" I tested and benchmarked this commit on x86-64 with gcc-13.2.1 on an Intel i9-9900K by running my benchmark scripts that benchmark zstd's performance in btrfs and squashfs compressed filesystems. This commit improves compression speed, especially for higher compression levels, and regresses decompression speed. But the decompression speed regression is addressed by the next patch in the series. Component, Level, C. time delta, size delta, D. time delta Btrfs , 1, -1.9%, +0.0%, +9.5% Btrfs , 3, -5.6%, +0.0%, +7.4% Btrfs , 5, -4.9%, +0.0%, +5.0% Btrfs , 7, -5.7%, +0.0%, +5.2% Btrfs , 9, -5.7%, +0.0%, +4.0% Squashfs , 1, N/A, 0.0%, +11.6% I also boot tested with a zstd compressed kernel on i386 and aarch64. Link: https://github.com/facebook/zstd/commit/58b3ef79eb9f1e6613684ea6e5b89720660ee8b6 Link: https://github.com/facebook/zstd/tree/v1.5.5-kernel Signed-off-by: Nick Terrell <terrelln@fb.com>
2023-11-16 20:52:21 +00:00
if (offset_2 > maxRep) offsetSaved2 = offset_2, offset_2 = 0;
if (offset_1 > maxRep) offsetSaved1 = offset_1, offset_1 = 0;
}
/* Outer Loop: one iteration per match found and stored */
while (1) {
step = 1;
nextStep = ip + kStepIncr;
ip1 = ip + step;
if (ip1 > ilimit) {
goto _cleanup;
}
hl0 = ZSTD_hashPtr(ip, hBitsL, 8);
idxl0 = hashLong[hl0];
matchl0 = base + idxl0;
/* Inner Loop: one iteration per search / position */
do {
const size_t hs0 = ZSTD_hashPtr(ip, hBitsS, mls);
const U32 idxs0 = hashSmall[hs0];
curr = (U32)(ip-base);
matchs0 = base + idxs0;
hashLong[hl0] = hashSmall[hs0] = curr; /* update hash tables */
/* check noDict repcode */
if ((offset_1 > 0) & (MEM_read32(ip+1-offset_1) == MEM_read32(ip+1))) {
mLength = ZSTD_count(ip+1+4, ip+1+4-offset_1, iend) + 4;
ip++;
zstd: import upstream v1.5.5 Import upstream zstd v1.5.5 to expose upstream's QAT integration. Import from upstream commit 58b3ef79 [0]. This is one commit before the tag v1.5.5-kernel [1], which is signed with upstream's signing key. The next patch in the series imports from v1.5.5-kernel, and is included in the series, rather than just importing directly from v1.5.5-kernel, because it is a non-trivial patch applied to improve the kernel's decompression speed. This commit contains 3 backported patches on top of v1.5.5: Two from the Linux copy of zstd, and one from upstream's `dev` branch. In addition to keeping the kernel's copy of zstd up to date, this update was requested by Intel to expose upstream zstd's external match provider API to the kernel, which allows QAT to accelerate the LZ match finding stage. This commit was generated by: export ZSTD=/path/to/repo/zstd/ export LINUX=/path/to/repo/linux/ cd "$ZSTD/contrib/linux-kernel" git checkout v1.5.5-kernel~ make import LINUX="$LINUX" I tested and benchmarked this commit on x86-64 with gcc-13.2.1 on an Intel i9-9900K by running my benchmark scripts that benchmark zstd's performance in btrfs and squashfs compressed filesystems. This commit improves compression speed, especially for higher compression levels, and regresses decompression speed. But the decompression speed regression is addressed by the next patch in the series. Component, Level, C. time delta, size delta, D. time delta Btrfs , 1, -1.9%, +0.0%, +9.5% Btrfs , 3, -5.6%, +0.0%, +7.4% Btrfs , 5, -4.9%, +0.0%, +5.0% Btrfs , 7, -5.7%, +0.0%, +5.2% Btrfs , 9, -5.7%, +0.0%, +4.0% Squashfs , 1, N/A, 0.0%, +11.6% I also boot tested with a zstd compressed kernel on i386 and aarch64. Link: https://github.com/facebook/zstd/commit/58b3ef79eb9f1e6613684ea6e5b89720660ee8b6 Link: https://github.com/facebook/zstd/tree/v1.5.5-kernel Signed-off-by: Nick Terrell <terrelln@fb.com>
2023-11-16 20:52:21 +00:00
ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, iend, REPCODE1_TO_OFFBASE, mLength);
goto _match_stored;
}
hl1 = ZSTD_hashPtr(ip1, hBitsL, 8);
if (idxl0 > prefixLowestIndex) {
/* check prefix long match */
if (MEM_read64(matchl0) == MEM_read64(ip)) {
mLength = ZSTD_count(ip+8, matchl0+8, iend) + 8;
offset = (U32)(ip-matchl0);
while (((ip>anchor) & (matchl0>prefixLowest)) && (ip[-1] == matchl0[-1])) { ip--; matchl0--; mLength++; } /* catch up */
goto _match_found;
}
}
idxl1 = hashLong[hl1];
matchl1 = base + idxl1;
if (idxs0 > prefixLowestIndex) {
/* check prefix short match */
if (MEM_read32(matchs0) == MEM_read32(ip)) {
goto _search_next_long;
}
}
if (ip1 >= nextStep) {
PREFETCH_L1(ip1 + 64);
PREFETCH_L1(ip1 + 128);
step++;
nextStep += kStepIncr;
}
ip = ip1;
ip1 += step;
hl0 = hl1;
idxl0 = idxl1;
matchl0 = matchl1;
#if defined(__aarch64__)
PREFETCH_L1(ip+256);
#endif
} while (ip1 <= ilimit);
_cleanup:
zstd: import upstream v1.5.5 Import upstream zstd v1.5.5 to expose upstream's QAT integration. Import from upstream commit 58b3ef79 [0]. This is one commit before the tag v1.5.5-kernel [1], which is signed with upstream's signing key. The next patch in the series imports from v1.5.5-kernel, and is included in the series, rather than just importing directly from v1.5.5-kernel, because it is a non-trivial patch applied to improve the kernel's decompression speed. This commit contains 3 backported patches on top of v1.5.5: Two from the Linux copy of zstd, and one from upstream's `dev` branch. In addition to keeping the kernel's copy of zstd up to date, this update was requested by Intel to expose upstream zstd's external match provider API to the kernel, which allows QAT to accelerate the LZ match finding stage. This commit was generated by: export ZSTD=/path/to/repo/zstd/ export LINUX=/path/to/repo/linux/ cd "$ZSTD/contrib/linux-kernel" git checkout v1.5.5-kernel~ make import LINUX="$LINUX" I tested and benchmarked this commit on x86-64 with gcc-13.2.1 on an Intel i9-9900K by running my benchmark scripts that benchmark zstd's performance in btrfs and squashfs compressed filesystems. This commit improves compression speed, especially for higher compression levels, and regresses decompression speed. But the decompression speed regression is addressed by the next patch in the series. Component, Level, C. time delta, size delta, D. time delta Btrfs , 1, -1.9%, +0.0%, +9.5% Btrfs , 3, -5.6%, +0.0%, +7.4% Btrfs , 5, -4.9%, +0.0%, +5.0% Btrfs , 7, -5.7%, +0.0%, +5.2% Btrfs , 9, -5.7%, +0.0%, +4.0% Squashfs , 1, N/A, 0.0%, +11.6% I also boot tested with a zstd compressed kernel on i386 and aarch64. Link: https://github.com/facebook/zstd/commit/58b3ef79eb9f1e6613684ea6e5b89720660ee8b6 Link: https://github.com/facebook/zstd/tree/v1.5.5-kernel Signed-off-by: Nick Terrell <terrelln@fb.com>
2023-11-16 20:52:21 +00:00
/* If offset_1 started invalid (offsetSaved1 != 0) and became valid (offset_1 != 0),
* rotate saved offsets. See comment in ZSTD_compressBlock_fast_noDict for more context. */
offsetSaved2 = ((offsetSaved1 != 0) && (offset_1 != 0)) ? offsetSaved1 : offsetSaved2;
/* save reps for next block */
zstd: import upstream v1.5.5 Import upstream zstd v1.5.5 to expose upstream's QAT integration. Import from upstream commit 58b3ef79 [0]. This is one commit before the tag v1.5.5-kernel [1], which is signed with upstream's signing key. The next patch in the series imports from v1.5.5-kernel, and is included in the series, rather than just importing directly from v1.5.5-kernel, because it is a non-trivial patch applied to improve the kernel's decompression speed. This commit contains 3 backported patches on top of v1.5.5: Two from the Linux copy of zstd, and one from upstream's `dev` branch. In addition to keeping the kernel's copy of zstd up to date, this update was requested by Intel to expose upstream zstd's external match provider API to the kernel, which allows QAT to accelerate the LZ match finding stage. This commit was generated by: export ZSTD=/path/to/repo/zstd/ export LINUX=/path/to/repo/linux/ cd "$ZSTD/contrib/linux-kernel" git checkout v1.5.5-kernel~ make import LINUX="$LINUX" I tested and benchmarked this commit on x86-64 with gcc-13.2.1 on an Intel i9-9900K by running my benchmark scripts that benchmark zstd's performance in btrfs and squashfs compressed filesystems. This commit improves compression speed, especially for higher compression levels, and regresses decompression speed. But the decompression speed regression is addressed by the next patch in the series. Component, Level, C. time delta, size delta, D. time delta Btrfs , 1, -1.9%, +0.0%, +9.5% Btrfs , 3, -5.6%, +0.0%, +7.4% Btrfs , 5, -4.9%, +0.0%, +5.0% Btrfs , 7, -5.7%, +0.0%, +5.2% Btrfs , 9, -5.7%, +0.0%, +4.0% Squashfs , 1, N/A, 0.0%, +11.6% I also boot tested with a zstd compressed kernel on i386 and aarch64. Link: https://github.com/facebook/zstd/commit/58b3ef79eb9f1e6613684ea6e5b89720660ee8b6 Link: https://github.com/facebook/zstd/tree/v1.5.5-kernel Signed-off-by: Nick Terrell <terrelln@fb.com>
2023-11-16 20:52:21 +00:00
rep[0] = offset_1 ? offset_1 : offsetSaved1;
rep[1] = offset_2 ? offset_2 : offsetSaved2;
/* Return the last literals size */
return (size_t)(iend - anchor);
_search_next_long:
/* check prefix long +1 match */
if (idxl1 > prefixLowestIndex) {
if (MEM_read64(matchl1) == MEM_read64(ip1)) {
ip = ip1;
mLength = ZSTD_count(ip+8, matchl1+8, iend) + 8;
offset = (U32)(ip-matchl1);
while (((ip>anchor) & (matchl1>prefixLowest)) && (ip[-1] == matchl1[-1])) { ip--; matchl1--; mLength++; } /* catch up */
goto _match_found;
}
}
/* if no long +1 match, explore the short match we found */
mLength = ZSTD_count(ip+4, matchs0+4, iend) + 4;
offset = (U32)(ip - matchs0);
while (((ip>anchor) & (matchs0>prefixLowest)) && (ip[-1] == matchs0[-1])) { ip--; matchs0--; mLength++; } /* catch up */
/* fall-through */
_match_found: /* requires ip, offset, mLength */
offset_2 = offset_1;
offset_1 = offset;
if (step < 4) {
/* It is unsafe to write this value back to the hashtable when ip1 is
* greater than or equal to the new ip we will have after we're done
* processing this match. Rather than perform that test directly
* (ip1 >= ip + mLength), which costs speed in practice, we do a simpler
* more predictable test. The minmatch even if we take a short match is
* 4 bytes, so as long as step, the distance between ip and ip1
* (initially) is less than 4, we know ip1 < new ip. */
hashLong[hl1] = (U32)(ip1 - base);
}
zstd: import upstream v1.5.5 Import upstream zstd v1.5.5 to expose upstream's QAT integration. Import from upstream commit 58b3ef79 [0]. This is one commit before the tag v1.5.5-kernel [1], which is signed with upstream's signing key. The next patch in the series imports from v1.5.5-kernel, and is included in the series, rather than just importing directly from v1.5.5-kernel, because it is a non-trivial patch applied to improve the kernel's decompression speed. This commit contains 3 backported patches on top of v1.5.5: Two from the Linux copy of zstd, and one from upstream's `dev` branch. In addition to keeping the kernel's copy of zstd up to date, this update was requested by Intel to expose upstream zstd's external match provider API to the kernel, which allows QAT to accelerate the LZ match finding stage. This commit was generated by: export ZSTD=/path/to/repo/zstd/ export LINUX=/path/to/repo/linux/ cd "$ZSTD/contrib/linux-kernel" git checkout v1.5.5-kernel~ make import LINUX="$LINUX" I tested and benchmarked this commit on x86-64 with gcc-13.2.1 on an Intel i9-9900K by running my benchmark scripts that benchmark zstd's performance in btrfs and squashfs compressed filesystems. This commit improves compression speed, especially for higher compression levels, and regresses decompression speed. But the decompression speed regression is addressed by the next patch in the series. Component, Level, C. time delta, size delta, D. time delta Btrfs , 1, -1.9%, +0.0%, +9.5% Btrfs , 3, -5.6%, +0.0%, +7.4% Btrfs , 5, -4.9%, +0.0%, +5.0% Btrfs , 7, -5.7%, +0.0%, +5.2% Btrfs , 9, -5.7%, +0.0%, +4.0% Squashfs , 1, N/A, 0.0%, +11.6% I also boot tested with a zstd compressed kernel on i386 and aarch64. Link: https://github.com/facebook/zstd/commit/58b3ef79eb9f1e6613684ea6e5b89720660ee8b6 Link: https://github.com/facebook/zstd/tree/v1.5.5-kernel Signed-off-by: Nick Terrell <terrelln@fb.com>
2023-11-16 20:52:21 +00:00
ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, iend, OFFSET_TO_OFFBASE(offset), mLength);
_match_stored:
/* match found */
ip += mLength;
anchor = ip;
if (ip <= ilimit) {
/* Complementary insertion */
/* done after iLimit test, as candidates could be > iend-8 */
{ U32 const indexToInsert = curr+2;
hashLong[ZSTD_hashPtr(base+indexToInsert, hBitsL, 8)] = indexToInsert;
hashLong[ZSTD_hashPtr(ip-2, hBitsL, 8)] = (U32)(ip-2-base);
hashSmall[ZSTD_hashPtr(base+indexToInsert, hBitsS, mls)] = indexToInsert;
hashSmall[ZSTD_hashPtr(ip-1, hBitsS, mls)] = (U32)(ip-1-base);
}
/* check immediate repcode */
while ( (ip <= ilimit)
&& ( (offset_2>0)
& (MEM_read32(ip) == MEM_read32(ip - offset_2)) )) {
/* store sequence */
size_t const rLength = ZSTD_count(ip+4, ip+4-offset_2, iend) + 4;
U32 const tmpOff = offset_2; offset_2 = offset_1; offset_1 = tmpOff; /* swap offset_2 <=> offset_1 */
hashSmall[ZSTD_hashPtr(ip, hBitsS, mls)] = (U32)(ip-base);
hashLong[ZSTD_hashPtr(ip, hBitsL, 8)] = (U32)(ip-base);
zstd: import upstream v1.5.5 Import upstream zstd v1.5.5 to expose upstream's QAT integration. Import from upstream commit 58b3ef79 [0]. This is one commit before the tag v1.5.5-kernel [1], which is signed with upstream's signing key. The next patch in the series imports from v1.5.5-kernel, and is included in the series, rather than just importing directly from v1.5.5-kernel, because it is a non-trivial patch applied to improve the kernel's decompression speed. This commit contains 3 backported patches on top of v1.5.5: Two from the Linux copy of zstd, and one from upstream's `dev` branch. In addition to keeping the kernel's copy of zstd up to date, this update was requested by Intel to expose upstream zstd's external match provider API to the kernel, which allows QAT to accelerate the LZ match finding stage. This commit was generated by: export ZSTD=/path/to/repo/zstd/ export LINUX=/path/to/repo/linux/ cd "$ZSTD/contrib/linux-kernel" git checkout v1.5.5-kernel~ make import LINUX="$LINUX" I tested and benchmarked this commit on x86-64 with gcc-13.2.1 on an Intel i9-9900K by running my benchmark scripts that benchmark zstd's performance in btrfs and squashfs compressed filesystems. This commit improves compression speed, especially for higher compression levels, and regresses decompression speed. But the decompression speed regression is addressed by the next patch in the series. Component, Level, C. time delta, size delta, D. time delta Btrfs , 1, -1.9%, +0.0%, +9.5% Btrfs , 3, -5.6%, +0.0%, +7.4% Btrfs , 5, -4.9%, +0.0%, +5.0% Btrfs , 7, -5.7%, +0.0%, +5.2% Btrfs , 9, -5.7%, +0.0%, +4.0% Squashfs , 1, N/A, 0.0%, +11.6% I also boot tested with a zstd compressed kernel on i386 and aarch64. Link: https://github.com/facebook/zstd/commit/58b3ef79eb9f1e6613684ea6e5b89720660ee8b6 Link: https://github.com/facebook/zstd/tree/v1.5.5-kernel Signed-off-by: Nick Terrell <terrelln@fb.com>
2023-11-16 20:52:21 +00:00
ZSTD_storeSeq(seqStore, 0, anchor, iend, REPCODE1_TO_OFFBASE, rLength);
ip += rLength;
anchor = ip;
continue; /* faster when present ... (?) */
}
}
}
}
FORCE_INLINE_TEMPLATE
size_t ZSTD_compressBlock_doubleFast_dictMatchState_generic(
lib: zstd: Upgrade to latest upstream zstd version 1.4.10 Upgrade to the latest upstream zstd version 1.4.10. This patch is 100% generated from upstream zstd commit 20821a46f412 [0]. This patch is very large because it is transitioning from the custom kernel zstd to using upstream directly. The new zstd follows upstreams file structure which is different. Future update patches will be much smaller because they will only contain the changes from one upstream zstd release. As an aid for review I've created a commit [1] that shows the diff between upstream zstd as-is (which doesn't compile), and the zstd code imported in this patch. The verion of zstd in this patch is generated from upstream with changes applied by automation to replace upstreams libc dependencies, remove unnecessary portability macros, replace `/**` comments with `/*` comments, and use the kernel's xxhash instead of bundling it. The benefits of this patch are as follows: 1. Using upstream directly with automated script to generate kernel code. This allows us to update the kernel every upstream release, so the kernel gets the latest bug fixes and performance improvements, and doesn't get 3 years out of date again. The automation and the translated code are tested every upstream commit to ensure it continues to work. 2. Upgrades from a custom zstd based on 1.3.1 to 1.4.10, getting 3 years of performance improvements and bug fixes. On x86_64 I've measured 15% faster BtrFS and SquashFS decompression+read speeds, 35% faster kernel decompression, and 30% faster ZRAM decompression+read speeds. 3. Zstd-1.4.10 supports negative compression levels, which allow zstd to match or subsume lzo's performance. 4. Maintains the same kernel-specific wrapper API, so no callers have to be modified with zstd version updates. One concern that was brought up was stack usage. Upstream zstd had already removed most of its heavy stack usage functions, but I just removed the last functions that allocate arrays on the stack. I've measured the high water mark for both compression and decompression before and after this patch. Decompression is approximately neutral, using about 1.2KB of stack space. Compression levels up to 3 regressed from 1.4KB -> 1.6KB, and higher compression levels regressed from 1.5KB -> 2KB. We've added unit tests upstream to prevent further regression. I believe that this is a reasonable increase, and if it does end up causing problems, this commit can be cleanly reverted, because it only touches zstd. I chose the bulk update instead of replaying upstream commits because there have been ~3500 upstream commits since the 1.3.1 release, zstd wasn't ready to be used in the kernel as-is before a month ago, and not all upstream zstd commits build. The bulk update preserves bisectablity because bugs can be bisected to the zstd version update. At that point the update can be reverted, and we can work with upstream to find and fix the bug. Note that upstream zstd release 1.4.10 doesn't exist yet. I have cut a staging branch at 20821a46f412 [0] and will apply any changes requested to the staging branch. Once we're ready to merge this update I will cut a zstd release at the commit we merge, so we have a known zstd release in the kernel. The implementation of the kernel API is contained in zstd_compress_module.c and zstd_decompress_module.c. [0] https://github.com/facebook/zstd/commit/20821a46f4122f9abd7c7b245d28162dde8129c9 [1] https://github.com/terrelln/linux/commit/e0fa481d0e3df26918da0a13749740a1f6777574 Signed-off-by: Nick Terrell <terrelln@fb.com> Tested By: Paul Jones <paul@pauljones.id.au> Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name> Tested-by: Sedat Dilek <sedat.dilek@gmail.com> # LLVM/Clang v13.0.0 on x86-64 Tested-by: Jean-Denis Girard <jd.girard@sysnux.pf>
2020-09-11 23:37:08 +00:00
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize,
U32 const mls /* template */)
lib: zstd: Upgrade to latest upstream zstd version 1.4.10 Upgrade to the latest upstream zstd version 1.4.10. This patch is 100% generated from upstream zstd commit 20821a46f412 [0]. This patch is very large because it is transitioning from the custom kernel zstd to using upstream directly. The new zstd follows upstreams file structure which is different. Future update patches will be much smaller because they will only contain the changes from one upstream zstd release. As an aid for review I've created a commit [1] that shows the diff between upstream zstd as-is (which doesn't compile), and the zstd code imported in this patch. The verion of zstd in this patch is generated from upstream with changes applied by automation to replace upstreams libc dependencies, remove unnecessary portability macros, replace `/**` comments with `/*` comments, and use the kernel's xxhash instead of bundling it. The benefits of this patch are as follows: 1. Using upstream directly with automated script to generate kernel code. This allows us to update the kernel every upstream release, so the kernel gets the latest bug fixes and performance improvements, and doesn't get 3 years out of date again. The automation and the translated code are tested every upstream commit to ensure it continues to work. 2. Upgrades from a custom zstd based on 1.3.1 to 1.4.10, getting 3 years of performance improvements and bug fixes. On x86_64 I've measured 15% faster BtrFS and SquashFS decompression+read speeds, 35% faster kernel decompression, and 30% faster ZRAM decompression+read speeds. 3. Zstd-1.4.10 supports negative compression levels, which allow zstd to match or subsume lzo's performance. 4. Maintains the same kernel-specific wrapper API, so no callers have to be modified with zstd version updates. One concern that was brought up was stack usage. Upstream zstd had already removed most of its heavy stack usage functions, but I just removed the last functions that allocate arrays on the stack. I've measured the high water mark for both compression and decompression before and after this patch. Decompression is approximately neutral, using about 1.2KB of stack space. Compression levels up to 3 regressed from 1.4KB -> 1.6KB, and higher compression levels regressed from 1.5KB -> 2KB. We've added unit tests upstream to prevent further regression. I believe that this is a reasonable increase, and if it does end up causing problems, this commit can be cleanly reverted, because it only touches zstd. I chose the bulk update instead of replaying upstream commits because there have been ~3500 upstream commits since the 1.3.1 release, zstd wasn't ready to be used in the kernel as-is before a month ago, and not all upstream zstd commits build. The bulk update preserves bisectablity because bugs can be bisected to the zstd version update. At that point the update can be reverted, and we can work with upstream to find and fix the bug. Note that upstream zstd release 1.4.10 doesn't exist yet. I have cut a staging branch at 20821a46f412 [0] and will apply any changes requested to the staging branch. Once we're ready to merge this update I will cut a zstd release at the commit we merge, so we have a known zstd release in the kernel. The implementation of the kernel API is contained in zstd_compress_module.c and zstd_decompress_module.c. [0] https://github.com/facebook/zstd/commit/20821a46f4122f9abd7c7b245d28162dde8129c9 [1] https://github.com/terrelln/linux/commit/e0fa481d0e3df26918da0a13749740a1f6777574 Signed-off-by: Nick Terrell <terrelln@fb.com> Tested By: Paul Jones <paul@pauljones.id.au> Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name> Tested-by: Sedat Dilek <sedat.dilek@gmail.com> # LLVM/Clang v13.0.0 on x86-64 Tested-by: Jean-Denis Girard <jd.girard@sysnux.pf>
2020-09-11 23:37:08 +00:00
{
ZSTD_compressionParameters const* cParams = &ms->cParams;
U32* const hashLong = ms->hashTable;
const U32 hBitsL = cParams->hashLog;
U32* const hashSmall = ms->chainTable;
const U32 hBitsS = cParams->chainLog;
const BYTE* const base = ms->window.base;
const BYTE* const istart = (const BYTE*)src;
const BYTE* ip = istart;
const BYTE* anchor = istart;
const U32 endIndex = (U32)((size_t)(istart - base) + srcSize);
/* presumes that, if there is a dictionary, it must be using Attach mode */
const U32 prefixLowestIndex = ZSTD_getLowestPrefixIndex(ms, endIndex, cParams->windowLog);
const BYTE* const prefixLowest = base + prefixLowestIndex;
const BYTE* const iend = istart + srcSize;
const BYTE* const ilimit = iend - HASH_READ_SIZE;
U32 offset_1=rep[0], offset_2=rep[1];
const ZSTD_matchState_t* const dms = ms->dictMatchState;
const ZSTD_compressionParameters* const dictCParams = &dms->cParams;
const U32* const dictHashLong = dms->hashTable;
const U32* const dictHashSmall = dms->chainTable;
const U32 dictStartIndex = dms->window.dictLimit;
const BYTE* const dictBase = dms->window.base;
const BYTE* const dictStart = dictBase + dictStartIndex;
const BYTE* const dictEnd = dms->window.nextSrc;
const U32 dictIndexDelta = prefixLowestIndex - (U32)(dictEnd - dictBase);
zstd: import upstream v1.5.5 Import upstream zstd v1.5.5 to expose upstream's QAT integration. Import from upstream commit 58b3ef79 [0]. This is one commit before the tag v1.5.5-kernel [1], which is signed with upstream's signing key. The next patch in the series imports from v1.5.5-kernel, and is included in the series, rather than just importing directly from v1.5.5-kernel, because it is a non-trivial patch applied to improve the kernel's decompression speed. This commit contains 3 backported patches on top of v1.5.5: Two from the Linux copy of zstd, and one from upstream's `dev` branch. In addition to keeping the kernel's copy of zstd up to date, this update was requested by Intel to expose upstream zstd's external match provider API to the kernel, which allows QAT to accelerate the LZ match finding stage. This commit was generated by: export ZSTD=/path/to/repo/zstd/ export LINUX=/path/to/repo/linux/ cd "$ZSTD/contrib/linux-kernel" git checkout v1.5.5-kernel~ make import LINUX="$LINUX" I tested and benchmarked this commit on x86-64 with gcc-13.2.1 on an Intel i9-9900K by running my benchmark scripts that benchmark zstd's performance in btrfs and squashfs compressed filesystems. This commit improves compression speed, especially for higher compression levels, and regresses decompression speed. But the decompression speed regression is addressed by the next patch in the series. Component, Level, C. time delta, size delta, D. time delta Btrfs , 1, -1.9%, +0.0%, +9.5% Btrfs , 3, -5.6%, +0.0%, +7.4% Btrfs , 5, -4.9%, +0.0%, +5.0% Btrfs , 7, -5.7%, +0.0%, +5.2% Btrfs , 9, -5.7%, +0.0%, +4.0% Squashfs , 1, N/A, 0.0%, +11.6% I also boot tested with a zstd compressed kernel on i386 and aarch64. Link: https://github.com/facebook/zstd/commit/58b3ef79eb9f1e6613684ea6e5b89720660ee8b6 Link: https://github.com/facebook/zstd/tree/v1.5.5-kernel Signed-off-by: Nick Terrell <terrelln@fb.com>
2023-11-16 20:52:21 +00:00
const U32 dictHBitsL = dictCParams->hashLog + ZSTD_SHORT_CACHE_TAG_BITS;
const U32 dictHBitsS = dictCParams->chainLog + ZSTD_SHORT_CACHE_TAG_BITS;
