sched/syscalls: Split out kernel/sched/syscalls.c from kernel/sched/core.c
core.c has become rather large, move most scheduler syscall
related functionality into a separate file, syscalls.c.
This is about ~15% of core.c's raw linecount.
Move the alloc_user_cpus_ptr(), __rt_effective_prio(),
rt_effective_prio(), uclamp_none(), uclamp_se_set()
and uclamp_bucket_id() inlines to kernel/sched/sched.h.
Internally export the __sched_setscheduler(), __sched_setaffinity(),
__setscheduler_prio(), set_load_weight(), enqueue_task(), dequeue_task(),
check_class_changed(), splice_balance_callbacks() and balance_callbacks()
methods to better facilitate this.
Move the new file's build to sched_policy.c, because it fits there
semantically, but also because it's the smallest of the 4 build units
under an allmodconfig build:
-rw-rw-r-- 1 mingo mingo 7.3M May 27 12:35 kernel/sched/core.i
-rw-rw-r-- 1 mingo mingo 6.4M May 27 12:36 kernel/sched/build_utility.i
-rw-rw-r-- 1 mingo mingo 6.3M May 27 12:36 kernel/sched/fair.i
-rw-rw-r-- 1 mingo mingo 5.8M May 27 12:36 kernel/sched/build_policy.i
This better balances build time for scheduler subsystem rebuilds.
I build-tested this new file as a standalone syscalls.o file for a bit,
to make sure all the encapsulations & abstractions are robust.
Also update/add my copyright notices to these files.
Build time measurements:
# -Before/+After:
kepler:~/tip> perf stat -e 'cycles,instructions,duration_time' --sync --repeat 5 --pre 'rm -f kernel/sched/*.o' m kernel/sched/built-in.a >/dev/null
Performance counter stats for 'm kernel/sched/built-in.a' (5 runs):
- 71,938,508,607 cycles ( +- 0.17% )
+ 71,992,916,493 cycles ( +- 0.22% )
- 106,214,780,964 instructions # 1.48 insn per cycle ( +- 0.01% )
+ 105,450,231,154 instructions # 1.46 insn per cycle ( +- 0.01% )
- 5,878,232,620 ns duration_time ( +- 0.38% )
+ 5,290,085,069 ns duration_time ( +- 0.21% )
- 5.8782 +- 0.0221 seconds time elapsed ( +- 0.38% )
+ 5.2901 +- 0.0111 seconds time elapsed ( +- 0.21% )
Build time improvement of -11.1% (duration_time) is expected: the
parallel build time of the scheduler subsystem is determined by the
largest, slowest to build object file, which is kernel/sched/core.o.
By moving ~15% of its complexity into another build unit, we reduced
build time by -11%.
Measured cycles spent on building is within its ~0.2% stddev noise envelope.
The -0.7% reduction in instructions spent on building the scheduler is
statistically reliable and somewhat surprising - I can only speculate:
maybe compilers aren't that efficient at building & optimizing 10+ KLOC files
(core.c), and it's an overall win to balance the linecount a bit.
Anyway, this might be a data point that suggests that reducing the linecount
of our largest files will improve not just code readability and maintainability,
but might also improve build times a bit.
Code generation got a bit worse, by 0.5kb text on an x86 defconfig build:
# -Before/+After:
kepler:~/tip> size vmlinux
text data bss dec hex filename
-26475475 10439178 1740804 38655457 24dd5e1 vmlinux
+26476003 10439178 1740804 38655985 24dd7f1 vmlinux
kepler:~/tip> size kernel/sched/built-in.a
text data bss dec hex filename
- 76056 30025 489 106570 1a04a kernel/sched/core.o (ex kernel/sched/built-in.a)
+ 63452 29453 489 93394 16cd2 kernel/sched/core.o (ex kernel/sched/built-in.a)
44299 2181 104 46584 b5f8 kernel/sched/fair.o (ex kernel/sched/built-in.a)
- 42764 3424 120 46308 b4e4 kernel/sched/build_policy.o (ex kernel/sched/built-in.a)
+ 55651 4044 120 59815 e9a7 kernel/sched/build_policy.o (ex kernel/sched/built-in.a)
44866 12655 2192 59713 e941 kernel/sched/build_utility.o (ex kernel/sched/built-in.a)
44866 12655 2192 59713 e941 kernel/sched/build_utility.o (ex kernel/sched/built-in.a)
This is primarily due to the extra functions exported, and the size
gets exaggerated somewhat by __pfx CFI function padding:
ffffffff810cc710 <__pfx_enqueue_task>:
ffffffff810cc710: 90 nop
ffffffff810cc711: 90 nop
ffffffff810cc712: 90 nop
ffffffff810cc713: 90 nop
ffffffff810cc714: 90 nop
ffffffff810cc715: 90 nop
ffffffff810cc716: 90 nop
ffffffff810cc717: 90 nop
ffffffff810cc718: 90 nop
ffffffff810cc719: 90 nop
ffffffff810cc71a: 90 nop
ffffffff810cc71b: 90 nop
ffffffff810cc71c: 90 nop
ffffffff810cc71d: 90 nop
ffffffff810cc71e: 90 nop
ffffffff810cc71f: 90 nop
AFAICS the cost is primarily not to core.o and fair.o though (which contain
most performance sensitive scheduler functions), only to syscalls.o
that get called with much lower frequency - so I think this is an acceptable
trade-off for better code separation.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Link: https://lore.kernel.org/r/20240407084319.1462211-2-mingo@kernel.org
2024-04-07 10:43:15 +02:00
|
|
|
// SPDX-License-Identifier: GPL-2.0-only
|
|
|
|
/*
|
|
|
|
* kernel/sched/syscalls.c
|
|
|
|
*
|
|
|
|
* Core kernel scheduler syscalls related code
|
|
|
|
*
|
|
|
|
* Copyright (C) 1991-2002 Linus Torvalds
|
|
|
|
* Copyright (C) 1998-2024 Ingo Molnar, Red Hat
|
|
|
|
*/
|
|
|
|
#include <linux/sched.h>
|
|
|
|
#include <linux/cpuset.h>
|
|
|
|
#include <linux/sched/debug.h>
|
|
|
|
|
|
|
|
#include <uapi/linux/sched/types.h>
|
|
|
|
|
|
|
|
#include "sched.h"
|
|
|
|
#include "autogroup.h"
|
|
|
|
|
|
|
|
static inline int __normal_prio(int policy, int rt_prio, int nice)
|
|
|
|
{
|
|
|
|
int prio;
|
|
|
|
|
|
|
|
if (dl_policy(policy))
|
|
|
|
prio = MAX_DL_PRIO - 1;
|
|
|
|
else if (rt_policy(policy))
|
|
|
|
prio = MAX_RT_PRIO - 1 - rt_prio;
|
|
|
|
else
|
|
|
|
prio = NICE_TO_PRIO(nice);
|
|
|
|
|
|
|
|
return prio;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Calculate the expected normal priority: i.e. priority
|
|
|
|
* without taking RT-inheritance into account. Might be
|
|
|
|
* boosted by interactivity modifiers. Changes upon fork,
|
|
|
|
* setprio syscalls, and whenever the interactivity
|
|
|
|
* estimator recalculates.
|
|
|
|
*/
|
|
|
|
static inline int normal_prio(struct task_struct *p)
|
|
|
|
{
|
|
|
|
return __normal_prio(p->policy, p->rt_priority, PRIO_TO_NICE(p->static_prio));
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Calculate the current priority, i.e. the priority
|
|
|
|
* taken into account by the scheduler. This value might
|
|
|
|
* be boosted by RT tasks, or might be boosted by
|
|
|
|
* interactivity modifiers. Will be RT if the task got
|
|
|
|
* RT-boosted. If not then it returns p->normal_prio.
|
|
|
|
*/
|
|
|
|
static int effective_prio(struct task_struct *p)
|
|
|
|
{
|
|
|
|
p->normal_prio = normal_prio(p);
|
|
|
|
/*
|
|
|
|
* If we are RT tasks or we were boosted to RT priority,
|
|
|
|
* keep the priority unchanged. Otherwise, update priority
|
|
|
|
* to the normal priority:
|
|
|
|
*/
|
2024-06-10 20:20:18 +01:00
|
|
|
if (!rt_or_dl_prio(p->prio))
|
sched/syscalls: Split out kernel/sched/syscalls.c from kernel/sched/core.c
core.c has become rather large, move most scheduler syscall
related functionality into a separate file, syscalls.c.
This is about ~15% of core.c's raw linecount.
Move the alloc_user_cpus_ptr(), __rt_effective_prio(),
rt_effective_prio(), uclamp_none(), uclamp_se_set()
and uclamp_bucket_id() inlines to kernel/sched/sched.h.
Internally export the __sched_setscheduler(), __sched_setaffinity(),
__setscheduler_prio(), set_load_weight(), enqueue_task(), dequeue_task(),
check_class_changed(), splice_balance_callbacks() and balance_callbacks()
methods to better facilitate this.
Move the new file's build to sched_policy.c, because it fits there
semantically, but also because it's the smallest of the 4 build units
under an allmodconfig build:
-rw-rw-r-- 1 mingo mingo 7.3M May 27 12:35 kernel/sched/core.i
-rw-rw-r-- 1 mingo mingo 6.4M May 27 12:36 kernel/sched/build_utility.i
-rw-rw-r-- 1 mingo mingo 6.3M May 27 12:36 kernel/sched/fair.i
-rw-rw-r-- 1 mingo mingo 5.8M May 27 12:36 kernel/sched/build_policy.i
This better balances build time for scheduler subsystem rebuilds.
I build-tested this new file as a standalone syscalls.o file for a bit,
to make sure all the encapsulations & abstractions are robust.
Also update/add my copyright notices to these files.
Build time measurements:
# -Before/+After:
kepler:~/tip> perf stat -e 'cycles,instructions,duration_time' --sync --repeat 5 --pre 'rm -f kernel/sched/*.o' m kernel/sched/built-in.a >/dev/null
Performance counter stats for 'm kernel/sched/built-in.a' (5 runs):
- 71,938,508,607 cycles ( +- 0.17% )
+ 71,992,916,493 cycles ( +- 0.22% )
- 106,214,780,964 instructions # 1.48 insn per cycle ( +- 0.01% )
+ 105,450,231,154 instructions # 1.46 insn per cycle ( +- 0.01% )
- 5,878,232,620 ns duration_time ( +- 0.38% )
+ 5,290,085,069 ns duration_time ( +- 0.21% )
- 5.8782 +- 0.0221 seconds time elapsed ( +- 0.38% )
+ 5.2901 +- 0.0111 seconds time elapsed ( +- 0.21% )
Build time improvement of -11.1% (duration_time) is expected: the
parallel build time of the scheduler subsystem is determined by the
largest, slowest to build object file, which is kernel/sched/core.o.
By moving ~15% of its complexity into another build unit, we reduced
build time by -11%.
Measured cycles spent on building is within its ~0.2% stddev noise envelope.
The -0.7% reduction in instructions spent on building the scheduler is
statistically reliable and somewhat surprising - I can only speculate:
maybe compilers aren't that efficient at building & optimizing 10+ KLOC files
(core.c), and it's an overall win to balance the linecount a bit.
Anyway, this might be a data point that suggests that reducing the linecount
of our largest files will improve not just code readability and maintainability,
but might also improve build times a bit.
