linux-next/kernel/sched_rt.c

263 lines
5.9 KiB
C
Raw Normal View History

/*
* Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
* policies)
*/
/*
* Update the current task's runtime statistics. Skip current tasks that
* are not in our scheduling class.
*/
static void update_curr_rt(struct rq *rq)
{
struct task_struct *curr = rq->curr;
u64 delta_exec;
if (!task_has_rt_policy(curr))
return;
delta_exec = rq->clock - curr->se.exec_start;
if (unlikely((s64)delta_exec < 0))
delta_exec = 0;
schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));
curr->se.sum_exec_runtime += delta_exec;
curr->se.exec_start = rq->clock;
sched: cpu accounting controller (V2) Commit cfb5285660aad4931b2ebbfa902ea48a37dfffa1 removed a useful feature for us, which provided a cpu accounting resource controller. This feature would be useful if someone wants to group tasks only for accounting purpose and doesnt really want to exercise any control over their cpu consumption. The patch below reintroduces the feature. It is based on Paul Menage's original patch (Commit 62d0df64065e7c135d0002f069444fbdfc64768f), with these differences: - Removed load average information. I felt it needs more thought (esp to deal with SMP and virtualized platforms) and can be added for 2.6.25 after more discussions. - Convert group cpu usage to be nanosecond accurate (as rest of the cfs stats are) and invoke cpuacct_charge() from the respective scheduler classes - Make accounting scalable on SMP systems by splitting the usage counter to be per-cpu - Move the code from kernel/cpu_acct.c to kernel/sched.c (since the code is not big enough to warrant a new file and also this rightly needs to live inside the scheduler. Also things like accessing rq->lock while reading cpu usage becomes easier if the code lived in kernel/sched.c) The patch also modifies the cpu controller not to provide the same accounting information. Tested-by: Balbir Singh <balbir@linux.vnet.ibm.com> Tested the patches on top of 2.6.24-rc3. The patches work fine. Ran some simple tests like cpuspin (spin on the cpu), ran several tasks in the same group and timed them. Compared their time stamps with cpuacct.usage. Signed-off-by: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> Signed-off-by: Balbir Singh <balbir@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2007-12-02 20:04:49 +01:00
cpuacct_charge(curr, delta_exec);
}
static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup)
{
struct rt_prio_array *array = &rq->rt.active;
list_add_tail(&p->run_list, array->queue + p->prio);
__set_bit(p->prio, array->bitmap);
inc_cpu_load(rq, p->se.load.weight);
}
/*
* Adding/removing a task to/from a priority array:
*/
static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
{
struct rt_prio_array *array = &rq->rt.active;
update_curr_rt(rq);
list_del(&p->run_list);
if (list_empty(array->queue + p->prio))
__clear_bit(p->prio, array->bitmap);
dec_cpu_load(rq, p->se.load.weight);
}
/*
* Put task to the end of the run list without the overhead of dequeue
* followed by enqueue.
*/
static void requeue_task_rt(struct rq *rq, struct task_struct *p)
{
struct rt_prio_array *array = &rq->rt.active;
list_move_tail(&p->run_list, array->queue + p->prio);
}
static void
yield_task_rt(struct rq *rq)
{
requeue_task_rt(rq, rq->curr);
}
/*
* Preempt the current task with a newly woken task if needed:
*/
static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p)
{
if (p->prio < rq->curr->prio)
resched_task(rq->curr);
}
static struct task_struct *pick_next_task_rt(struct rq *rq)
{
struct rt_prio_array *array = &rq->rt.active;
struct task_struct *next;
struct list_head *queue;
int idx;
idx = sched_find_first_bit(array->bitmap);
if (idx >= MAX_RT_PRIO)
return NULL;
queue = array->queue + idx;
next = list_entry(queue->next, struct task_struct, run_list);
next->se.exec_start = rq->clock;
return next;
}
static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
{
update_curr_rt(rq);
p->se.exec_start = 0;
}
#ifdef CONFIG_SMP
/*
* Load-balancing iterator. Note: while the runqueue stays locked
* during the whole iteration, the current task might be
* dequeued so the iterator has to be dequeue-safe. Here we
* achieve that by always pre-iterating before returning
* the current task:
*/
static struct task_struct *load_balance_start_rt(void *arg)
{
struct rq *rq = arg;
struct rt_prio_array *array = &rq->rt.active;
struct list_head *head, *curr;
struct task_struct *p;
int idx;
idx = sched_find_first_bit(array->bitmap);
if (idx >= MAX_RT_PRIO)
return NULL;
head = array->queue + idx;
curr = head->prev;
p = list_entry(curr, struct task_struct, run_list);
curr = curr->prev;
rq->rt.rt_load_balance_idx = idx;
rq->rt.rt_load_balance_head = head;
rq->rt.rt_load_balance_curr = curr;
return p;
}
static struct task_struct *load_balance_next_rt(void *arg)
{
struct rq *rq = arg;
struct rt_prio_array *array = &rq->rt.active;
struct list_head *head, *curr;
struct task_struct *p;
int idx;
idx = rq->rt.rt_load_balance_idx;