lib: zstd: Upgrade to latest upstream zstd version 1.4.10 Upgrade to the latest upstream zstd version 1.4.10. This patch is 100% generated from upstream zstd commit 20821a46f412 [0]. This patch is very large because it is transitioning from the custom kernel zstd to using upstream directly. The new zstd follows upstreams file structure which is different. Future update patches will be much smaller because they will only contain the changes from one upstream zstd release. As an aid for review I've created a commit [1] that shows the diff between upstream zstd as-is (which doesn't compile), and the zstd code imported in this patch. The verion of zstd in this patch is generated from upstream with changes applied by automation to replace upstreams libc dependencies, remove unnecessary portability macros, replace `/**` comments with `/*` comments, and use the kernel's xxhash instead of bundling it. The benefits of this patch are as follows: 1. Using upstream directly with automated script to generate kernel code. This allows us to update the kernel every upstream release, so the kernel gets the latest bug fixes and performance improvements, and doesn't get 3 years out of date again. The automation and the translated code are tested every upstream commit to ensure it continues to work. 2. Upgrades from a custom zstd based on 1.3.1 to 1.4.10, getting 3 years of performance improvements and bug fixes. On x86_64 I've measured 15% faster BtrFS and SquashFS decompression+read speeds, 35% faster kernel decompression, and 30% faster ZRAM decompression+read speeds. 3. Zstd-1.4.10 supports negative compression levels, which allow zstd to match or subsume lzo's performance. 4. Maintains the same kernel-specific wrapper API, so no callers have to be modified with zstd version updates. One concern that was brought up was stack usage. Upstream zstd had already removed most of its heavy stack usage functions, but I just removed the last functions that allocate arrays on the stack. I've measured the high water mark for both compression and decompression before and after this patch. Decompression is approximately neutral, using about 1.2KB of stack space. Compression levels up to 3 regressed from 1.4KB -> 1.6KB, and higher compression levels regressed from 1.5KB -> 2KB. We've added unit tests upstream to prevent further regression. I believe that this is a reasonable increase, and if it does end up causing problems, this commit can be cleanly reverted, because it only touches zstd. I chose the bulk update instead of replaying upstream commits because there have been ~3500 upstream commits since the 1.3.1 release, zstd wasn't ready to be used in the kernel as-is before a month ago, and not all upstream zstd commits build. The bulk update preserves bisectablity because bugs can be bisected to the zstd version update. At that point the update can be reverted, and we can work with upstream to find and fix the bug. Note that upstream zstd release 1.4.10 doesn't exist yet. I have cut a staging branch at 20821a46f412 [0] and will apply any changes requested to the staging branch. Once we're ready to merge this update I will cut a zstd release at the commit we merge, so we have a known zstd release in the kernel. The implementation of the kernel API is contained in zstd_compress_module.c and zstd_decompress_module.c. [0] https://github.com/facebook/zstd/commit/20821a46f4122f9abd7c7b245d28162dde8129c9 [1] https://github.com/terrelln/linux/commit/e0fa481d0e3df26918da0a13749740a1f6777574 Signed-off-by: Nick Terrell <terrelln@fb.com> Tested By: Paul Jones <paul@pauljones.id.au> Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name> Tested-by: Sedat Dilek <sedat.dilek@gmail.com> # LLVM/Clang v13.0.0 on x86-64 Tested-by: Jean-Denis Girard <jd.girard@sysnux.pf>
2020-09-11 23:37:08 +00:00
const U32 dictAndPrefixLength = (U32)((ip - prefixLowest) + (dictEnd - dictStart));
DEBUGLOG(5, "ZSTD_compressBlock_doubleFast_dictMatchState_generic");
lib: zstd: Upgrade to latest upstream zstd version 1.4.10 Upgrade to the latest upstream zstd version 1.4.10. This patch is 100% generated from upstream zstd commit 20821a46f412 [0]. This patch is very large because it is transitioning from the custom kernel zstd to using upstream directly. The new zstd follows upstreams file structure which is different. Future update patches will be much smaller because they will only contain the changes from one upstream zstd release. As an aid for review I've created a commit [1] that shows the diff between upstream zstd as-is (which doesn't compile), and the zstd code imported in this patch. The verion of zstd in this patch is generated from upstream with changes applied by automation to replace upstreams libc dependencies, remove unnecessary portability macros, replace `/**` comments with `/*` comments, and use the kernel's xxhash instead of bundling it. The benefits of this patch are as follows: 1. Using upstream directly with automated script to generate kernel code. This allows us to update the kernel every upstream release, so the kernel gets the latest bug fixes and performance improvements, and doesn't get 3 years out of date again. The automation and the translated code are tested every upstream commit to ensure it continues to work. 2. Upgrades from a custom zstd based on 1.3.1 to 1.4.10, getting 3 years of performance improvements and bug fixes. On x86_64 I've measured 15% faster BtrFS and SquashFS decompression+read speeds, 35% faster kernel decompression, and 30% faster ZRAM decompression+read speeds. 3. Zstd-1.4.10 supports negative compression levels, which allow zstd to match or subsume lzo's performance. 4. Maintains the same kernel-specific wrapper API, so no callers have to be modified with zstd version updates. One concern that was brought up was stack usage. Upstream zstd had already removed most of its heavy stack usage functions, but I just removed the last functions that allocate arrays on the stack. I've measured the high water mark for both compression and decompression before and after this patch. Decompression is approximately neutral, using about 1.2KB of stack space. Compression levels up to 3 regressed from 1.4KB -> 1.6KB, and higher compression levels regressed from 1.5KB -> 2KB. We've added unit tests upstream to prevent further regression. I believe that this is a reasonable increase, and if it does end up causing problems, this commit can be cleanly reverted, because it only touches zstd. I chose the bulk update instead of replaying upstream commits because there have been ~3500 upstream commits since the 1.3.1 release, zstd wasn't ready to be used in the kernel as-is before a month ago, and not all upstream zstd commits build. The bulk update preserves bisectablity because bugs can be bisected to the zstd version update. At that point the update can be reverted, and we can work with upstream to find and fix the bug. Note that upstream zstd release 1.4.10 doesn't exist yet. I have cut a staging branch at 20821a46f412 [0] and will apply any changes requested to the staging branch. Once we're ready to merge this update I will cut a zstd release at the commit we merge, so we have a known zstd release in the kernel. The implementation of the kernel API is contained in zstd_compress_module.c and zstd_decompress_module.c. [0] https://github.com/facebook/zstd/commit/20821a46f4122f9abd7c7b245d28162dde8129c9 [1] https://github.com/terrelln/linux/commit/e0fa481d0e3df26918da0a13749740a1f6777574 Signed-off-by: Nick Terrell <terrelln@fb.com> Tested By: Paul Jones <paul@pauljones.id.au> Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name> Tested-by: Sedat Dilek <sedat.dilek@gmail.com> # LLVM/Clang v13.0.0 on x86-64 Tested-by: Jean-Denis Girard <jd.girard@sysnux.pf>
2020-09-11 23:37:08 +00:00
/* if a dictionary is attached, it must be within window range */
assert(ms->window.dictLimit + (1U << cParams->windowLog) >= endIndex);
lib: zstd: Upgrade to latest upstream zstd version 1.4.10 Upgrade to the latest upstream zstd version 1.4.10. This patch is 100% generated from upstream zstd commit 20821a46f412 [0]. This patch is very large because it is transitioning from the custom kernel zstd to using upstream directly. The new zstd follows upstreams file structure which is different. Future update patches will be much smaller because they will only contain the changes from one upstream zstd release. As an aid for review I've created a commit [1] that shows the diff between upstream zstd as-is (which doesn't compile), and the zstd code imported in this patch. The verion of zstd in this patch is generated from upstream with changes applied by automation to replace upstreams libc dependencies, remove unnecessary portability macros, replace `/**` comments with `/*` comments, and use the kernel's xxhash instead of bundling it. The benefits of this patch are as follows: 1. Using upstream directly with automated script to generate kernel code. This allows us to update the kernel every upstream release, so the kernel gets the latest bug fixes and performance improvements, and doesn't get 3 years out of date again. The automation and the translated code are tested every upstream commit to ensure it continues to work. 2. Upgrades from a custom zstd based on 1.3.1 to 1.4.10, getting 3 years of performance improvements and bug fixes. On x86_64 I've measured 15% faster BtrFS and SquashFS decompression+read speeds, 35% faster kernel decompression, and 30% faster ZRAM decompression+read speeds. 3. Zstd-1.4.10 supports negative compression levels, which allow zstd to match or subsume lzo's performance. 4. Maintains the same kernel-specific wrapper API, so no callers have to be modified with zstd version updates. One concern that was brought up was stack usage. Upstream zstd had already removed most of its heavy stack usage functions, but I just removed the last functions that allocate arrays on the stack. I've measured the high water mark for both compression and decompression before and after this patch. Decompression is approximately neutral, using about 1.2KB of stack space. Compression levels up to 3 regressed from 1.4KB -> 1.6KB, and higher compression levels regressed from 1.5KB -> 2KB. We've added unit tests upstream to prevent further regression. I believe that this is a reasonable increase, and if it does end up causing problems, this commit can be cleanly reverted, because it only touches zstd. I chose the bulk update instead of replaying upstream commits because there have been ~3500 upstream commits since the 1.3.1 release, zstd wasn't ready to be used in the kernel as-is before a month ago, and not all upstream zstd commits build. The bulk update preserves bisectablity because bugs can be bisected to the zstd version update. At that point the update can be reverted, and we can work with upstream to find and fix the bug. Note that upstream zstd release 1.4.10 doesn't exist yet. I have cut a staging branch at 20821a46f412 [0] and will apply any changes requested to the staging branch. Once we're ready to merge this update I will cut a zstd release at the commit we merge, so we have a known zstd release in the kernel. The implementation of the kernel API is contained in zstd_compress_module.c and zstd_decompress_module.c. [0] https://github.com/facebook/zstd/commit/20821a46f4122f9abd7c7b245d28162dde8129c9 [1] https://github.com/terrelln/linux/commit/e0fa481d0e3df26918da0a13749740a1f6777574 Signed-off-by: Nick Terrell <terrelln@fb.com> Tested By: Paul Jones <paul@pauljones.id.au> Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name> Tested-by: Sedat Dilek <sedat.dilek@gmail.com> # LLVM/Clang v13.0.0 on x86-64 Tested-by: Jean-Denis Girard <jd.girard@sysnux.pf>
2020-09-11 23:37:08 +00:00
zstd: import upstream v1.5.5 Import upstream zstd v1.5.5 to expose upstream's QAT integration. Import from upstream commit 58b3ef79 [0]. This is one commit before the tag v1.5.5-kernel [1], which is signed with upstream's signing key. The next patch in the series imports from v1.5.5-kernel, and is included in the series, rather than just importing directly from v1.5.5-kernel, because it is a non-trivial patch applied to improve the kernel's decompression speed. This commit contains 3 backported patches on top of v1.5.5: Two from the Linux copy of zstd, and one from upstream's `dev` branch. In addition to keeping the kernel's copy of zstd up to date, this update was requested by Intel to expose upstream zstd's external match provider API to the kernel, which allows QAT to accelerate the LZ match finding stage. This commit was generated by: export ZSTD=/path/to/repo/zstd/ export LINUX=/path/to/repo/linux/ cd "$ZSTD/contrib/linux-kernel" git checkout v1.5.5-kernel~ make import LINUX="$LINUX" I tested and benchmarked this commit on x86-64 with gcc-13.2.1 on an Intel i9-9900K by running my benchmark scripts that benchmark zstd's performance in btrfs and squashfs compressed filesystems. This commit improves compression speed, especially for higher compression levels, and regresses decompression speed. But the decompression speed regression is addressed by the next patch in the series. Component, Level, C. time delta, size delta, D. time delta Btrfs , 1, -1.9%, +0.0%, +9.5% Btrfs , 3, -5.6%, +0.0%, +7.4% Btrfs , 5, -4.9%, +0.0%, +5.0% Btrfs , 7, -5.7%, +0.0%, +5.2% Btrfs , 9, -5.7%, +0.0%, +4.0% Squashfs , 1, N/A, 0.0%, +11.6% I also boot tested with a zstd compressed kernel on i386 and aarch64. Link: https://github.com/facebook/zstd/commit/58b3ef79eb9f1e6613684ea6e5b89720660ee8b6 Link: https://github.com/facebook/zstd/tree/v1.5.5-kernel Signed-off-by: Nick Terrell <terrelln@fb.com>
2023-11-16 20:52:21 +00:00
if (ms->prefetchCDictTables) {
size_t const hashTableBytes = (((size_t)1) << dictCParams->hashLog) * sizeof(U32);
size_t const chainTableBytes = (((size_t)1) << dictCParams->chainLog) * sizeof(U32);
PREFETCH_AREA(dictHashLong, hashTableBytes)
PREFETCH_AREA(dictHashSmall, chainTableBytes)
}
lib: zstd: Upgrade to latest upstream zstd version 1.4.10 Upgrade to the latest upstream zstd version 1.4.10. This patch is 100% generated from upstream zstd commit 20821a46f412 [0]. This patch is very large because it is transitioning from the custom kernel zstd to using upstream directly. The new zstd follows upstreams file structure which is different. Future update patches will be much smaller because they will only contain the changes from one upstream zstd release. As an aid for review I've created a commit [1] that shows the diff between upstream zstd as-is (which doesn't compile), and the zstd code imported in this patch. The verion of zstd in this patch is generated from upstream with changes applied by automation to replace upstreams libc dependencies, remove unnecessary portability macros, replace `/**` comments with `/*` comments, and use the kernel's xxhash instead of bundling it. The benefits of this patch are as follows: 1. Using upstream directly with automated script to generate kernel code. This allows us to update the kernel every upstream release, so the kernel gets the latest bug fixes and performance improvements, and doesn't get 3 years out of date again. The automation and the translated code are tested every upstream commit to ensure it continues to work. 2. Upgrades from a custom zstd based on 1.3.1 to 1.4.10, getting 3 years of performance improvements and bug fixes. On x86_64 I've measured 15% faster BtrFS and SquashFS decompression+read speeds, 35% faster kernel decompression, and 30% faster ZRAM decompression+read speeds. 3. Zstd-1.4.10 supports negative compression levels, which allow zstd to match or subsume lzo's performance. 4. Maintains the same kernel-specific wrapper API, so no callers have to be modified with zstd version updates. One concern that was brought up was stack usage. Upstream zstd had already removed most of its heavy stack usage functions, but I just removed the last functions that allocate arrays on the stack. I've measured the high water mark for both compression and decompression before and after this patch. Decompression is approximately neutral, using about 1.2KB of stack space. Compression levels up to 3 regressed from 1.4KB -> 1.6KB, and higher compression levels regressed from 1.5KB -> 2KB. We've added unit tests upstream to prevent further regression. I believe that this is a reasonable increase, and if it does end up causing problems, this commit can be cleanly reverted, because it only touches zstd. I chose the bulk update instead of replaying upstream commits because there have been ~3500 upstream commits since the 1.3.1 release, zstd wasn't ready to be used in the kernel as-is before a month ago, and not all upstream zstd commits build. The bulk update preserves bisectablity because bugs can be bisected to the zstd version update. At that point the update can be reverted, and we can work with upstream to find and fix the bug. Note that upstream zstd release 1.4.10 doesn't exist yet. I have cut a staging branch at 20821a46f412 [0] and will apply any changes requested to the staging branch. Once we're ready to merge this update I will cut a zstd release at the commit we merge, so we have a known zstd release in the kernel. The implementation of the kernel API is contained in zstd_compress_module.c and zstd_decompress_module.c. [0] https://github.com/facebook/zstd/commit/20821a46f4122f9abd7c7b245d28162dde8129c9 [1] https://github.com/terrelln/linux/commit/e0fa481d0e3df26918da0a13749740a1f6777574 Signed-off-by: Nick Terrell <terrelln@fb.com> Tested By: Paul Jones <paul@pauljones.id.au> Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name> Tested-by: Sedat Dilek <sedat.dilek@gmail.com> # LLVM/Clang v13.0.0 on x86-64 Tested-by: Jean-Denis Girard <jd.girard@sysnux.pf>
2020-09-11 23:37:08 +00:00
/* init */
ip += (dictAndPrefixLength == 0);
/* dictMatchState repCode checks don't currently handle repCode == 0
* disabling. */
assert(offset_1 <= dictAndPrefixLength);
assert(offset_2 <= dictAndPrefixLength);
lib: zstd: Upgrade to latest upstream zstd version 1.4.10 Upgrade to the latest upstream zstd version 1.4.10. This patch is 100% generated from upstream zstd commit 20821a46f412 [0]. This patch is very large because it is transitioning from the custom kernel zstd to using upstream directly. The new zstd follows upstreams file structure which is different. Future update patches will be much smaller because they will only contain the changes from one upstream zstd release. As an aid for review I've created a commit [1] that shows the diff between upstream zstd as-is (which doesn't compile), and the zstd code imported in this patch. The verion of zstd in this patch is generated from upstream with changes applied by automation to replace upstreams libc dependencies, remove unnecessary portability macros, replace `/**` comments with `/*` comments, and use the kernel's xxhash instead of bundling it. The benefits of this patch are as follows: 1. Using upstream directly with automated script to generate kernel code. This allows us to update the kernel every upstream release, so the kernel gets the latest bug fixes and performance improvements, and doesn't get 3 years out of date again. The automation and the translated code are tested every upstream commit to ensure it continues to work. 2. Upgrades from a custom zstd based on 1.3.1 to 1.4.10, getting 3 years of performance improvements and bug fixes. On x86_64 I've measured 15% faster BtrFS and SquashFS decompression+read speeds, 35% faster kernel decompression, and 30% faster ZRAM decompression+read speeds. 3. Zstd-1.4.10 supports negative compression levels, which allow zstd to match or subsume lzo's performance. 4. Maintains the same kernel-specific wrapper API, so no callers have to be modified with zstd version updates. One concern that was brought up was stack usage. Upstream zstd had already removed most of its heavy stack usage functions, but I just removed the last functions that allocate arrays on the stack. I've measured the high water mark for both compression and decompression before and after this patch. Decompression is approximately neutral, using about 1.2KB of stack space. Compression levels up to 3 regressed from 1.4KB -> 1.6KB, and higher compression levels regressed from 1.5KB -> 2KB. We've added unit tests upstream to prevent further regression. I believe that this is a reasonable increase, and if it does end up causing problems, this commit can be cleanly reverted, because it only touches zstd. I chose the bulk update instead of replaying upstream commits because there have been ~3500 upstream commits since the 1.3.1 release, zstd wasn't ready to be used in the kernel as-is before a month ago, and not all upstream zstd commits build. The bulk update preserves bisectablity because bugs can be bisected to the zstd version update. At that point the update can be reverted, and we can work with upstream to find and fix the bug. Note that upstream zstd release 1.4.10 doesn't exist yet. I have cut a staging branch at 20821a46f412 [0] and will apply any changes requested to the staging branch. Once we're ready to merge this update I will cut a zstd release at the commit we merge, so we have a known zstd release in the kernel. The implementation of the kernel API is contained in zstd_compress_module.c and zstd_decompress_module.c. [0] https://github.com/facebook/zstd/commit/20821a46f4122f9abd7c7b245d28162dde8129c9 [1] https://github.com/terrelln/linux/commit/e0fa481d0e3df26918da0a13749740a1f6777574 Signed-off-by: Nick Terrell <terrelln@fb.com> Tested By: Paul Jones <paul@pauljones.id.au> Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name> Tested-by: Sedat Dilek <sedat.dilek@gmail.com> # LLVM/Clang v13.0.0 on x86-64 Tested-by: Jean-Denis Girard <jd.girard@sysnux.pf>
2020-09-11 23:37:08 +00:00
/* Main Search Loop */
while (ip < ilimit) { /* < instead of <=, because repcode check at (ip+1) */
size_t mLength;
U32 offset;
size_t const h2 = ZSTD_hashPtr(ip, hBitsL, 8);
size_t const h = ZSTD_hashPtr(ip, hBitsS, mls);
zstd: import upstream v1.5.5 Import upstream zstd v1.5.5 to expose upstream's QAT integration. Import from upstream commit 58b3ef79 [0]. This is one commit before the tag v1.5.5-kernel [1], which is signed with upstream's signing key. The next patch in the series imports from v1.5.5-kernel, and is included in the series, rather than just importing directly from v1.5.5-kernel, because it is a non-trivial patch applied to improve the kernel's decompression speed. This commit contains 3 backported patches on top of v1.5.5: Two from the Linux copy of zstd, and one from upstream's `dev` branch. In addition to keeping the kernel's copy of zstd up to date, this update was requested by Intel to expose upstream zstd's external match provider API to the kernel, which allows QAT to accelerate the LZ match finding stage. This commit was generated by: export ZSTD=/path/to/repo/zstd/ export LINUX=/path/to/repo/linux/ cd "$ZSTD/contrib/linux-kernel" git checkout v1.5.5-kernel~ make import LINUX="$LINUX" I tested and benchmarked this commit on x86-64 with gcc-13.2.1 on an Intel i9-9900K by running my benchmark scripts that benchmark zstd's performance in btrfs and squashfs compressed filesystems. This commit improves compression speed, especially for higher compression levels, and regresses decompression speed. But the decompression speed regression is addressed by the next patch in the series. Component, Level, C. time delta, size delta, D. time delta Btrfs , 1, -1.9%, +0.0%, +9.5% Btrfs , 3, -5.6%, +0.0%, +7.4% Btrfs , 5, -4.9%, +0.0%, +5.0% Btrfs , 7, -5.7%, +0.0%, +5.2% Btrfs , 9, -5.7%, +0.0%, +4.0% Squashfs , 1, N/A, 0.0%, +11.6% I also boot tested with a zstd compressed kernel on i386 and aarch64. Link: https://github.com/facebook/zstd/commit/58b3ef79eb9f1e6613684ea6e5b89720660ee8b6 Link: https://github.com/facebook/zstd/tree/v1.5.5-kernel Signed-off-by: Nick Terrell <terrelln@fb.com>
2023-11-16 20:52:21 +00:00
size_t const dictHashAndTagL = ZSTD_hashPtr(ip, dictHBitsL, 8);
size_t const dictHashAndTagS = ZSTD_hashPtr(ip, dictHBitsS, mls);
U32 const dictMatchIndexAndTagL = dictHashLong[dictHashAndTagL >> ZSTD_SHORT_CACHE_TAG_BITS];
U32 const dictMatchIndexAndTagS = dictHashSmall[dictHashAndTagS >> ZSTD_SHORT_CACHE_TAG_BITS];
int const dictTagsMatchL = ZSTD_comparePackedTags(dictMatchIndexAndTagL, dictHashAndTagL);
int const dictTagsMatchS = ZSTD_comparePackedTags(dictMatchIndexAndTagS, dictHashAndTagS);
lib: zstd: Upgrade to latest upstream zstd version 1.4.10 Upgrade to the latest upstream zstd version 1.4.10. This patch is 100% generated from upstream zstd commit 20821a46f412 [0]. This patch is very large because it is transitioning from the custom kernel zstd to using upstream directly. The new zstd follows upstreams file structure which is different. Future update patches will be much smaller because they will only contain the changes from one upstream zstd release. As an aid for review I've created a commit [1] that shows the diff between upstream zstd as-is (which doesn't compile), and the zstd code imported in this patch. The verion of zstd in this patch is generated from upstream with changes applied by automation to replace upstreams libc dependencies, remove unnecessary portability macros, replace `/**` comments with `/*` comments, and use the kernel's xxhash instead of bundling it. The benefits of this patch are as follows: 1. Using upstream directly with automated script to generate kernel code. This allows us to update the kernel every upstream release, so the kernel gets the latest bug fixes and performance improvements, and doesn't get 3 years out of date again. The automation and the translated code are tested every upstream commit to ensure it continues to work. 2. Upgrades from a custom zstd based on 1.3.1 to 1.4.10, getting 3 years of performance improvements and bug fixes. On x86_64 I've measured 15% faster BtrFS and SquashFS decompression+read speeds, 35% faster kernel decompression, and 30% faster ZRAM decompression+read speeds. 3. Zstd-1.4.10 supports negative compression levels, which allow zstd to match or subsume lzo's performance. 4. Maintains the same kernel-specific wrapper API, so no callers have to be modified with zstd version updates. One concern that was brought up was stack usage. Upstream zstd had already removed most of its heavy stack usage functions, but I just removed the last functions that allocate arrays on the stack. I've measured the high water mark for both compression and decompression before and after this patch. Decompression is approximately neutral, using about 1.2KB of stack space. Compression levels up to 3 regressed from 1.4KB -> 1.6KB, and higher compression levels regressed from 1.5KB -> 2KB. We've added unit tests upstream to prevent further regression. I believe that this is a reasonable increase, and if it does end up causing problems, this commit can be cleanly reverted, because it only touches zstd. I chose the bulk update instead of replaying upstream commits because there have been ~3500 upstream commits since the 1.3.1 release, zstd wasn't ready to be used in the kernel as-is before a month ago, and not all upstream zstd commits build. The bulk update preserves bisectablity because bugs can be bisected to the zstd version update. At that point the update can be reverted, and we can work with upstream to find and fix the bug. Note that upstream zstd release 1.4.10 doesn't exist yet. I have cut a staging branch at 20821a46f412 [0] and will apply any changes requested to the staging branch. Once we're ready to merge this update I will cut a zstd release at the commit we merge, so we have a known zstd release in the kernel. The implementation of the kernel API is contained in zstd_compress_module.c and zstd_decompress_module.c. [0] https://github.com/facebook/zstd/commit/20821a46f4122f9abd7c7b245d28162dde8129c9 [1] https://github.com/terrelln/linux/commit/e0fa481d0e3df26918da0a13749740a1f6777574 Signed-off-by: Nick Terrell <terrelln@fb.com> Tested By: Paul Jones <paul@pauljones.id.au> Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name> Tested-by: Sedat Dilek <sedat.dilek@gmail.com> # LLVM/Clang v13.0.0 on x86-64 Tested-by: Jean-Denis Girard <jd.girard@sysnux.pf>
2020-09-11 23:37:08 +00:00
U32 const curr = (U32)(ip-base);
U32 const matchIndexL = hashLong[h2];
U32 matchIndexS = hashSmall[h];
const BYTE* matchLong = base + matchIndexL;
const BYTE* match = base + matchIndexS;
const U32 repIndex = curr + 1 - offset_1;
const BYTE* repMatch = (repIndex < prefixLowestIndex) ?