Code generation got a bit worse, by 0.5kb text on an x86 defconfig build:
# -Before/+After:
kepler:~/tip> size vmlinux
text data bss dec hex filename
-26475475 10439178 1740804 38655457 24dd5e1 vmlinux
+26476003 10439178 1740804 38655985 24dd7f1 vmlinux
kepler:~/tip> size kernel/sched/built-in.a
text data bss dec hex filename
- 76056 30025 489 106570 1a04a kernel/sched/core.o (ex kernel/sched/built-in.a)
+ 63452 29453 489 93394 16cd2 kernel/sched/core.o (ex kernel/sched/built-in.a)
44299 2181 104 46584 b5f8 kernel/sched/fair.o (ex kernel/sched/built-in.a)
- 42764 3424 120 46308 b4e4 kernel/sched/build_policy.o (ex kernel/sched/built-in.a)
+ 55651 4044 120 59815 e9a7 kernel/sched/build_policy.o (ex kernel/sched/built-in.a)
44866 12655 2192 59713 e941 kernel/sched/build_utility.o (ex kernel/sched/built-in.a)
44866 12655 2192 59713 e941 kernel/sched/build_utility.o (ex kernel/sched/built-in.a)
This is primarily due to the extra functions exported, and the size
gets exaggerated somewhat by __pfx CFI function padding:
ffffffff810cc710 <__pfx_enqueue_task>:
ffffffff810cc710: 90 nop
ffffffff810cc711: 90 nop
ffffffff810cc712: 90 nop
ffffffff810cc713: 90 nop
ffffffff810cc714: 90 nop
ffffffff810cc715: 90 nop
ffffffff810cc716: 90 nop
ffffffff810cc717: 90 nop
ffffffff810cc718: 90 nop
ffffffff810cc719: 90 nop
ffffffff810cc71a: 90 nop
ffffffff810cc71b: 90 nop
ffffffff810cc71c: 90 nop
ffffffff810cc71d: 90 nop
ffffffff810cc71e: 90 nop
ffffffff810cc71f: 90 nop
AFAICS the cost is primarily not to core.o and fair.o though (which contain
most performance sensitive scheduler functions), only to syscalls.o
that get called with much lower frequency - so I think this is an acceptable
trade-off for better code separation.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Link: https://lore.kernel.org/r/20240407084319.1462211-2-mingo@kernel.org
2024-04-07 10:43:15 +02:00
|
|
|
return p->normal_prio;
|
|
|
|
return p->prio;
|
|
|
|
}
|
|
|
|
|
|
|
|
void set_user_nice(struct task_struct *p, long nice)
|
|
|
|
{
|
|
|
|
bool queued, running;
|
|
|
|
struct rq *rq;
|
|
|
|
int old_prio;
|
|
|
|
|
|
|
|
if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
|
|
|
|
return;
|
|
|
|
/*
|
|
|
|
* We have to be careful, if called from sys_setpriority(),
|
|
|
|
* the task might be in the middle of scheduling on another CPU.
|
|
|
|
*/
|
|
|
|
CLASS(task_rq_lock, rq_guard)(p);
|
|
|
|
rq = rq_guard.rq;
|
|
|
|
|
|
|
|
update_rq_clock(rq);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The RT priorities are set via sched_setscheduler(), but we still
|
|
|
|
* allow the 'normal' nice value to be set - but as expected
|
|
|
|
* it won't have any effect on scheduling until the task is
|
|
|
|
* SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
|
|
|
|
*/
|
|
|
|
if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
|
|
|
|
p->static_prio = NICE_TO_PRIO(nice);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
queued = task_on_rq_queued(p);
|
|
|
|
running = task_current(rq, p);
|
|
|
|
if (queued)
|
|
|
|
dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
|
|
|
|
if (running)
|
|
|
|
put_prev_task(rq, p);
|
|
|
|
|
|
|
|
p->static_prio = NICE_TO_PRIO(nice);
|
|
|
|
set_load_weight(p, true);
|
|
|
|
old_prio = p->prio;
|
|
|
|
p->prio = effective_prio(p);
|
|
|
|
|
|
|
|
if (queued)
|
|
|
|
enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
|
|
|
|
if (running)
|
|
|
|
set_next_task(rq, p);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If the task increased its priority or is running and
|
|
|
|
* lowered its priority, then reschedule its CPU:
|
|
|
|
*/
|
|
|
|
p->sched_class->prio_changed(rq, p, old_prio);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(set_user_nice);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* is_nice_reduction - check if nice value is an actual reduction
|
|
|
|
*
|
|
|
|
* Similar to can_nice() but does not perform a capability check.
|
|
|
|
*
|
|
|
|
* @p: task
|
|
|
|
* @nice: nice value
|
|
|
|
*/
|
|
|
|
static bool is_nice_reduction(const struct task_struct *p, const int nice)
|
|
|
|
{
|
|
|
|
/* Convert nice value [19,-20] to rlimit style value [1,40]: */
|
|
|
|
int nice_rlim = nice_to_rlimit(nice);
|
|
|
|
|
|
|
|
return (nice_rlim <= task_rlimit(p, RLIMIT_NICE));
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* can_nice - check if a task can reduce its nice value
|
|
|
|
* @p: task
|
|
|
|
* @nice: nice value
|
|
|
|
*/
|
|
|
|
int can_nice(const struct task_struct *p, const int nice)
|
|
|
|
{
|
|
|
|
return is_nice_reduction(p, nice) || capable(CAP_SYS_NICE);
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef __ARCH_WANT_SYS_NICE
|
|
|
|
|
|
|
|
/*
|
|
|
|
* sys_nice - change the priority of the current process.
|
|
|
|
* @increment: priority increment
|
|
|
|
*
|
|
|
|
* sys_setpriority is a more generic, but much slower function that
|
|
|
|
* does similar things.
|
|
|
|
*/
|
|
|
|
SYSCALL_DEFINE1(nice, int, increment)
|
|
|
|
{
|
|
|
|
long nice, retval;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Setpriority might change our priority at the same moment.
|
|
|
|
* We don't have to worry. Conceptually one call occurs first
|
|
|
|
* and we have a single winner.
|
|
|
|
*/
|
|
|
|
increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
|
|
|
|
nice = task_nice(current) + increment;
|
|
|
|
|
|
|
|
nice = clamp_val(nice, MIN_NICE, MAX_NICE);
|
|
|
|
if (increment < 0 && !can_nice(current, nice))
|
|
|
|
return -EPERM;
|
|
|
|
|
|
|
|
retval = security_task_setnice(current, nice);
|
|
|
|
if (retval)
|
|
|
|
return retval;
|
|
|
|
|
|
|
|
set_user_nice(current, nice);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/**
|
|
|
|
* task_prio - return the priority value of a given task.
|
|
|
|
* @p: the task in question.
|
|
|
|
*
|
|
|
|
* Return: The priority value as seen by users in /proc.
|
|
|
|
*
|
|
|
|
* sched policy return value kernel prio user prio/nice
|
|
|
|
*
|
|
|
|
* normal, batch, idle [0 ... 39] [100 ... 139] 0/[-20 ... 19]
|
|
|
|
* fifo, rr [-2 ... -100] [98 ... 0] [1 ... 99]
|
|
|
|
* deadline -101 -1 0
|
|
|
|
*/
|
|
|
|
int task_prio(const struct task_struct *p)
|
|
|
|
{
|
|
|
|
return p->prio - MAX_RT_PRIO;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* idle_cpu - is a given CPU idle currently?
|
|
|
|
* @cpu: the processor in question.
|
|
|
|
*
|
|
|
|
* Return: 1 if the CPU is currently idle. 0 otherwise.
|
|
|
|
*/
|
|
|
|
int idle_cpu(int cpu)
|
|
|
|
{
|
|
|
|
struct rq *rq = cpu_rq(cpu);
|
|
|
|
|
|
|
|
if (rq->curr != rq->idle)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
if (rq->nr_running)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
#ifdef CONFIG_SMP
|
|
|
|
if (rq->ttwu_pending)
|
|
|
|
return 0;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* available_idle_cpu - is a given CPU idle for enqueuing work.
|
|
|
|
* @cpu: the CPU in question.
|
|
|
|
*
|
|
|
|
* Return: 1 if the CPU is currently idle. 0 otherwise.
|
|
|
|
*/
|
|
|
|
int available_idle_cpu(int cpu)
|
|
|
|
{
|
|
|
|
if (!idle_cpu(cpu))
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
if (vcpu_is_preempted(cpu))
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* idle_task - return the idle task for a given CPU.
|
|
|
|
* @cpu: the processor in question.
|
|
|
|
*
|
|
|
|
* Return: The idle task for the CPU @cpu.
|
|
|
|
*/
|
|
|
|
struct task_struct *idle_task(int cpu)
|
|
|
|
{
|
|
|
|
return cpu_rq(cpu)->idle;
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef CONFIG_SCHED_CORE
|
|
|
|
int sched_core_idle_cpu(int cpu)
|
|
|
|
{
|
|
|
|
struct rq *rq = cpu_rq(cpu);
|
|
|
|
|
|
|
|
if (sched_core_enabled(rq) && rq->curr == rq->idle)
|
|
|
|
return 1;
|
|
|
|
|
|
|
|
return idle_cpu(cpu);
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifdef CONFIG_SMP
|
|
|
|
/*
|
|
|
|
* This function computes an effective utilization for the given CPU, to be
|
|
|
|
* used for frequency selection given the linear relation: f = u * f_max.
|
|
|
|
*
|
|
|
|
* The scheduler tracks the following metrics:
|
|
|
|
*
|
|
|
|
* cpu_util_{cfs,rt,dl,irq}()
|
|
|
|
* cpu_bw_dl()
|
|
|
|
*
|
|
|
|
* Where the cfs,rt and dl util numbers are tracked with the same metric and
|
|
|
|
* synchronized windows and are thus directly comparable.
|
|
|
|
*
|
|
|
|
* The cfs,rt,dl utilization are the running times measured with rq->clock_task
|
|
|
|
* which excludes things like IRQ and steal-time. These latter are then accrued
|
2024-05-27 16:54:52 +02:00
|
|
|
* in the IRQ utilization.
|
sched/syscalls: Split out kernel/sched/syscalls.c from kernel/sched/core.c
core.c has become rather large, move most scheduler syscall
related functionality into a separate file, syscalls.c.
This is about ~15% of core.c's raw linecount.
Move the alloc_user_cpus_ptr(), __rt_effective_prio(),
rt_effective_prio(), uclamp_none(), uclamp_se_set()
and uclamp_bucket_id() inlines to kernel/sched/sched.h.
Internally export the __sched_setscheduler(), __sched_setaffinity(),
__setscheduler_prio(), set_load_weight(), enqueue_task(), dequeue_task(),
check_class_changed(), splice_balance_callbacks() and balance_callbacks()
methods to better facilitate this.
Move the new file's build to sched_policy.c, because it fits there
semantically, but also because it's the smallest of the 4 build units
under an allmodconfig build:
-rw-rw-r-- 1 mingo mingo 7.3M May 27 12:35 kernel/sched/core.i
-rw-rw-r-- 1 mingo mingo 6.4M May 27 12:36 kernel/sched/build_utility.i
-rw-rw-r-- 1 mingo mingo 6.3M May 27 12:36 kernel/sched/fair.i
-rw-rw-r-- 1 mingo mingo 5.8M May 27 12:36 kernel/sched/build_policy.i
This better balances build time for scheduler subsystem rebuilds.
I build-tested this new file as a standalone syscalls.o file for a bit,
to make sure all the encapsulations & abstractions are robust.
Also update/add my copyright notices to these files.
Build time measurements:
# -Before/+After:
kepler:~/tip> perf stat -e 'cycles,instructions,duration_time' --sync --repeat 5 --pre 'rm -f kernel/sched/*.o' m kernel/sched/built-in.a >/dev/null
Performance counter stats for 'm kernel/sched/built-in.a' (5 runs):
- 71,938,508,607 cycles ( +- 0.17% )
+ 71,992,916,493 cycles ( +- 0.22% )
- 106,214,780,964 instructions # 1.48 insn per cycle ( +- 0.01% )
+ 105,450,231,154 instructions # 1.46 insn per cycle ( +- 0.01% )
- 5,878,232,620 ns duration_time ( +- 0.38% )
+ 5,290,085,069 ns duration_time ( +- 0.21% )
- 5.8782 +- 0.0221 seconds time elapsed ( +- 0.38% )
+ 5.2901 +- 0.0111 seconds time elapsed ( +- 0.21% )
Build time improvement of -11.1% (duration_time) is expected: the
parallel build time of the scheduler subsystem is determined by the
largest, slowest to build object file, which is kernel/sched/core.o.
By moving ~15% of its complexity into another build unit, we reduced
build time by -11%.
Measured cycles spent on building is within its ~0.2% stddev noise envelope.
The -0.7% reduction in instructions spent on building the scheduler is
statistically reliable and somewhat surprising - I can only speculate:
maybe compilers aren't that efficient at building & optimizing 10+ KLOC files
(core.c), and it's an overall win to balance the linecount a bit.
Anyway, this might be a data point that suggests that reducing the linecount
of our largest files will improve not just code readability and maintainability,
but might also improve build times a bit.