head = rq->rt.rt_load_balance_head;
curr = rq->rt.rt_load_balance_curr;
/*
* If we arrived back to the head again then
* iterate to the next queue (if any):
*/
if (unlikely(head == curr)) {
int next_idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
if (next_idx >= MAX_RT_PRIO)
return NULL;
idx = next_idx;
head = array->queue + idx;
curr = head->prev;
rq->rt.rt_load_balance_idx = idx;
rq->rt.rt_load_balance_head = head;
}
p = list_entry(curr, struct task_struct, run_list);
curr = curr->prev;
rq->rt.rt_load_balance_curr = curr;
return p;
}
sched: simplify move_tasks() The move_tasks() function is currently multiplexed with two distinct capabilities: 1. attempt to move a specified amount of weighted load from one run queue to another; and 2. attempt to move a specified number of tasks from one run queue to another. The first of these capabilities is used in two places, load_balance() and load_balance_idle(), and in both of these cases the return value of move_tasks() is used purely to decide if tasks/load were moved and no notice of the actual number of tasks moved is taken. The second capability is used in exactly one place, active_load_balance(), to attempt to move exactly one task and, as before, the return value is only used as an indicator of success or failure. This multiplexing of sched_task() was introduced, by me, as part of the smpnice patches and was motivated by the fact that the alternative, one function to move specified load and one to move a single task, would have led to two functions of roughly the same complexity as the old move_tasks() (or the new balance_tasks()). However, the new modular design of the new CFS scheduler allows a simpler solution to be adopted and this patch addresses that solution by: 1. adding a new function, move_one_task(), to be used by active_load_balance(); and 2. making move_tasks() a single purpose function that tries to move a specified weighted load and returns 1 for success and 0 for failure. One of the consequences of these changes is that neither move_one_task() or the new move_tasks() care how many tasks sched_class.load_balance() moves and this enables its interface to be simplified by returning the amount of load moved as its result and removing the load_moved pointer from the argument list. This helps simplify the new move_tasks() and slightly reduces the amount of work done in each of sched_class.load_balance()'s implementations. Further simplification, e.g. changes to balance_tasks(), are possible but (slightly) complicated by the special needs of load_balance_fair() so I've left them to a later patch (if this one gets accepted). NB Since move_tasks() gets called with two run queue locks held even small reductions in overhead are worthwhile. [ mingo@elte.hu ] this change also reduces code size nicely: text data bss dec hex filename 39216 3618 24 42858 a76a sched.o.before 39173 3618 24 42815 a73f sched.o.after Signed-off-by: Peter Williams <pwil3058@bigpond.net.au> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2007-08-09 11:16:46 +02:00
static unsigned long
load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
unsigned long max_load_move,
struct sched_domain *sd, enum cpu_idle_type idle,
int *all_pinned, int *this_best_prio)
{
struct rq_iterator rt_rq_iterator;
rt_rq_iterator.start = load_balance_start_rt;
rt_rq_iterator.next = load_balance_next_rt;
/* pass 'busiest' rq argument into
* load_balance_[start|next]_rt iterators
*/
rt_rq_iterator.arg = busiest;
return balance_tasks(this_rq, this_cpu, busiest, max_load_move, sd,
idle, all_pinned, this_best_prio, &rt_rq_iterator);
}
static int
move_one_task_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
struct sched_domain *sd, enum cpu_idle_type idle)
{
struct rq_iterator rt_rq_iterator;
rt_rq_iterator.start = load_balance_start_rt;
rt_rq_iterator.next = load_balance_next_rt;
rt_rq_iterator.arg = busiest;
return iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
&rt_rq_iterator);
}
#endif
static void task_tick_rt(struct rq *rq, struct task_struct *p)
{
update_curr_rt(rq);
/*
* RR tasks need a special form of timeslice management.
* FIFO tasks have no timeslices.
*/
if (p->policy != SCHED_RR)
return;
if (--p->time_slice)
return;
p->time_slice = DEF_TIMESLICE;
/*
* Requeue to the end of queue if we are not the only element
* on the queue:
*/
if (p->run_list.prev != p->run_list.next) {
requeue_task_rt(rq, p);
set_tsk_need_resched(p);
}
}
static void set_curr_task_rt(struct rq *rq)
{
struct task_struct *p = rq->curr;
p->se.exec_start = rq->clock;
}
const struct sched_class rt_sched_class = {
.next = &fair_sched_class,
.enqueue_task = enqueue_task_rt,
.dequeue_task = dequeue_task_rt,
.yield_task = yield_task_rt,
.check_preempt_curr = check_preempt_curr_rt,
.pick_next_task = pick_next_task_rt,
.put_prev_task = put_prev_task_rt,
#ifdef CONFIG_SMP
.load_balance = load_balance_rt,
.move_one_task = move_one_task_rt,
#endif
.set_curr_task = set_curr_task_rt,
.task_tick = task_tick_rt,
};