lib: zstd: Upgrade to latest upstream zstd version 1.4.10 Upgrade to the latest upstream zstd version 1.4.10. This patch is 100% generated from upstream zstd commit 20821a46f412 [0]. This patch is very large because it is transitioning from the custom kernel zstd to using upstream directly. The new zstd follows upstreams file structure which is different. Future update patches will be much smaller because they will only contain the changes from one upstream zstd release. As an aid for review I've created a commit [1] that shows the diff between upstream zstd as-is (which doesn't compile), and the zstd code imported in this patch. The verion of zstd in this patch is generated from upstream with changes applied by automation to replace upstreams libc dependencies, remove unnecessary portability macros, replace `/**` comments with `/*` comments, and use the kernel's xxhash instead of bundling it. The benefits of this patch are as follows: 1. Using upstream directly with automated script to generate kernel code. This allows us to update the kernel every upstream release, so the kernel gets the latest bug fixes and performance improvements, and doesn't get 3 years out of date again. The automation and the translated code are tested every upstream commit to ensure it continues to work. 2. Upgrades from a custom zstd based on 1.3.1 to 1.4.10, getting 3 years of performance improvements and bug fixes. On x86_64 I've measured 15% faster BtrFS and SquashFS decompression+read speeds, 35% faster kernel decompression, and 30% faster ZRAM decompression+read speeds. 3. Zstd-1.4.10 supports negative compression levels, which allow zstd to match or subsume lzo's performance. 4. Maintains the same kernel-specific wrapper API, so no callers have to be modified with zstd version updates. One concern that was brought up was stack usage. Upstream zstd had already removed most of its heavy stack usage functions, but I just removed the last functions that allocate arrays on the stack. I've measured the high water mark for both compression and decompression before and after this patch. Decompression is approximately neutral, using about 1.2KB of stack space. Compression levels up to 3 regressed from 1.4KB -> 1.6KB, and higher compression levels regressed from 1.5KB -> 2KB. We've added unit tests upstream to prevent further regression. I believe that this is a reasonable increase, and if it does end up causing problems, this commit can be cleanly reverted, because it only touches zstd. I chose the bulk update instead of replaying upstream commits because there have been ~3500 upstream commits since the 1.3.1 release, zstd wasn't ready to be used in the kernel as-is before a month ago, and not all upstream zstd commits build. The bulk update preserves bisectablity because bugs can be bisected to the zstd version update. At that point the update can be reverted, and we can work with upstream to find and fix the bug. Note that upstream zstd release 1.4.10 doesn't exist yet. I have cut a staging branch at 20821a46f412 [0] and will apply any changes requested to the staging branch. Once we're ready to merge this update I will cut a zstd release at the commit we merge, so we have a known zstd release in the kernel. The implementation of the kernel API is contained in zstd_compress_module.c and zstd_decompress_module.c. [0] https://github.com/facebook/zstd/commit/20821a46f4122f9abd7c7b245d28162dde8129c9 [1] https://github.com/terrelln/linux/commit/e0fa481d0e3df26918da0a13749740a1f6777574 Signed-off-by: Nick Terrell <terrelln@fb.com> Tested By: Paul Jones <paul@pauljones.id.au> Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name> Tested-by: Sedat Dilek <sedat.dilek@gmail.com> # LLVM/Clang v13.0.0 on x86-64 Tested-by: Jean-Denis Girard <jd.girard@sysnux.pf>
2020-09-11 23:37:08 +00:00
dictBase + (repIndex - dictIndexDelta) :
base + repIndex;
hashLong[h2] = hashSmall[h] = curr; /* update hash tables */
/* check repcode */
if (((U32)((prefixLowestIndex-1) - repIndex) >= 3 /* intentional underflow */)
lib: zstd: Upgrade to latest upstream zstd version 1.4.10 Upgrade to the latest upstream zstd version 1.4.10. This patch is 100% generated from upstream zstd commit 20821a46f412 [0]. This patch is very large because it is transitioning from the custom kernel zstd to using upstream directly. The new zstd follows upstreams file structure which is different. Future update patches will be much smaller because they will only contain the changes from one upstream zstd release. As an aid for review I've created a commit [1] that shows the diff between upstream zstd as-is (which doesn't compile), and the zstd code imported in this patch. The verion of zstd in this patch is generated from upstream with changes applied by automation to replace upstreams libc dependencies, remove unnecessary portability macros, replace `/**` comments with `/*` comments, and use the kernel's xxhash instead of bundling it. The benefits of this patch are as follows: 1. Using upstream directly with automated script to generate kernel code. This allows us to update the kernel every upstream release, so the kernel gets the latest bug fixes and performance improvements, and doesn't get 3 years out of date again. The automation and the translated code are tested every upstream commit to ensure it continues to work. 2. Upgrades from a custom zstd based on 1.3.1 to 1.4.10, getting 3 years of performance improvements and bug fixes. On x86_64 I've measured 15% faster BtrFS and SquashFS decompression+read speeds, 35% faster kernel decompression, and 30% faster ZRAM decompression+read speeds. 3. Zstd-1.4.10 supports negative compression levels, which allow zstd to match or subsume lzo's performance. 4. Maintains the same kernel-specific wrapper API, so no callers have to be modified with zstd version updates. One concern that was brought up was stack usage. Upstream zstd had already removed most of its heavy stack usage functions, but I just removed the last functions that allocate arrays on the stack. I've measured the high water mark for both compression and decompression before and after this patch. Decompression is approximately neutral, using about 1.2KB of stack space. Compression levels up to 3 regressed from 1.4KB -> 1.6KB, and higher compression levels regressed from 1.5KB -> 2KB. We've added unit tests upstream to prevent further regression. I believe that this is a reasonable increase, and if it does end up causing problems, this commit can be cleanly reverted, because it only touches zstd. I chose the bulk update instead of replaying upstream commits because there have been ~3500 upstream commits since the 1.3.1 release, zstd wasn't ready to be used in the kernel as-is before a month ago, and not all upstream zstd commits build. The bulk update preserves bisectablity because bugs can be bisected to the zstd version update. At that point the update can be reverted, and we can work with upstream to find and fix the bug. Note that upstream zstd release 1.4.10 doesn't exist yet. I have cut a staging branch at 20821a46f412 [0] and will apply any changes requested to the staging branch. Once we're ready to merge this update I will cut a zstd release at the commit we merge, so we have a known zstd release in the kernel. The implementation of the kernel API is contained in zstd_compress_module.c and zstd_decompress_module.c. [0] https://github.com/facebook/zstd/commit/20821a46f4122f9abd7c7b245d28162dde8129c9 [1] https://github.com/terrelln/linux/commit/e0fa481d0e3df26918da0a13749740a1f6777574 Signed-off-by: Nick Terrell <terrelln@fb.com> Tested By: Paul Jones <paul@pauljones.id.au> Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name> Tested-by: Sedat Dilek <sedat.dilek@gmail.com> # LLVM/Clang v13.0.0 on x86-64 Tested-by: Jean-Denis Girard <jd.girard@sysnux.pf>
2020-09-11 23:37:08 +00:00
&& (MEM_read32(repMatch) == MEM_read32(ip+1)) ) {
const BYTE* repMatchEnd = repIndex < prefixLowestIndex ? dictEnd : iend;
mLength = ZSTD_count_2segments(ip+1+4, repMatch+4, iend, repMatchEnd, prefixLowest) + 4;
ip++;
zstd: import upstream v1.5.5 Import upstream zstd v1.5.5 to expose upstream's QAT integration. Import from upstream commit 58b3ef79 [0]. This is one commit before the tag v1.5.5-kernel [1], which is signed with upstream's signing key. The next patch in the series imports from v1.5.5-kernel, and is included in the series, rather than just importing directly from v1.5.5-kernel, because it is a non-trivial patch applied to improve the kernel's decompression speed. This commit contains 3 backported patches on top of v1.5.5: Two from the Linux copy of zstd, and one from upstream's `dev` branch. In addition to keeping the kernel's copy of zstd up to date, this update was requested by Intel to expose upstream zstd's external match provider API to the kernel, which allows QAT to accelerate the LZ match finding stage. This commit was generated by: export ZSTD=/path/to/repo/zstd/ export LINUX=/path/to/repo/linux/ cd "$ZSTD/contrib/linux-kernel" git checkout v1.5.5-kernel~ make import LINUX="$LINUX" I tested and benchmarked this commit on x86-64 with gcc-13.2.1 on an Intel i9-9900K by running my benchmark scripts that benchmark zstd's performance in btrfs and squashfs compressed filesystems. This commit improves compression speed, especially for higher compression levels, and regresses decompression speed. But the decompression speed regression is addressed by the next patch in the series. Component, Level, C. time delta, size delta, D. time delta Btrfs , 1, -1.9%, +0.0%, +9.5% Btrfs , 3, -5.6%, +0.0%, +7.4% Btrfs , 5, -4.9%, +0.0%, +5.0% Btrfs , 7, -5.7%, +0.0%, +5.2% Btrfs , 9, -5.7%, +0.0%, +4.0% Squashfs , 1, N/A, 0.0%, +11.6% I also boot tested with a zstd compressed kernel on i386 and aarch64. Link: https://github.com/facebook/zstd/commit/58b3ef79eb9f1e6613684ea6e5b89720660ee8b6 Link: https://github.com/facebook/zstd/tree/v1.5.5-kernel Signed-off-by: Nick Terrell <terrelln@fb.com>
2023-11-16 20:52:21 +00:00
ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, iend, REPCODE1_TO_OFFBASE, mLength);
lib: zstd: Upgrade to latest upstream zstd version 1.4.10 Upgrade to the latest upstream zstd version 1.4.10. This patch is 100% generated from upstream zstd commit 20821a46f412 [0]. This patch is very large because it is transitioning from the custom kernel zstd to using upstream directly. The new zstd follows upstreams file structure which is different. Future update patches will be much smaller because they will only contain the changes from one upstream zstd release. As an aid for review I've created a commit [1] that shows the diff between upstream zstd as-is (which doesn't compile), and the zstd code imported in this patch. The verion of zstd in this patch is generated from upstream with changes applied by automation to replace upstreams libc dependencies, remove unnecessary portability macros, replace `/**` comments with `/*` comments, and use the kernel's xxhash instead of bundling it. The benefits of this patch are as follows: 1. Using upstream directly with automated script to generate kernel code. This allows us to update the kernel every upstream release, so the kernel gets the latest bug fixes and performance improvements, and doesn't get 3 years out of date again. The automation and the translated code are tested every upstream commit to ensure it continues to work. 2. Upgrades from a custom zstd based on 1.3.1 to 1.4.10, getting 3 years of performance improvements and bug fixes. On x86_64 I've measured 15% faster BtrFS and SquashFS decompression+read speeds, 35% faster kernel decompression, and 30% faster ZRAM decompression+read speeds. 3. Zstd-1.4.10 supports negative compression levels, which allow zstd to match or subsume lzo's performance. 4. Maintains the same kernel-specific wrapper API, so no callers have to be modified with zstd version updates. One concern that was brought up was stack usage. Upstream zstd had already removed most of its heavy stack usage functions, but I just removed the last functions that allocate arrays on the stack. I've measured the high water mark for both compression and decompression before and after this patch. Decompression is approximately neutral, using about 1.2KB of stack space. Compression levels up to 3 regressed from 1.4KB -> 1.6KB, and higher compression levels regressed from 1.5KB -> 2KB. We've added unit tests upstream to prevent further regression. I believe that this is a reasonable increase, and if it does end up causing problems, this commit can be cleanly reverted, because it only touches zstd. I chose the bulk update instead of replaying upstream commits because there have been ~3500 upstream commits since the 1.3.1 release, zstd wasn't ready to be used in the kernel as-is before a month ago, and not all upstream zstd commits build. The bulk update preserves bisectablity because bugs can be bisected to the zstd version update. At that point the update can be reverted, and we can work with upstream to find and fix the bug. Note that upstream zstd release 1.4.10 doesn't exist yet. I have cut a staging branch at 20821a46f412 [0] and will apply any changes requested to the staging branch. Once we're ready to merge this update I will cut a zstd release at the commit we merge, so we have a known zstd release in the kernel. The implementation of the kernel API is contained in zstd_compress_module.c and zstd_decompress_module.c. [0] https://github.com/facebook/zstd/commit/20821a46f4122f9abd7c7b245d28162dde8129c9 [1] https://github.com/terrelln/linux/commit/e0fa481d0e3df26918da0a13749740a1f6777574 Signed-off-by: Nick Terrell <terrelln@fb.com> Tested By: Paul Jones <paul@pauljones.id.au> Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name> Tested-by: Sedat Dilek <sedat.dilek@gmail.com> # LLVM/Clang v13.0.0 on x86-64 Tested-by: Jean-Denis Girard <jd.girard@sysnux.pf>
2020-09-11 23:37:08 +00:00
goto _match_stored;
}
if (matchIndexL > prefixLowestIndex) {
/* check prefix long match */
if (MEM_read64(matchLong) == MEM_read64(ip)) {
mLength = ZSTD_count(ip+8, matchLong+8, iend) + 8;
offset = (U32)(ip-matchLong);
while (((ip>anchor) & (matchLong>prefixLowest)) && (ip[-1] == matchLong[-1])) { ip--; matchLong--; mLength++; } /* catch up */
goto _match_found;
}
zstd: import upstream v1.5.5 Import upstream zstd v1.5.5 to expose upstream's QAT integration. Import from upstream commit 58b3ef79 [0]. This is one commit before the tag v1.5.5-kernel [1], which is signed with upstream's signing key. The next patch in the series imports from v1.5.5-kernel, and is included in the series, rather than just importing directly from v1.5.5-kernel, because it is a non-trivial patch applied to improve the kernel's decompression speed. This commit contains 3 backported patches on top of v1.5.5: Two from the Linux copy of zstd, and one from upstream's `dev` branch. In addition to keeping the kernel's copy of zstd up to date, this update was requested by Intel to expose upstream zstd's external match provider API to the kernel, which allows QAT to accelerate the LZ match finding stage. This commit was generated by: export ZSTD=/path/to/repo/zstd/ export LINUX=/path/to/repo/linux/ cd "$ZSTD/contrib/linux-kernel" git checkout v1.5.5-kernel~ make import LINUX="$LINUX" I tested and benchmarked this commit on x86-64 with gcc-13.2.1 on an Intel i9-9900K by running my benchmark scripts that benchmark zstd's performance in btrfs and squashfs compressed filesystems. This commit improves compression speed, especially for higher compression levels, and regresses decompression speed. But the decompression speed regression is addressed by the next patch in the series. Component, Level, C. time delta, size delta, D. time delta Btrfs , 1, -1.9%, +0.0%, +9.5% Btrfs , 3, -5.6%, +0.0%, +7.4% Btrfs , 5, -4.9%, +0.0%, +5.0% Btrfs , 7, -5.7%, +0.0%, +5.2% Btrfs , 9, -5.7%, +0.0%, +4.0% Squashfs , 1, N/A, 0.0%, +11.6% I also boot tested with a zstd compressed kernel on i386 and aarch64. Link: https://github.com/facebook/zstd/commit/58b3ef79eb9f1e6613684ea6e5b89720660ee8b6 Link: https://github.com/facebook/zstd/tree/v1.5.5-kernel Signed-off-by: Nick Terrell <terrelln@fb.com>
2023-11-16 20:52:21 +00:00
} else if (dictTagsMatchL) {
lib: zstd: Upgrade to latest upstream zstd version 1.4.10 Upgrade to the latest upstream zstd version 1.4.10. This patch is 100% generated from upstream zstd commit 20821a46f412 [0]. This patch is very large because it is transitioning from the custom kernel zstd to using upstream directly. The new zstd follows upstreams file structure which is different. Future update patches will be much smaller because they will only contain the changes from one upstream zstd release. As an aid for review I've created a commit [1] that shows the diff between upstream zstd as-is (which doesn't compile), and the zstd code imported in this patch. The verion of zstd in this patch is generated from upstream with changes applied by automation to replace upstreams libc dependencies, remove unnecessary portability macros, replace `/**` comments with `/*` comments, and use the kernel's xxhash instead of bundling it. The benefits of this patch are as follows: 1. Using upstream directly with automated script to generate kernel code. This allows us to update the kernel every upstream release, so the kernel gets the latest bug fixes and performance improvements, and doesn't get 3 years out of date again. The automation and the translated code are tested every upstream commit to ensure it continues to work. 2. Upgrades from a custom zstd based on 1.3.1 to 1.4.10, getting 3 years of performance improvements and bug fixes. On x86_64 I've measured 15% faster BtrFS and SquashFS decompression+read speeds, 35% faster kernel decompression, and 30% faster ZRAM decompression+read speeds. 3. Zstd-1.4.10 supports negative compression levels, which allow zstd to match or subsume lzo's performance. 4. Maintains the same kernel-specific wrapper API, so no callers have to be modified with zstd version updates. One concern that was brought up was stack usage. Upstream zstd had already removed most of its heavy stack usage functions, but I just removed the last functions that allocate arrays on the stack. I've measured the high water mark for both compression and decompression before and after this patch. Decompression is approximately neutral, using about 1.2KB of stack space. Compression levels up to 3 regressed from 1.4KB -> 1.6KB, and higher compression levels regressed from 1.5KB -> 2KB. We've added unit tests upstream to prevent further regression. I believe that this is a reasonable increase, and if it does end up causing problems, this commit can be cleanly reverted, because it only touches zstd. I chose the bulk update instead of replaying upstream commits because there have been ~3500 upstream commits since the 1.3.1 release, zstd wasn't ready to be used in the kernel as-is before a month ago, and not all upstream zstd commits build. The bulk update preserves bisectablity because bugs can be bisected to the zstd version update. At that point the update can be reverted, and we can work with upstream to find and fix the bug. Note that upstream zstd release 1.4.10 doesn't exist yet. I have cut a staging branch at 20821a46f412 [0] and will apply any changes requested to the staging branch. Once we're ready to merge this update I will cut a zstd release at the commit we merge, so we have a known zstd release in the kernel. The implementation of the kernel API is contained in zstd_compress_module.c and zstd_decompress_module.c. [0] https://github.com/facebook/zstd/commit/20821a46f4122f9abd7c7b245d28162dde8129c9 [1] https://github.com/terrelln/linux/commit/e0fa481d0e3df26918da0a13749740a1f6777574 Signed-off-by: Nick Terrell <terrelln@fb.com> Tested By: Paul Jones <paul@pauljones.id.au> Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name> Tested-by: Sedat Dilek <sedat.dilek@gmail.com> # LLVM/Clang v13.0.0 on x86-64 Tested-by: Jean-Denis Girard <jd.girard@sysnux.pf>
2020-09-11 23:37:08 +00:00
/* check dictMatchState long match */
zstd: import upstream v1.5.5 Import upstream zstd v1.5.5 to expose upstream's QAT integration. Import from upstream commit 58b3ef79 [0]. This is one commit before the tag v1.5.5-kernel [1], which is signed with upstream's signing key. The next patch in the series imports from v1.5.5-kernel, and is included in the series, rather than just importing directly from v1.5.5-kernel, because it is a non-trivial patch applied to improve the kernel's decompression speed. This commit contains 3 backported patches on top of v1.5.5: Two from the Linux copy of zstd, and one from upstream's `dev` branch. In addition to keeping the kernel's copy of zstd up to date, this update was requested by Intel to expose upstream zstd's external match provider API to the kernel, which allows QAT to accelerate the LZ match finding stage. This commit was generated by: export ZSTD=/path/to/repo/zstd/ export LINUX=/path/to/repo/linux/ cd "$ZSTD/contrib/linux-kernel" git checkout v1.5.5-kernel~ make import LINUX="$LINUX" I tested and benchmarked this commit on x86-64 with gcc-13.2.1 on an Intel i9-9900K by running my benchmark scripts that benchmark zstd's performance in btrfs and squashfs compressed filesystems. This commit improves compression speed, especially for higher compression levels, and regresses decompression speed. But the decompression speed regression is addressed by the next patch in the series. Component, Level, C. time delta, size delta, D. time delta Btrfs , 1, -1.9%, +0.0%, +9.5% Btrfs , 3, -5.6%, +0.0%, +7.4% Btrfs , 5, -4.9%, +0.0%, +5.0% Btrfs , 7, -5.7%, +0.0%, +5.2% Btrfs , 9, -5.7%, +0.0%, +4.0% Squashfs , 1, N/A, 0.0%, +11.6% I also boot tested with a zstd compressed kernel on i386 and aarch64. Link: https://github.com/facebook/zstd/commit/58b3ef79eb9f1e6613684ea6e5b89720660ee8b6 Link: https://github.com/facebook/zstd/tree/v1.5.5-kernel Signed-off-by: Nick Terrell <terrelln@fb.com>
2023-11-16 20:52:21 +00:00
U32 const dictMatchIndexL = dictMatchIndexAndTagL >> ZSTD_SHORT_CACHE_TAG_BITS;
lib: zstd: Upgrade to latest upstream zstd version 1.4.10 Upgrade to the latest upstream zstd version 1.4.10. This patch is 100% generated from upstream zstd commit 20821a46f412 [0]. This patch is very large because it is transitioning from the custom kernel zstd to using upstream directly. The new zstd follows upstreams file structure which is different. Future update patches will be much smaller because they will only contain the changes from one upstream zstd release. As an aid for review I've created a commit [1] that shows the diff between upstream zstd as-is (which doesn't compile), and the zstd code imported in this patch. The verion of zstd in this patch is generated from upstream with changes applied by automation to replace upstreams libc dependencies, remove unnecessary portability macros, replace `/**` comments with `/*` comments, and use the kernel's xxhash instead of bundling it. The benefits of this patch are as follows: 1. Using upstream directly with automated script to generate kernel code. This allows us to update the kernel every upstream release, so the kernel gets the latest bug fixes and performance improvements, and doesn't get 3 years out of date again. The automation and the translated code are tested every upstream commit to ensure it continues to work. 2. Upgrades from a custom zstd based on 1.3.1 to 1.4.10, getting 3 years of performance improvements and bug fixes. On x86_64 I've measured 15% faster BtrFS and SquashFS decompression+read speeds, 35% faster kernel decompression, and 30% faster ZRAM decompression+read speeds. 3. Zstd-1.4.10 supports negative compression levels, which allow zstd to match or subsume lzo's performance. 4. Maintains the same kernel-specific wrapper API, so no callers have to be modified with zstd version updates. One concern that was brought up was stack usage. Upstream zstd had already removed most of its heavy stack usage functions, but I just removed the last functions that allocate arrays on the stack. I've measured the high water mark for both compression and decompression before and after this patch. Decompression is approximately neutral, using about 1.2KB of stack space. Compression levels up to 3 regressed from 1.4KB -> 1.6KB, and higher compression levels regressed from 1.5KB -> 2KB. We've added unit tests upstream to prevent further regression. I believe that this is a reasonable increase, and if it does end up causing problems, this commit can be cleanly reverted, because it only touches zstd. I chose the bulk update instead of replaying upstream commits because there have been ~3500 upstream commits since the 1.3.1 release, zstd wasn't ready to be used in the kernel as-is before a month ago, and not all upstream zstd commits build. The bulk update preserves bisectablity because bugs can be bisected to the zstd version update. At that point the update can be reverted, and we can work with upstream to find and fix the bug. Note that upstream zstd release 1.4.10 doesn't exist yet. I have cut a staging branch at 20821a46f412 [0] and will apply any changes requested to the staging branch. Once we're ready to merge this update I will cut a zstd release at the commit we merge, so we have a known zstd release in the kernel. The implementation of the kernel API is contained in zstd_compress_module.c and zstd_decompress_module.c. [0] https://github.com/facebook/zstd/commit/20821a46f4122f9abd7c7b245d28162dde8129c9 [1] https://github.com/terrelln/linux/commit/e0fa481d0e3df26918da0a13749740a1f6777574 Signed-off-by: Nick Terrell <terrelln@fb.com> Tested By: Paul Jones <paul@pauljones.id.au> Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name> Tested-by: Sedat Dilek <sedat.dilek@gmail.com> # LLVM/Clang v13.0.0 on x86-64 Tested-by: Jean-Denis Girard <jd.girard@sysnux.pf>
2020-09-11 23:37:08 +00:00
const BYTE* dictMatchL = dictBase + dictMatchIndexL;
assert(dictMatchL < dictEnd);
if (dictMatchL > dictStart && MEM_read64(dictMatchL) == MEM_read64(ip)) {
mLength = ZSTD_count_2segments(ip+8, dictMatchL+8, iend, dictEnd, prefixLowest) + 8;
offset = (U32)(curr - dictMatchIndexL - dictIndexDelta);
while (((ip>anchor) & (dictMatchL>dictStart)) && (ip[-1] == dictMatchL[-1])) { ip--; dictMatchL--; mLength++; } /* catch up */
goto _match_found;
} }
if (matchIndexS > prefixLowestIndex) {
/* check prefix short match */
if (MEM_read32(match) == MEM_read32(ip)) {
goto _search_next_long;
}
zstd: import upstream v1.5.5 Import upstream zstd v1.5.5 to expose upstream's QAT integration. Import from upstream commit 58b3ef79 [0]. This is one commit before the tag v1.5.5-kernel [1], which is signed with upstream's signing key. The next patch in the series imports from v1.5.5-kernel, and is included in the series, rather than just importing directly from v1.5.5-kernel, because it is a non-trivial patch applied to improve the kernel's decompression speed. This commit contains 3 backported patches on top of v1.5.5: Two from the Linux copy of zstd, and one from upstream's `dev` branch. In addition to keeping the kernel's copy of zstd up to date, this update was requested by Intel to expose upstream zstd's external match provider API to the kernel, which allows QAT to accelerate the LZ match finding stage. This commit was generated by: export ZSTD=/path/to/repo/zstd/ export LINUX=/path/to/repo/linux/ cd "$ZSTD/contrib/linux-kernel" git checkout v1.5.5-kernel~ make import LINUX="$LINUX" I tested and benchmarked this commit on x86-64 with gcc-13.2.1 on an Intel i9-9900K by running my benchmark scripts that benchmark zstd's performance in btrfs and squashfs compressed filesystems. This commit improves compression speed, especially for higher compression levels, and regresses decompression speed. But the decompression speed regression is addressed by the next patch in the series. Component, Level, C. time delta, size delta, D. time delta Btrfs , 1, -1.9%, +0.0%, +9.5% Btrfs , 3, -5.6%, +0.0%, +7.4% Btrfs , 5, -4.9%, +0.0%, +5.0% Btrfs , 7, -5.7%, +0.0%, +5.2% Btrfs , 9, -5.7%, +0.0%, +4.0% Squashfs , 1, N/A, 0.0%, +11.6% I also boot tested with a zstd compressed kernel on i386 and aarch64. Link: https://github.com/facebook/zstd/commit/58b3ef79eb9f1e6613684ea6e5b89720660ee8b6 Link: https://github.com/facebook/zstd/tree/v1.5.5-kernel Signed-off-by: Nick Terrell <terrelln@fb.com>
2023-11-16 20:52:21 +00:00
} else if (dictTagsMatchS) {
lib: zstd: Upgrade to latest upstream zstd version 1.4.10 Upgrade to the latest upstream zstd version 1.4.10. This patch is 100% generated from upstream zstd commit 20821a46f412 [0]. This patch is very large because it is transitioning from the custom kernel zstd to using upstream directly. The new zstd follows upstreams file structure which is different. Future update patches will be much smaller because they will only contain the changes from one upstream zstd release. As an aid for review I've created a commit [1] that shows the diff between upstream zstd as-is (which doesn't compile), and the zstd code imported in this patch. The verion of zstd in this patch is generated from upstream with changes applied by automation to replace upstreams libc dependencies, remove unnecessary portability macros, replace `/**` comments with `/*` comments, and use the kernel's xxhash instead of bundling it. The benefits of this patch are as follows: 1. Using upstream directly with automated script to generate kernel code. This allows us to update the kernel every upstream release, so the kernel gets the latest bug fixes and performance improvements, and doesn't get 3 years out of date again. The automation and the translated code are tested every upstream commit to ensure it continues to work. 2. Upgrades from a custom zstd based on 1.3.1 to 1.4.10, getting 3 years of performance improvements and bug fixes. On x86_64 I've measured 15% faster BtrFS and SquashFS decompression+read speeds, 35% faster kernel decompression, and 30% faster ZRAM decompression+read speeds. 3. Zstd-1.4.10 supports negative compression levels, which allow zstd to match or subsume lzo's performance. 4. Maintains the same kernel-specific wrapper API, so no callers have to be modified with zstd version updates. One concern that was brought up was stack usage. Upstream zstd had already removed most of its heavy stack usage functions, but I just removed the last functions that allocate arrays on the stack. I've measured the high water mark for both compression and decompression before and after this patch. Decompression is approximately neutral, using about 1.2KB of stack space. Compression levels up to 3 regressed from 1.4KB -> 1.6KB, and higher compression levels regressed from 1.5KB -> 2KB. We've added unit tests upstream to prevent further regression. I believe that this is a reasonable increase, and if it does end up causing problems, this commit can be cleanly reverted, because it only touches zstd. I chose the bulk update instead of replaying upstream commits because there have been ~3500 upstream commits since the 1.3.1 release, zstd wasn't ready to be used in the kernel as-is before a month ago, and not all upstream zstd commits build. The bulk update preserves bisectablity because bugs can be bisected to the zstd version update. At that point the update can be reverted, and we can work with upstream to find and fix the bug. Note that upstream zstd release 1.4.10 doesn't exist yet. I have cut a staging branch at 20821a46f412 [0] and will apply any changes requested to the staging branch. Once we're ready to merge this update I will cut a zstd release at the commit we merge, so we have a known zstd release in the kernel. The implementation of the kernel API is contained in zstd_compress_module.c and zstd_decompress_module.c. [0] https://github.com/facebook/zstd/commit/20821a46f4122f9abd7c7b245d28162dde8129c9 [1] https://github.com/terrelln/linux/commit/e0fa481d0e3df26918da0a13749740a1f6777574 Signed-off-by: Nick Terrell <terrelln@fb.com> Tested By: Paul Jones <paul@pauljones.id.au> Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name> Tested-by: Sedat Dilek <sedat.dilek@gmail.com> # LLVM/Clang v13.0.0 on x86-64 Tested-by: Jean-Denis Girard <jd.girard@sysnux.pf>