Code generation got a bit worse, by 0.5kb text on an x86 defconfig build:
# -Before/+After:
kepler:~/tip> size vmlinux
text data bss dec hex filename
-26475475 10439178 1740804 38655457 24dd5e1 vmlinux
+26476003 10439178 1740804 38655985 24dd7f1 vmlinux
kepler:~/tip> size kernel/sched/built-in.a
text data bss dec hex filename
- 76056 30025 489 106570 1a04a kernel/sched/core.o (ex kernel/sched/built-in.a)
+ 63452 29453 489 93394 16cd2 kernel/sched/core.o (ex kernel/sched/built-in.a)
44299 2181 104 46584 b5f8 kernel/sched/fair.o (ex kernel/sched/built-in.a)
- 42764 3424 120 46308 b4e4 kernel/sched/build_policy.o (ex kernel/sched/built-in.a)
+ 55651 4044 120 59815 e9a7 kernel/sched/build_policy.o (ex kernel/sched/built-in.a)
44866 12655 2192 59713 e941 kernel/sched/build_utility.o (ex kernel/sched/built-in.a)
44866 12655 2192 59713 e941 kernel/sched/build_utility.o (ex kernel/sched/built-in.a)
This is primarily due to the extra functions exported, and the size
gets exaggerated somewhat by __pfx CFI function padding:
ffffffff810cc710 <__pfx_enqueue_task>:
ffffffff810cc710: 90 nop
ffffffff810cc711: 90 nop
ffffffff810cc712: 90 nop
ffffffff810cc713: 90 nop
ffffffff810cc714: 90 nop
ffffffff810cc715: 90 nop
ffffffff810cc716: 90 nop
ffffffff810cc717: 90 nop
ffffffff810cc718: 90 nop
ffffffff810cc719: 90 nop
ffffffff810cc71a: 90 nop
ffffffff810cc71b: 90 nop
ffffffff810cc71c: 90 nop
ffffffff810cc71d: 90 nop
ffffffff810cc71e: 90 nop
ffffffff810cc71f: 90 nop
AFAICS the cost is primarily not to core.o and fair.o though (which contain
most performance sensitive scheduler functions), only to syscalls.o
that get called with much lower frequency - so I think this is an acceptable
trade-off for better code separation.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Link: https://lore.kernel.org/r/20240407084319.1462211-2-mingo@kernel.org
2024-04-07 10:43:15 +02:00
|
|
|
*
|
2024-05-27 16:54:52 +02:00
|
|
|
* The DL bandwidth number OTOH is not a measured metric but a value computed
|
sched/syscalls: Split out kernel/sched/syscalls.c from kernel/sched/core.c
core.c has become rather large, move most scheduler syscall
related functionality into a separate file, syscalls.c.
This is about ~15% of core.c's raw linecount.
Move the alloc_user_cpus_ptr(), __rt_effective_prio(),
rt_effective_prio(), uclamp_none(), uclamp_se_set()
and uclamp_bucket_id() inlines to kernel/sched/sched.h.
Internally export the __sched_setscheduler(), __sched_setaffinity(),
__setscheduler_prio(), set_load_weight(), enqueue_task(), dequeue_task(),
check_class_changed(), splice_balance_callbacks() and balance_callbacks()
methods to better facilitate this.
Move the new file's build to sched_policy.c, because it fits there
semantically, but also because it's the smallest of the 4 build units
under an allmodconfig build:
-rw-rw-r-- 1 mingo mingo 7.3M May 27 12:35 kernel/sched/core.i
-rw-rw-r-- 1 mingo mingo 6.4M May 27 12:36 kernel/sched/build_utility.i
-rw-rw-r-- 1 mingo mingo 6.3M May 27 12:36 kernel/sched/fair.i
-rw-rw-r-- 1 mingo mingo 5.8M May 27 12:36 kernel/sched/build_policy.i
This better balances build time for scheduler subsystem rebuilds.
I build-tested this new file as a standalone syscalls.o file for a bit,
to make sure all the encapsulations & abstractions are robust.
Also update/add my copyright notices to these files.
Build time measurements:
# -Before/+After:
kepler:~/tip> perf stat -e 'cycles,instructions,duration_time' --sync --repeat 5 --pre 'rm -f kernel/sched/*.o' m kernel/sched/built-in.a >/dev/null
Performance counter stats for 'm kernel/sched/built-in.a' (5 runs):
- 71,938,508,607 cycles ( +- 0.17% )
+ 71,992,916,493 cycles ( +- 0.22% )
- 106,214,780,964 instructions # 1.48 insn per cycle ( +- 0.01% )
+ 105,450,231,154 instructions # 1.46 insn per cycle ( +- 0.01% )
- 5,878,232,620 ns duration_time ( +- 0.38% )
+ 5,290,085,069 ns duration_time ( +- 0.21% )
- 5.8782 +- 0.0221 seconds time elapsed ( +- 0.38% )
+ 5.2901 +- 0.0111 seconds time elapsed ( +- 0.21% )
Build time improvement of -11.1% (duration_time) is expected: the
parallel build time of the scheduler subsystem is determined by the
largest, slowest to build object file, which is kernel/sched/core.o.
By moving ~15% of its complexity into another build unit, we reduced
build time by -11%.
Measured cycles spent on building is within its ~0.2% stddev noise envelope.
The -0.7% reduction in instructions spent on building the scheduler is
statistically reliable and somewhat surprising - I can only speculate:
maybe compilers aren't that efficient at building & optimizing 10+ KLOC files
(core.c), and it's an overall win to balance the linecount a bit.
Anyway, this might be a data point that suggests that reducing the linecount
of our largest files will improve not just code readability and maintainability,
but might also improve build times a bit.
Code generation got a bit worse, by 0.5kb text on an x86 defconfig build:
# -Before/+After:
kepler:~/tip> size vmlinux
text data bss dec hex filename
-26475475 10439178 1740804 38655457 24dd5e1 vmlinux
+26476003 10439178 1740804 38655985 24dd7f1 vmlinux
kepler:~/tip> size kernel/sched/built-in.a
text data bss dec hex filename
- 76056 30025 489 106570 1a04a kernel/sched/core.o (ex kernel/sched/built-in.a)
+ 63452 29453 489 93394 16cd2 kernel/sched/core.o (ex kernel/sched/built-in.a)
44299 2181 104 46584 b5f8 kernel/sched/fair.o (ex kernel/sched/built-in.a)
- 42764 3424 120 46308 b4e4 kernel/sched/build_policy.o (ex kernel/sched/built-in.a)
+ 55651 4044 120 59815 e9a7 kernel/sched/build_policy.o (ex kernel/sched/built-in.a)
44866 12655 2192 59713 e941 kernel/sched/build_utility.o (ex kernel/sched/built-in.a)
44866 12655 2192 59713 e941 kernel/sched/build_utility.o (ex kernel/sched/built-in.a)
This is primarily due to the extra functions exported, and the size
gets exaggerated somewhat by __pfx CFI function padding:
ffffffff810cc710 <__pfx_enqueue_task>:
ffffffff810cc710: 90 nop
ffffffff810cc711: 90 nop
ffffffff810cc712: 90 nop
ffffffff810cc713: 90 nop
ffffffff810cc714: 90 nop
ffffffff810cc715: 90 nop
ffffffff810cc716: 90 nop
ffffffff810cc717: 90 nop
ffffffff810cc718: 90 nop
ffffffff810cc719: 90 nop
ffffffff810cc71a: 90 nop
ffffffff810cc71b: 90 nop
ffffffff810cc71c: 90 nop
ffffffff810cc71d: 90 nop
ffffffff810cc71e: 90 nop
ffffffff810cc71f: 90 nop
AFAICS the cost is primarily not to core.o and fair.o though (which contain
most performance sensitive scheduler functions), only to syscalls.o
that get called with much lower frequency - so I think this is an acceptable
trade-off for better code separation.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Link: https://lore.kernel.org/r/20240407084319.1462211-2-mingo@kernel.org
2024-04-07 10:43:15 +02:00
|
|
|
* based on the task model parameters and gives the minimal utilization
|
|
|
|
* required to meet deadlines.
|
|
|
|
*/
|
|
|
|
unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
|
|
|
|
unsigned long *min,
|
|
|
|
unsigned long *max)
|
|
|
|
{
|
|
|
|
unsigned long util, irq, scale;
|
|
|
|
struct rq *rq = cpu_rq(cpu);
|
|
|
|
|
|
|
|
scale = arch_scale_cpu_capacity(cpu);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Early check to see if IRQ/steal time saturates the CPU, can be
|
|
|
|
* because of inaccuracies in how we track these -- see
|
|
|
|
* update_irq_load_avg().
|
|
|
|
*/
|
|
|
|
irq = cpu_util_irq(rq);
|
|
|
|
if (unlikely(irq >= scale)) {
|
|
|
|
if (min)
|
|
|
|
*min = scale;
|
|
|
|
if (max)
|
|
|
|
*max = scale;
|
|
|
|
return scale;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (min) {
|
|
|
|
/*
|
|
|
|
* The minimum utilization returns the highest level between:
|
|
|
|
* - the computed DL bandwidth needed with the IRQ pressure which
|
|
|
|
* steals time to the deadline task.
|
|
|
|
* - The minimum performance requirement for CFS and/or RT.
|
|
|
|
*/
|
|
|
|
*min = max(irq + cpu_bw_dl(rq), uclamp_rq_get(rq, UCLAMP_MIN));
|
|
|
|
|
|
|
|
/*
|
|
|
|
* When an RT task is runnable and uclamp is not used, we must
|
|
|
|
* ensure that the task will run at maximum compute capacity.
|
|
|
|
*/
|
|
|
|
if (!uclamp_is_used() && rt_rq_is_runnable(&rq->rt))
|
|
|
|
*min = max(*min, scale);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Because the time spend on RT/DL tasks is visible as 'lost' time to
|
|
|
|
* CFS tasks and we use the same metric to track the effective
|
|
|
|
* utilization (PELT windows are synchronized) we can directly add them
|
|
|
|
* to obtain the CPU's actual utilization.
|
|
|
|
*/
|
|
|
|
util = util_cfs + cpu_util_rt(rq);
|
|
|
|
util += cpu_util_dl(rq);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The maximum hint is a soft bandwidth requirement, which can be lower
|
|
|
|
* than the actual utilization because of uclamp_max requirements.
|
|
|
|
*/
|
|
|
|
if (max)
|
|
|
|
*max = min(scale, uclamp_rq_get(rq, UCLAMP_MAX));
|
|
|
|
|
|
|
|
if (util >= scale)
|
|
|
|
return scale;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* There is still idle time; further improve the number by using the
|
2024-05-27 16:54:52 +02:00
|
|
|
* IRQ metric. Because IRQ/steal time is hidden from the task clock we
|
sched/syscalls: Split out kernel/sched/syscalls.c from kernel/sched/core.c
core.c has become rather large, move most scheduler syscall
related functionality into a separate file, syscalls.c.
This is about ~15% of core.c's raw linecount.
Move the alloc_user_cpus_ptr(), __rt_effective_prio(),
rt_effective_prio(), uclamp_none(), uclamp_se_set()
and uclamp_bucket_id() inlines to kernel/sched/sched.h.
Internally export the __sched_setscheduler(), __sched_setaffinity(),
__setscheduler_prio(), set_load_weight(), enqueue_task(), dequeue_task(),
check_class_changed(), splice_balance_callbacks() and balance_callbacks()
methods to better facilitate this.
Move the new file's build to sched_policy.c, because it fits there
semantically, but also because it's the smallest of the 4 build units
under an allmodconfig build:
-rw-rw-r-- 1 mingo mingo 7.3M May 27 12:35 kernel/sched/core.i
-rw-rw-r-- 1 mingo mingo 6.4M May 27 12:36 kernel/sched/build_utility.i
-rw-rw-r-- 1 mingo mingo 6.3M May 27 12:36 kernel/sched/fair.i
-rw-rw-r-- 1 mingo mingo 5.8M May 27 12:36 kernel/sched/build_policy.i
This better balances build time for scheduler subsystem rebuilds.
I build-tested this new file as a standalone syscalls.o file for a bit,
to make sure all the encapsulations & abstractions are robust.
Also update/add my copyright notices to these files.
Build time measurements:
# -Before/+After:
kepler:~/tip> perf stat -e 'cycles,instructions,duration_time' --sync --repeat 5 --pre 'rm -f kernel/sched/*.o' m kernel/sched/built-in.a >/dev/null
Performance counter stats for 'm kernel/sched/built-in.a' (5 runs):
- 71,938,508,607 cycles ( +- 0.17% )
+ 71,992,916,493 cycles ( +- 0.22% )
- 106,214,780,964 instructions # 1.48 insn per cycle ( +- 0.01% )
+ 105,450,231,154 instructions # 1.46 insn per cycle ( +- 0.01% )
- 5,878,232,620 ns duration_time ( +- 0.38% )
+ 5,290,085,069 ns duration_time ( +- 0.21% )
- 5.8782 +- 0.0221 seconds time elapsed ( +- 0.38% )
+ 5.2901 +- 0.0111 seconds time elapsed ( +- 0.21% )
Build time improvement of -11.1% (duration_time) is expected: the
parallel build time of the scheduler subsystem is determined by the
largest, slowest to build object file, which is kernel/sched/core.o.
By moving ~15% of its complexity into another build unit, we reduced
build time by -11%.
Measured cycles spent on building is within its ~0.2% stddev noise envelope.