2020-09-11 23:37:08 +00:00
/* check dictMatchState short match */
zstd: import upstream v1.5.5 Import upstream zstd v1.5.5 to expose upstream's QAT integration. Import from upstream commit 58b3ef79 [0]. This is one commit before the tag v1.5.5-kernel [1], which is signed with upstream's signing key. The next patch in the series imports from v1.5.5-kernel, and is included in the series, rather than just importing directly from v1.5.5-kernel, because it is a non-trivial patch applied to improve the kernel's decompression speed. This commit contains 3 backported patches on top of v1.5.5: Two from the Linux copy of zstd, and one from upstream's `dev` branch. In addition to keeping the kernel's copy of zstd up to date, this update was requested by Intel to expose upstream zstd's external match provider API to the kernel, which allows QAT to accelerate the LZ match finding stage. This commit was generated by: export ZSTD=/path/to/repo/zstd/ export LINUX=/path/to/repo/linux/ cd "$ZSTD/contrib/linux-kernel" git checkout v1.5.5-kernel~ make import LINUX="$LINUX" I tested and benchmarked this commit on x86-64 with gcc-13.2.1 on an Intel i9-9900K by running my benchmark scripts that benchmark zstd's performance in btrfs and squashfs compressed filesystems. This commit improves compression speed, especially for higher compression levels, and regresses decompression speed. But the decompression speed regression is addressed by the next patch in the series. Component, Level, C. time delta, size delta, D. time delta Btrfs , 1, -1.9%, +0.0%, +9.5% Btrfs , 3, -5.6%, +0.0%, +7.4% Btrfs , 5, -4.9%, +0.0%, +5.0% Btrfs , 7, -5.7%, +0.0%, +5.2% Btrfs , 9, -5.7%, +0.0%, +4.0% Squashfs , 1, N/A, 0.0%, +11.6% I also boot tested with a zstd compressed kernel on i386 and aarch64. Link: https://github.com/facebook/zstd/commit/58b3ef79eb9f1e6613684ea6e5b89720660ee8b6 Link: https://github.com/facebook/zstd/tree/v1.5.5-kernel Signed-off-by: Nick Terrell <terrelln@fb.com>
2023-11-16 20:52:21 +00:00
U32 const dictMatchIndexS = dictMatchIndexAndTagS >> ZSTD_SHORT_CACHE_TAG_BITS;
lib: zstd: Upgrade to latest upstream zstd version 1.4.10 Upgrade to the latest upstream zstd version 1.4.10. This patch is 100% generated from upstream zstd commit 20821a46f412 [0]. This patch is very large because it is transitioning from the custom kernel zstd to using upstream directly. The new zstd follows upstreams file structure which is different. Future update patches will be much smaller because they will only contain the changes from one upstream zstd release. As an aid for review I've created a commit [1] that shows the diff between upstream zstd as-is (which doesn't compile), and the zstd code imported in this patch. The verion of zstd in this patch is generated from upstream with changes applied by automation to replace upstreams libc dependencies, remove unnecessary portability macros, replace `/**` comments with `/*` comments, and use the kernel's xxhash instead of bundling it. The benefits of this patch are as follows: 1. Using upstream directly with automated script to generate kernel code. This allows us to update the kernel every upstream release, so the kernel gets the latest bug fixes and performance improvements, and doesn't get 3 years out of date again. The automation and the translated code are tested every upstream commit to ensure it continues to work. 2. Upgrades from a custom zstd based on 1.3.1 to 1.4.10, getting 3 years of performance improvements and bug fixes. On x86_64 I've measured 15% faster BtrFS and SquashFS decompression+read speeds, 35% faster kernel decompression, and 30% faster ZRAM decompression+read speeds. 3. Zstd-1.4.10 supports negative compression levels, which allow zstd to match or subsume lzo's performance. 4. Maintains the same kernel-specific wrapper API, so no callers have to be modified with zstd version updates. One concern that was brought up was stack usage. Upstream zstd had already removed most of its heavy stack usage functions, but I just removed the last functions that allocate arrays on the stack. I've measured the high water mark for both compression and decompression before and after this patch. Decompression is approximately neutral, using about 1.2KB of stack space. Compression levels up to 3 regressed from 1.4KB -> 1.6KB, and higher compression levels regressed from 1.5KB -> 2KB. We've added unit tests upstream to prevent further regression. I believe that this is a reasonable increase, and if it does end up causing problems, this commit can be cleanly reverted, because it only touches zstd. I chose the bulk update instead of replaying upstream commits because there have been ~3500 upstream commits since the 1.3.1 release, zstd wasn't ready to be used in the kernel as-is before a month ago, and not all upstream zstd commits build. The bulk update preserves bisectablity because bugs can be bisected to the zstd version update. At that point the update can be reverted, and we can work with upstream to find and fix the bug. Note that upstream zstd release 1.4.10 doesn't exist yet. I have cut a staging branch at 20821a46f412 [0] and will apply any changes requested to the staging branch. Once we're ready to merge this update I will cut a zstd release at the commit we merge, so we have a known zstd release in the kernel. The implementation of the kernel API is contained in zstd_compress_module.c and zstd_decompress_module.c. [0] https://github.com/facebook/zstd/commit/20821a46f4122f9abd7c7b245d28162dde8129c9 [1] https://github.com/terrelln/linux/commit/e0fa481d0e3df26918da0a13749740a1f6777574 Signed-off-by: Nick Terrell <terrelln@fb.com> Tested By: Paul Jones <paul@pauljones.id.au> Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name> Tested-by: Sedat Dilek <sedat.dilek@gmail.com> # LLVM/Clang v13.0.0 on x86-64 Tested-by: Jean-Denis Girard <jd.girard@sysnux.pf>
2020-09-11 23:37:08 +00:00
match = dictBase + dictMatchIndexS;
matchIndexS = dictMatchIndexS + dictIndexDelta;
if (match > dictStart && MEM_read32(match) == MEM_read32(ip)) {
goto _search_next_long;
} }
ip += ((ip-anchor) >> kSearchStrength) + 1;
#if defined(__aarch64__)
PREFETCH_L1(ip+256);
#endif
continue;
_search_next_long:
{ size_t const hl3 = ZSTD_hashPtr(ip+1, hBitsL, 8);
zstd: import upstream v1.5.5 Import upstream zstd v1.5.5 to expose upstream's QAT integration. Import from upstream commit 58b3ef79 [0]. This is one commit before the tag v1.5.5-kernel [1], which is signed with upstream's signing key. The next patch in the series imports from v1.5.5-kernel, and is included in the series, rather than just importing directly from v1.5.5-kernel, because it is a non-trivial patch applied to improve the kernel's decompression speed. This commit contains 3 backported patches on top of v1.5.5: Two from the Linux copy of zstd, and one from upstream's `dev` branch. In addition to keeping the kernel's copy of zstd up to date, this update was requested by Intel to expose upstream zstd's external match provider API to the kernel, which allows QAT to accelerate the LZ match finding stage. This commit was generated by: export ZSTD=/path/to/repo/zstd/ export LINUX=/path/to/repo/linux/ cd "$ZSTD/contrib/linux-kernel" git checkout v1.5.5-kernel~ make import LINUX="$LINUX" I tested and benchmarked this commit on x86-64 with gcc-13.2.1 on an Intel i9-9900K by running my benchmark scripts that benchmark zstd's performance in btrfs and squashfs compressed filesystems. This commit improves compression speed, especially for higher compression levels, and regresses decompression speed. But the decompression speed regression is addressed by the next patch in the series. Component, Level, C. time delta, size delta, D. time delta Btrfs , 1, -1.9%, +0.0%, +9.5% Btrfs , 3, -5.6%, +0.0%, +7.4% Btrfs , 5, -4.9%, +0.0%, +5.0% Btrfs , 7, -5.7%, +0.0%, +5.2% Btrfs , 9, -5.7%, +0.0%, +4.0% Squashfs , 1, N/A, 0.0%, +11.6% I also boot tested with a zstd compressed kernel on i386 and aarch64. Link: https://github.com/facebook/zstd/commit/58b3ef79eb9f1e6613684ea6e5b89720660ee8b6 Link: https://github.com/facebook/zstd/tree/v1.5.5-kernel Signed-off-by: Nick Terrell <terrelln@fb.com>
2023-11-16 20:52:21 +00:00
size_t const dictHashAndTagL3 = ZSTD_hashPtr(ip+1, dictHBitsL, 8);
lib: zstd: Upgrade to latest upstream zstd version 1.4.10 Upgrade to the latest upstream zstd version 1.4.10. This patch is 100% generated from upstream zstd commit 20821a46f412 [0]. This patch is very large because it is transitioning from the custom kernel zstd to using upstream directly. The new zstd follows upstreams file structure which is different. Future update patches will be much smaller because they will only contain the changes from one upstream zstd release. As an aid for review I've created a commit [1] that shows the diff between upstream zstd as-is (which doesn't compile), and the zstd code imported in this patch. The verion of zstd in this patch is generated from upstream with changes applied by automation to replace upstreams libc dependencies, remove unnecessary portability macros, replace `/**` comments with `/*` comments, and use the kernel's xxhash instead of bundling it. The benefits of this patch are as follows: 1. Using upstream directly with automated script to generate kernel code. This allows us to update the kernel every upstream release, so the kernel gets the latest bug fixes and performance improvements, and doesn't get 3 years out of date again. The automation and the translated code are tested every upstream commit to ensure it continues to work. 2. Upgrades from a custom zstd based on 1.3.1 to 1.4.10, getting 3 years of performance improvements and bug fixes. On x86_64 I've measured 15% faster BtrFS and SquashFS decompression+read speeds, 35% faster kernel decompression, and 30% faster ZRAM decompression+read speeds. 3. Zstd-1.4.10 supports negative compression levels, which allow zstd to match or subsume lzo's performance. 4. Maintains the same kernel-specific wrapper API, so no callers have to be modified with zstd version updates. One concern that was brought up was stack usage. Upstream zstd had already removed most of its heavy stack usage functions, but I just removed the last functions that allocate arrays on the stack. I've measured the high water mark for both compression and decompression before and after this patch. Decompression is approximately neutral, using about 1.2KB of stack space. Compression levels up to 3 regressed from 1.4KB -> 1.6KB, and higher compression levels regressed from 1.5KB -> 2KB. We've added unit tests upstream to prevent further regression. I believe that this is a reasonable increase, and if it does end up causing problems, this commit can be cleanly reverted, because it only touches zstd. I chose the bulk update instead of replaying upstream commits because there have been ~3500 upstream commits since the 1.3.1 release, zstd wasn't ready to be used in the kernel as-is before a month ago, and not all upstream zstd commits build. The bulk update preserves bisectablity because bugs can be bisected to the zstd version update. At that point the update can be reverted, and we can work with upstream to find and fix the bug. Note that upstream zstd release 1.4.10 doesn't exist yet. I have cut a staging branch at 20821a46f412 [0] and will apply any changes requested to the staging branch. Once we're ready to merge this update I will cut a zstd release at the commit we merge, so we have a known zstd release in the kernel. The implementation of the kernel API is contained in zstd_compress_module.c and zstd_decompress_module.c. [0] https://github.com/facebook/zstd/commit/20821a46f4122f9abd7c7b245d28162dde8129c9 [1] https://github.com/terrelln/linux/commit/e0fa481d0e3df26918da0a13749740a1f6777574 Signed-off-by: Nick Terrell <terrelln@fb.com> Tested By: Paul Jones <paul@pauljones.id.au> Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name> Tested-by: Sedat Dilek <sedat.dilek@gmail.com> # LLVM/Clang v13.0.0 on x86-64 Tested-by: Jean-Denis Girard <jd.girard@sysnux.pf>
2020-09-11 23:37:08 +00:00
U32 const matchIndexL3 = hashLong[hl3];
zstd: import upstream v1.5.5 Import upstream zstd v1.5.5 to expose upstream's QAT integration. Import from upstream commit 58b3ef79 [0]. This is one commit before the tag v1.5.5-kernel [1], which is signed with upstream's signing key. The next patch in the series imports from v1.5.5-kernel, and is included in the series, rather than just importing directly from v1.5.5-kernel, because it is a non-trivial patch applied to improve the kernel's decompression speed. This commit contains 3 backported patches on top of v1.5.5: Two from the Linux copy of zstd, and one from upstream's `dev` branch. In addition to keeping the kernel's copy of zstd up to date, this update was requested by Intel to expose upstream zstd's external match provider API to the kernel, which allows QAT to accelerate the LZ match finding stage. This commit was generated by: export ZSTD=/path/to/repo/zstd/ export LINUX=/path/to/repo/linux/ cd "$ZSTD/contrib/linux-kernel" git checkout v1.5.5-kernel~ make import LINUX="$LINUX" I tested and benchmarked this commit on x86-64 with gcc-13.2.1 on an Intel i9-9900K by running my benchmark scripts that benchmark zstd's performance in btrfs and squashfs compressed filesystems. This commit improves compression speed, especially for higher compression levels, and regresses decompression speed. But the decompression speed regression is addressed by the next patch in the series. Component, Level, C. time delta, size delta, D. time delta Btrfs , 1, -1.9%, +0.0%, +9.5% Btrfs , 3, -5.6%, +0.0%, +7.4% Btrfs , 5, -4.9%, +0.0%, +5.0% Btrfs , 7, -5.7%, +0.0%, +5.2% Btrfs , 9, -5.7%, +0.0%, +4.0% Squashfs , 1, N/A, 0.0%, +11.6% I also boot tested with a zstd compressed kernel on i386 and aarch64. Link: https://github.com/facebook/zstd/commit/58b3ef79eb9f1e6613684ea6e5b89720660ee8b6 Link: https://github.com/facebook/zstd/tree/v1.5.5-kernel Signed-off-by: Nick Terrell <terrelln@fb.com>
2023-11-16 20:52:21 +00:00
U32 const dictMatchIndexAndTagL3 = dictHashLong[dictHashAndTagL3 >> ZSTD_SHORT_CACHE_TAG_BITS];
int const dictTagsMatchL3 = ZSTD_comparePackedTags(dictMatchIndexAndTagL3, dictHashAndTagL3);
lib: zstd: Upgrade to latest upstream zstd version 1.4.10 Upgrade to the latest upstream zstd version 1.4.10. This patch is 100% generated from upstream zstd commit 20821a46f412 [0]. This patch is very large because it is transitioning from the custom kernel zstd to using upstream directly. The new zstd follows upstreams file structure which is different. Future update patches will be much smaller because they will only contain the changes from one upstream zstd release. As an aid for review I've created a commit [1] that shows the diff between upstream zstd as-is (which doesn't compile), and the zstd code imported in this patch. The verion of zstd in this patch is generated from upstream with changes applied by automation to replace upstreams libc dependencies, remove unnecessary portability macros, replace `/**` comments with `/*` comments, and use the kernel's xxhash instead of bundling it. The benefits of this patch are as follows: 1. Using upstream directly with automated script to generate kernel code. This allows us to update the kernel every upstream release, so the kernel gets the latest bug fixes and performance improvements, and doesn't get 3 years out of date again. The automation and the translated code are tested every upstream commit to ensure it continues to work. 2. Upgrades from a custom zstd based on 1.3.1 to 1.4.10, getting 3 years of performance improvements and bug fixes. On x86_64 I've measured 15% faster BtrFS and SquashFS decompression+read speeds, 35% faster kernel decompression, and 30% faster ZRAM decompression+read speeds. 3. Zstd-1.4.10 supports negative compression levels, which allow zstd to match or subsume lzo's performance. 4. Maintains the same kernel-specific wrapper API, so no callers have to be modified with zstd version updates. One concern that was brought up was stack usage. Upstream zstd had already removed most of its heavy stack usage functions, but I just removed the last functions that allocate arrays on the stack. I've measured the high water mark for both compression and decompression before and after this patch. Decompression is approximately neutral, using about 1.2KB of stack space. Compression levels up to 3 regressed from 1.4KB -> 1.6KB, and higher compression levels regressed from 1.5KB -> 2KB. We've added unit tests upstream to prevent further regression. I believe that this is a reasonable increase, and if it does end up causing problems, this commit can be cleanly reverted, because it only touches zstd. I chose the bulk update instead of replaying upstream commits because there have been ~3500 upstream commits since the 1.3.1 release, zstd wasn't ready to be used in the kernel as-is before a month ago, and not all upstream zstd commits build. The bulk update preserves bisectablity because bugs can be bisected to the zstd version update. At that point the update can be reverted, and we can work with upstream to find and fix the bug. Note that upstream zstd release 1.4.10 doesn't exist yet. I have cut a staging branch at 20821a46f412 [0] and will apply any changes requested to the staging branch. Once we're ready to merge this update I will cut a zstd release at the commit we merge, so we have a known zstd release in the kernel. The implementation of the kernel API is contained in zstd_compress_module.c and zstd_decompress_module.c. [0] https://github.com/facebook/zstd/commit/20821a46f4122f9abd7c7b245d28162dde8129c9 [1] https://github.com/terrelln/linux/commit/e0fa481d0e3df26918da0a13749740a1f6777574 Signed-off-by: Nick Terrell <terrelln@fb.com> Tested By: Paul Jones <paul@pauljones.id.au> Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name> Tested-by: Sedat Dilek <sedat.dilek@gmail.com> # LLVM/Clang v13.0.0 on x86-64 Tested-by: Jean-Denis Girard <jd.girard@sysnux.pf>
2020-09-11 23:37:08 +00:00
const BYTE* matchL3 = base + matchIndexL3;
hashLong[hl3] = curr + 1;
/* check prefix long +1 match */
if (matchIndexL3 > prefixLowestIndex) {
if (MEM_read64(matchL3) == MEM_read64(ip+1)) {
mLength = ZSTD_count(ip+9, matchL3+8, iend) + 8;
ip++;
offset = (U32)(ip-matchL3);
while (((ip>anchor) & (matchL3>prefixLowest)) && (ip[-1] == matchL3[-1])) { ip--; matchL3--; mLength++; } /* catch up */
goto _match_found;
}
zstd: import upstream v1.5.5 Import upstream zstd v1.5.5 to expose upstream's QAT integration. Import from upstream commit 58b3ef79 [0]. This is one commit before the tag v1.5.5-kernel [1], which is signed with upstream's signing key. The next patch in the series imports from v1.5.5-kernel, and is included in the series, rather than just importing directly from v1.5.5-kernel, because it is a non-trivial patch applied to improve the kernel's decompression speed. This commit contains 3 backported patches on top of v1.5.5: Two from the Linux copy of zstd, and one from upstream's `dev` branch. In addition to keeping the kernel's copy of zstd up to date, this update was requested by Intel to expose upstream zstd's external match provider API to the kernel, which allows QAT to accelerate the LZ match finding stage. This commit was generated by: export ZSTD=/path/to/repo/zstd/ export LINUX=/path/to/repo/linux/ cd "$ZSTD/contrib/linux-kernel" git checkout v1.5.5-kernel~ make import LINUX="$LINUX" I tested and benchmarked this commit on x86-64 with gcc-13.2.1 on an Intel i9-9900K by running my benchmark scripts that benchmark zstd's performance in btrfs and squashfs compressed filesystems. This commit improves compression speed, especially for higher compression levels, and regresses decompression speed. But the decompression speed regression is addressed by the next patch in the series. Component, Level, C. time delta, size delta, D. time delta Btrfs , 1, -1.9%, +0.0%, +9.5% Btrfs , 3, -5.6%, +0.0%, +7.4% Btrfs , 5, -4.9%, +0.0%, +5.0% Btrfs , 7, -5.7%, +0.0%, +5.2% Btrfs , 9, -5.7%, +0.0%, +4.0% Squashfs , 1, N/A, 0.0%, +11.6% I also boot tested with a zstd compressed kernel on i386 and aarch64. Link: https://github.com/facebook/zstd/commit/58b3ef79eb9f1e6613684ea6e5b89720660ee8b6 Link: https://github.com/facebook/zstd/tree/v1.5.5-kernel Signed-off-by: Nick Terrell <terrelln@fb.com>
2023-11-16 20:52:21 +00:00
} else if (dictTagsMatchL3) {
lib: zstd: Upgrade to latest upstream zstd version 1.4.10 Upgrade to the latest upstream zstd version 1.4.10. This patch is 100% generated from upstream zstd commit 20821a46f412 [0]. This patch is very large because it is transitioning from the custom kernel zstd to using upstream directly. The new zstd follows upstreams file structure which is different. Future update patches will be much smaller because they will only contain the changes from one upstream zstd release. As an aid for review I've created a commit [1] that shows the diff between upstream zstd as-is (which doesn't compile), and the zstd code imported in this patch. The verion of zstd in this patch is generated from upstream with changes applied by automation to replace upstreams libc dependencies, remove unnecessary portability macros, replace `/**` comments with `/*` comments, and use the kernel's xxhash instead of bundling it. The benefits of this patch are as follows: 1. Using upstream directly with automated script to generate kernel code. This allows us to update the kernel every upstream release, so the kernel gets the latest bug fixes and performance improvements, and doesn't get 3 years out of date again. The automation and the translated code are tested every upstream commit to ensure it continues to work. 2. Upgrades from a custom zstd based on 1.3.1 to 1.4.10, getting 3 years of performance improvements and bug fixes. On x86_64 I've measured 15% faster BtrFS and SquashFS decompression+read speeds, 35% faster kernel decompression, and 30% faster ZRAM decompression+read speeds. 3. Zstd-1.4.10 supports negative compression levels, which allow zstd to match or subsume lzo's performance. 4. Maintains the same kernel-specific wrapper API, so no callers have to be modified with zstd version updates. One concern that was brought up was stack usage. Upstream zstd had already removed most of its heavy stack usage functions, but I just removed the last functions that allocate arrays on the stack. I've measured the high water mark for both compression and decompression before and after this patch. Decompression is approximately neutral, using about 1.2KB of stack space. Compression levels up to 3 regressed from 1.4KB -> 1.6KB, and higher compression levels regressed from 1.5KB -> 2KB. We've added unit tests upstream to prevent further regression. I believe that this is a reasonable increase, and if it does end up causing problems, this commit can be cleanly reverted, because it only touches zstd. I chose the bulk update instead of replaying upstream commits because there have been ~3500 upstream commits since the 1.3.1 release, zstd wasn't ready to be used in the kernel as-is before a month ago, and not all upstream zstd commits build. The bulk update preserves bisectablity because bugs can be bisected to the zstd version update. At that point the update can be reverted, and we can work with upstream to find and fix the bug. Note that upstream zstd release 1.4.10 doesn't exist yet. I have cut a staging branch at 20821a46f412 [0] and will apply any changes requested to the staging branch. Once we're ready to merge this update I will cut a zstd release at the commit we merge, so we have a known zstd release in the kernel. The implementation of the kernel API is contained in zstd_compress_module.c and zstd_decompress_module.c. [0] https://github.com/facebook/zstd/commit/20821a46f4122f9abd7c7b245d28162dde8129c9 [1] https://github.com/terrelln/linux/commit/e0fa481d0e3df26918da0a13749740a1f6777574 Signed-off-by: Nick Terrell <terrelln@fb.com> Tested By: Paul Jones <paul@pauljones.id.au> Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name> Tested-by: Sedat Dilek <sedat.dilek@gmail.com> # LLVM/Clang v13.0.0 on x86-64 Tested-by: Jean-Denis Girard <jd.girard@sysnux.pf>
2020-09-11 23:37:08 +00:00
/* check dict long +1 match */
zstd: import upstream v1.5.5 Import upstream zstd v1.5.5 to expose upstream's QAT integration. Import from upstream commit 58b3ef79 [0]. This is one commit before the tag v1.5.5-kernel [1], which is signed with upstream's signing key. The next patch in the series imports from v1.5.5-kernel, and is included in the series, rather than just importing directly from v1.5.5-kernel, because it is a non-trivial patch applied to improve the kernel's decompression speed. This commit contains 3 backported patches on top of v1.5.5: Two from the Linux copy of zstd, and one from upstream's `dev` branch. In addition to keeping the kernel's copy of zstd up to date, this update was requested by Intel to expose upstream zstd's external match provider API to the kernel, which allows QAT to accelerate the LZ match finding stage. This commit was generated by: export ZSTD=/path/to/repo/zstd/ export LINUX=/path/to/repo/linux/ cd "$ZSTD/contrib/linux-kernel" git checkout v1.5.5-kernel~ make import LINUX="$LINUX" I tested and benchmarked this commit on x86-64 with gcc-13.2.1 on an Intel i9-9900K by running my benchmark scripts that benchmark zstd's performance in btrfs and squashfs compressed filesystems. This commit improves compression speed, especially for higher compression levels, and regresses decompression speed. But the decompression speed regression is addressed by the next patch in the series. Component, Level, C. time delta, size delta, D. time delta Btrfs , 1, -1.9%, +0.0%, +9.5% Btrfs , 3, -5.6%, +0.0%, +7.4% Btrfs , 5, -4.9%, +0.0%, +5.0% Btrfs , 7, -5.7%, +0.0%, +5.2% Btrfs , 9, -5.7%, +0.0%, +4.0% Squashfs , 1, N/A, 0.0%, +11.6% I also boot tested with a zstd compressed kernel on i386 and aarch64. Link: https://github.com/facebook/zstd/commit/58b3ef79eb9f1e6613684ea6e5b89720660ee8b6 Link: https://github.com/facebook/zstd/tree/v1.5.5-kernel Signed-off-by: Nick Terrell <terrelln@fb.com>
2023-11-16 20:52:21 +00:00
U32 const dictMatchIndexL3 = dictMatchIndexAndTagL3 >> ZSTD_SHORT_CACHE_TAG_BITS;
lib: zstd: Upgrade to latest upstream zstd version 1.4.10 Upgrade to the latest upstream zstd version 1.4.10. This patch is 100% generated from upstream zstd commit 20821a46f412 [0]. This patch is very large because it is transitioning from the custom kernel zstd to using upstream directly. The new zstd follows upstreams file structure which is different. Future update patches will be much smaller because they will only contain the changes from one upstream zstd release. As an aid for review I've created a commit [1] that shows the diff between upstream zstd as-is (which doesn't compile), and the zstd code imported in this patch. The verion of zstd in this patch is generated from upstream with changes applied by automation to replace upstreams libc dependencies, remove unnecessary portability macros, replace `/**` comments with `/*` comments, and use the kernel's xxhash instead of bundling it. The benefits of this patch are as follows: 1. Using upstream directly with automated script to generate kernel code. This allows us to update the kernel every upstream release, so the kernel gets the latest bug fixes and performance improvements, and doesn't get 3 years out of date again. The automation and the translated code are tested every upstream commit to ensure it continues to work. 2. Upgrades from a custom zstd based on 1.3.1 to 1.4.10, getting 3 years of performance improvements and bug fixes. On x86_64 I've measured 15% faster BtrFS and SquashFS decompression+read speeds, 35% faster kernel decompression, and 30% faster ZRAM decompression+read speeds. 3. Zstd-1.4.10 supports negative compression levels, which allow zstd to match or subsume lzo's performance. 4. Maintains the same kernel-specific wrapper API, so no callers have to be modified with zstd version updates. One concern that was brought up was stack usage. Upstream zstd had already removed most of its heavy stack usage functions, but I just removed the last functions that allocate arrays on the stack. I've measured the high water mark for both compression and decompression before and after this patch. Decompression is approximately neutral, using about 1.2KB of stack space. Compression levels up to 3 regressed from 1.4KB -> 1.6KB, and higher compression levels regressed from 1.5KB -> 2KB. We've added unit tests upstream to prevent further regression. I believe that this is a reasonable increase, and if it does end up causing problems, this commit can be cleanly reverted, because it only touches zstd. I chose the bulk update instead of replaying upstream commits because there have been ~3500 upstream commits since the 1.3.1 release, zstd wasn't ready to be used in the kernel as-is before a month ago, and not all upstream zstd commits build. The bulk update preserves bisectablity because bugs can be bisected to the zstd version update. At that point the update can be reverted, and we can work with upstream to find and fix the bug. Note that upstream zstd release 1.4.10 doesn't exist yet. I have cut a staging branch at 20821a46f412 [0] and will apply any changes requested to the staging branch. Once we're ready to merge this update I will cut a zstd release at the commit we merge, so we have a known zstd release in the kernel. The implementation of the kernel API is contained in zstd_compress_module.c and zstd_decompress_module.c. [0] https://github.com/facebook/zstd/commit/20821a46f4122f9abd7c7b245d28162dde8129c9 [1] https://github.com/terrelln/linux/commit/e0fa481d0e3df26918da0a13749740a1f6777574 Signed-off-by: Nick Terrell <terrelln@fb.com> Tested By: Paul Jones <paul@pauljones.id.au> Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name> Tested-by: Sedat Dilek <sedat.dilek@gmail.com> # LLVM/Clang v13.0.0 on x86-64 Tested-by: Jean-Denis Girard <jd.girard@sysnux.pf>
2020-09-11 23:37:08 +00:00
const BYTE* dictMatchL3 = dictBase + dictMatchIndexL3;
assert(dictMatchL3 < dictEnd);
if (dictMatchL3 > dictStart && MEM_read64(dictMatchL3) == MEM_read64(ip+1)) {
mLength = ZSTD_count_2segments(ip+1+8, dictMatchL3+8, iend, dictEnd, prefixLowest) + 8;
ip++;
offset = (U32)(curr + 1 - dictMatchIndexL3 - dictIndexDelta);
while (((ip>anchor) & (dictMatchL3>dictStart)) && (ip[-1] == dictMatchL3[-1])) { ip--; dictMatchL3--; mLength++; } /* catch up */
goto _match_found;
} } }
/* if no long +1 match, explore the short match we found */
if (matchIndexS < prefixLowestIndex) {
lib: zstd: Upgrade to latest upstream zstd version 1.4.10 Upgrade to the latest upstream zstd version 1.4.10. This patch is 100% generated from upstream zstd commit 20821a46f412 [0]. This patch is very large because it is transitioning from the custom kernel zstd to using upstream directly. The new zstd follows upstreams file structure which is different. Future update patches will be much smaller because they will only contain the changes from one upstream zstd release. As an aid for review I've created a commit [1] that shows the diff between upstream zstd as-is (which doesn't compile), and the zstd code imported in this patch. The verion of zstd in this patch is generated from upstream with changes applied by automation to replace upstreams libc dependencies, remove unnecessary portability macros, replace `/**` comments with `/*` comments, and use the kernel's xxhash instead of bundling it. The benefits of this patch are as follows: 1. Using upstream directly with automated script to generate kernel code. This allows us to update the kernel every upstream release, so the kernel gets the latest bug fixes and performance improvements, and doesn't get 3 years out of date again. The automation and the translated code are tested every upstream commit to ensure it continues to work. 2. Upgrades from a custom zstd based on 1.3.1 to 1.4.10, getting 3 years of performance improvements and bug fixes. On x86_64 I've measured 15% faster BtrFS and SquashFS decompression+read speeds, 35% faster kernel decompression, and 30% faster ZRAM decompression+read speeds. 3. Zstd-1.4.10 supports negative compression levels, which allow zstd to match or subsume lzo's performance. 4. Maintains the same kernel-specific wrapper API, so no callers have to be modified with zstd version updates. One concern that was brought up was stack usage. Upstream zstd had already removed most of its heavy stack usage functions, but I just removed the last functions that allocate arrays on the stack. I've measured the high water mark for both compression and decompression before and after this patch. Decompression is approximately neutral, using about 1.2KB of stack space. Compression levels up to 3 regressed from 1.4KB -> 1.6KB, and higher compression levels regressed from 1.5KB -> 2KB. We've added unit tests upstream to prevent further regression. I believe that this is a reasonable increase, and if it does end up causing problems, this commit can be cleanly reverted, because it only touches zstd. I chose the bulk update instead of replaying upstream commits because there have been ~3500 upstream commits since the 1.3.1 release, zstd wasn't ready to be used in the kernel as-is before a month ago, and not all upstream zstd commits build. The bulk update preserves bisectablity because bugs can be bisected to the zstd version update. At that point the update can be reverted, and we can work with upstream to find and fix the bug. Note that upstream zstd release 1.4.10 doesn't exist yet. I have cut a staging branch at 20821a46f412 [0] and will apply any changes requested to the staging branch. Once we're ready to merge this update I will cut a zstd release at the commit we merge, so we have a known zstd release in the kernel. The implementation of the kernel API is contained in zstd_compress_module.c and zstd_decompress_module.c. [0] https://github.com/facebook/zstd/commit/20821a46f4122f9abd7c7b245d28162dde8129c9 [1] https://github.com/terrelln/linux/commit/e0fa481d0e3df26918da0a13749740a1f6777574 Signed-off-by: Nick Terrell <terrelln@fb.com> Tested By: Paul Jones <paul@pauljones.id.au> Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name> Tested-by: Sedat Dilek <sedat.dilek@gmail.com> # LLVM/Clang v13.0.0 on x86-64 Tested-by: Jean-Denis Girard <jd.girard@sysnux.pf>
2020-09-11 23:37:08 +00:00
mLength = ZSTD_count_2segments(ip+4, match+4, iend, dictEnd, prefixLowest) + 4;
offset = (U32)(curr - matchIndexS);
while (((ip>anchor) & (match>dictStart)) && (ip[-1] == match[-1])) { ip--; match--; mLength++; } /* catch up */
} else {
mLength = ZSTD_count(ip+4, match+4, iend) + 4;
offset = (U32)(ip - match);
while (((ip>anchor) & (match>prefixLowest)) && (ip[-1] == match[-1])) { ip--; match--; mLength++; } /* catch up */
}
_match_found:
offset_2 = offset_1;
offset_1 = offset;
zstd: import upstream v1.5.5 Import upstream zstd v1.5.5 to expose upstream's QAT integration. Import from upstream commit 58b3ef79 [0]. This is one commit before the tag v1.5.5-kernel [1], which is signed with upstream's signing key. The next patch in the series imports from v1.5.5-kernel, and is included in the series, rather than just importing directly from v1.5.5-kernel, because it is a non-trivial patch applied to improve the kernel's decompression speed. This commit contains 3 backported patches on top of v1.5.5: Two from the Linux copy of zstd, and one from upstream's `dev` branch. In addition to keeping the kernel's copy of zstd up to date, this update was requested by Intel to expose upstream zstd's external match provider API to the kernel, which allows QAT to accelerate the LZ match finding stage. This commit was generated by: export ZSTD=/path/to/repo/zstd/ export LINUX=/path/to/repo/linux/ cd "$ZSTD/contrib/linux-kernel" git checkout v1.5.5-kernel~ make import LINUX="$LINUX" I tested and benchmarked this commit on x86-64 with gcc-13.2.1 on an Intel i9-9900K by running my benchmark scripts that benchmark zstd's performance in btrfs and squashfs compressed filesystems. This commit improves compression speed, especially for higher compression levels, and regresses decompression speed. But the decompression speed regression is addressed by the next patch in the series. Component, Level, C. time delta, size delta, D. time delta Btrfs , 1, -1.9%, +0.0%, +9.5% Btrfs , 3, -5.6%, +0.0%, +7.4% Btrfs , 5, -4.9%, +0.0%, +5.0% Btrfs , 7, -5.7%, +0.0%, +5.2% Btrfs , 9, -5.7%, +0.0%, +4.0% Squashfs , 1, N/A, 0.0%, +11.6% I also boot tested with a zstd compressed kernel on i386 and aarch64. Link: https://github.com/facebook/zstd/commit/58b3ef79eb9f1e6613684ea6e5b89720660ee8b6 Link: https://github.com/facebook/zstd/tree/v1.5.5-kernel Signed-off-by: Nick Terrell <terrelln@fb.com>
2023-11-16 20:52:21 +00:00
ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, iend, OFFSET_TO_OFFBASE(offset), mLength);
lib: zstd: Upgrade to latest upstream zstd version 1.4.10 Upgrade to the latest upstream zstd version 1.4.10. This patch is 100% generated from upstream zstd commit 20821a46f412 [0]. This patch is very large because it is transitioning from the custom kernel zstd to using upstream directly. The new zstd follows upstreams file structure which is different. Future update patches will be much smaller because they will only contain the changes from one upstream zstd release. As an aid for review I've created a commit [1] that shows the diff between upstream zstd as-is (which doesn't compile), and the zstd code imported in this patch. The verion of zstd in this patch is generated from upstream with changes applied by automation to replace upstreams libc dependencies, remove unnecessary portability macros, replace `/**` comments with `/*` comments, and use the kernel's xxhash instead of bundling it. The benefits of this patch are as follows: 1. Using upstream directly with automated script to generate kernel code. This allows us to update the kernel every upstream release, so the kernel gets the latest bug fixes and performance improvements, and doesn't get 3 years out of date again. The automation and the translated code are tested every upstream commit to ensure it continues to work. 2. Upgrades from a custom zstd based on 1.3.1 to 1.4.10, getting 3 years of performance improvements and bug fixes. On x86_64 I've measured 15% faster BtrFS and SquashFS decompression+read speeds, 35% faster kernel decompression, and 30% faster ZRAM decompression+read speeds. 3. Zstd-1.4.10 supports negative compression levels, which allow zstd to match or subsume lzo's performance. 4. Maintains the same kernel-specific wrapper API, so no callers have to be modified with zstd version updates. One concern that was brought up was stack usage. Upstream zstd had already removed most of its heavy stack usage functions, but I just removed the last functions that allocate arrays on the stack. I've measured the high water mark for both compression and decompression before and after this patch. Decompression is approximately neutral, using about 1.2KB of stack space. Compression levels up to 3 regressed from 1.4KB -> 1.6KB, and higher compression levels regressed from 1.5KB -> 2KB. We've added unit tests upstream to prevent further regression. I believe that this is a reasonable increase, and if it does end up causing problems, this commit can be cleanly reverted, because it only touches zstd. I chose the bulk update instead of replaying upstream commits because there have been ~3500 upstream commits since the 1.3.1 release, zstd wasn't ready to be used in the kernel as-is before a month ago, and not all upstream zstd commits build. The bulk update preserves bisectablity because bugs can be bisected to the zstd version update. At that point the update can be reverted, and we can work with upstream to find and fix the bug. Note that upstream zstd release 1.4.10 doesn't exist yet. I have cut a staging branch at 20821a46f412 [0] and will apply any changes requested to the staging branch. Once we're ready to merge this update I will cut a zstd release at the commit we merge, so we have a known zstd release in the kernel. The implementation of the kernel API is contained in zstd_compress_module.c and zstd_decompress_module.c. [0] https://github.com/facebook/zstd/commit/20821a46f4122f9abd7c7b245d28162dde8129c9 [1] https://github.com/terrelln/linux/commit/e0fa481d0e3df26918da0a13749740a1f6777574 Signed-off-by: Nick Terrell <terrelln@fb.com> Tested By: Paul Jones <paul@pauljones.id.au> Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name> Tested-by: Sedat Dilek <sedat.dilek@gmail.com> # LLVM/Clang v13.0.0 on x86-64 Tested-by: Jean-Denis Girard <jd.girard@sysnux.pf>
2020-09-11 23:37:08 +00:00
_match_stored:
/* match found */
ip += mLength;
anchor = ip;
if (ip <= ilimit) {
/* Complementary insertion */
/* done after iLimit test, as candidates could be > iend-8 */
{ U32 const indexToInsert = curr+2;
hashLong[ZSTD_hashPtr(base+indexToInsert, hBitsL, 8)] = indexToInsert;
hashLong[ZSTD_hashPtr(ip-2, hBitsL, 8)] = (U32)(ip-2-base);
hashSmall[ZSTD_hashPtr(base+indexToInsert, hBitsS, mls)] = indexToInsert;
hashSmall[ZSTD_hashPtr(ip-1, hBitsS, mls)] = (U32)(ip-1-base);
}
/* check immediate repcode */
while (ip <= ilimit) {
U32 const current2 = (U32)(ip-base);
U32 const repIndex2 = current2 - offset_2;
const BYTE* repMatch2 = repIndex2 < prefixLowestIndex ?
dictBase + repIndex2 - dictIndexDelta :
base + repIndex2;
if ( ((U32)((prefixLowestIndex-1) - (U32)repIndex2) >= 3 /* intentional overflow */)
&& (MEM_read32(repMatch2) == MEM_read32(ip)) ) {
const BYTE* const repEnd2 = repIndex2 < prefixLowestIndex ? dictEnd : iend;
size_t const repLength2 = ZSTD_count_2segments(ip+4, repMatch2+4, iend, repEnd2, prefixLowest) + 4;
U32 tmpOffset = offset_2; offset_2 = offset_1; offset_1 = tmpOffset; /* swap offset_2 <=> offset_1 */
zstd: import upstream v1.5.5 Import upstream zstd v1.5.5 to expose upstream's QAT integration. Import from upstream commit 58b3ef79 [0]. This is one commit before the tag v1.5.5-kernel [1], which is signed with upstream's signing key. The next patch in the series imports from v1.5.5-kernel, and is included in the series, rather than just importing directly from v1.5.5-kernel, because it is a non-trivial patch applied to improve the kernel's decompression speed. This commit contains 3 backported patches on top of v1.5.5: Two from the Linux copy of zstd, and one from upstream's `dev` branch. In addition to keeping the kernel's copy of zstd up to date, this update was requested by Intel to expose upstream zstd's external match provider API to the kernel, which allows QAT to accelerate the LZ match finding stage. This commit was generated by: export ZSTD=/path/to/repo/zstd/ export LINUX=/path/to/repo/linux/ cd "$ZSTD/contrib/linux-kernel" git checkout v1.5.5-kernel~ make import LINUX="$LINUX" I tested and benchmarked this commit on x86-64 with gcc-13.2.1 on an Intel i9-9900K by running my benchmark scripts that benchmark zstd's performance in btrfs and squashfs compressed filesystems. This commit improves compression speed, especially for higher compression levels, and regresses decompression speed. But the decompression speed regression is addressed by the next patch in the series. Component, Level, C. time delta, size delta, D. time delta Btrfs , 1, -1.9%, +0.0%, +9.5% Btrfs , 3, -5.6%, +0.0%, +7.4% Btrfs , 5, -4.9%, +0.0%, +5.0% Btrfs , 7, -5.7%, +0.0%, +5.2% Btrfs , 9, -5.7%, +0.0%, +4.0% Squashfs , 1, N/A, 0.0%, +11.6% I also boot tested with a zstd compressed kernel on i386 and aarch64. Link: https://github.com/facebook/zstd/commit/58b3ef79eb9f1e6613684ea6e5b89720660ee8b6 Link: https://github.com/facebook/zstd/tree/v1.5.5-kernel Signed-off-by: Nick Terrell <terrelln@fb.com>
2023-11-16 20:52:21 +00:00
ZSTD_storeSeq(seqStore, 0, anchor, iend, REPCODE1_TO_OFFBASE, repLength2);
hashSmall[ZSTD_hashPtr(ip, hBitsS, mls)] = current2;
hashLong[ZSTD_hashPtr(ip, hBitsL, 8)] = current2;
ip += repLength2;
lib: zstd: Upgrade to latest upstream zstd version 1.4.10 Upgrade to the latest upstream zstd version 1.4.10. This patch is 100% generated from upstream zstd commit 20821a46f412 [0]. This patch is very large because it is transitioning from the custom kernel zstd to using upstream directly. The new zstd follows upstreams file structure which is different. Future update patches will be much smaller because they will only contain the changes from one upstream zstd release. As an aid for review I've created a commit [1] that shows the diff between upstream zstd as-is (which doesn't compile), and the zstd code imported in this patch. The verion of zstd in this patch is generated from upstream with changes applied by automation to replace upstreams libc dependencies, remove unnecessary portability macros, replace `/**` comments with `/*` comments, and use the kernel's xxhash instead of bundling it. The benefits of this patch are as follows: 1. Using upstream directly with automated script to generate kernel code. This allows us to update the kernel every upstream release, so the kernel gets the latest bug fixes and performance improvements, and doesn't get 3 years out of date again. The automation and the translated code are tested every upstream commit to ensure it continues to work. 2. Upgrades from a custom zstd based on 1.3.1 to 1.4.10, getting 3 years of performance improvements and bug fixes. On x86_64 I've measured 15% faster BtrFS and SquashFS decompression+read speeds, 35% faster kernel decompression, and 30% faster ZRAM decompression+read speeds. 3. Zstd-1.4.10 supports negative compression levels, which allow zstd to match or subsume lzo's performance. 4. Maintains the same kernel-specific wrapper API, so no callers have to be modified with zstd version updates. One concern that was brought up was stack usage. Upstream zstd had already removed most of its heavy stack usage functions, but I just removed the last functions that allocate arrays on the stack. I've measured the high water mark for both compression and decompression before and after this patch. Decompression is approximately neutral, using about 1.2KB of stack space. Compression levels up to 3 regressed from 1.4KB -> 1.6KB, and higher compression levels regressed from 1.5KB -> 2KB. We've added unit tests upstream to prevent further regression. I believe that this is a reasonable increase, and if it does end up causing problems, this commit can be cleanly reverted, because it only touches zstd. I chose the bulk update instead of replaying upstream commits because there have been ~3500 upstream commits since the 1.3.1 release, zstd wasn't ready to be used in the kernel as-is before a month ago, and not all upstream zstd commits build. The bulk update preserves bisectablity because bugs can be bisected to the zstd version update. At that point the update can be reverted, and we can work with upstream to find and fix the bug. Note that upstream zstd release 1.4.10 doesn't exist yet. I have cut a staging branch at 20821a46f412 [0] and will apply any changes requested to the staging branch. Once we're ready to merge this update I will cut a zstd release at the commit we merge, so we have a known zstd release in the kernel. The implementation of the kernel API is contained in zstd_compress_module.c and zstd_decompress_module.c. [0] https://github.com/facebook/zstd/commit/20821a46f4122f9abd7c7b245d28162dde8129c9 [1] https://github.com/terrelln/linux/commit/e0fa481d0e3df26918da0a13749740a1f6777574 Signed-off-by: Nick Terrell <terrelln@fb.com> Tested By: Paul Jones <paul@pauljones.id.au> Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name> Tested-by: Sedat Dilek <sedat.dilek@gmail.com> # LLVM/Clang v13.0.0 on x86-64 Tested-by: Jean-Denis Girard <jd.girard@sysnux.pf>
2020-09-11 23:37:08 +00:00
anchor = ip;
continue;
}
break;
}
}
lib: zstd: Upgrade to latest upstream zstd version 1.4.10 Upgrade to the latest upstream zstd version 1.4.10. This patch is 100% generated from upstream zstd commit 20821a46f412 [0]. This patch is very large because it is transitioning from the custom kernel zstd to using upstream directly. The new zstd follows upstreams file structure which is different. Future update patches will be much smaller because they will only contain the changes from one upstream zstd release. As an aid for review I've created a commit [1] that shows the diff between upstream zstd as-is (which doesn't compile), and the zstd code imported in this patch. The verion of zstd in this patch is generated from upstream with changes applied by automation to replace upstreams libc dependencies, remove unnecessary portability macros, replace `/**` comments with `/*` comments, and use the kernel's xxhash instead of bundling it. The benefits of this patch are as follows: 1. Using upstream directly with automated script to generate kernel code. This allows us to update the kernel every upstream release, so the kernel gets the latest bug fixes and performance improvements, and doesn't get 3 years out of date again. The automation and the translated code are tested every upstream commit to ensure it continues to work. 2. Upgrades from a custom zstd based on 1.3.1 to 1.4.10, getting 3 years of performance improvements and bug fixes. On x86_64 I've measured 15% faster BtrFS and SquashFS decompression+read speeds, 35% faster kernel decompression, and 30% faster ZRAM decompression+read speeds. 3. Zstd-1.4.10 supports negative compression levels, which allow zstd to match or subsume lzo's performance. 4. Maintains the same kernel-specific wrapper API, so no callers have to be modified with zstd version updates. One concern that was brought up was stack usage. Upstream zstd had already removed most of its heavy stack usage functions, but I just removed the last functions that allocate arrays on the stack. I've measured the high water mark for both compression and decompression before and after this patch. Decompression is approximately neutral, using about 1.2KB of stack space. Compression levels up to 3 regressed from 1.4KB -> 1.6KB, and higher compression levels regressed from 1.5KB -> 2KB. We've added unit tests upstream to prevent further regression. I believe that this is a reasonable increase, and if it does end up causing problems, this commit can be cleanly reverted, because it only touches zstd. I chose the bulk update instead of replaying upstream commits because there have been ~3500 upstream commits since the 1.3.1 release, zstd wasn't ready to be used in the kernel as-is before a month ago, and not all upstream zstd commits build. The bulk update preserves bisectablity because bugs can be bisected to the zstd version update. At that point the update can be reverted, and we can work with upstream to find and fix the bug. Note that upstream zstd release 1.4.10 doesn't exist yet. I have cut a staging branch at 20821a46f412 [0] and will apply any changes requested to the staging branch. Once we're ready to merge this update I will cut a zstd release at the commit we merge, so we have a known zstd release in the kernel. The implementation of the kernel API is contained in zstd_compress_module.c and zstd_decompress_module.c. [0] https://github.com/facebook/zstd/commit/20821a46f4122f9abd7c7b245d28162dde8129c9 [1] https://github.com/terrelln/linux/commit/e0fa481d0e3df26918da0a13749740a1f6777574 Signed-off-by: Nick Terrell <terrelln@fb.com> Tested By: Paul Jones <paul@pauljones.id.au> Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name> Tested-by: Sedat Dilek <sedat.dilek@gmail.com> # LLVM/Clang v13.0.0 on x86-64 Tested-by: Jean-Denis Girard <jd.girard@sysnux.pf>
2020-09-11 23:37:08 +00:00
} /* while (ip < ilimit) */
/* save reps for next block */
zstd: import upstream v1.5.5 Import upstream zstd v1.5.5 to expose upstream's QAT integration. Import from upstream commit 58b3ef79 [0]. This is one commit before the tag v1.5.5-kernel [1], which is signed with upstream's signing key. The next patch in the series imports from v1.5.5-kernel, and is included in the series, rather than just importing directly from v1.5.5-kernel, because it is a non-trivial patch applied to improve the kernel's decompression speed. This commit contains 3 backported patches on top of v1.5.5: Two from the Linux copy of zstd, and one from upstream's `dev` branch. In addition to keeping the kernel's copy of zstd up to date, this update was requested by Intel to expose upstream zstd's external match provider API to the kernel, which allows QAT to accelerate the LZ match finding stage. This commit was generated by: export ZSTD=/path/to/repo/zstd/ export LINUX=/path/to/repo/linux/ cd "$ZSTD/contrib/linux-kernel" git checkout v1.5.5-kernel~ make import LINUX="$LINUX" I tested and benchmarked this commit on x86-64 with gcc-13.2.1 on an Intel i9-9900K by running my benchmark scripts that benchmark zstd's performance in btrfs and squashfs compressed filesystems. This commit improves compression speed, especially for higher compression levels, and regresses decompression speed. But the decompression speed regression is addressed by the next patch in the series. Component, Level, C. time delta, size delta, D. time delta Btrfs , 1, -1.9%, +0.0%, +9.5% Btrfs , 3, -5.6%, +0.0%, +7.4% Btrfs , 5, -4.9%, +0.0%, +5.0% Btrfs , 7, -5.7%, +0.0%, +5.2% Btrfs , 9, -5.7%, +0.0%, +4.0% Squashfs , 1, N/A, 0.0%, +11.6% I also boot tested with a zstd compressed kernel on i386 and aarch64. Link: https://github.com/facebook/zstd/commit/58b3ef79eb9f1e6613684ea6e5b89720660ee8b6 Link: https://github.com/facebook/zstd/tree/v1.5.5-kernel Signed-off-by: Nick Terrell <terrelln@fb.com>
2023-11-16 20:52:21 +00:00
rep[0] = offset_1;
rep[1] = offset_2;
lib: zstd: Upgrade to latest upstream zstd version 1.4.10 Upgrade to the latest upstream zstd version 1.4.10. This patch is 100% generated from upstream zstd commit 20821a46f412 [0]. This patch is very large because it is transitioning from the custom kernel zstd to using upstream directly. The new zstd follows upstreams file structure which is different. Future update patches will be much smaller because they will only contain the changes from one upstream zstd release. As an aid for review I've created a commit [1] that shows the diff between upstream zstd as-is (which doesn't compile), and the zstd code imported in this patch. The verion of zstd in this patch is generated from upstream with changes applied by automation to replace upstreams libc dependencies, remove unnecessary portability macros, replace `/**` comments with `/*` comments, and use the kernel's xxhash instead of bundling it. The benefits of this patch are as follows: 1. Using upstream directly with automated script to generate kernel code. This allows us to update the kernel every upstream release, so the kernel gets the latest bug fixes and performance improvements, and doesn't get 3 years out of date again. The automation and the translated code are tested every upstream commit to ensure it continues to work. 2. Upgrades from a custom zstd based on 1.3.1 to 1.4.10, getting 3 years of performance improvements and bug fixes. On x86_64 I've measured 15% faster BtrFS and SquashFS decompression+read speeds, 35% faster kernel decompression, and 30% faster ZRAM decompression+read speeds. 3. Zstd-1.4.10 supports negative compression levels, which allow zstd to match or subsume lzo's performance. 4. Maintains the same kernel-specific wrapper API, so no callers have to be modified with zstd version updates. One concern that was brought up was stack usage. Upstream zstd had already removed most of its heavy stack usage functions, but I just removed the last functions that allocate arrays on the stack. I've measured the high water mark for both compression and decompression before and after this patch. Decompression is approximately neutral, using about 1.2KB of stack space. Compression levels up to 3 regressed from 1.4KB -> 1.6KB, and higher compression levels regressed from 1.5KB -> 2KB. We've added unit tests upstream to prevent further regression. I believe that this is a reasonable increase, and if it does end up causing problems, this commit can be cleanly reverted, because it only touches zstd. I chose the bulk update instead of replaying upstream commits because there have been ~3500 upstream commits since the 1.3.1 release, zstd wasn't ready to be used in the kernel as-is before a month ago, and not all upstream zstd commits build. The bulk update preserves bisectablity because bugs can be bisected to the zstd version update. At that point the update can be reverted, and we can work with upstream to find and fix the bug. Note that upstream zstd release 1.4.10 doesn't exist yet. I have cut a staging branch at 20821a46f412 [0] and will apply any changes requested to the staging branch. Once we're ready to merge this update I will cut a zstd release at the commit we merge, so we have a known zstd release in the kernel. The implementation of the kernel API is contained in zstd_compress_module.c and zstd_decompress_module.c. [0] https://github.com/facebook/zstd/commit/20821a46f4122f9abd7c7b245d28162dde8129c9 [1] https://github.com/terrelln/linux/commit/e0fa481d0e3df26918da0a13749740a1f6777574 Signed-off-by: Nick Terrell <terrelln@fb.com> Tested By: Paul Jones <paul@pauljones.id.au> Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name> Tested-by: Sedat Dilek <sedat.dilek@gmail.com> # LLVM/Clang v13.0.0 on x86-64 Tested-by: Jean-Denis Girard <jd.girard@sysnux.pf>
2020-09-11 23:37:08 +00:00
/* Return the last literals size */
return (size_t)(iend - anchor);
}
#define ZSTD_GEN_DFAST_FN(dictMode, mls) \
static size_t ZSTD_compressBlock_doubleFast_##dictMode##_##mls( \
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], \
void const* src, size_t srcSize) \
{ \
return ZSTD_compressBlock_doubleFast_##dictMode##_generic(ms, seqStore, rep, src, srcSize, mls); \
}
ZSTD_GEN_DFAST_FN(noDict, 4)
ZSTD_GEN_DFAST_FN(noDict, 5)
ZSTD_GEN_DFAST_FN(noDict, 6)
ZSTD_GEN_DFAST_FN(noDict, 7)
ZSTD_GEN_DFAST_FN(dictMatchState, 4)
ZSTD_GEN_DFAST_FN(dictMatchState, 5)
ZSTD_GEN_DFAST_FN(dictMatchState, 6)
ZSTD_GEN_DFAST_FN(dictMatchState, 7)
lib: zstd: Upgrade to latest upstream zstd version 1.4.10 Upgrade to the latest upstream zstd version 1.4.10. This patch is 100% generated from upstream zstd commit 20821a46f412 [0]. This patch is very large because it is transitioning from the custom kernel zstd to using upstream directly. The new zstd follows upstreams file structure which is different. Future update patches will be much smaller because they will only contain the changes from one upstream zstd release. As an aid for review I've created a commit [1] that shows the diff between upstream zstd as-is (which doesn't compile), and the zstd code imported in this patch. The verion of zstd in this patch is generated from upstream with changes applied by automation to replace upstreams libc dependencies, remove unnecessary portability macros, replace `/**` comments with `/*` comments, and use the kernel's xxhash instead of bundling it. The benefits of this patch are as follows: 1. Using upstream directly with automated script to generate kernel code. This allows us to update the kernel every upstream release, so the kernel gets the latest bug fixes and performance improvements, and doesn't get 3 years out of date again. The automation and the translated code are tested every upstream commit to ensure it continues to work. 2. Upgrades from a custom zstd based on 1.3.1 to 1.4.10, getting 3 years of performance improvements and bug fixes. On x86_64 I've measured 15% faster BtrFS and SquashFS decompression+read speeds, 35% faster kernel decompression, and 30% faster ZRAM decompression+read speeds. 3. Zstd-1.4.10 supports negative compression levels, which allow zstd to match or subsume lzo's performance. 4. Maintains the same kernel-specific wrapper API, so no callers have to be modified with zstd version updates. One concern that was brought up was stack usage. Upstream zstd had already removed most of its heavy stack usage functions, but I just removed the last functions that allocate arrays on the stack. I've measured the high water mark for both compression and decompression before and after this patch. Decompression is approximately neutral, using about 1.2KB of stack space. Compression levels up to 3 regressed from 1.4KB -> 1.6KB, and higher compression levels regressed from 1.5KB -> 2KB. We've added unit tests upstream to prevent further regression. I believe that this is a reasonable increase, and if it does end up causing problems, this commit can be cleanly reverted, because it only touches zstd. I chose the bulk update instead of replaying upstream commits because there have been ~3500 upstream commits since the 1.3.1 release, zstd wasn't ready to be used in the kernel as-is before a month ago, and not all upstream zstd commits build. The bulk update preserves bisectablity because bugs can be bisected to the zstd version update. At that point the update can be reverted, and we can work with upstream to find and fix the bug. Note that upstream zstd release 1.4.10 doesn't exist yet. I have cut a staging branch at 20821a46f412 [0] and will apply any changes requested to the staging branch. Once we're ready to merge this update I will cut a zstd release at the commit we merge, so we have a known zstd release in the kernel. The implementation of the kernel API is contained in zstd_compress_module.c and zstd_decompress_module.c. [0] https://github.com/facebook/zstd/commit/20821a46f4122f9abd7c7b245d28162dde8129c9 [1] https://github.com/terrelln/linux/commit/e0fa481d0e3df26918da0a13749740a1f6777574 Signed-off-by: Nick Terrell <terrelln@fb.com> Tested By: Paul Jones <paul@pauljones.id.au> Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name> Tested-by: Sedat Dilek <sedat.dilek@gmail.com> # LLVM/Clang v13.0.0 on x86-64 Tested-by: Jean-Denis Girard <jd.girard@sysnux.pf>