The -0.7% reduction in instructions spent on building the scheduler is
statistically reliable and somewhat surprising - I can only speculate:
maybe compilers aren't that efficient at building & optimizing 10+ KLOC files
(core.c), and it's an overall win to balance the linecount a bit.
Anyway, this might be a data point that suggests that reducing the linecount
of our largest files will improve not just code readability and maintainability,
but might also improve build times a bit.
Code generation got a bit worse, by 0.5kb text on an x86 defconfig build:
# -Before/+After:
kepler:~/tip> size vmlinux
text data bss dec hex filename
-26475475 10439178 1740804 38655457 24dd5e1 vmlinux
+26476003 10439178 1740804 38655985 24dd7f1 vmlinux
kepler:~/tip> size kernel/sched/built-in.a
text data bss dec hex filename
- 76056 30025 489 106570 1a04a kernel/sched/core.o (ex kernel/sched/built-in.a)
+ 63452 29453 489 93394 16cd2 kernel/sched/core.o (ex kernel/sched/built-in.a)
44299 2181 104 46584 b5f8 kernel/sched/fair.o (ex kernel/sched/built-in.a)
- 42764 3424 120 46308 b4e4 kernel/sched/build_policy.o (ex kernel/sched/built-in.a)
+ 55651 4044 120 59815 e9a7 kernel/sched/build_policy.o (ex kernel/sched/built-in.a)
44866 12655 2192 59713 e941 kernel/sched/build_utility.o (ex kernel/sched/built-in.a)
44866 12655 2192 59713 e941 kernel/sched/build_utility.o (ex kernel/sched/built-in.a)
This is primarily due to the extra functions exported, and the size
gets exaggerated somewhat by __pfx CFI function padding:
ffffffff810cc710 <__pfx_enqueue_task>:
ffffffff810cc710: 90 nop
ffffffff810cc711: 90 nop
ffffffff810cc712: 90 nop
ffffffff810cc713: 90 nop
ffffffff810cc714: 90 nop
ffffffff810cc715: 90 nop
ffffffff810cc716: 90 nop
ffffffff810cc717: 90 nop
ffffffff810cc718: 90 nop
ffffffff810cc719: 90 nop
ffffffff810cc71a: 90 nop
ffffffff810cc71b: 90 nop
ffffffff810cc71c: 90 nop
ffffffff810cc71d: 90 nop
ffffffff810cc71e: 90 nop
ffffffff810cc71f: 90 nop
AFAICS the cost is primarily not to core.o and fair.o though (which contain
most performance sensitive scheduler functions), only to syscalls.o
that get called with much lower frequency - so I think this is an acceptable
trade-off for better code separation.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Link: https://lore.kernel.org/r/20240407084319.1462211-2-mingo@kernel.org
2024-04-07 10:43:15 +02:00
|
|
|
* need to scale the task numbers:
|
|
|
|
*
|
|
|
|
* max - irq
|
|
|
|
* U' = irq + --------- * U
|
|
|
|
* max
|
|
|
|
*/
|
|
|
|
util = scale_irq_capacity(util, irq, scale);
|
|
|
|
util += irq;
|
|
|
|
|
|
|
|
return min(scale, util);
|
|
|
|
}
|
|
|
|
|
|
|
|
unsigned long sched_cpu_util(int cpu)
|
|
|
|
{
|
|
|
|
return effective_cpu_util(cpu, cpu_util_cfs(cpu), NULL, NULL);
|
|
|
|
}
|
|
|
|
#endif /* CONFIG_SMP */
|
|
|
|
|
|
|
|
/**
|
|
|
|
* find_process_by_pid - find a process with a matching PID value.
|
|
|
|
* @pid: the pid in question.
|
|
|
|
*
|
|
|
|
* The task of @pid, if found. %NULL otherwise.
|
|
|
|
*/
|
|
|
|
static struct task_struct *find_process_by_pid(pid_t pid)
|
|
|
|
{
|
|
|
|
return pid ? find_task_by_vpid(pid) : current;
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct task_struct *find_get_task(pid_t pid)
|
|
|
|
{
|
|
|
|
struct task_struct *p;
|
|
|
|
guard(rcu)();
|
|
|
|
|
|
|
|
p = find_process_by_pid(pid);
|
|
|
|
if (likely(p))
|
|
|
|
get_task_struct(p);
|
|
|
|
|
|
|
|
return p;
|
|
|
|
}
|
|
|
|
|
|
|
|
DEFINE_CLASS(find_get_task, struct task_struct *, if (_T) put_task_struct(_T),
|
|
|
|
find_get_task(pid), pid_t pid)
|
|
|
|
|
|
|
|
/*
|
|
|
|
* sched_setparam() passes in -1 for its policy, to let the functions
|
|
|
|
* it calls know not to change it.
|
|
|
|
*/
|
|
|
|
#define SETPARAM_POLICY -1
|
|
|
|
|
|
|
|
static void __setscheduler_params(struct task_struct *p,
|
|
|
|
const struct sched_attr *attr)
|
|
|
|
{
|
|
|
|
int policy = attr->sched_policy;
|
|
|
|
|
|
|
|
if (policy == SETPARAM_POLICY)
|
|
|
|
policy = p->policy;
|
|
|
|
|
|
|
|
p->policy = policy;
|
|
|
|
|
|
|
|
if (dl_policy(policy))
|
|
|
|
__setparam_dl(p, attr);
|
|
|
|
else if (fair_policy(policy))
|
|
|
|
p->static_prio = NICE_TO_PRIO(attr->sched_nice);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* __sched_setscheduler() ensures attr->sched_priority == 0 when
|
|
|
|
* !rt_policy. Always setting this ensures that things like
|
|
|
|
* getparam()/getattr() don't report silly values for !rt tasks.
|
|
|
|
*/
|
|
|
|
p->rt_priority = attr->sched_priority;
|
|
|
|
p->normal_prio = normal_prio(p);
|
|
|
|
set_load_weight(p, true);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Check the target process has a UID that matches the current process's:
|
|
|
|
*/
|
|
|
|
static bool check_same_owner(struct task_struct *p)
|
|
|
|
{
|
|
|
|
const struct cred *cred = current_cred(), *pcred;
|
|
|
|
guard(rcu)();
|
|
|
|
|
|
|
|
pcred = __task_cred(p);
|
|
|
|
return (uid_eq(cred->euid, pcred->euid) ||
|
|
|
|
uid_eq(cred->euid, pcred->uid));
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef CONFIG_UCLAMP_TASK
|
|
|
|
|
|
|
|
static int uclamp_validate(struct task_struct *p,
|
|
|
|
const struct sched_attr *attr)
|
|
|
|
{
|
|
|
|
int util_min = p->uclamp_req[UCLAMP_MIN].value;
|
|
|
|
int util_max = p->uclamp_req[UCLAMP_MAX].value;
|
|
|
|
|
|
|
|
if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
|
|
|
|
util_min = attr->sched_util_min;
|
|
|
|
|
|
|
|
if (util_min + 1 > SCHED_CAPACITY_SCALE + 1)
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
|
|
|
|
util_max = attr->sched_util_max;
|
|
|
|
|
|
|
|
if (util_max + 1 > SCHED_CAPACITY_SCALE + 1)
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (util_min != -1 && util_max != -1 && util_min > util_max)
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* We have valid uclamp attributes; make sure uclamp is enabled.
|
|
|
|
*
|
|
|
|
* We need to do that here, because enabling static branches is a
|
|
|
|
* blocking operation which obviously cannot be done while holding
|
|
|
|
* scheduler locks.
|
|
|
|
*/
|
|
|
|
static_branch_enable(&sched_uclamp_used);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static bool uclamp_reset(const struct sched_attr *attr,
|
|
|
|
enum uclamp_id clamp_id,
|
|
|
|
struct uclamp_se *uc_se)
|
|
|
|
{
|
|
|
|
/* Reset on sched class change for a non user-defined clamp value. */
|
|
|
|
if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) &&
|
|
|
|
!uc_se->user_defined)
|
|
|
|
return true;
|
|
|
|
|
|
|
|
/* Reset on sched_util_{min,max} == -1. */
|
|
|
|
if (clamp_id == UCLAMP_MIN &&
|
|
|
|
attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
|
|
|
|
attr->sched_util_min == -1) {
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (clamp_id == UCLAMP_MAX &&
|
|
|
|
attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
|
|
|
|
attr->sched_util_max == -1) {
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void __setscheduler_uclamp(struct task_struct *p,
|
|
|
|
const struct sched_attr *attr)
|
|
|
|
{
|
|
|
|
enum uclamp_id clamp_id;
|
|
|
|
|
|
|
|
for_each_clamp_id(clamp_id) {
|
|
|
|
struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
|
|
|
|
unsigned int value;
|
|
|
|
|
|
|
|
if (!uclamp_reset(attr, clamp_id, uc_se))
|
|
|
|
continue;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* RT by default have a 100% boost value that could be modified
|
|
|
|
* at runtime.
|
|
|
|
*/
|
|
|
|
if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
|
|
|
|
value = sysctl_sched_uclamp_util_min_rt_default;
|
|
|
|
else
|
|
|
|
value = uclamp_none(clamp_id);
|
|
|
|
|
|
|
|
uclamp_se_set(uc_se, value, false);
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
|
|
|
|
return;
|
|
|
|
|
|
|
|
if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
|
|
|
|
attr->sched_util_min != -1) {
|
|
|
|
uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
|
|
|
|
attr->sched_util_min, true);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
|
|
|
|
attr->sched_util_max != -1) {
|
|
|
|
uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
|
|
|
|
attr->sched_util_max, true);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#else /* !CONFIG_UCLAMP_TASK: */
|
|
|
|
|
|
|
|
static inline int uclamp_validate(struct task_struct *p,
|
|
|
|
const struct sched_attr *attr)
|
|
|
|
{
|
|
|
|
return -EOPNOTSUPP;
|
|
|
|
}
|
|
|
|
static void __setscheduler_uclamp(struct task_struct *p,
|
|
|
|
const struct sched_attr *attr) { }
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Allow unprivileged RT tasks to decrease priority.
|
|
|
|
* Only issue a capable test if needed and only once to avoid an audit
|
|
|
|
* event on permitted non-privileged operations:
|
|
|
|
*/
|
|
|
|
static int user_check_sched_setscheduler(struct task_struct *p,
|
|
|
|
const struct sched_attr *attr,
|
|
|
|
int policy, int reset_on_fork)
|
|
|
|
{
|
|
|
|
if (fair_policy(policy)) {
|
|
|
|
if (attr->sched_nice < task_nice(p) &&
|
|
|
|
!is_nice_reduction(p, attr->sched_nice))
|
|
|
|
goto req_priv;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (rt_policy(policy)) {
|
|
|
|
unsigned long rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
|
|
|
|
|
|
|
|
/* Can't set/change the rt policy: */
|
|
|
|
if (policy != p->policy && !rlim_rtprio)
|
|
|
|
goto req_priv;
|
|
|
|
|
|
|
|
/* Can't increase priority: */
|
|
|
|
if (attr->sched_priority > p->rt_priority &&
|
|
|
|
attr->sched_priority > rlim_rtprio)
|
|
|
|
goto req_priv;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Can't set/change SCHED_DEADLINE policy at all for now
|
|
|
|
* (safest behavior); in the future we would like to allow
|
|
|
|
* unprivileged DL tasks to increase their relative deadline
|
|
|
|
* or reduce their runtime (both ways reducing utilization)
|
|
|
|
*/
|
|
|
|
if (dl_policy(policy))
|
|
|
|
goto req_priv;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Treat SCHED_IDLE as nice 20. Only allow a switch to
|
|
|
|
* SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
|
|
|
|
*/
|
|
|
|
if (task_has_idle_policy(p) && !idle_policy(policy)) {
|
|
|
|
if (!is_nice_reduction(p, task_nice(p)))
|
|
|
|
goto req_priv;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Can't change other user's priorities: */
|
|
|
|
if (!check_same_owner(p))
|
|
|
|
goto req_priv;
|
|
|
|
|
|
|
|
/* Normal users shall not reset the sched_reset_on_fork flag: */
|
|
|
|
if (p->sched_reset_on_fork && !reset_on_fork)
|
|
|
|
goto req_priv;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
req_priv:
|
|
|
|
if (!capable(CAP_SYS_NICE))
|
|
|
|
return -EPERM;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
int __sched_setscheduler(struct task_struct *p,
|
|
|
|
const struct sched_attr *attr,
|
|
|
|
bool user, bool pi)
|
|
|
|
{
|
|
|
|
int oldpolicy = -1, policy = attr->sched_policy;
|
|
|
|
int retval, oldprio, newprio, queued, running;
|
|
|
|
const struct sched_class *prev_class;
|
|
|
|
struct balance_callback *head;
|
|
|
|
struct rq_flags rf;
|
|
|
|
int reset_on_fork;
|
|
|
|
int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
|
|
|
|
struct rq *rq;
|
|
|
|
bool cpuset_locked = false;
|
|
|
|
|
|
|
|
/* The pi code expects interrupts enabled */
|
|
|
|
BUG_ON(pi && in_interrupt());
|
|
|
|
recheck:
|
|
|
|
/* Double check policy once rq lock held: */
|
|
|
|
if (policy < 0) {
|
|
|
|
reset_on_fork = p->sched_reset_on_fork;
|
|
|
|
policy = oldpolicy = p->policy;
|
|
|
|
} else {
|
|
|
|
reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
|
|
|
|
|
|
|
|
if (!valid_policy(policy))
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Valid priorities for SCHED_FIFO and SCHED_RR are
|
|
|
|
* 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL,
|
|
|
|
* SCHED_BATCH and SCHED_IDLE is 0.