2020-09-11 23:37:08 +00:00
size_t ZSTD_compressBlock_doubleFast(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize)
{
const U32 mls = ms->cParams.minMatch;
switch(mls)
{
default: /* includes case 3 */
case 4 :
return ZSTD_compressBlock_doubleFast_noDict_4(ms, seqStore, rep, src, srcSize);
lib: zstd: Upgrade to latest upstream zstd version 1.4.10 Upgrade to the latest upstream zstd version 1.4.10. This patch is 100% generated from upstream zstd commit 20821a46f412 [0]. This patch is very large because it is transitioning from the custom kernel zstd to using upstream directly. The new zstd follows upstreams file structure which is different. Future update patches will be much smaller because they will only contain the changes from one upstream zstd release. As an aid for review I've created a commit [1] that shows the diff between upstream zstd as-is (which doesn't compile), and the zstd code imported in this patch. The verion of zstd in this patch is generated from upstream with changes applied by automation to replace upstreams libc dependencies, remove unnecessary portability macros, replace `/**` comments with `/*` comments, and use the kernel's xxhash instead of bundling it. The benefits of this patch are as follows: 1. Using upstream directly with automated script to generate kernel code. This allows us to update the kernel every upstream release, so the kernel gets the latest bug fixes and performance improvements, and doesn't get 3 years out of date again. The automation and the translated code are tested every upstream commit to ensure it continues to work. 2. Upgrades from a custom zstd based on 1.3.1 to 1.4.10, getting 3 years of performance improvements and bug fixes. On x86_64 I've measured 15% faster BtrFS and SquashFS decompression+read speeds, 35% faster kernel decompression, and 30% faster ZRAM decompression+read speeds. 3. Zstd-1.4.10 supports negative compression levels, which allow zstd to match or subsume lzo's performance. 4. Maintains the same kernel-specific wrapper API, so no callers have to be modified with zstd version updates. One concern that was brought up was stack usage. Upstream zstd had already removed most of its heavy stack usage functions, but I just removed the last functions that allocate arrays on the stack. I've measured the high water mark for both compression and decompression before and after this patch. Decompression is approximately neutral, using about 1.2KB of stack space. Compression levels up to 3 regressed from 1.4KB -> 1.6KB, and higher compression levels regressed from 1.5KB -> 2KB. We've added unit tests upstream to prevent further regression. I believe that this is a reasonable increase, and if it does end up causing problems, this commit can be cleanly reverted, because it only touches zstd. I chose the bulk update instead of replaying upstream commits because there have been ~3500 upstream commits since the 1.3.1 release, zstd wasn't ready to be used in the kernel as-is before a month ago, and not all upstream zstd commits build. The bulk update preserves bisectablity because bugs can be bisected to the zstd version update. At that point the update can be reverted, and we can work with upstream to find and fix the bug. Note that upstream zstd release 1.4.10 doesn't exist yet. I have cut a staging branch at 20821a46f412 [0] and will apply any changes requested to the staging branch. Once we're ready to merge this update I will cut a zstd release at the commit we merge, so we have a known zstd release in the kernel. The implementation of the kernel API is contained in zstd_compress_module.c and zstd_decompress_module.c. [0] https://github.com/facebook/zstd/commit/20821a46f4122f9abd7c7b245d28162dde8129c9 [1] https://github.com/terrelln/linux/commit/e0fa481d0e3df26918da0a13749740a1f6777574 Signed-off-by: Nick Terrell <terrelln@fb.com> Tested By: Paul Jones <paul@pauljones.id.au> Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name> Tested-by: Sedat Dilek <sedat.dilek@gmail.com> # LLVM/Clang v13.0.0 on x86-64 Tested-by: Jean-Denis Girard <jd.girard@sysnux.pf>
2020-09-11 23:37:08 +00:00
case 5 :
return ZSTD_compressBlock_doubleFast_noDict_5(ms, seqStore, rep, src, srcSize);
lib: zstd: Upgrade to latest upstream zstd version 1.4.10 Upgrade to the latest upstream zstd version 1.4.10. This patch is 100% generated from upstream zstd commit 20821a46f412 [0]. This patch is very large because it is transitioning from the custom kernel zstd to using upstream directly. The new zstd follows upstreams file structure which is different. Future update patches will be much smaller because they will only contain the changes from one upstream zstd release. As an aid for review I've created a commit [1] that shows the diff between upstream zstd as-is (which doesn't compile), and the zstd code imported in this patch. The verion of zstd in this patch is generated from upstream with changes applied by automation to replace upstreams libc dependencies, remove unnecessary portability macros, replace `/**` comments with `/*` comments, and use the kernel's xxhash instead of bundling it. The benefits of this patch are as follows: 1. Using upstream directly with automated script to generate kernel code. This allows us to update the kernel every upstream release, so the kernel gets the latest bug fixes and performance improvements, and doesn't get 3 years out of date again. The automation and the translated code are tested every upstream commit to ensure it continues to work. 2. Upgrades from a custom zstd based on 1.3.1 to 1.4.10, getting 3 years of performance improvements and bug fixes. On x86_64 I've measured 15% faster BtrFS and SquashFS decompression+read speeds, 35% faster kernel decompression, and 30% faster ZRAM decompression+read speeds. 3. Zstd-1.4.10 supports negative compression levels, which allow zstd to match or subsume lzo's performance. 4. Maintains the same kernel-specific wrapper API, so no callers have to be modified with zstd version updates. One concern that was brought up was stack usage. Upstream zstd had already removed most of its heavy stack usage functions, but I just removed the last functions that allocate arrays on the stack. I've measured the high water mark for both compression and decompression before and after this patch. Decompression is approximately neutral, using about 1.2KB of stack space. Compression levels up to 3 regressed from 1.4KB -> 1.6KB, and higher compression levels regressed from 1.5KB -> 2KB. We've added unit tests upstream to prevent further regression. I believe that this is a reasonable increase, and if it does end up causing problems, this commit can be cleanly reverted, because it only touches zstd. I chose the bulk update instead of replaying upstream commits because there have been ~3500 upstream commits since the 1.3.1 release, zstd wasn't ready to be used in the kernel as-is before a month ago, and not all upstream zstd commits build. The bulk update preserves bisectablity because bugs can be bisected to the zstd version update. At that point the update can be reverted, and we can work with upstream to find and fix the bug. Note that upstream zstd release 1.4.10 doesn't exist yet. I have cut a staging branch at 20821a46f412 [0] and will apply any changes requested to the staging branch. Once we're ready to merge this update I will cut a zstd release at the commit we merge, so we have a known zstd release in the kernel. The implementation of the kernel API is contained in zstd_compress_module.c and zstd_decompress_module.c. [0] https://github.com/facebook/zstd/commit/20821a46f4122f9abd7c7b245d28162dde8129c9 [1] https://github.com/terrelln/linux/commit/e0fa481d0e3df26918da0a13749740a1f6777574 Signed-off-by: Nick Terrell <terrelln@fb.com> Tested By: Paul Jones <paul@pauljones.id.au> Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name> Tested-by: Sedat Dilek <sedat.dilek@gmail.com> # LLVM/Clang v13.0.0 on x86-64 Tested-by: Jean-Denis Girard <jd.girard@sysnux.pf>
2020-09-11 23:37:08 +00:00
case 6 :
return ZSTD_compressBlock_doubleFast_noDict_6(ms, seqStore, rep, src, srcSize);
lib: zstd: Upgrade to latest upstream zstd version 1.4.10 Upgrade to the latest upstream zstd version 1.4.10. This patch is 100% generated from upstream zstd commit 20821a46f412 [0]. This patch is very large because it is transitioning from the custom kernel zstd to using upstream directly. The new zstd follows upstreams file structure which is different. Future update patches will be much smaller because they will only contain the changes from one upstream zstd release. As an aid for review I've created a commit [1] that shows the diff between upstream zstd as-is (which doesn't compile), and the zstd code imported in this patch. The verion of zstd in this patch is generated from upstream with changes applied by automation to replace upstreams libc dependencies, remove unnecessary portability macros, replace `/**` comments with `/*` comments, and use the kernel's xxhash instead of bundling it. The benefits of this patch are as follows: 1. Using upstream directly with automated script to generate kernel code. This allows us to update the kernel every upstream release, so the kernel gets the latest bug fixes and performance improvements, and doesn't get 3 years out of date again. The automation and the translated code are tested every upstream commit to ensure it continues to work. 2. Upgrades from a custom zstd based on 1.3.1 to 1.4.10, getting 3 years of performance improvements and bug fixes. On x86_64 I've measured 15% faster BtrFS and SquashFS decompression+read speeds, 35% faster kernel decompression, and 30% faster ZRAM decompression+read speeds. 3. Zstd-1.4.10 supports negative compression levels, which allow zstd to match or subsume lzo's performance. 4. Maintains the same kernel-specific wrapper API, so no callers have to be modified with zstd version updates. One concern that was brought up was stack usage. Upstream zstd had already removed most of its heavy stack usage functions, but I just removed the last functions that allocate arrays on the stack. I've measured the high water mark for both compression and decompression before and after this patch. Decompression is approximately neutral, using about 1.2KB of stack space. Compression levels up to 3 regressed from 1.4KB -> 1.6KB, and higher compression levels regressed from 1.5KB -> 2KB. We've added unit tests upstream to prevent further regression. I believe that this is a reasonable increase, and if it does end up causing problems, this commit can be cleanly reverted, because it only touches zstd. I chose the bulk update instead of replaying upstream commits because there have been ~3500 upstream commits since the 1.3.1 release, zstd wasn't ready to be used in the kernel as-is before a month ago, and not all upstream zstd commits build. The bulk update preserves bisectablity because bugs can be bisected to the zstd version update. At that point the update can be reverted, and we can work with upstream to find and fix the bug. Note that upstream zstd release 1.4.10 doesn't exist yet. I have cut a staging branch at 20821a46f412 [0] and will apply any changes requested to the staging branch. Once we're ready to merge this update I will cut a zstd release at the commit we merge, so we have a known zstd release in the kernel. The implementation of the kernel API is contained in zstd_compress_module.c and zstd_decompress_module.c. [0] https://github.com/facebook/zstd/commit/20821a46f4122f9abd7c7b245d28162dde8129c9 [1] https://github.com/terrelln/linux/commit/e0fa481d0e3df26918da0a13749740a1f6777574 Signed-off-by: Nick Terrell <terrelln@fb.com> Tested By: Paul Jones <paul@pauljones.id.au> Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name> Tested-by: Sedat Dilek <sedat.dilek@gmail.com> # LLVM/Clang v13.0.0 on x86-64 Tested-by: Jean-Denis Girard <jd.girard@sysnux.pf>
2020-09-11 23:37:08 +00:00
case 7 :
return ZSTD_compressBlock_doubleFast_noDict_7(ms, seqStore, rep, src, srcSize);
lib: zstd: Upgrade to latest upstream zstd version 1.4.10 Upgrade to the latest upstream zstd version 1.4.10. This patch is 100% generated from upstream zstd commit 20821a46f412 [0]. This patch is very large because it is transitioning from the custom kernel zstd to using upstream directly. The new zstd follows upstreams file structure which is different. Future update patches will be much smaller because they will only contain the changes from one upstream zstd release. As an aid for review I've created a commit [1] that shows the diff between upstream zstd as-is (which doesn't compile), and the zstd code imported in this patch. The verion of zstd in this patch is generated from upstream with changes applied by automation to replace upstreams libc dependencies, remove unnecessary portability macros, replace `/**` comments with `/*` comments, and use the kernel's xxhash instead of bundling it. The benefits of this patch are as follows: 1. Using upstream directly with automated script to generate kernel code. This allows us to update the kernel every upstream release, so the kernel gets the latest bug fixes and performance improvements, and doesn't get 3 years out of date again. The automation and the translated code are tested every upstream commit to ensure it continues to work. 2. Upgrades from a custom zstd based on 1.3.1 to 1.4.10, getting 3 years of performance improvements and bug fixes. On x86_64 I've measured 15% faster BtrFS and SquashFS decompression+read speeds, 35% faster kernel decompression, and 30% faster ZRAM decompression+read speeds. 3. Zstd-1.4.10 supports negative compression levels, which allow zstd to match or subsume lzo's performance. 4. Maintains the same kernel-specific wrapper API, so no callers have to be modified with zstd version updates. One concern that was brought up was stack usage. Upstream zstd had already removed most of its heavy stack usage functions, but I just removed the last functions that allocate arrays on the stack. I've measured the high water mark for both compression and decompression before and after this patch. Decompression is approximately neutral, using about 1.2KB of stack space. Compression levels up to 3 regressed from 1.4KB -> 1.6KB, and higher compression levels regressed from 1.5KB -> 2KB. We've added unit tests upstream to prevent further regression. I believe that this is a reasonable increase, and if it does end up causing problems, this commit can be cleanly reverted, because it only touches zstd. I chose the bulk update instead of replaying upstream commits because there have been ~3500 upstream commits since the 1.3.1 release, zstd wasn't ready to be used in the kernel as-is before a month ago, and not all upstream zstd commits build. The bulk update preserves bisectablity because bugs can be bisected to the zstd version update. At that point the update can be reverted, and we can work with upstream to find and fix the bug. Note that upstream zstd release 1.4.10 doesn't exist yet. I have cut a staging branch at 20821a46f412 [0] and will apply any changes requested to the staging branch. Once we're ready to merge this update I will cut a zstd release at the commit we merge, so we have a known zstd release in the kernel. The implementation of the kernel API is contained in zstd_compress_module.c and zstd_decompress_module.c. [0] https://github.com/facebook/zstd/commit/20821a46f4122f9abd7c7b245d28162dde8129c9 [1] https://github.com/terrelln/linux/commit/e0fa481d0e3df26918da0a13749740a1f6777574 Signed-off-by: Nick Terrell <terrelln@fb.com> Tested By: Paul Jones <paul@pauljones.id.au> Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name> Tested-by: Sedat Dilek <sedat.dilek@gmail.com> # LLVM/Clang v13.0.0 on x86-64 Tested-by: Jean-Denis Girard <jd.girard@sysnux.pf>
2020-09-11 23:37:08 +00:00
}
}
size_t ZSTD_compressBlock_doubleFast_dictMatchState(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize)
{
const U32 mls = ms->cParams.minMatch;
switch(mls)
{
default: /* includes case 3 */
case 4 :
return ZSTD_compressBlock_doubleFast_dictMatchState_4(ms, seqStore, rep, src, srcSize);
lib: zstd: Upgrade to latest upstream zstd version 1.4.10 Upgrade to the latest upstream zstd version 1.4.10. This patch is 100% generated from upstream zstd commit 20821a46f412 [0]. This patch is very large because it is transitioning from the custom kernel zstd to using upstream directly. The new zstd follows upstreams file structure which is different. Future update patches will be much smaller because they will only contain the changes from one upstream zstd release. As an aid for review I've created a commit [1] that shows the diff between upstream zstd as-is (which doesn't compile), and the zstd code imported in this patch. The verion of zstd in this patch is generated from upstream with changes applied by automation to replace upstreams libc dependencies, remove unnecessary portability macros, replace `/**` comments with `/*` comments, and use the kernel's xxhash instead of bundling it. The benefits of this patch are as follows: 1. Using upstream directly with automated script to generate kernel code. This allows us to update the kernel every upstream release, so the kernel gets the latest bug fixes and performance improvements, and doesn't get 3 years out of date again. The automation and the translated code are tested every upstream commit to ensure it continues to work. 2. Upgrades from a custom zstd based on 1.3.1 to 1.4.10, getting 3 years of performance improvements and bug fixes. On x86_64 I've measured 15% faster BtrFS and SquashFS decompression+read speeds, 35% faster kernel decompression, and 30% faster ZRAM decompression+read speeds. 3. Zstd-1.4.10 supports negative compression levels, which allow zstd to match or subsume lzo's performance. 4. Maintains the same kernel-specific wrapper API, so no callers have to be modified with zstd version updates. One concern that was brought up was stack usage. Upstream zstd had already removed most of its heavy stack usage functions, but I just removed the last functions that allocate arrays on the stack. I've measured the high water mark for both compression and decompression before and after this patch. Decompression is approximately neutral, using about 1.2KB of stack space. Compression levels up to 3 regressed from 1.4KB -> 1.6KB, and higher compression levels regressed from 1.5KB -> 2KB. We've added unit tests upstream to prevent further regression. I believe that this is a reasonable increase, and if it does end up causing problems, this commit can be cleanly reverted, because it only touches zstd. I chose the bulk update instead of replaying upstream commits because there have been ~3500 upstream commits since the 1.3.1 release, zstd wasn't ready to be used in the kernel as-is before a month ago, and not all upstream zstd commits build. The bulk update preserves bisectablity because bugs can be bisected to the zstd version update. At that point the update can be reverted, and we can work with upstream to find and fix the bug. Note that upstream zstd release 1.4.10 doesn't exist yet. I have cut a staging branch at 20821a46f412 [0] and will apply any changes requested to the staging branch. Once we're ready to merge this update I will cut a zstd release at the commit we merge, so we have a known zstd release in the kernel. The implementation of the kernel API is contained in zstd_compress_module.c and zstd_decompress_module.c. [0] https://github.com/facebook/zstd/commit/20821a46f4122f9abd7c7b245d28162dde8129c9 [1] https://github.com/terrelln/linux/commit/e0fa481d0e3df26918da0a13749740a1f6777574 Signed-off-by: Nick Terrell <terrelln@fb.com> Tested By: Paul Jones <paul@pauljones.id.au> Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name> Tested-by: Sedat Dilek <sedat.dilek@gmail.com> # LLVM/Clang v13.0.0 on x86-64 Tested-by: Jean-Denis Girard <jd.girard@sysnux.pf>
2020-09-11 23:37:08 +00:00
case 5 :
return ZSTD_compressBlock_doubleFast_dictMatchState_5(ms, seqStore, rep, src, srcSize);
lib: zstd: Upgrade to latest upstream zstd version 1.4.10 Upgrade to the latest upstream zstd version 1.4.10. This patch is 100% generated from upstream zstd commit 20821a46f412 [0]. This patch is very large because it is transitioning from the custom kernel zstd to using upstream directly. The new zstd follows upstreams file structure which is different. Future update patches will be much smaller because they will only contain the changes from one upstream zstd release. As an aid for review I've created a commit [1] that shows the diff between upstream zstd as-is (which doesn't compile), and the zstd code imported in this patch. The verion of zstd in this patch is generated from upstream with changes applied by automation to replace upstreams libc dependencies, remove unnecessary portability macros, replace `/**` comments with `/*` comments, and use the kernel's xxhash instead of bundling it. The benefits of this patch are as follows: 1. Using upstream directly with automated script to generate kernel code. This allows us to update the kernel every upstream release, so the kernel gets the latest bug fixes and performance improvements, and doesn't get 3 years out of date again. The automation and the translated code are tested every upstream commit to ensure it continues to work. 2. Upgrades from a custom zstd based on 1.3.1 to 1.4.10, getting 3 years of performance improvements and bug fixes. On x86_64 I've measured 15% faster BtrFS and SquashFS decompression+read speeds, 35% faster kernel decompression, and 30% faster ZRAM decompression+read speeds. 3. Zstd-1.4.10 supports negative compression levels, which allow zstd to match or subsume lzo's performance. 4. Maintains the same kernel-specific wrapper API, so no callers have to be modified with zstd version updates. One concern that was brought up was stack usage. Upstream zstd had already removed most of its heavy stack usage functions, but I just removed the last functions that allocate arrays on the stack. I've measured the high water mark for both compression and decompression before and after this patch. Decompression is approximately neutral, using about 1.2KB of stack space. Compression levels up to 3 regressed from 1.4KB -> 1.6KB, and higher compression levels regressed from 1.5KB -> 2KB. We've added unit tests upstream to prevent further regression. I believe that this is a reasonable increase, and if it does end up causing problems, this commit can be cleanly reverted, because it only touches zstd. I chose the bulk update instead of replaying upstream commits because there have been ~3500 upstream commits since the 1.3.1 release, zstd wasn't ready to be used in the kernel as-is before a month ago, and not all upstream zstd commits build. The bulk update preserves bisectablity because bugs can be bisected to the zstd version update. At that point the update can be reverted, and we can work with upstream to find and fix the bug. Note that upstream zstd release 1.4.10 doesn't exist yet. I have cut a staging branch at 20821a46f412 [0] and will apply any changes requested to the staging branch. Once we're ready to merge this update I will cut a zstd release at the commit we merge, so we have a known zstd release in the kernel. The implementation of the kernel API is contained in zstd_compress_module.c and zstd_decompress_module.c. [0] https://github.com/facebook/zstd/commit/20821a46f4122f9abd7c7b245d28162dde8129c9 [1] https://github.com/terrelln/linux/commit/e0fa481d0e3df26918da0a13749740a1f6777574 Signed-off-by: Nick Terrell <terrelln@fb.com> Tested By: Paul Jones <paul@pauljones.id.au> Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name> Tested-by: Sedat Dilek <sedat.dilek@gmail.com> # LLVM/Clang v13.0.0 on x86-64 Tested-by: Jean-Denis Girard <jd.girard@sysnux.pf>
2020-09-11 23:37:08 +00:00
case 6 :
return ZSTD_compressBlock_doubleFast_dictMatchState_6(ms, seqStore, rep, src, srcSize);
lib: zstd: Upgrade to latest upstream zstd version 1.4.10 Upgrade to the latest upstream zstd version 1.4.10. This patch is 100% generated from upstream zstd commit 20821a46f412 [0]. This patch is very large because it is transitioning from the custom kernel zstd to using upstream directly. The new zstd follows upstreams file structure which is different. Future update patches will be much smaller because they will only contain the changes from one upstream zstd release. As an aid for review I've created a commit [1] that shows the diff between upstream zstd as-is (which doesn't compile), and the zstd code imported in this patch. The verion of zstd in this patch is generated from upstream with changes applied by automation to replace upstreams libc dependencies, remove unnecessary portability macros, replace `/**` comments with `/*` comments, and use the kernel's xxhash instead of bundling it. The benefits of this patch are as follows: 1. Using upstream directly with automated script to generate kernel code. This allows us to update the kernel every upstream release, so the kernel gets the latest bug fixes and performance improvements, and doesn't get 3 years out of date again. The automation and the translated code are tested every upstream commit to ensure it continues to work. 2. Upgrades from a custom zstd based on 1.3.1 to 1.4.10, getting 3 years of performance improvements and bug fixes. On x86_64 I've measured 15% faster BtrFS and SquashFS decompression+read speeds, 35% faster kernel decompression, and 30% faster ZRAM decompression+read speeds. 3. Zstd-1.4.10 supports negative compression levels, which allow zstd to match or subsume lzo's performance. 4. Maintains the same kernel-specific wrapper API, so no callers have to be modified with zstd version updates. One concern that was brought up was stack usage. Upstream zstd had already removed most of its heavy stack usage functions, but I just removed the last functions that allocate arrays on the stack. I've measured the high water mark for both compression and decompression before and after this patch. Decompression is approximately neutral, using about 1.2KB of stack space. Compression levels up to 3 regressed from 1.4KB -> 1.6KB, and higher compression levels regressed from 1.5KB -> 2KB. We've added unit tests upstream to prevent further regression. I believe that this is a reasonable increase, and if it does end up causing problems, this commit can be cleanly reverted, because it only touches zstd. I chose the bulk update instead of replaying upstream commits because there have been ~3500 upstream commits since the 1.3.1 release, zstd wasn't ready to be used in the kernel as-is before a month ago, and not all upstream zstd commits build. The bulk update preserves bisectablity because bugs can be bisected to the zstd version update. At that point the update can be reverted, and we can work with upstream to find and fix the bug. Note that upstream zstd release 1.4.10 doesn't exist yet. I have cut a staging branch at 20821a46f412 [0] and will apply any changes requested to the staging branch. Once we're ready to merge this update I will cut a zstd release at the commit we merge, so we have a known zstd release in the kernel. The implementation of the kernel API is contained in zstd_compress_module.c and zstd_decompress_module.c. [0] https://github.com/facebook/zstd/commit/20821a46f4122f9abd7c7b245d28162dde8129c9 [1] https://github.com/terrelln/linux/commit/e0fa481d0e3df26918da0a13749740a1f6777574 Signed-off-by: Nick Terrell <terrelln@fb.com> Tested By: Paul Jones <paul@pauljones.id.au> Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name> Tested-by: Sedat Dilek <sedat.dilek@gmail.com> # LLVM/Clang v13.0.0 on x86-64 Tested-by: Jean-Denis Girard <jd.girard@sysnux.pf>
2020-09-11 23:37:08 +00:00
case 7 :
return ZSTD_compressBlock_doubleFast_dictMatchState_7(ms, seqStore, rep, src, srcSize);
lib: zstd: Upgrade to latest upstream zstd version 1.4.10 Upgrade to the latest upstream zstd version 1.4.10. This patch is 100% generated from upstream zstd commit 20821a46f412 [0]. This patch is very large because it is transitioning from the custom kernel zstd to using upstream directly. The new zstd follows upstreams file structure which is different. Future update patches will be much smaller because they will only contain the changes from one upstream zstd release. As an aid for review I've created a commit [1] that shows the diff between upstream zstd as-is (which doesn't compile), and the zstd code imported in this patch. The verion of zstd in this patch is generated from upstream with changes applied by automation to replace upstreams libc dependencies, remove unnecessary portability macros, replace `/**` comments with `/*` comments, and use the kernel's xxhash instead of bundling it. The benefits of this patch are as follows: 1. Using upstream directly with automated script to generate kernel code. This allows us to update the kernel every upstream release, so the kernel gets the latest bug fixes and performance improvements, and doesn't get 3 years out of date again. The automation and the translated code are tested every upstream commit to ensure it continues to work. 2. Upgrades from a custom zstd based on 1.3.1 to 1.4.10, getting 3 years of performance improvements and bug fixes. On x86_64 I've measured 15% faster BtrFS and SquashFS decompression+read speeds, 35% faster kernel decompression, and 30% faster ZRAM decompression+read speeds. 3. Zstd-1.4.10 supports negative compression levels, which allow zstd to match or subsume lzo's performance. 4. Maintains the same kernel-specific wrapper API, so no callers have to be modified with zstd version updates. One concern that was brought up was stack usage. Upstream zstd had already removed most of its heavy stack usage functions, but I just removed the last functions that allocate arrays on the stack. I've measured the high water mark for both compression and decompression before and after this patch. Decompression is approximately neutral, using about 1.2KB of stack space. Compression levels up to 3 regressed from 1.4KB -> 1.6KB, and higher compression levels regressed from 1.5KB -> 2KB. We've added unit tests upstream to prevent further regression. I believe that this is a reasonable increase, and if it does end up causing problems, this commit can be cleanly reverted, because it only touches zstd. I chose the bulk update instead of replaying upstream commits because there have been ~3500 upstream commits since the 1.3.1 release, zstd wasn't ready to be used in the kernel as-is before a month ago, and not all upstream zstd commits build. The bulk update preserves bisectablity because bugs can be bisected to the zstd version update. At that point the update can be reverted, and we can work with upstream to find and fix the bug. Note that upstream zstd release 1.4.10 doesn't exist yet. I have cut a staging branch at 20821a46f412 [0] and will apply any changes requested to the staging branch. Once we're ready to merge this update I will cut a zstd release at the commit we merge, so we have a known zstd release in the kernel. The implementation of the kernel API is contained in zstd_compress_module.c and zstd_decompress_module.c. [0] https://github.com/facebook/zstd/commit/20821a46f4122f9abd7c7b245d28162dde8129c9 [1] https://github.com/terrelln/linux/commit/e0fa481d0e3df26918da0a13749740a1f6777574 Signed-off-by: Nick Terrell <terrelln@fb.com> Tested By: Paul Jones <paul@pauljones.id.au> Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name> Tested-by: Sedat Dilek <sedat.dilek@gmail.com> # LLVM/Clang v13.0.0 on x86-64 Tested-by: Jean-Denis Girard <jd.girard@sysnux.pf>
2020-09-11 23:37:08 +00:00
}
}
static size_t ZSTD_compressBlock_doubleFast_extDict_generic(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize,
U32 const mls /* template */)
{
ZSTD_compressionParameters const* cParams = &ms->cParams;
U32* const hashLong = ms->hashTable;
U32 const hBitsL = cParams->hashLog;
U32* const hashSmall = ms->chainTable;
U32 const hBitsS = cParams->chainLog;
const BYTE* const istart = (const BYTE*)src;
const BYTE* ip = istart;
const BYTE* anchor = istart;
const BYTE* const iend = istart + srcSize;
const BYTE* const ilimit = iend - 8;
const BYTE* const base = ms->window.base;
const U32 endIndex = (U32)((size_t)(istart - base) + srcSize);
const U32 lowLimit = ZSTD_getLowestMatchIndex(ms, endIndex, cParams->windowLog);
const U32 dictStartIndex = lowLimit;
const U32 dictLimit = ms->window.dictLimit;
const U32 prefixStartIndex = (dictLimit > lowLimit) ? dictLimit : lowLimit;
const BYTE* const prefixStart = base + prefixStartIndex;
const BYTE* const dictBase = ms->window.dictBase;
const BYTE* const dictStart = dictBase + dictStartIndex;
const BYTE* const dictEnd = dictBase + prefixStartIndex;
U32 offset_1=rep[0], offset_2=rep[1];
DEBUGLOG(5, "ZSTD_compressBlock_doubleFast_extDict_generic (srcSize=%zu)", srcSize);
/* if extDict is invalidated due to maxDistance, switch to "regular" variant */
if (prefixStartIndex == dictStartIndex)
return ZSTD_compressBlock_doubleFast(ms, seqStore, rep, src, srcSize);
lib: zstd: Upgrade to latest upstream zstd version 1.4.10 Upgrade to the latest upstream zstd version 1.4.10. This patch is 100% generated from upstream zstd commit 20821a46f412 [0]. This patch is very large because it is transitioning from the custom kernel zstd to using upstream directly. The new zstd follows upstreams file structure which is different. Future update patches will be much smaller because they will only contain the changes from one upstream zstd release. As an aid for review I've created a commit [1] that shows the diff between upstream zstd as-is (which doesn't compile), and the zstd code imported in this patch. The verion of zstd in this patch is generated from upstream with changes applied by automation to replace upstreams libc dependencies, remove unnecessary portability macros, replace `/**` comments with `/*` comments, and use the kernel's xxhash instead of bundling it. The benefits of this patch are as follows: 1. Using upstream directly with automated script to generate kernel code. This allows us to update the kernel every upstream release, so the kernel gets the latest bug fixes and performance improvements, and doesn't get 3 years out of date again. The automation and the translated code are tested every upstream commit to ensure it continues to work. 2. Upgrades from a custom zstd based on 1.3.1 to 1.4.10, getting 3 years of performance improvements and bug fixes. On x86_64 I've measured 15% faster BtrFS and SquashFS decompression+read speeds, 35% faster kernel decompression, and 30% faster ZRAM decompression+read speeds. 3. Zstd-1.4.10 supports negative compression levels, which allow zstd to match or subsume lzo's performance. 4. Maintains the same kernel-specific wrapper API, so no callers have to be modified with zstd version updates. One concern that was brought up was stack usage. Upstream zstd had already removed most of its heavy stack usage functions, but I just removed the last functions that allocate arrays on the stack. I've measured the high water mark for both compression and decompression before and after this patch. Decompression is approximately neutral, using about 1.2KB of stack space. Compression levels up to 3 regressed from 1.4KB -> 1.6KB, and higher compression levels regressed from 1.5KB -> 2KB. We've added unit tests upstream to prevent further regression. I believe that this is a reasonable increase, and if it does end up causing problems, this commit can be cleanly reverted, because it only touches zstd. I chose the bulk update instead of replaying upstream commits because there have been ~3500 upstream commits since the 1.3.1 release, zstd wasn't ready to be used in the kernel as-is before a month ago, and not all upstream zstd commits build. The bulk update preserves bisectablity because bugs can be bisected to the zstd version update. At that point the update can be reverted, and we can work with upstream to find and fix the bug. Note that upstream zstd release 1.4.10 doesn't exist yet. I have cut a staging branch at 20821a46f412 [0] and will apply any changes requested to the staging branch. Once we're ready to merge this update I will cut a zstd release at the commit we merge, so we have a known zstd release in the kernel. The implementation of the kernel API is contained in zstd_compress_module.c and zstd_decompress_module.c. [0] https://github.com/facebook/zstd/commit/20821a46f4122f9abd7c7b245d28162dde8129c9 [1] https://github.com/terrelln/linux/commit/e0fa481d0e3df26918da0a13749740a1f6777574 Signed-off-by: Nick Terrell <terrelln@fb.com> Tested By: Paul Jones <paul@pauljones.id.au> Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name> Tested-by: Sedat Dilek <sedat.dilek@gmail.com> # LLVM/Clang v13.0.0 on x86-64 Tested-by: Jean-Denis Girard <jd.girard@sysnux.pf>
2020-09-11 23:37:08 +00:00
/* Search Loop */
while (ip < ilimit) { /* < instead of <=, because (ip+1) */
const size_t hSmall = ZSTD_hashPtr(ip, hBitsS, mls);
const U32 matchIndex = hashSmall[hSmall];
const BYTE* const matchBase = matchIndex < prefixStartIndex ? dictBase : base;
const BYTE* match = matchBase + matchIndex;
const size_t hLong = ZSTD_hashPtr(ip, hBitsL, 8);
const U32 matchLongIndex = hashLong[hLong];
const BYTE* const matchLongBase = matchLongIndex < prefixStartIndex ? dictBase : base;
const BYTE* matchLong = matchLongBase + matchLongIndex;
const U32 curr = (U32)(ip-base);
const U32 repIndex = curr + 1 - offset_1; /* offset_1 expected <= curr +1 */
const BYTE* const repBase = repIndex < prefixStartIndex ? dictBase : base;
const BYTE* const repMatch = repBase + repIndex;
size_t mLength;
hashSmall[hSmall] = hashLong[hLong] = curr; /* update hash table */
if ((((U32)((prefixStartIndex-1) - repIndex) >= 3) /* intentional underflow : ensure repIndex doesn't overlap dict + prefix */
& (offset_1 <= curr+1 - dictStartIndex)) /* note: we are searching at curr+1 */
lib: zstd: Upgrade to latest upstream zstd version 1.4.10 Upgrade to the latest upstream zstd version 1.4.10. This patch is 100% generated from upstream zstd commit 20821a46f412 [0]. This patch is very large because it is transitioning from the custom kernel zstd to using upstream directly. The new zstd follows upstreams file structure which is different. Future update patches will be much smaller because they will only contain the changes from one upstream zstd release. As an aid for review I've created a commit [1] that shows the diff between upstream zstd as-is (which doesn't compile), and the zstd code imported in this patch. The verion of zstd in this patch is generated from upstream with changes applied by automation to replace upstreams libc dependencies, remove unnecessary portability macros, replace `/**` comments with `/*` comments, and use the kernel's xxhash instead of bundling it. The benefits of this patch are as follows: 1. Using upstream directly with automated script to generate kernel code. This allows us to update the kernel every upstream release, so the kernel gets the latest bug fixes and performance improvements, and doesn't get 3 years out of date again. The automation and the translated code are tested every upstream commit to ensure it continues to work. 2. Upgrades from a custom zstd based on 1.3.1 to 1.4.10, getting 3 years of performance improvements and bug fixes. On x86_64 I've measured 15% faster BtrFS and SquashFS decompression+read speeds, 35% faster kernel decompression, and 30% faster ZRAM decompression+read speeds. 3. Zstd-1.4.10 supports negative compression levels, which allow zstd to match or subsume lzo's performance. 4. Maintains the same kernel-specific wrapper API, so no callers have to be modified with zstd version updates. One concern that was brought up was stack usage. Upstream zstd had already removed most of its heavy stack usage functions, but I just removed the last functions that allocate arrays on the stack. I've measured the high water mark for both compression and decompression before and after this patch. Decompression is approximately neutral, using about 1.2KB of stack space. Compression levels up to 3 regressed from 1.4KB -> 1.6KB, and higher compression levels regressed from 1.5KB -> 2KB. We've added unit tests upstream to prevent further regression. I believe that this is a reasonable increase, and if it does end up causing problems, this commit can be cleanly reverted, because it only touches zstd. I chose the bulk update instead of replaying upstream commits because there have been ~3500 upstream commits since the 1.3.1 release, zstd wasn't ready to be used in the kernel as-is before a month ago, and not all upstream zstd commits build. The bulk update preserves bisectablity because bugs can be bisected to the zstd version update. At that point the update can be reverted, and we can work with upstream to find and fix the bug. Note that upstream zstd release 1.4.10 doesn't exist yet. I have cut a staging branch at 20821a46f412 [0] and will apply any changes requested to the staging branch. Once we're ready to merge this update I will cut a zstd release at the commit we merge, so we have a known zstd release in the kernel. The implementation of the kernel API is contained in zstd_compress_module.c and zstd_decompress_module.c. [0] https://github.com/facebook/zstd/commit/20821a46f4122f9abd7c7b245d28162dde8129c9 [1] https://github.com/terrelln/linux/commit/e0fa481d0e3df26918da0a13749740a1f6777574 Signed-off-by: Nick Terrell <terrelln@fb.com> Tested By: Paul Jones <paul@pauljones.id.au> Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name> Tested-by: Sedat Dilek <sedat.dilek@gmail.com> # LLVM/Clang v13.0.0 on x86-64 Tested-by: Jean-Denis Girard <jd.girard@sysnux.pf>
2020-09-11 23:37:08 +00:00
&& (MEM_read32(repMatch) == MEM_read32(ip+1)) ) {
const BYTE* repMatchEnd = repIndex < prefixStartIndex ? dictEnd : iend;
mLength = ZSTD_count_2segments(ip+1+4, repMatch+4, iend, repMatchEnd, prefixStart) + 4;
ip++;
zstd: import upstream v1.5.5 Import upstream zstd v1.5.5 to expose upstream's QAT integration. Import from upstream commit 58b3ef79 [0]. This is one commit before the tag v1.5.5-kernel [1], which is signed with upstream's signing key. The next patch in the series imports from v1.5.5-kernel, and is included in the series, rather than just importing directly from v1.5.5-kernel, because it is a non-trivial patch applied to improve the kernel's decompression speed. This commit contains 3 backported patches on top of v1.5.5: Two from the Linux copy of zstd, and one from upstream's `dev` branch. In addition to keeping the kernel's copy of zstd up to date, this update was requested by Intel to expose upstream zstd's external match provider API to the kernel, which allows QAT to accelerate the LZ match finding stage. This commit was generated by: export ZSTD=/path/to/repo/zstd/ export LINUX=/path/to/repo/linux/ cd "$ZSTD/contrib/linux-kernel" git checkout v1.5.5-kernel~ make import LINUX="$LINUX" I tested and benchmarked this commit on x86-64 with gcc-13.2.1 on an Intel i9-9900K by running my benchmark scripts that benchmark zstd's performance in btrfs and squashfs compressed filesystems. This commit improves compression speed, especially for higher compression levels, and regresses decompression speed. But the decompression speed regression is addressed by the next patch in the series. Component, Level, C. time delta, size delta, D. time delta Btrfs , 1, -1.9%, +0.0%, +9.5% Btrfs , 3, -5.6%, +0.0%, +7.4% Btrfs , 5, -4.9%, +0.0%, +5.0% Btrfs , 7, -5.7%, +0.0%, +5.2% Btrfs , 9, -5.7%, +0.0%, +4.0% Squashfs , 1, N/A, 0.0%, +11.6% I also boot tested with a zstd compressed kernel on i386 and aarch64. Link: https://github.com/facebook/zstd/commit/58b3ef79eb9f1e6613684ea6e5b89720660ee8b6 Link: https://github.com/facebook/zstd/tree/v1.5.5-kernel Signed-off-by: Nick Terrell <terrelln@fb.com>
2023-11-16 20:52:21 +00:00
ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, iend, REPCODE1_TO_OFFBASE, mLength);
lib: zstd: Upgrade to latest upstream zstd version 1.4.10 Upgrade to the latest upstream zstd version 1.4.10. This patch is 100% generated from upstream zstd commit 20821a46f412 [0]. This patch is very large because it is transitioning from the custom kernel zstd to using upstream directly. The new zstd follows upstreams file structure which is different. Future update patches will be much smaller because they will only contain the changes from one upstream zstd release. As an aid for review I've created a commit [1] that shows the diff between upstream zstd as-is (which doesn't compile), and the zstd code imported in this patch. The verion of zstd in this patch is generated from upstream with changes applied by automation to replace upstreams libc dependencies, remove unnecessary portability macros, replace `/**` comments with `/*` comments, and use the kernel's xxhash instead of bundling it. The benefits of this patch are as follows: 1. Using upstream directly with automated script to generate kernel code. This allows us to update the kernel every upstream release, so the kernel gets the latest bug fixes and performance improvements, and doesn't get 3 years out of date again. The automation and the translated code are tested every upstream commit to ensure it continues to work. 2. Upgrades from a custom zstd based on 1.3.1 to 1.4.10, getting 3 years of performance improvements and bug fixes. On x86_64 I've measured 15% faster BtrFS and SquashFS decompression+read speeds, 35% faster kernel decompression, and 30% faster ZRAM decompression+read speeds. 3. Zstd-1.4.10 supports negative compression levels, which allow zstd to match or subsume lzo's performance. 4. Maintains the same kernel-specific wrapper API, so no callers have to be modified with zstd version updates. One concern that was brought up was stack usage. Upstream zstd had already removed most of its heavy stack usage functions, but I just removed the last functions that allocate arrays on the stack. I've measured the high water mark for both compression and decompression before and after this patch. Decompression is approximately neutral, using about 1.2KB of stack space. Compression levels up to 3 regressed from 1.4KB -> 1.6KB, and higher compression levels regressed from 1.5KB -> 2KB. We've added unit tests upstream to prevent further regression. I believe that this is a reasonable increase, and if it does end up causing problems, this commit can be cleanly reverted, because it only touches zstd. I chose the bulk update instead of replaying upstream commits because there have been ~3500 upstream commits since the 1.3.1 release, zstd wasn't ready to be used in the kernel as-is before a month ago, and not all upstream zstd commits build. The bulk update preserves bisectablity because bugs can be bisected to the zstd version update. At that point the update can be reverted, and we can work with upstream to find and fix the bug. Note that upstream zstd release 1.4.10 doesn't exist yet. I have cut a staging branch at 20821a46f412 [0] and will apply any changes requested to the staging branch. Once we're ready to merge this update I will cut a zstd release at the commit we merge, so we have a known zstd release in the kernel. The implementation of the kernel API is contained in zstd_compress_module.c and zstd_decompress_module.c. [0] https://github.com/facebook/zstd/commit/20821a46f4122f9abd7c7b245d28162dde8129c9 [1] https://github.com/terrelln/linux/commit/e0fa481d0e3df26918da0a13749740a1f6777574 Signed-off-by: Nick Terrell <terrelln@fb.com> Tested By: Paul Jones <paul@pauljones.id.au> Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name> Tested-by: Sedat Dilek <sedat.dilek@gmail.com> # LLVM/Clang v13.0.0 on x86-64 Tested-by: Jean-Denis Girard <jd.girard@sysnux.pf>
2020-09-11 23:37:08 +00:00
} else {
if ((matchLongIndex > dictStartIndex) && (MEM_read64(matchLong) == MEM_read64(ip))) {
const BYTE* const matchEnd = matchLongIndex < prefixStartIndex ? dictEnd : iend;
const BYTE* const lowMatchPtr = matchLongIndex < prefixStartIndex ? dictStart : prefixStart;
U32 offset;
mLength = ZSTD_count_2segments(ip+8, matchLong+8, iend, matchEnd, prefixStart) + 8;
offset = curr - matchLongIndex;
while (((ip>anchor) & (matchLong>lowMatchPtr)) && (ip[-1] == matchLong[-1])) { ip--; matchLong--; mLength++; } /* catch up */
offset_2 = offset_1;
offset_1 = offset;
zstd: import upstream v1.5.5 Import upstream zstd v1.5.5 to expose upstream's QAT integration. Import from upstream commit 58b3ef79 [0]. This is one commit before the tag v1.5.5-kernel [1], which is signed with upstream's signing key. The next patch in the series imports from v1.5.5-kernel, and is included in the series, rather than just importing directly from v1.5.5-kernel, because it is a non-trivial patch applied to improve the kernel's decompression speed. This commit contains 3 backported patches on top of v1.5.5: Two from the Linux copy of zstd, and one from upstream's `dev` branch. In addition to keeping the kernel's copy of zstd up to date, this update was requested by Intel to expose upstream zstd's external match provider API to the kernel, which allows QAT to accelerate the LZ match finding stage. This commit was generated by: export ZSTD=/path/to/repo/zstd/ export LINUX=/path/to/repo/linux/ cd "$ZSTD/contrib/linux-kernel" git checkout v1.5.5-kernel~ make import LINUX="$LINUX" I tested and benchmarked this commit on x86-64 with gcc-13.2.1 on an Intel i9-9900K by running my benchmark scripts that benchmark zstd's performance in btrfs and squashfs compressed filesystems. This commit improves compression speed, especially for higher compression levels, and regresses decompression speed. But the decompression speed regression is addressed by the next patch in the series. Component, Level, C. time delta, size delta, D. time delta Btrfs , 1, -1.9%, +0.0%, +9.5% Btrfs , 3, -5.6%, +0.0%, +7.4% Btrfs , 5, -4.9%, +0.0%, +5.0% Btrfs , 7, -5.7%, +0.0%, +5.2% Btrfs , 9, -5.7%, +0.0%, +4.0% Squashfs , 1, N/A, 0.0%, +11.6% I also boot tested with a zstd compressed kernel on i386 and aarch64. Link: https://github.com/facebook/zstd/commit/58b3ef79eb9f1e6613684ea6e5b89720660ee8b6 Link: https://github.com/facebook/zstd/tree/v1.5.5-kernel Signed-off-by: Nick Terrell <terrelln@fb.com>
2023-11-16 20:52:21 +00:00
ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, iend, OFFSET_TO_OFFBASE(offset), mLength);
lib: zstd: Upgrade to latest upstream zstd version 1.4.10 Upgrade to the latest upstream zstd version 1.4.10. This patch is 100% generated from upstream zstd commit 20821a46f412 [0]. This patch is very large because it is transitioning from the custom kernel zstd to using upstream directly. The new zstd follows upstreams file structure which is different. Future update patches will be much smaller because they will only contain the changes from one upstream zstd release. As an aid for review I've created a commit [1] that shows the diff between upstream zstd as-is (which doesn't compile), and the zstd code imported in this patch. The verion of zstd in this patch is generated from upstream with changes applied by automation to replace upstreams libc dependencies, remove unnecessary portability macros, replace `/**` comments with `/*` comments, and use the kernel's xxhash instead of bundling it. The benefits of this patch are as follows: 1. Using upstream directly with automated script to generate kernel code. This allows us to update the kernel every upstream release, so the kernel gets the latest bug fixes and performance improvements, and doesn't get 3 years out of date again. The automation and the translated code are tested every upstream commit to ensure it continues to work. 2. Upgrades from a custom zstd based on 1.3.1 to 1.4.10, getting 3 years of performance improvements and bug fixes. On x86_64 I've measured 15% faster BtrFS and SquashFS decompression+read speeds, 35% faster kernel decompression, and 30% faster ZRAM decompression+read speeds. 3. Zstd-1.4.10 supports negative compression levels, which allow zstd to match or subsume lzo's performance. 4. Maintains the same kernel-specific wrapper API, so no callers have to be modified with zstd version updates. One concern that was brought up was stack usage. Upstream zstd had already removed most of its heavy stack usage functions, but I just removed the last functions that allocate arrays on the stack. I've measured the high water mark for both compression and decompression before and after this patch. Decompression is approximately neutral, using about 1.2KB of stack space. Compression levels up to 3 regressed from 1.4KB -> 1.6KB, and higher compression levels regressed from 1.5KB -> 2KB. We've added unit tests upstream to prevent further regression. I believe that this is a reasonable increase, and if it does end up causing problems, this commit can be cleanly reverted, because it only touches zstd. I chose the bulk update instead of replaying upstream commits because there have been ~3500 upstream commits since the 1.3.1 release, zstd wasn't ready to be used in the kernel as-is before a month ago, and not all upstream zstd commits build. The bulk update preserves bisectablity because bugs can be bisected to the zstd version update. At that point the update can be reverted, and we can work with upstream to find and fix the bug. Note that upstream zstd release 1.4.10 doesn't exist yet. I have cut a staging branch at 20821a46f412 [0] and will apply any changes requested to the staging branch. Once we're ready to merge this update I will cut a zstd release at the commit we merge, so we have a known zstd release in the kernel. The implementation of the kernel API is contained in zstd_compress_module.c and zstd_decompress_module.c. [0] https://github.com/facebook/zstd/commit/20821a46f4122f9abd7c7b245d28162dde8129c9 [1] https://github.com/terrelln/linux/commit/e0fa481d0e3df26918da0a13749740a1f6777574 Signed-off-by: Nick Terrell <terrelln@fb.com> Tested By: Paul Jones <paul@pauljones.id.au> Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name> Tested-by: Sedat Dilek <sedat.dilek@gmail.com> # LLVM/Clang v13.0.0 on x86-64 Tested-by: Jean-Denis Girard <jd.girard@sysnux.pf>
2020-09-11 23:37:08 +00:00
} else if ((matchIndex > dictStartIndex) && (MEM_read32(match) == MEM_read32(ip))) {
size_t const h3 = ZSTD_hashPtr(ip+1, hBitsL, 8);
U32 const matchIndex3 = hashLong[h3];
const BYTE* const match3Base = matchIndex3 < prefixStartIndex ? dictBase : base;
const BYTE* match3 = match3Base + matchIndex3;
U32 offset;
hashLong[h3] = curr + 1;
if ( (matchIndex3 > dictStartIndex) && (MEM_read64(match3) == MEM_read64(ip+1)) ) {
const BYTE* const matchEnd = matchIndex3 < prefixStartIndex ? dictEnd : iend;
const BYTE* const lowMatchPtr = matchIndex3 < prefixStartIndex ? dictStart : prefixStart;
mLength = ZSTD_count_2segments(ip+9, match3+8, iend, matchEnd, prefixStart) + 8;
ip++;
offset = curr+1 - matchIndex3;
while (((ip>anchor) & (match3>lowMatchPtr)) && (ip[-1] == match3[-1])) { ip--; match3--; mLength++; } /* catch up */
} else {
const BYTE* const matchEnd = matchIndex < prefixStartIndex ? dictEnd : iend;
const BYTE* const lowMatchPtr = matchIndex < prefixStartIndex ? dictStart : prefixStart;
mLength = ZSTD_count_2segments(ip+4, match+4, iend, matchEnd, prefixStart) + 4;
offset = curr - matchIndex;
while (((ip>anchor) & (match>lowMatchPtr)) && (ip[-1] == match[-1])) { ip--; match--; mLength++; } /* catch up */
}
offset_2 = offset_1;
offset_1 = offset;
zstd: import upstream v1.5.5 Import upstream zstd v1.5.5 to expose upstream's QAT integration. Import from upstream commit 58b3ef79 [0]. This is one commit before the tag v1.5.5-kernel [1], which is signed with upstream's signing key. The next patch in the series imports from v1.5.5-kernel, and is included in the series, rather than just importing directly from v1.5.5-kernel, because it is a non-trivial patch applied to improve the kernel's decompression speed. This commit contains 3 backported patches on top of v1.5.5: Two from the Linux copy of zstd, and one from upstream's `dev` branch. In addition to keeping the kernel's copy of zstd up to date, this update was requested by Intel to expose upstream zstd's external match provider API to the kernel, which allows QAT to accelerate the LZ match finding stage. This commit was generated by: export ZSTD=/path/to/repo/zstd/ export LINUX=/path/to/repo/linux/ cd "$ZSTD/contrib/linux-kernel" git checkout v1.5.5-kernel~ make import LINUX="$LINUX" I tested and benchmarked this commit on x86-64 with gcc-13.2.1 on an Intel i9-9900K by running my benchmark scripts that benchmark zstd's performance in btrfs and squashfs compressed filesystems. This commit improves compression speed, especially for higher compression levels, and regresses decompression speed. But the decompression speed regression is addressed by the next patch in the series. Component, Level, C. time delta, size delta, D. time delta Btrfs , 1, -1.9%, +0.0%, +9.5% Btrfs , 3, -5.6%, +0.0%, +7.4% Btrfs , 5, -4.9%, +0.0%, +5.0% Btrfs , 7, -5.7%, +0.0%, +5.2% Btrfs , 9, -5.7%, +0.0%, +4.0% Squashfs , 1, N/A, 0.0%, +11.6% I also boot tested with a zstd compressed kernel on i386 and aarch64. Link: https://github.com/facebook/zstd/commit/58b3ef79eb9f1e6613684ea6e5b89720660ee8b6 Link: https://github.com/facebook/zstd/tree/v1.5.5-kernel Signed-off-by: Nick Terrell <terrelln@fb.com>
2023-11-16 20:52:21 +00:00
ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, iend, OFFSET_TO_OFFBASE(offset), mLength);
lib: zstd: Upgrade to latest upstream zstd version 1.4.10 Upgrade to the latest upstream zstd version 1.4.10. This patch is 100% generated from upstream zstd commit 20821a46f412 [0]. This patch is very large because it is transitioning from the custom kernel zstd to using upstream directly. The new zstd follows upstreams file structure which is different. Future update patches will be much smaller because they will only contain the changes from one upstream zstd release. As an aid for review I've created a commit [1] that shows the diff between upstream zstd as-is (which doesn't compile), and the zstd code imported in this patch. The verion of zstd in this patch is generated from upstream with changes applied by automation to replace upstreams libc dependencies, remove unnecessary portability macros, replace `/**` comments with `/*` comments, and use the kernel's xxhash instead of bundling it. The benefits of this patch are as follows: 1. Using upstream directly with automated script to generate kernel code. This allows us to update the kernel every upstream release, so the kernel gets the latest bug fixes and performance improvements, and doesn't get 3 years out of date again. The automation and the translated code are tested every upstream commit to ensure it continues to work. 2. Upgrades from a custom zstd based on 1.3.1 to 1.4.10, getting 3 years of performance improvements and bug fixes. On x86_64 I've measured 15% faster BtrFS and SquashFS decompression+read speeds, 35% faster kernel decompression, and 30% faster ZRAM decompression+read speeds. 3. Zstd-1.4.10 supports negative compression levels, which allow zstd to match or subsume lzo's performance. 4. Maintains the same kernel-specific wrapper API, so no callers have to be modified with zstd version updates. One concern that was brought up was stack usage. Upstream zstd had already removed most of its heavy stack usage functions, but I just removed the last functions that allocate arrays on the stack. I've measured the high water mark for both compression and decompression before and after this patch. Decompression is approximately neutral, using about 1.2KB of stack space. Compression levels up to 3 regressed from 1.4KB -> 1.6KB, and higher compression levels regressed from 1.5KB -> 2KB. We've added unit tests upstream to prevent further regression. I believe that this is a reasonable increase, and if it does end up causing problems, this commit can be cleanly reverted, because it only touches zstd. I chose the bulk update instead of replaying upstream commits because there have been ~3500 upstream commits since the 1.3.1 release, zstd wasn't ready to be used in the kernel as-is before a month ago, and not all upstream zstd commits build. The bulk update preserves bisectablity because bugs can be bisected to the zstd version update. At that point the update can be reverted, and we can work with upstream to find and fix the bug. Note that upstream zstd release 1.4.10 doesn't exist yet. I have cut a staging branch at 20821a46f412 [0] and will apply any changes requested to the staging branch. Once we're ready to merge this update I will cut a zstd release at the commit we merge, so we have a known zstd release in the kernel. The implementation of the kernel API is contained in zstd_compress_module.c and zstd_decompress_module.c. [0] https://github.com/facebook/zstd/commit/20821a46f4122f9abd7c7b245d28162dde8129c9 [1] https://github.com/terrelln/linux/commit/e0fa481d0e3df26918da0a13749740a1f6777574 Signed-off-by: Nick Terrell <terrelln@fb.com> Tested By: Paul Jones <paul@pauljones.id.au> Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name> Tested-by: Sedat Dilek <sedat.dilek@gmail.com> # LLVM/Clang v13.0.0 on x86-64 Tested-by: Jean-Denis Girard <jd.girard@sysnux.pf>