|
|
|
|
*/
|
|
|
|
if (attr->sched_priority > MAX_RT_PRIO-1)
|
|
|
|
return -EINVAL;
|
|
|
|
if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
|
|
|
|
(rt_policy(policy) != (attr->sched_priority != 0)))
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
if (user) {
|
|
|
|
retval = user_check_sched_setscheduler(p, attr, policy, reset_on_fork);
|
|
|
|
if (retval)
|
|
|
|
return retval;
|
|
|
|
|
|
|
|
if (attr->sched_flags & SCHED_FLAG_SUGOV)
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
retval = security_task_setscheduler(p);
|
|
|
|
if (retval)
|
|
|
|
return retval;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Update task specific "requested" clamps */
|
|
|
|
if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
|
|
|
|
retval = uclamp_validate(p, attr);
|
|
|
|
if (retval)
|
|
|
|
return retval;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* SCHED_DEADLINE bandwidth accounting relies on stable cpusets
|
|
|
|
* information.
|
|
|
|
*/
|
|
|
|
if (dl_policy(policy) || dl_policy(p->policy)) {
|
|
|
|
cpuset_locked = true;
|
|
|
|
cpuset_lock();
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Make sure no PI-waiters arrive (or leave) while we are
|
|
|
|
* changing the priority of the task:
|
|
|
|
*
|
|
|
|
* To be able to change p->policy safely, the appropriate
|
|
|
|
* runqueue lock must be held.
|
|
|
|
*/
|
|
|
|
rq = task_rq_lock(p, &rf);
|
|
|
|
update_rq_clock(rq);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Changing the policy of the stop threads its a very bad idea:
|
|
|
|
*/
|
|
|
|
if (p == rq->stop) {
|
|
|
|
retval = -EINVAL;
|
|
|
|
goto unlock;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If not changing anything there's no need to proceed further,
|
|
|
|
* but store a possible modification of reset_on_fork.
|
|
|
|
*/
|
|
|
|
if (unlikely(policy == p->policy)) {
|
|
|
|
if (fair_policy(policy) && attr->sched_nice != task_nice(p))
|
|
|
|
goto change;
|
|
|
|
if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
|
|
|
|
goto change;
|
|
|
|
if (dl_policy(policy) && dl_param_changed(p, attr))
|
|
|
|
goto change;
|
|
|
|
if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
|
|
|
|
goto change;
|
|
|
|
|
|
|
|
p->sched_reset_on_fork = reset_on_fork;
|
|
|
|
retval = 0;
|
|
|
|
goto unlock;
|
|
|
|
}
|
|
|
|
change:
|
|
|
|
|
|
|
|
if (user) {
|
|
|
|
#ifdef CONFIG_RT_GROUP_SCHED
|
|
|
|
/*
|
2024-05-27 16:54:52 +02:00
|
|
|
* Do not allow real-time tasks into groups that have no runtime
|
sched/syscalls: Split out kernel/sched/syscalls.c from kernel/sched/core.c
core.c has become rather large, move most scheduler syscall
related functionality into a separate file, syscalls.c.
This is about ~15% of core.c's raw linecount.
Move the alloc_user_cpus_ptr(), __rt_effective_prio(),
rt_effective_prio(), uclamp_none(), uclamp_se_set()
and uclamp_bucket_id() inlines to kernel/sched/sched.h.
Internally export the __sched_setscheduler(), __sched_setaffinity(),
__setscheduler_prio(), set_load_weight(), enqueue_task(), dequeue_task(),
check_class_changed(), splice_balance_callbacks() and balance_callbacks()
methods to better facilitate this.
Move the new file's build to sched_policy.c, because it fits there
semantically, but also because it's the smallest of the 4 build units
under an allmodconfig build:
-rw-rw-r-- 1 mingo mingo 7.3M May 27 12:35 kernel/sched/core.i
-rw-rw-r-- 1 mingo mingo 6.4M May 27 12:36 kernel/sched/build_utility.i
-rw-rw-r-- 1 mingo mingo 6.3M May 27 12:36 kernel/sched/fair.i
-rw-rw-r-- 1 mingo mingo 5.8M May 27 12:36 kernel/sched/build_policy.i
This better balances build time for scheduler subsystem rebuilds.
I build-tested this new file as a standalone syscalls.o file for a bit,
to make sure all the encapsulations & abstractions are robust.
Also update/add my copyright notices to these files.
Build time measurements:
# -Before/+After:
kepler:~/tip> perf stat -e 'cycles,instructions,duration_time' --sync --repeat 5 --pre 'rm -f kernel/sched/*.o' m kernel/sched/built-in.a >/dev/null
Performance counter stats for 'm kernel/sched/built-in.a' (5 runs):
- 71,938,508,607 cycles ( +- 0.17% )
+ 71,992,916,493 cycles ( +- 0.22% )
- 106,214,780,964 instructions # 1.48 insn per cycle ( +- 0.01% )
+ 105,450,231,154 instructions # 1.46 insn per cycle ( +- 0.01% )
- 5,878,232,620 ns duration_time ( +- 0.38% )
+ 5,290,085,069 ns duration_time ( +- 0.21% )
- 5.8782 +- 0.0221 seconds time elapsed ( +- 0.38% )
+ 5.2901 +- 0.0111 seconds time elapsed ( +- 0.21% )
Build time improvement of -11.1% (duration_time) is expected: the
parallel build time of the scheduler subsystem is determined by the
largest, slowest to build object file, which is kernel/sched/core.o.
By moving ~15% of its complexity into another build unit, we reduced
build time by -11%.
Measured cycles spent on building is within its ~0.2% stddev noise envelope.
The -0.7% reduction in instructions spent on building the scheduler is
statistically reliable and somewhat surprising - I can only speculate:
maybe compilers aren't that efficient at building & optimizing 10+ KLOC files
(core.c), and it's an overall win to balance the linecount a bit.
Anyway, this might be a data point that suggests that reducing the linecount
of our largest files will improve not just code readability and maintainability,
but might also improve build times a bit.
Code generation got a bit worse, by 0.5kb text on an x86 defconfig build:
# -Before/+After:
kepler:~/tip> size vmlinux
text data bss dec hex filename
-26475475 10439178 1740804 38655457 24dd5e1 vmlinux
+26476003 10439178 1740804 38655985 24dd7f1 vmlinux
kepler:~/tip> size kernel/sched/built-in.a
text data bss dec hex filename
- 76056 30025 489 106570 1a04a kernel/sched/core.o (ex kernel/sched/built-in.a)
+ 63452 29453 489 93394 16cd2 kernel/sched/core.o (ex kernel/sched/built-in.a)
44299 2181 104 46584 b5f8 kernel/sched/fair.o (ex kernel/sched/built-in.a)
- 42764 3424 120 46308 b4e4 kernel/sched/build_policy.o (ex kernel/sched/built-in.a)
+ 55651 4044 120 59815 e9a7 kernel/sched/build_policy.o (ex kernel/sched/built-in.a)
44866 12655 2192 59713 e941 kernel/sched/build_utility.o (ex kernel/sched/built-in.a)
44866 12655 2192 59713 e941 kernel/sched/build_utility.o (ex kernel/sched/built-in.a)
This is primarily due to the extra functions exported, and the size
gets exaggerated somewhat by __pfx CFI function padding:
ffffffff810cc710 <__pfx_enqueue_task>:
ffffffff810cc710: 90 nop
ffffffff810cc711: 90 nop
ffffffff810cc712: 90 nop
ffffffff810cc713: 90 nop
ffffffff810cc714: 90 nop
ffffffff810cc715: 90 nop
ffffffff810cc716: 90 nop
ffffffff810cc717: 90 nop
ffffffff810cc718: 90 nop
ffffffff810cc719: 90 nop
ffffffff810cc71a: 90 nop
ffffffff810cc71b: 90 nop
ffffffff810cc71c: 90 nop
ffffffff810cc71d: 90 nop
ffffffff810cc71e: 90 nop
ffffffff810cc71f: 90 nop
AFAICS the cost is primarily not to core.o and fair.o though (which contain
most performance sensitive scheduler functions), only to syscalls.o
that get called with much lower frequency - so I think this is an acceptable
trade-off for better code separation.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Link: https://lore.kernel.org/r/20240407084319.1462211-2-mingo@kernel.org
2024-04-07 10:43:15 +02:00
|
|
|
* assigned.
|
|
|
|
*/
|
|
|
|
if (rt_bandwidth_enabled() && rt_policy(policy) &&
|
|
|
|
task_group(p)->rt_bandwidth.rt_runtime == 0 &&
|
|
|
|
!task_group_is_autogroup(task_group(p))) {
|
|
|
|
retval = -EPERM;
|
|
|
|
goto unlock;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
#ifdef CONFIG_SMP
|
|
|
|
if (dl_bandwidth_enabled() && dl_policy(policy) &&
|
|
|
|
!(attr->sched_flags & SCHED_FLAG_SUGOV)) {
|
|
|
|
cpumask_t *span = rq->rd->span;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Don't allow tasks with an affinity mask smaller than
|
|
|
|
* the entire root_domain to become SCHED_DEADLINE. We
|
|
|
|
* will also fail if there's no bandwidth available.
|
|
|
|
*/
|
|
|
|
if (!cpumask_subset(span, p->cpus_ptr) ||
|
|
|
|
rq->rd->dl_bw.bw == 0) {
|
|
|
|
retval = -EPERM;
|
|
|
|
goto unlock;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Re-check policy now with rq lock held: */
|
|
|
|
if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
|
|
|
|
policy = oldpolicy = -1;
|
|
|
|
task_rq_unlock(rq, p, &rf);
|
|
|
|
if (cpuset_locked)
|
|
|
|
cpuset_unlock();
|
|
|
|
goto recheck;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If setscheduling to SCHED_DEADLINE (or changing the parameters
|
|
|
|
* of a SCHED_DEADLINE task) we need to check if enough bandwidth
|
|
|
|
* is available.
|
|
|
|
*/
|
|
|
|
if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
|
|
|
|
retval = -EBUSY;
|
|
|
|
goto unlock;
|
|
|
|
}
|
|
|
|
|
|
|
|
p->sched_reset_on_fork = reset_on_fork;
|
|
|
|
oldprio = p->prio;
|
|
|
|
|
|
|
|
newprio = __normal_prio(policy, attr->sched_priority, attr->sched_nice);
|
|
|
|
if (pi) {
|
|
|
|
/*
|
|
|
|
* Take priority boosted tasks into account. If the new
|
|
|
|
* effective priority is unchanged, we just store the new
|
|
|
|
* normal parameters and do not touch the scheduler class and
|
|
|
|
* the runqueue. This will be done when the task deboost
|
|
|
|
* itself.
|
|
|
|
*/
|
|
|
|
newprio = rt_effective_prio(p, newprio);
|
|
|
|
if (newprio == oldprio)
|
|
|
|
queue_flags &= ~DEQUEUE_MOVE;
|
|
|
|
}
|
|
|
|
|
|
|
|
queued = task_on_rq_queued(p);
|
|
|
|
running = task_current(rq, p);
|
|
|
|
if (queued)
|
|
|
|
dequeue_task(rq, p, queue_flags);
|
|
|
|
if (running)
|
|
|
|
put_prev_task(rq, p);
|
|
|
|
|
|
|
|
prev_class = p->sched_class;
|
|
|
|
|
|
|
|
if (!(attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)) {
|
|
|
|
__setscheduler_params(p, attr);
|
|
|
|
__setscheduler_prio(p, newprio);
|
|
|
|
}
|
|
|
|
__setscheduler_uclamp(p, attr);
|
|
|
|
|
|
|
|
if (queued) {
|
|
|
|
/*
|
|
|
|
* We enqueue to tail when the priority of a task is
|
|
|
|
* increased (user space view).