2020-09-11 23:37:08 +00:00
} else {
ip += ((ip-anchor) >> kSearchStrength) + 1;
continue;
} }
/* move to next sequence start */
ip += mLength;
anchor = ip;
if (ip <= ilimit) {
/* Complementary insertion */
/* done after iLimit test, as candidates could be > iend-8 */
{ U32 const indexToInsert = curr+2;
hashLong[ZSTD_hashPtr(base+indexToInsert, hBitsL, 8)] = indexToInsert;
hashLong[ZSTD_hashPtr(ip-2, hBitsL, 8)] = (U32)(ip-2-base);
hashSmall[ZSTD_hashPtr(base+indexToInsert, hBitsS, mls)] = indexToInsert;
hashSmall[ZSTD_hashPtr(ip-1, hBitsS, mls)] = (U32)(ip-1-base);
}
/* check immediate repcode */
while (ip <= ilimit) {
U32 const current2 = (U32)(ip-base);
U32 const repIndex2 = current2 - offset_2;
const BYTE* repMatch2 = repIndex2 < prefixStartIndex ? dictBase + repIndex2 : base + repIndex2;
if ( (((U32)((prefixStartIndex-1) - repIndex2) >= 3) /* intentional overflow : ensure repIndex2 doesn't overlap dict + prefix */
& (offset_2 <= current2 - dictStartIndex))
lib: zstd: Upgrade to latest upstream zstd version 1.4.10 Upgrade to the latest upstream zstd version 1.4.10. This patch is 100% generated from upstream zstd commit 20821a46f412 [0]. This patch is very large because it is transitioning from the custom kernel zstd to using upstream directly. The new zstd follows upstreams file structure which is different. Future update patches will be much smaller because they will only contain the changes from one upstream zstd release. As an aid for review I've created a commit [1] that shows the diff between upstream zstd as-is (which doesn't compile), and the zstd code imported in this patch. The verion of zstd in this patch is generated from upstream with changes applied by automation to replace upstreams libc dependencies, remove unnecessary portability macros, replace `/**` comments with `/*` comments, and use the kernel's xxhash instead of bundling it. The benefits of this patch are as follows: 1. Using upstream directly with automated script to generate kernel code. This allows us to update the kernel every upstream release, so the kernel gets the latest bug fixes and performance improvements, and doesn't get 3 years out of date again. The automation and the translated code are tested every upstream commit to ensure it continues to work. 2. Upgrades from a custom zstd based on 1.3.1 to 1.4.10, getting 3 years of performance improvements and bug fixes. On x86_64 I've measured 15% faster BtrFS and SquashFS decompression+read speeds, 35% faster kernel decompression, and 30% faster ZRAM decompression+read speeds. 3. Zstd-1.4.10 supports negative compression levels, which allow zstd to match or subsume lzo's performance. 4. Maintains the same kernel-specific wrapper API, so no callers have to be modified with zstd version updates. One concern that was brought up was stack usage. Upstream zstd had already removed most of its heavy stack usage functions, but I just removed the last functions that allocate arrays on the stack. I've measured the high water mark for both compression and decompression before and after this patch. Decompression is approximately neutral, using about 1.2KB of stack space. Compression levels up to 3 regressed from 1.4KB -> 1.6KB, and higher compression levels regressed from 1.5KB -> 2KB. We've added unit tests upstream to prevent further regression. I believe that this is a reasonable increase, and if it does end up causing problems, this commit can be cleanly reverted, because it only touches zstd. I chose the bulk update instead of replaying upstream commits because there have been ~3500 upstream commits since the 1.3.1 release, zstd wasn't ready to be used in the kernel as-is before a month ago, and not all upstream zstd commits build. The bulk update preserves bisectablity because bugs can be bisected to the zstd version update. At that point the update can be reverted, and we can work with upstream to find and fix the bug. Note that upstream zstd release 1.4.10 doesn't exist yet. I have cut a staging branch at 20821a46f412 [0] and will apply any changes requested to the staging branch. Once we're ready to merge this update I will cut a zstd release at the commit we merge, so we have a known zstd release in the kernel. The implementation of the kernel API is contained in zstd_compress_module.c and zstd_decompress_module.c. [0] https://github.com/facebook/zstd/commit/20821a46f4122f9abd7c7b245d28162dde8129c9 [1] https://github.com/terrelln/linux/commit/e0fa481d0e3df26918da0a13749740a1f6777574 Signed-off-by: Nick Terrell <terrelln@fb.com> Tested By: Paul Jones <paul@pauljones.id.au> Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name> Tested-by: Sedat Dilek <sedat.dilek@gmail.com> # LLVM/Clang v13.0.0 on x86-64 Tested-by: Jean-Denis Girard <jd.girard@sysnux.pf>
2020-09-11 23:37:08 +00:00
&& (MEM_read32(repMatch2) == MEM_read32(ip)) ) {
const BYTE* const repEnd2 = repIndex2 < prefixStartIndex ? dictEnd : iend;
size_t const repLength2 = ZSTD_count_2segments(ip+4, repMatch2+4, iend, repEnd2, prefixStart) + 4;
U32 const tmpOffset = offset_2; offset_2 = offset_1; offset_1 = tmpOffset; /* swap offset_2 <=> offset_1 */
zstd: import upstream v1.5.5 Import upstream zstd v1.5.5 to expose upstream's QAT integration. Import from upstream commit 58b3ef79 [0]. This is one commit before the tag v1.5.5-kernel [1], which is signed with upstream's signing key. The next patch in the series imports from v1.5.5-kernel, and is included in the series, rather than just importing directly from v1.5.5-kernel, because it is a non-trivial patch applied to improve the kernel's decompression speed. This commit contains 3 backported patches on top of v1.5.5: Two from the Linux copy of zstd, and one from upstream's `dev` branch. In addition to keeping the kernel's copy of zstd up to date, this update was requested by Intel to expose upstream zstd's external match provider API to the kernel, which allows QAT to accelerate the LZ match finding stage. This commit was generated by: export ZSTD=/path/to/repo/zstd/ export LINUX=/path/to/repo/linux/ cd "$ZSTD/contrib/linux-kernel" git checkout v1.5.5-kernel~ make import LINUX="$LINUX" I tested and benchmarked this commit on x86-64 with gcc-13.2.1 on an Intel i9-9900K by running my benchmark scripts that benchmark zstd's performance in btrfs and squashfs compressed filesystems. This commit improves compression speed, especially for higher compression levels, and regresses decompression speed. But the decompression speed regression is addressed by the next patch in the series. Component, Level, C. time delta, size delta, D. time delta Btrfs , 1, -1.9%, +0.0%, +9.5% Btrfs , 3, -5.6%, +0.0%, +7.4% Btrfs , 5, -4.9%, +0.0%, +5.0% Btrfs , 7, -5.7%, +0.0%, +5.2% Btrfs , 9, -5.7%, +0.0%, +4.0% Squashfs , 1, N/A, 0.0%, +11.6% I also boot tested with a zstd compressed kernel on i386 and aarch64. Link: https://github.com/facebook/zstd/commit/58b3ef79eb9f1e6613684ea6e5b89720660ee8b6 Link: https://github.com/facebook/zstd/tree/v1.5.5-kernel Signed-off-by: Nick Terrell <terrelln@fb.com>
2023-11-16 20:52:21 +00:00
ZSTD_storeSeq(seqStore, 0, anchor, iend, REPCODE1_TO_OFFBASE, repLength2);
lib: zstd: Upgrade to latest upstream zstd version 1.4.10 Upgrade to the latest upstream zstd version 1.4.10. This patch is 100% generated from upstream zstd commit 20821a46f412 [0]. This patch is very large because it is transitioning from the custom kernel zstd to using upstream directly. The new zstd follows upstreams file structure which is different. Future update patches will be much smaller because they will only contain the changes from one upstream zstd release. As an aid for review I've created a commit [1] that shows the diff between upstream zstd as-is (which doesn't compile), and the zstd code imported in this patch. The verion of zstd in this patch is generated from upstream with changes applied by automation to replace upstreams libc dependencies, remove unnecessary portability macros, replace `/**` comments with `/*` comments, and use the kernel's xxhash instead of bundling it. The benefits of this patch are as follows: 1. Using upstream directly with automated script to generate kernel code. This allows us to update the kernel every upstream release, so the kernel gets the latest bug fixes and performance improvements, and doesn't get 3 years out of date again. The automation and the translated code are tested every upstream commit to ensure it continues to work. 2. Upgrades from a custom zstd based on 1.3.1 to 1.4.10, getting 3 years of performance improvements and bug fixes. On x86_64 I've measured 15% faster BtrFS and SquashFS decompression+read speeds, 35% faster kernel decompression, and 30% faster ZRAM decompression+read speeds. 3. Zstd-1.4.10 supports negative compression levels, which allow zstd to match or subsume lzo's performance. 4. Maintains the same kernel-specific wrapper API, so no callers have to be modified with zstd version updates. One concern that was brought up was stack usage. Upstream zstd had already removed most of its heavy stack usage functions, but I just removed the last functions that allocate arrays on the stack. I've measured the high water mark for both compression and decompression before and after this patch. Decompression is approximately neutral, using about 1.2KB of stack space. Compression levels up to 3 regressed from 1.4KB -> 1.6KB, and higher compression levels regressed from 1.5KB -> 2KB. We've added unit tests upstream to prevent further regression. I believe that this is a reasonable increase, and if it does end up causing problems, this commit can be cleanly reverted, because it only touches zstd. I chose the bulk update instead of replaying upstream commits because there have been ~3500 upstream commits since the 1.3.1 release, zstd wasn't ready to be used in the kernel as-is before a month ago, and not all upstream zstd commits build. The bulk update preserves bisectablity because bugs can be bisected to the zstd version update. At that point the update can be reverted, and we can work with upstream to find and fix the bug. Note that upstream zstd release 1.4.10 doesn't exist yet. I have cut a staging branch at 20821a46f412 [0] and will apply any changes requested to the staging branch. Once we're ready to merge this update I will cut a zstd release at the commit we merge, so we have a known zstd release in the kernel. The implementation of the kernel API is contained in zstd_compress_module.c and zstd_decompress_module.c. [0] https://github.com/facebook/zstd/commit/20821a46f4122f9abd7c7b245d28162dde8129c9 [1] https://github.com/terrelln/linux/commit/e0fa481d0e3df26918da0a13749740a1f6777574 Signed-off-by: Nick Terrell <terrelln@fb.com> Tested By: Paul Jones <paul@pauljones.id.au> Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name> Tested-by: Sedat Dilek <sedat.dilek@gmail.com> # LLVM/Clang v13.0.0 on x86-64 Tested-by: Jean-Denis Girard <jd.girard@sysnux.pf>
2020-09-11 23:37:08 +00:00
hashSmall[ZSTD_hashPtr(ip, hBitsS, mls)] = current2;
hashLong[ZSTD_hashPtr(ip, hBitsL, 8)] = current2;
ip += repLength2;
anchor = ip;
continue;
}
break;
} } }
/* save reps for next block */
rep[0] = offset_1;
rep[1] = offset_2;
/* Return the last literals size */
return (size_t)(iend - anchor);
}
ZSTD_GEN_DFAST_FN(extDict, 4)
ZSTD_GEN_DFAST_FN(extDict, 5)
ZSTD_GEN_DFAST_FN(extDict, 6)
ZSTD_GEN_DFAST_FN(extDict, 7)
lib: zstd: Upgrade to latest upstream zstd version 1.4.10 Upgrade to the latest upstream zstd version 1.4.10. This patch is 100% generated from upstream zstd commit 20821a46f412 [0]. This patch is very large because it is transitioning from the custom kernel zstd to using upstream directly. The new zstd follows upstreams file structure which is different. Future update patches will be much smaller because they will only contain the changes from one upstream zstd release. As an aid for review I've created a commit [1] that shows the diff between upstream zstd as-is (which doesn't compile), and the zstd code imported in this patch. The verion of zstd in this patch is generated from upstream with changes applied by automation to replace upstreams libc dependencies, remove unnecessary portability macros, replace `/**` comments with `/*` comments, and use the kernel's xxhash instead of bundling it. The benefits of this patch are as follows: 1. Using upstream directly with automated script to generate kernel code. This allows us to update the kernel every upstream release, so the kernel gets the latest bug fixes and performance improvements, and doesn't get 3 years out of date again. The automation and the translated code are tested every upstream commit to ensure it continues to work. 2. Upgrades from a custom zstd based on 1.3.1 to 1.4.10, getting 3 years of performance improvements and bug fixes. On x86_64 I've measured 15% faster BtrFS and SquashFS decompression+read speeds, 35% faster kernel decompression, and 30% faster ZRAM decompression+read speeds. 3. Zstd-1.4.10 supports negative compression levels, which allow zstd to match or subsume lzo's performance. 4. Maintains the same kernel-specific wrapper API, so no callers have to be modified with zstd version updates. One concern that was brought up was stack usage. Upstream zstd had already removed most of its heavy stack usage functions, but I just removed the last functions that allocate arrays on the stack. I've measured the high water mark for both compression and decompression before and after this patch. Decompression is approximately neutral, using about 1.2KB of stack space. Compression levels up to 3 regressed from 1.4KB -> 1.6KB, and higher compression levels regressed from 1.5KB -> 2KB. We've added unit tests upstream to prevent further regression. I believe that this is a reasonable increase, and if it does end up causing problems, this commit can be cleanly reverted, because it only touches zstd. I chose the bulk update instead of replaying upstream commits because there have been ~3500 upstream commits since the 1.3.1 release, zstd wasn't ready to be used in the kernel as-is before a month ago, and not all upstream zstd commits build. The bulk update preserves bisectablity because bugs can be bisected to the zstd version update. At that point the update can be reverted, and we can work with upstream to find and fix the bug. Note that upstream zstd release 1.4.10 doesn't exist yet. I have cut a staging branch at 20821a46f412 [0] and will apply any changes requested to the staging branch. Once we're ready to merge this update I will cut a zstd release at the commit we merge, so we have a known zstd release in the kernel. The implementation of the kernel API is contained in zstd_compress_module.c and zstd_decompress_module.c. [0] https://github.com/facebook/zstd/commit/20821a46f4122f9abd7c7b245d28162dde8129c9 [1] https://github.com/terrelln/linux/commit/e0fa481d0e3df26918da0a13749740a1f6777574 Signed-off-by: Nick Terrell <terrelln@fb.com> Tested By: Paul Jones <paul@pauljones.id.au> Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name> Tested-by: Sedat Dilek <sedat.dilek@gmail.com> # LLVM/Clang v13.0.0 on x86-64 Tested-by: Jean-Denis Girard <jd.girard@sysnux.pf>
2020-09-11 23:37:08 +00:00
size_t ZSTD_compressBlock_doubleFast_extDict(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize)
{
U32 const mls = ms->cParams.minMatch;
switch(mls)
{
default: /* includes case 3 */
case 4 :
return ZSTD_compressBlock_doubleFast_extDict_4(ms, seqStore, rep, src, srcSize);
lib: zstd: Upgrade to latest upstream zstd version 1.4.10 Upgrade to the latest upstream zstd version 1.4.10. This patch is 100% generated from upstream zstd commit 20821a46f412 [0]. This patch is very large because it is transitioning from the custom kernel zstd to using upstream directly. The new zstd follows upstreams file structure which is different. Future update patches will be much smaller because they will only contain the changes from one upstream zstd release. As an aid for review I've created a commit [1] that shows the diff between upstream zstd as-is (which doesn't compile), and the zstd code imported in this patch. The verion of zstd in this patch is generated from upstream with changes applied by automation to replace upstreams libc dependencies, remove unnecessary portability macros, replace `/**` comments with `/*` comments, and use the kernel's xxhash instead of bundling it. The benefits of this patch are as follows: 1. Using upstream directly with automated script to generate kernel code. This allows us to update the kernel every upstream release, so the kernel gets the latest bug fixes and performance improvements, and doesn't get 3 years out of date again. The automation and the translated code are tested every upstream commit to ensure it continues to work. 2. Upgrades from a custom zstd based on 1.3.1 to 1.4.10, getting 3 years of performance improvements and bug fixes. On x86_64 I've measured 15% faster BtrFS and SquashFS decompression+read speeds, 35% faster kernel decompression, and 30% faster ZRAM decompression+read speeds. 3. Zstd-1.4.10 supports negative compression levels, which allow zstd to match or subsume lzo's performance. 4. Maintains the same kernel-specific wrapper API, so no callers have to be modified with zstd version updates. One concern that was brought up was stack usage. Upstream zstd had already removed most of its heavy stack usage functions, but I just removed the last functions that allocate arrays on the stack. I've measured the high water mark for both compression and decompression before and after this patch. Decompression is approximately neutral, using about 1.2KB of stack space. Compression levels up to 3 regressed from 1.4KB -> 1.6KB, and higher compression levels regressed from 1.5KB -> 2KB. We've added unit tests upstream to prevent further regression. I believe that this is a reasonable increase, and if it does end up causing problems, this commit can be cleanly reverted, because it only touches zstd. I chose the bulk update instead of replaying upstream commits because there have been ~3500 upstream commits since the 1.3.1 release, zstd wasn't ready to be used in the kernel as-is before a month ago, and not all upstream zstd commits build. The bulk update preserves bisectablity because bugs can be bisected to the zstd version update. At that point the update can be reverted, and we can work with upstream to find and fix the bug. Note that upstream zstd release 1.4.10 doesn't exist yet. I have cut a staging branch at 20821a46f412 [0] and will apply any changes requested to the staging branch. Once we're ready to merge this update I will cut a zstd release at the commit we merge, so we have a known zstd release in the kernel. The implementation of the kernel API is contained in zstd_compress_module.c and zstd_decompress_module.c. [0] https://github.com/facebook/zstd/commit/20821a46f4122f9abd7c7b245d28162dde8129c9 [1] https://github.com/terrelln/linux/commit/e0fa481d0e3df26918da0a13749740a1f6777574 Signed-off-by: Nick Terrell <terrelln@fb.com> Tested By: Paul Jones <paul@pauljones.id.au> Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name> Tested-by: Sedat Dilek <sedat.dilek@gmail.com> # LLVM/Clang v13.0.0 on x86-64 Tested-by: Jean-Denis Girard <jd.girard@sysnux.pf>
2020-09-11 23:37:08 +00:00
case 5 :
return ZSTD_compressBlock_doubleFast_extDict_5(ms, seqStore, rep, src, srcSize);
lib: zstd: Upgrade to latest upstream zstd version 1.4.10 Upgrade to the latest upstream zstd version 1.4.10. This patch is 100% generated from upstream zstd commit 20821a46f412 [0]. This patch is very large because it is transitioning from the custom kernel zstd to using upstream directly. The new zstd follows upstreams file structure which is different. Future update patches will be much smaller because they will only contain the changes from one upstream zstd release. As an aid for review I've created a commit [1] that shows the diff between upstream zstd as-is (which doesn't compile), and the zstd code imported in this patch. The verion of zstd in this patch is generated from upstream with changes applied by automation to replace upstreams libc dependencies, remove unnecessary portability macros, replace `/**` comments with `/*` comments, and use the kernel's xxhash instead of bundling it. The benefits of this patch are as follows: 1. Using upstream directly with automated script to generate kernel code. This allows us to update the kernel every upstream release, so the kernel gets the latest bug fixes and performance improvements, and doesn't get 3 years out of date again. The automation and the translated code are tested every upstream commit to ensure it continues to work. 2. Upgrades from a custom zstd based on 1.3.1 to 1.4.10, getting 3 years of performance improvements and bug fixes. On x86_64 I've measured 15% faster BtrFS and SquashFS decompression+read speeds, 35% faster kernel decompression, and 30% faster ZRAM decompression+read speeds. 3. Zstd-1.4.10 supports negative compression levels, which allow zstd to match or subsume lzo's performance. 4. Maintains the same kernel-specific wrapper API, so no callers have to be modified with zstd version updates. One concern that was brought up was stack usage. Upstream zstd had already removed most of its heavy stack usage functions, but I just removed the last functions that allocate arrays on the stack. I've measured the high water mark for both compression and decompression before and after this patch. Decompression is approximately neutral, using about 1.2KB of stack space. Compression levels up to 3 regressed from 1.4KB -> 1.6KB, and higher compression levels regressed from 1.5KB -> 2KB. We've added unit tests upstream to prevent further regression. I believe that this is a reasonable increase, and if it does end up causing problems, this commit can be cleanly reverted, because it only touches zstd. I chose the bulk update instead of replaying upstream commits because there have been ~3500 upstream commits since the 1.3.1 release, zstd wasn't ready to be used in the kernel as-is before a month ago, and not all upstream zstd commits build. The bulk update preserves bisectablity because bugs can be bisected to the zstd version update. At that point the update can be reverted, and we can work with upstream to find and fix the bug. Note that upstream zstd release 1.4.10 doesn't exist yet. I have cut a staging branch at 20821a46f412 [0] and will apply any changes requested to the staging branch. Once we're ready to merge this update I will cut a zstd release at the commit we merge, so we have a known zstd release in the kernel. The implementation of the kernel API is contained in zstd_compress_module.c and zstd_decompress_module.c. [0] https://github.com/facebook/zstd/commit/20821a46f4122f9abd7c7b245d28162dde8129c9 [1] https://github.com/terrelln/linux/commit/e0fa481d0e3df26918da0a13749740a1f6777574 Signed-off-by: Nick Terrell <terrelln@fb.com> Tested By: Paul Jones <paul@pauljones.id.au> Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name> Tested-by: Sedat Dilek <sedat.dilek@gmail.com> # LLVM/Clang v13.0.0 on x86-64 Tested-by: Jean-Denis Girard <jd.girard@sysnux.pf>
2020-09-11 23:37:08 +00:00
case 6 :
return ZSTD_compressBlock_doubleFast_extDict_6(ms, seqStore, rep, src, srcSize);
lib: zstd: Upgrade to latest upstream zstd version 1.4.10 Upgrade to the latest upstream zstd version 1.4.10. This patch is 100% generated from upstream zstd commit 20821a46f412 [0]. This patch is very large because it is transitioning from the custom kernel zstd to using upstream directly. The new zstd follows upstreams file structure which is different. Future update patches will be much smaller because they will only contain the changes from one upstream zstd release. As an aid for review I've created a commit [1] that shows the diff between upstream zstd as-is (which doesn't compile), and the zstd code imported in this patch. The verion of zstd in this patch is generated from upstream with changes applied by automation to replace upstreams libc dependencies, remove unnecessary portability macros, replace `/**` comments with `/*` comments, and use the kernel's xxhash instead of bundling it. The benefits of this patch are as follows: 1. Using upstream directly with automated script to generate kernel code. This allows us to update the kernel every upstream release, so the kernel gets the latest bug fixes and performance improvements, and doesn't get 3 years out of date again. The automation and the translated code are tested every upstream commit to ensure it continues to work. 2. Upgrades from a custom zstd based on 1.3.1 to 1.4.10, getting 3 years of performance improvements and bug fixes. On x86_64 I've measured 15% faster BtrFS and SquashFS decompression+read speeds, 35% faster kernel decompression, and 30% faster ZRAM decompression+read speeds. 3. Zstd-1.4.10 supports negative compression levels, which allow zstd to match or subsume lzo's performance. 4. Maintains the same kernel-specific wrapper API, so no callers have to be modified with zstd version updates. One concern that was brought up was stack usage. Upstream zstd had already removed most of its heavy stack usage functions, but I just removed the last functions that allocate arrays on the stack. I've measured the high water mark for both compression and decompression before and after this patch. Decompression is approximately neutral, using about 1.2KB of stack space. Compression levels up to 3 regressed from 1.4KB -> 1.6KB, and higher compression levels regressed from 1.5KB -> 2KB. We've added unit tests upstream to prevent further regression. I believe that this is a reasonable increase, and if it does end up causing problems, this commit can be cleanly reverted, because it only touches zstd. I chose the bulk update instead of replaying upstream commits because there have been ~3500 upstream commits since the 1.3.1 release, zstd wasn't ready to be used in the kernel as-is before a month ago, and not all upstream zstd commits build. The bulk update preserves bisectablity because bugs can be bisected to the zstd version update. At that point the update can be reverted, and we can work with upstream to find and fix the bug. Note that upstream zstd release 1.4.10 doesn't exist yet. I have cut a staging branch at 20821a46f412 [0] and will apply any changes requested to the staging branch. Once we're ready to merge this update I will cut a zstd release at the commit we merge, so we have a known zstd release in the kernel. The implementation of the kernel API is contained in zstd_compress_module.c and zstd_decompress_module.c. [0] https://github.com/facebook/zstd/commit/20821a46f4122f9abd7c7b245d28162dde8129c9 [1] https://github.com/terrelln/linux/commit/e0fa481d0e3df26918da0a13749740a1f6777574 Signed-off-by: Nick Terrell <terrelln@fb.com> Tested By: Paul Jones <paul@pauljones.id.au> Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name> Tested-by: Sedat Dilek <sedat.dilek@gmail.com> # LLVM/Clang v13.0.0 on x86-64 Tested-by: Jean-Denis Girard <jd.girard@sysnux.pf>
2020-09-11 23:37:08 +00:00
case 7 :
return ZSTD_compressBlock_doubleFast_extDict_7(ms, seqStore, rep, src, srcSize);
lib: zstd: Upgrade to latest upstream zstd version 1.4.10 Upgrade to the latest upstream zstd version 1.4.10. This patch is 100% generated from upstream zstd commit 20821a46f412 [0]. This patch is very large because it is transitioning from the custom kernel zstd to using upstream directly. The new zstd follows upstreams file structure which is different. Future update patches will be much smaller because they will only contain the changes from one upstream zstd release. As an aid for review I've created a commit [1] that shows the diff between upstream zstd as-is (which doesn't compile), and the zstd code imported in this patch. The verion of zstd in this patch is generated from upstream with changes applied by automation to replace upstreams libc dependencies, remove unnecessary portability macros, replace `/**` comments with `/*` comments, and use the kernel's xxhash instead of bundling it. The benefits of this patch are as follows: 1. Using upstream directly with automated script to generate kernel code. This allows us to update the kernel every upstream release, so the kernel gets the latest bug fixes and performance improvements, and doesn't get 3 years out of date again. The automation and the translated code are tested every upstream commit to ensure it continues to work. 2. Upgrades from a custom zstd based on 1.3.1 to 1.4.10, getting 3 years of performance improvements and bug fixes. On x86_64 I've measured 15% faster BtrFS and SquashFS decompression+read speeds, 35% faster kernel decompression, and 30% faster ZRAM decompression+read speeds. 3. Zstd-1.4.10 supports negative compression levels, which allow zstd to match or subsume lzo's performance. 4. Maintains the same kernel-specific wrapper API, so no callers have to be modified with zstd version updates. One concern that was brought up was stack usage. Upstream zstd had already removed most of its heavy stack usage functions, but I just removed the last functions that allocate arrays on the stack. I've measured the high water mark for both compression and decompression before and after this patch. Decompression is approximately neutral, using about 1.2KB of stack space. Compression levels up to 3 regressed from 1.4KB -> 1.6KB, and higher compression levels regressed from 1.5KB -> 2KB. We've added unit tests upstream to prevent further regression. I believe that this is a reasonable increase, and if it does end up causing problems, this commit can be cleanly reverted, because it only touches zstd. I chose the bulk update instead of replaying upstream commits because there have been ~3500 upstream commits since the 1.3.1 release, zstd wasn't ready to be used in the kernel as-is before a month ago, and not all upstream zstd commits build. The bulk update preserves bisectablity because bugs can be bisected to the zstd version update. At that point the update can be reverted, and we can work with upstream to find and fix the bug. Note that upstream zstd release 1.4.10 doesn't exist yet. I have cut a staging branch at 20821a46f412 [0] and will apply any changes requested to the staging branch. Once we're ready to merge this update I will cut a zstd release at the commit we merge, so we have a known zstd release in the kernel. The implementation of the kernel API is contained in zstd_compress_module.c and zstd_decompress_module.c. [0] https://github.com/facebook/zstd/commit/20821a46f4122f9abd7c7b245d28162dde8129c9 [1] https://github.com/terrelln/linux/commit/e0fa481d0e3df26918da0a13749740a1f6777574 Signed-off-by: Nick Terrell <terrelln@fb.com> Tested By: Paul Jones <paul@pauljones.id.au> Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name> Tested-by: Sedat Dilek <sedat.dilek@gmail.com> # LLVM/Clang v13.0.0 on x86-64 Tested-by: Jean-Denis Girard <jd.girard@sysnux.pf>
2020-09-11 23:37:08 +00:00
}
}