|
|
|
|
*/
|
|
|
|
if (oldprio < p->prio)
|
|
|
|
queue_flags |= ENQUEUE_HEAD;
|
|
|
|
|
|
|
|
enqueue_task(rq, p, queue_flags);
|
|
|
|
}
|
|
|
|
if (running)
|
|
|
|
set_next_task(rq, p);
|
|
|
|
|
|
|
|
check_class_changed(rq, p, prev_class, oldprio);
|
|
|
|
|
|
|
|
/* Avoid rq from going away on us: */
|
|
|
|
preempt_disable();
|
|
|
|
head = splice_balance_callbacks(rq);
|
|
|
|
task_rq_unlock(rq, p, &rf);
|
|
|
|
|
|
|
|
if (pi) {
|
|
|
|
if (cpuset_locked)
|
|
|
|
cpuset_unlock();
|
|
|
|
rt_mutex_adjust_pi(p);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Run balance callbacks after we've adjusted the PI chain: */
|
|
|
|
balance_callbacks(rq, head);
|
|
|
|
preempt_enable();
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
unlock:
|
|
|
|
task_rq_unlock(rq, p, &rf);
|
|
|
|
if (cpuset_locked)
|
|
|
|
cpuset_unlock();
|
|
|
|
return retval;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int _sched_setscheduler(struct task_struct *p, int policy,
|
|
|
|
const struct sched_param *param, bool check)
|
|
|
|
{
|
|
|
|
struct sched_attr attr = {
|
|
|
|
.sched_policy = policy,
|
|
|
|
.sched_priority = param->sched_priority,
|
|
|
|
.sched_nice = PRIO_TO_NICE(p->static_prio),
|
|
|
|
};
|
|
|
|
|
|
|
|
/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
|
|
|
|
if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
|
|
|
|
attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
|
|
|
|
policy &= ~SCHED_RESET_ON_FORK;
|
|
|
|
attr.sched_policy = policy;
|
|
|
|
}
|
|
|
|
|
|
|
|
return __sched_setscheduler(p, &attr, check, true);
|
|
|
|
}
|
|
|
|
/**
|
|
|
|
* sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
|
|
|
|
* @p: the task in question.
|
|
|
|
* @policy: new policy.
|
|
|
|
* @param: structure containing the new RT priority.
|
|
|
|
*
|
|
|
|
* Use sched_set_fifo(), read its comment.
|
|
|
|
*
|
|
|
|
* Return: 0 on success. An error code otherwise.
|
|
|
|
*
|
|
|
|
* NOTE that the task may be already dead.
|
|
|
|
*/
|
|
|
|
int sched_setscheduler(struct task_struct *p, int policy,
|
|
|
|
const struct sched_param *param)
|
|
|
|
{
|
|
|
|
return _sched_setscheduler(p, policy, param, true);
|
|
|
|
}
|
|
|
|
|
|
|
|
int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
|
|
|
|
{
|
|
|
|
return __sched_setscheduler(p, attr, true, true);
|
|
|
|
}
|
|
|
|
|
|
|
|
int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
|
|
|
|
{
|
|
|
|
return __sched_setscheduler(p, attr, false, true);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(sched_setattr_nocheck);
|
|
|
|
|
|
|
|
/**
|
2024-05-27 16:54:52 +02:00
|
|
|
* sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernel-space.
|
sched/syscalls: Split out kernel/sched/syscalls.c from kernel/sched/core.c
core.c has become rather large, move most scheduler syscall
related functionality into a separate file, syscalls.c.
This is about ~15% of core.c's raw linecount.
Move the alloc_user_cpus_ptr(), __rt_effective_prio(),
rt_effective_prio(), uclamp_none(), uclamp_se_set()
and uclamp_bucket_id() inlines to kernel/sched/sched.h.
Internally export the __sched_setscheduler(), __sched_setaffinity(),
__setscheduler_prio(), set_load_weight(), enqueue_task(), dequeue_task(),
check_class_changed(), splice_balance_callbacks() and balance_callbacks()
methods to better facilitate this.
Move the new file's build to sched_policy.c, because it fits there
semantically, but also because it's the smallest of the 4 build units
under an allmodconfig build:
-rw-rw-r-- 1 mingo mingo 7.3M May 27 12:35 kernel/sched/core.i
-rw-rw-r-- 1 mingo mingo 6.4M May 27 12:36 kernel/sched/build_utility.i
-rw-rw-r-- 1 mingo mingo 6.3M May 27 12:36 kernel/sched/fair.i
-rw-rw-r-- 1 mingo mingo 5.8M May 27 12:36 kernel/sched/build_policy.i
This better balances build time for scheduler subsystem rebuilds.
I build-tested this new file as a standalone syscalls.o file for a bit,
to make sure all the encapsulations & abstractions are robust.
Also update/add my copyright notices to these files.
Build time measurements:
# -Before/+After:
kepler:~/tip> perf stat -e 'cycles,instructions,duration_time' --sync --repeat 5 --pre 'rm -f kernel/sched/*.o' m kernel/sched/built-in.a >/dev/null
Performance counter stats for 'm kernel/sched/built-in.a' (5 runs):
- 71,938,508,607 cycles ( +- 0.17% )
+ 71,992,916,493 cycles ( +- 0.22% )
- 106,214,780,964 instructions # 1.48 insn per cycle ( +- 0.01% )
+ 105,450,231,154 instructions # 1.46 insn per cycle ( +- 0.01% )
- 5,878,232,620 ns duration_time ( +- 0.38% )
+ 5,290,085,069 ns duration_time ( +- 0.21% )
- 5.8782 +- 0.0221 seconds time elapsed ( +- 0.38% )
+ 5.2901 +- 0.0111 seconds time elapsed ( +- 0.21% )
Build time improvement of -11.1% (duration_time) is expected: the
parallel build time of the scheduler subsystem is determined by the
largest, slowest to build object file, which is kernel/sched/core.o.
By moving ~15% of its complexity into another build unit, we reduced
build time by -11%.
Measured cycles spent on building is within its ~0.2% stddev noise envelope.
The -0.7% reduction in instructions spent on building the scheduler is
statistically reliable and somewhat surprising - I can only speculate:
maybe compilers aren't that efficient at building & optimizing 10+ KLOC files
(core.c), and it's an overall win to balance the linecount a bit.
Anyway, this might be a data point that suggests that reducing the linecount
of our largest files will improve not just code readability and maintainability,
but might also improve build times a bit.
Code generation got a bit worse, by 0.5kb text on an x86 defconfig build:
# -Before/+After:
kepler:~/tip> size vmlinux
text data bss dec hex filename
-26475475 10439178 1740804 38655457 24dd5e1 vmlinux
+26476003 10439178 1740804 38655985 24dd7f1 vmlinux
kepler:~/tip> size kernel/sched/built-in.a
text data bss dec hex filename
- 76056 30025 489 106570 1a04a kernel/sched/core.o (ex kernel/sched/built-in.a)
+ 63452 29453 489 93394 16cd2 kernel/sched/core.o (ex kernel/sched/built-in.a)
44299 2181 104 46584 b5f8 kernel/sched/fair.o (ex kernel/sched/built-in.a)
- 42764 3424 120 46308 b4e4 kernel/sched/build_policy.o (ex kernel/sched/built-in.a)
+ 55651 4044 120 59815 e9a7 kernel/sched/build_policy.o (ex kernel/sched/built-in.a)
44866 12655 2192 59713 e941 kernel/sched/build_utility.o (ex kernel/sched/built-in.a)
44866 12655 2192 59713 e941 kernel/sched/build_utility.o (ex kernel/sched/built-in.a)
This is primarily due to the extra functions exported, and the size
gets exaggerated somewhat by __pfx CFI function padding:
ffffffff810cc710 <__pfx_enqueue_task>:
ffffffff810cc710: 90 nop
ffffffff810cc711: 90 nop
ffffffff810cc712: 90 nop
ffffffff810cc713: 90 nop
ffffffff810cc714: 90 nop
ffffffff810cc715: 90 nop
ffffffff810cc716: 90 nop
ffffffff810cc717: 90 nop
ffffffff810cc718: 90 nop
ffffffff810cc719: 90 nop
ffffffff810cc71a: 90 nop
ffffffff810cc71b: 90 nop
ffffffff810cc71c: 90 nop
ffffffff810cc71d: 90 nop
ffffffff810cc71e: 90 nop
ffffffff810cc71f: 90 nop
AFAICS the cost is primarily not to core.o and fair.o though (which contain
most performance sensitive scheduler functions), only to syscalls.o
that get called with much lower frequency - so I think this is an acceptable
trade-off for better code separation.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Link: https://lore.kernel.org/r/20240407084319.1462211-2-mingo@kernel.org
2024-04-07 10:43:15 +02:00
|
|
|
* @p: the task in question.
|
|
|
|
* @policy: new policy.
|
|
|
|
* @param: structure containing the new RT priority.
|
|
|
|
*
|
|
|
|
* Just like sched_setscheduler, only don't bother checking if the
|
|
|
|
* current context has permission. For example, this is needed in
|
|
|
|
* stop_machine(): we create temporary high priority worker threads,
|
|
|
|
* but our caller might not have that capability.
|
|
|
|
*
|
|
|
|
* Return: 0 on success. An error code otherwise.
|
|
|
|
*/
|
|
|
|
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
|
|
|
|
const struct sched_param *param)
|
|
|
|
{
|
|
|
|
return _sched_setscheduler(p, policy, param, false);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
|
|
|
|
* incapable of resource management, which is the one thing an OS really should
|
|
|
|
* be doing.
|
|
|
|
*
|
|
|
|
* This is of course the reason it is limited to privileged users only.
|
|
|
|
*
|
|
|
|
* Worse still; it is fundamentally impossible to compose static priority
|
|
|
|
* workloads. You cannot take two correctly working static prio workloads
|
|
|
|
* and smash them together and still expect them to work.
|
|
|
|
*
|
|
|
|
* For this reason 'all' FIFO tasks the kernel creates are basically at:
|
|
|
|
*
|
|
|
|
* MAX_RT_PRIO / 2
|
|
|
|
*
|
|
|
|
* The administrator _MUST_ configure the system, the kernel simply doesn't
|
|
|
|
* know enough information to make a sensible choice.
|
|
|
|
*/
|
|
|
|
void sched_set_fifo(struct task_struct *p)
|
|
|
|
{
|
|
|
|
struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 };
|
|
|
|
WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(sched_set_fifo);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
|
|
|
|
*/
|
|
|
|
void sched_set_fifo_low(struct task_struct *p)
|
|
|
|
{
|
|
|
|
struct sched_param sp = { .sched_priority = 1 };
|
|
|
|
WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(sched_set_fifo_low);
|
|
|
|
|
|
|
|
void sched_set_normal(struct task_struct *p, int nice)
|
|
|
|
{
|
|
|
|
struct sched_attr attr = {
|
|
|
|
.sched_policy = SCHED_NORMAL,
|
|
|
|
.sched_nice = nice,
|
|
|
|
};
|
|
|
|
WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(sched_set_normal);
|
|
|
|
|
|
|
|
static int
|
|
|
|
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
|
|
|
|
{
|
|
|
|
struct sched_param lparam;
|
|
|
|
|
|
|
|
if (!param || pid < 0)
|
|
|
|
return -EINVAL;
|
|
|
|
if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
|
|
|
|
return -EFAULT;
|
|
|
|
|
|
|
|
CLASS(find_get_task, p)(pid);
|
|
|
|
if (!p)
|
|
|
|
return -ESRCH;
|
|
|
|
|
|
|
|
return sched_setscheduler(p, policy, &lparam);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Mimics kernel/events/core.c perf_copy_attr().
|
|
|
|
*/
|
|
|
|
static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
|
|
|
|
{
|
|
|
|
u32 size;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
/* Zero the full structure, so that a short copy will be nice: */
|
|
|
|
memset(attr, 0, sizeof(*attr));
|
|
|
|
|
|
|
|
ret = get_user(size, &uattr->size);
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
/* ABI compatibility quirk: */
|
|
|
|
if (!size)
|
|
|
|
size = SCHED_ATTR_SIZE_VER0;
|
|
|
|
if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
|
|
|
|
goto err_size;
|
|
|
|
|
|
|
|
ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
|
|
|
|
if (ret) {
|
|
|
|
if (ret == -E2BIG)
|
|
|
|
goto err_size;
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
|
|
|
|
size < SCHED_ATTR_SIZE_VER1)
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* XXX: Do we want to be lenient like existing syscalls; or do we want
|
|
|
|
* to be strict and return an error on out-of-bounds values?
|
|
|
|
*/
|
|
|
|
attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
err_size:
|
|
|
|
put_user(sizeof(*attr), &uattr->size);
|
|
|
|
return -E2BIG;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void get_params(struct task_struct *p, struct sched_attr *attr)
|
|
|
|
{
|
|
|
|
if (task_has_dl_policy(p))
|
|
|
|
__getparam_dl(p, attr);
|
|
|
|
else if (task_has_rt_policy(p))
|
|
|
|
attr->sched_priority = p->rt_priority;
|
|
|
|
else
|
|
|
|
attr->sched_nice = task_nice(p);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* sys_sched_setscheduler - set/change the scheduler policy and RT priority
|
|
|
|
* @pid: the pid in question.
|
|
|
|
* @policy: new policy.
|
|
|
|
* @param: structure containing the new RT priority.
|
|
|
|
*
|
|
|
|
* Return: 0 on success. An error code otherwise.
|
|
|
|
*/
|
|
|
|
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
|
|
|
|
{
|
|
|
|
if (policy < 0)
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
return do_sched_setscheduler(pid, policy, param);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* sys_sched_setparam - set/change the RT priority of a thread
|
|
|
|
* @pid: the pid in question.
|
|
|
|
* @param: structure containing the new RT priority.
|
|
|
|
*
|
|
|
|
* Return: 0 on success. An error code otherwise.
|
|
|
|
*/
|
|
|
|
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
|
|
|
|
{
|
|
|
|
return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* sys_sched_setattr - same as above, but with extended sched_attr
|
|
|
|
* @pid: the pid in question.
|
|
|
|
* @uattr: structure containing the extended parameters.
|
|
|
|
* @flags: for future extension.
|
|
|
|
*/
|
|
|
|
SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
|
|
|
|
unsigned int, flags)
|
|
|
|
{
|
|
|
|
struct sched_attr attr;
|
|
|
|
int retval;
|
|
|
|
|
|
|
|
if (!uattr || pid < 0 || flags)
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
retval = sched_copy_attr(uattr, &attr);
|
|
|
|
if (retval)
|
|
|
|
return retval;
|
|
|
|
|
|
|
|
if ((int)attr.sched_policy < 0)
|
|
|
|
return -EINVAL;
|
|
|
|
if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
|
|
|
|
attr.sched_policy = SETPARAM_POLICY;
|
|
|
|
|
|
|
|
CLASS(find_get_task, p)(pid);
|
|
|
|
if (!p)
|
|
|
|
return -ESRCH;
|
|
|
|
|
|
|
|
if (attr.sched_flags & SCHED_FLAG_KEEP_PARAMS)
|
|
|
|
get_params(p, &attr);
|
|
|
|
|
|
|
|
return sched_setattr(p, &attr);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* sys_sched_getscheduler - get the policy (scheduling class) of a thread
|
|
|
|
* @pid: the pid in question.
|
|
|
|
*
|
|
|
|
* Return: On success, the policy of the thread. Otherwise, a negative error
|
|
|
|
* code.
|
|
|
|
*/
|
|
|
|
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
|
|
|
|
{
|
|
|
|
struct task_struct *p;
|
|
|
|
int retval;
|
|
|
|
|
|
|
|
if (pid < 0)
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
guard(rcu)();
|
|
|
|
p = find_process_by_pid(pid);
|
|
|
|
if (!p)
|
|
|
|
return -ESRCH;
|
|
|
|
|
|
|
|
retval = security_task_getscheduler(p);
|
|
|
|
if (!retval) {
|
|
|
|
retval = p->policy;
|
|
|
|
if (p->sched_reset_on_fork)
|
|
|
|
retval |= SCHED_RESET_ON_FORK;
|
|
|
|
}
|
|
|
|
return retval;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* sys_sched_getparam - get the RT priority of a thread
|
|
|
|
* @pid: the pid in question.
|
|
|
|
* @param: structure containing the RT priority.
|
|
|
|
*
|
|
|
|
* Return: On success, 0 and the RT priority is in @param. Otherwise, an error
|
|
|
|
* code.
|
|
|
|
*/
|
|
|
|
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
|
|
|
|
{
|
|
|
|
struct sched_param lp = { .sched_priority = 0 };
|
|
|
|
struct task_struct *p;
|
|
|
|
int retval;
|
|
|
|
|
|
|
|
if (!param || pid < 0)
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
scoped_guard (rcu) {
|
|
|
|
p = find_process_by_pid(pid);
|
|
|
|
if (!p)
|
|
|
|
return -ESRCH;
|
|
|
|
|
|
|
|
retval = security_task_getscheduler(p);
|
|
|
|
if (retval)
|
|
|
|
return retval;
|
|
|
|
|
|
|
|
if (task_has_rt_policy(p))
|
|
|
|
lp.sched_priority = p->rt_priority;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* This one might sleep, we cannot do it with a spinlock held ...
|
|
|
|
*/
|
|
|
|
return copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Copy the kernel size attribute structure (which might be larger
|
|
|
|
* than what user-space knows about) to user-space.
|
|
|
|
*
|
|
|
|
* Note that all cases are valid: user-space buffer can be larger or
|
|
|
|
* smaller than the kernel-space buffer. The usual case is that both
|
|
|
|
* have the same size.
|
|
|
|
*/
|
|
|
|
static int
|
|
|
|
sched_attr_copy_to_user(struct sched_attr __user *uattr,
|
|
|
|
struct sched_attr *kattr,
|
|
|
|
unsigned int usize)
|
|
|
|
{
|
|
|
|
unsigned int ksize = sizeof(*kattr);
|
|
|
|
|
|
|
|
if (!access_ok(uattr, usize))
|
|
|
|
return -EFAULT;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* sched_getattr() ABI forwards and backwards compatibility:
|
|
|
|
*
|
|
|
|
* If usize == ksize then we just copy everything to user-space and all is good.
|
|
|
|
*
|
|
|
|
* If usize < ksize then we only copy as much as user-space has space for,
|
|
|
|
* this keeps ABI compatibility as well. We skip the rest.
|
|
|
|
*
|
|
|
|
* If usize > ksize then user-space is using a newer version of the ABI,
|
|
|
|
* which part the kernel doesn't know about. Just ignore it - tooling can
|
|
|
|
* detect the kernel's knowledge of attributes from the attr->size value
|
|
|
|
* which is set to ksize in this case.
|
|
|
|
*/
|
|
|
|
kattr->size = min(usize, ksize);
|
|
|
|
|
|
|
|
if (copy_to_user(uattr, kattr, kattr->size))
|
|
|
|
return -EFAULT;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* sys_sched_getattr - similar to sched_getparam, but with sched_attr
|
|
|
|
* @pid: the pid in question.
|
|
|
|
* @uattr: structure containing the extended parameters.
|
|
|
|
* @usize: sizeof(attr) for fwd/bwd comp.
|
|
|
|
* @flags: for future extension.
|
|
|
|
*/
|
|
|
|
SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
|
|
|
|
unsigned int, usize, unsigned int, flags)
|
|
|
|
{
|
|
|
|
struct sched_attr kattr = { };
|
|
|
|
struct task_struct *p;
|
|
|
|
int retval;
|
|
|
|
|
|
|
|
if (!uattr || pid < 0 || usize > PAGE_SIZE ||
|
|
|
|
usize < SCHED_ATTR_SIZE_VER0 || flags)
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
scoped_guard (rcu) {
|
|
|
|
p = find_process_by_pid(pid);
|
|
|
|
if (!p)
|
|
|
|
return -ESRCH;
|
|
|
|
|
|
|
|
retval = security_task_getscheduler(p);
|
|
|
|
if (retval)
|
|
|
|
return retval;
|
|
|
|
|
|
|
|
kattr.sched_policy = p->policy;
|
|
|
|
if (p->sched_reset_on_fork)
|
|
|
|
kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
|
|
|
|
get_params(p, &kattr);
|
|
|
|
kattr.sched_flags &= SCHED_FLAG_ALL;
|
|
|
|
|
|
|
|
#ifdef CONFIG_UCLAMP_TASK
|
|
|
|
/*
|
|
|
|
* This could race with another potential updater, but this is fine
|
|
|
|
* because it'll correctly read the old or the new value. We don't need
|
|
|
|
* to guarantee who wins the race as long as it doesn't return garbage.
|
|
|
|
*/
|
|
|
|
kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
|
|
|
|
kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
return sched_attr_copy_to_user(uattr, &kattr, usize);
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef CONFIG_SMP
|
|
|
|
int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
* If the task isn't a deadline task or admission control is
|
|
|
|
* disabled then we don't care about affinity changes.
|
|
|
|
*/
|
|
|
|
if (!task_has_dl_policy(p) || !dl_bandwidth_enabled())
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Since bandwidth control happens on root_domain basis,
|
|
|
|
* if admission test is enabled, we only admit -deadline
|
|
|
|
* tasks allowed to run on all the CPUs in the task's
|
|
|
|
* root_domain.
|
|
|
|
*/
|
|
|
|
guard(rcu)();
|
|
|
|
if (!cpumask_subset(task_rq(p)->rd->span, mask))
|
|
|
|
return -EBUSY;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
#endif /* CONFIG_SMP */
|
|
|
|
|
|
|
|
int __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx)
|
|
|
|
{
|
|
|
|
int retval;
|
|
|
|
cpumask_var_t cpus_allowed, new_mask;
|
|
|
|
|
|
|
|
if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL))
|
|
|
|
return -ENOMEM;
|
|
|
|
|
|
|
|
if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
|
|
|
|
retval = -ENOMEM;
|
|
|
|
goto out_free_cpus_allowed;
|
|
|
|
}
|
|
|
|
|
|
|
|
cpuset_cpus_allowed(p, cpus_allowed);
|
|
|
|
cpumask_and(new_mask, ctx->new_mask, cpus_allowed);
|
|
|
|
|
|
|
|
ctx->new_mask = new_mask;
|
|
|
|
ctx->flags |= SCA_CHECK;
|
|
|
|
|
|
|
|
retval = dl_task_check_affinity(p, new_mask);
|
|
|
|
if (retval)
|
|
|
|
goto out_free_new_mask;
|
|
|
|
|
|
|
|
retval = __set_cpus_allowed_ptr(p, ctx);
|
|
|
|
if (retval)
|
|
|
|
goto out_free_new_mask;
|
|
|
|
|
|
|
|
cpuset_cpus_allowed(p, cpus_allowed);
|
|
|
|
if (!cpumask_subset(new_mask, cpus_allowed)) {
|
|
|
|
/*
|
|
|
|
* We must have raced with a concurrent cpuset update.
|
|
|
|
* Just reset the cpumask to the cpuset's cpus_allowed.
|
|
|
|
*/
|
|
|
|
cpumask_copy(new_mask, cpus_allowed);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If SCA_USER is set, a 2nd call to __set_cpus_allowed_ptr()
|
|
|
|
* will restore the previous user_cpus_ptr value.
|
|
|
|
*
|
|
|
|
* In the unlikely event a previous user_cpus_ptr exists,
|
|
|
|
* we need to further restrict the mask to what is allowed
|
|
|
|
* by that old user_cpus_ptr.
|
|
|
|
*/
|
|
|
|
if (unlikely((ctx->flags & SCA_USER) && ctx->user_mask)) {
|
|
|
|
bool empty = !cpumask_and(new_mask, new_mask,
|
|
|
|
ctx->user_mask);
|
|
|
|
|
|
|
|
if (WARN_ON_ONCE(empty))
|
|
|
|
cpumask_copy(new_mask, cpus_allowed);
|
|
|
|
}
|
|
|
|
__set_cpus_allowed_ptr(p, ctx);
|
|
|
|
retval = -EINVAL;
|
|
|
|
}
|
|
|
|
|
|
|
|
out_free_new_mask:
|
|
|
|
free_cpumask_var(new_mask);
|
|
|
|
out_free_cpus_allowed:
|
|
|
|
free_cpumask_var(cpus_allowed);
|
|
|
|
return retval;
|
|
|
|
}
|
|
|
|
|
|
|
|
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
|
|
|
|
{
|
|
|
|
struct affinity_context ac;
|
|
|
|
struct cpumask *user_mask;
|
|
|
|
int retval;
|
|
|
|
|
|
|
|
CLASS(find_get_task, p)(pid);
|
|
|
|
if (!p)
|
|
|
|
return -ESRCH;
|
|
|
|
|
|
|
|
if (p->flags & PF_NO_SETAFFINITY)
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
if (!check_same_owner(p)) {
|
|
|
|
guard(rcu)();
|
|
|
|
if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE))
|
|
|
|
return -EPERM;
|
|
|
|
}
|
|
|
|
|
|
|
|
retval = security_task_setscheduler(p);
|
|
|
|
if (retval)
|
|
|
|
return retval;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* With non-SMP configs, user_cpus_ptr/user_mask isn't used and
|
|
|
|
* alloc_user_cpus_ptr() returns NULL.
|
|
|
|
*/
|
|
|
|
user_mask = alloc_user_cpus_ptr(NUMA_NO_NODE);
|
|
|
|
if (user_mask) {
|
|
|
|
cpumask_copy(user_mask, in_mask);
|
|
|
|
} else if (IS_ENABLED(CONFIG_SMP)) {
|
|
|
|
return -ENOMEM;
|
|
|
|
}
|
|
|
|
|
|
|
|
ac = (struct affinity_context){
|
|
|
|
.new_mask = in_mask,
|
|
|
|
.user_mask = user_mask,
|
|
|
|
.flags = SCA_USER,
|
|
|
|
};
|
|
|
|
|
|
|
|
retval = __sched_setaffinity(p, &ac);
|
|
|
|
kfree(ac.user_mask);
|
|
|
|
|
|
|
|
return retval;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
|
|
|
|
struct cpumask *new_mask)
|
|
|
|
{
|
|
|
|
if (len < cpumask_size())
|
|
|
|
cpumask_clear(new_mask);
|
|
|
|
else if (len > cpumask_size())
|
|
|
|
len = cpumask_size();
|
|
|
|
|
|
|
|
return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* sys_sched_setaffinity - set the CPU affinity of a process
|
|
|
|
* @pid: pid of the process
|
|
|
|
* @len: length in bytes of the bitmask pointed to by user_mask_ptr
|
|
|
|
* @user_mask_ptr: user-space pointer to the new CPU mask
|
|
|
|
*
|
|
|
|
* Return: 0 on success. An error code otherwise.
|
|
|
|
*/
|
|
|
|
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
|
|
|
|
unsigned long __user *, user_mask_ptr)
|
|
|
|
{
|
|
|
|
cpumask_var_t new_mask;
|
|
|
|
int retval;
|
|
|
|
|
|
|
|
if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
|
|
|
|
return -ENOMEM;
|
|
|
|
|
|
|
|
retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
|
|
|
|
if (retval == 0)
|
|
|
|
retval = sched_setaffinity(pid, new_mask);
|
|
|
|
free_cpumask_var(new_mask);
|
|
|
|
return retval;
|
|
|
|
}
|
|
|
|
|
|
|
|
long sched_getaffinity(pid_t pid, struct cpumask *mask)
|
|
|
|
{
|
|
|
|
struct task_struct *p;
|
|
|
|
int retval;
|
|
|
|
|
|
|
|
guard(rcu)();
|
|
|
|
p = find_process_by_pid(pid);
|
|
|
|
if (!p)
|
|
|
|
return -ESRCH;
|
|
|
|
|
|
|
|
retval = security_task_getscheduler(p);
|
|
|
|
if (retval)
|
|
|
|
return retval;
|
|
|
|
|
|
|
|
guard(raw_spinlock_irqsave)(&p->pi_lock);
|
|
|
|
cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* sys_sched_getaffinity - get the CPU affinity of a process
|
|
|
|
* @pid: pid of the process
|
|
|
|
* @len: length in bytes of the bitmask pointed to by user_mask_ptr
|
|
|
|
* @user_mask_ptr: user-space pointer to hold the current CPU mask
|
|
|
|
*
|
|
|
|
* Return: size of CPU mask copied to user_mask_ptr on success. An
|
|
|
|
* error code otherwise.
|
|
|
|
*/
|
|
|
|
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
|
|
|
|
unsigned long __user *, user_mask_ptr)
|
|
|
|
{
|
|
|
|
int ret;
|
|
|
|
cpumask_var_t mask;
|
|
|
|
|
|
|
|
if ((len * BITS_PER_BYTE) < nr_cpu_ids)
|
|
|
|
return -EINVAL;
|
|
|
|
if (len & (sizeof(unsigned long)-1))
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
if (!zalloc_cpumask_var(&mask, GFP_KERNEL))
|
|
|
|
return -ENOMEM;
|
|
|
|
|
|
|
|
ret = sched_getaffinity(pid, mask);
|
|
|
|
if (ret == 0) {
|
|
|
|
unsigned int retlen = min(len, cpumask_size());
|
|
|
|
|
|
|
|
if (copy_to_user(user_mask_ptr, cpumask_bits(mask), retlen))
|
|
|
|
ret = -EFAULT;
|
|
|
|
else
|
|
|
|
ret = retlen;
|
|
|
|
}
|
|
|
|
free_cpumask_var(mask);
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void do_sched_yield(void)
|
|
|
|
{
|
|
|
|
struct rq_flags rf;
|
|
|
|
struct rq *rq;
|
|
|
|
|
|
|
|
rq = this_rq_lock_irq(&rf);
|
|
|
|
|
|
|
|
schedstat_inc(rq->yld_count);
|
|
|
|
current->sched_class->yield_task(rq);
|
|
|
|
|
|
|
|
preempt_disable();
|
|
|
|
rq_unlock_irq(rq, &rf);
|
|
|
|
sched_preempt_enable_no_resched();
|
|
|
|
|
|
|
|
schedule();
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* sys_sched_yield - yield the current processor to other threads.
|
|
|
|
*
|
|
|
|
* This function yields the current CPU to other tasks. If there are no
|
|
|
|
* other threads running on this CPU then this function will return.
|
|
|
|
*
|
|
|
|
* Return: 0.
|
|
|
|
*/
|
|
|
|
SYSCALL_DEFINE0(sched_yield)
|
|
|
|
{
|
|
|
|
do_sched_yield();
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* yield - yield the current processor to other threads.
|
|
|
|
*
|
|
|
|
* Do not ever use this function, there's a 99% chance you're doing it wrong.
|
|
|
|
*
|
|
|
|
* The scheduler is at all times free to pick the calling task as the most
|
|
|
|
* eligible task to run, if removing the yield() call from your code breaks
|
|
|
|
* it, it's already broken.
|
|
|
|
*
|
|
|
|
* Typical broken usage is:
|
|
|
|
*
|
|
|
|
* while (!event)
|
|
|
|
* yield();
|
|
|
|
*
|
|
|
|
* where one assumes that yield() will let 'the other' process run that will
|
|
|
|
* make event true. If the current task is a SCHED_FIFO task that will never
|
|
|
|
* happen. Never use yield() as a progress guarantee!!
|
|
|
|
*
|
|
|
|
* If you want to use yield() to wait for something, use wait_event().
|
|
|
|
* If you want to use yield() to be 'nice' for others, use cond_resched().
|
|
|
|
* If you still want to use yield(), do not!
|
|
|
|
*/
|
|
|
|
void __sched yield(void)
|
|
|
|
{
|
|
|
|
set_current_state(TASK_RUNNING);
|
|
|
|
do_sched_yield();
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(yield);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* yield_to - yield the current processor to another thread in
|
|
|
|
* your thread group, or accelerate that thread toward the
|
|
|
|
* processor it's on.
|
|
|
|
* @p: target task
|
|
|
|
* @preempt: whether task preemption is allowed or not
|
|
|
|
*
|
|
|
|
* It's the caller's job to ensure that the target task struct
|
|
|
|
* can't go away on us before we can do any checks.
|
|
|
|
*
|
|
|
|
* Return:
|
|
|
|
* true (>0) if we indeed boosted the target task.
|
|
|
|
* false (0) if we failed to boost the target.
|
|
|
|
* -ESRCH if there's no task to yield to.
|
|
|
|
*/
|
|
|
|
int __sched yield_to(struct task_struct *p, bool preempt)
|
|
|
|
{
|
|
|
|
struct task_struct *curr = current;
|
|
|
|
struct rq *rq, *p_rq;
|
|
|
|
int yielded = 0;
|
|
|
|
|
|
|
|
scoped_guard (irqsave) {
|
|
|
|
rq = this_rq();
|
|
|
|
|
|
|
|
again:
|
|
|
|
p_rq = task_rq(p);
|
|
|
|
/*
|
|
|
|
* If we're the only runnable task on the rq and target rq also
|
|
|
|
* has only one task, there's absolutely no point in yielding.
|
|
|
|
*/
|
|
|
|
if (rq->nr_running == 1 && p_rq->nr_running == 1)
|
|
|
|
return -ESRCH;
|
|
|
|
|
|
|
|
guard(double_rq_lock)(rq, p_rq);
|
|
|
|
if (task_rq(p) != p_rq)
|
|
|
|
goto again;
|
|
|
|
|
|
|
|
if (!curr->sched_class->yield_to_task)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
if (curr->sched_class != p->sched_class)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
if (task_on_cpu(p_rq, p) || !task_is_running(p))
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
yielded = curr->sched_class->yield_to_task(rq, p);
|
|
|
|
if (yielded) {
|
|
|
|
schedstat_inc(rq->yld_count);
|
|
|
|
/*
|
|
|
|
* Make p's CPU reschedule; pick_next_entity
|
|
|
|
* takes care of fairness.
|
|
|
|
*/
|
|
|
|
if (preempt && rq != p_rq)
|
|
|
|
resched_curr(p_rq);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (yielded)
|
|
|
|
schedule();
|
|
|
|
|
|
|
|
return yielded;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(yield_to);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* sys_sched_get_priority_max - return maximum RT priority.
|
|
|
|
* @policy: scheduling class.
|
|
|
|
*
|
|
|
|
* Return: On success, this syscall returns the maximum
|
|
|
|
* rt_priority that can be used by a given scheduling class.
|
|
|
|
* On failure, a negative error code is returned.
|
|
|
|
*/
|
|
|
|
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
|
|
|
|
{
|
|
|
|
int ret = -EINVAL;
|
|
|
|
|
|
|
|
switch (policy) {
|
|
|
|
case SCHED_FIFO:
|
|
|
|
case SCHED_RR:
|
|
|
|
ret = MAX_RT_PRIO-1;
|
|
|
|
break;
|
|
|
|
case SCHED_DEADLINE:
|
|
|
|
case SCHED_NORMAL:
|
|
|
|
case SCHED_BATCH:
|
|
|
|
case SCHED_IDLE:
|
|
|
|
ret = 0;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* sys_sched_get_priority_min - return minimum RT priority.
|
|
|
|
* @policy: scheduling class.
|
|
|
|
*
|
|
|
|
* Return: On success, this syscall returns the minimum
|
|
|
|
* rt_priority that can be used by a given scheduling class.
|
|
|
|
* On failure, a negative error code is returned.
|
|
|
|
*/
|
|
|
|
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
|
|
|
|
{
|
|
|
|
int ret = -EINVAL;
|
|
|
|
|
|
|
|
switch (policy) {
|
|
|
|
case SCHED_FIFO:
|
|
|
|
case SCHED_RR:
|
|
|
|
ret = 1;
|
|
|
|
break;
|
|
|
|
case SCHED_DEADLINE:
|
|
|
|
case SCHED_NORMAL:
|
|
|
|
case SCHED_BATCH:
|
|
|
|
case SCHED_IDLE:
|
|
|
|
ret = 0;
|
|
|
|
}
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
|
|
|
|
{
|
|
|
|
unsigned int time_slice = 0;
|
|
|
|
int retval;
|
|
|
|
|
|
|
|
if (pid < 0)
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
scoped_guard (rcu) {
|
|
|
|
struct task_struct *p = find_process_by_pid(pid);
|
|
|
|
if (!p)
|
|
|
|
return -ESRCH;
|
|
|
|
|
|
|
|
retval = security_task_getscheduler(p);
|
|
|
|
if (retval)
|
|
|
|
return retval;
|
|
|
|
|
|
|
|
scoped_guard (task_rq_lock, p) {
|
|
|
|
struct rq *rq = scope.rq;
|
|
|
|
if (p->sched_class->get_rr_interval)
|
|
|
|
time_slice = p->sched_class->get_rr_interval(rq, p);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
jiffies_to_timespec64(time_slice, t);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
2024-05-27 16:54:52 +02:00
|
|
|
* sys_sched_rr_get_interval - return the default time-slice of a process.
|
sched/syscalls: Split out kernel/sched/syscalls.c from kernel/sched/core.c
core.c has become rather large, move most scheduler syscall
related functionality into a separate file, syscalls.c.
This is about ~15% of core.c's raw linecount.
Move the alloc_user_cpus_ptr(), __rt_effective_prio(),
rt_effective_prio(), uclamp_none(), uclamp_se_set()
and uclamp_bucket_id() inlines to kernel/sched/sched.h.
Internally export the __sched_setscheduler(), __sched_setaffinity(),
__setscheduler_prio(), set_load_weight(), enqueue_task(), dequeue_task(),
check_class_changed(), splice_balance_callbacks() and balance_callbacks()
methods to better facilitate this.
Move the new file's build to sched_policy.c, because it fits there
semantically, but also because it's the smallest of the 4 build units
under an allmodconfig build:
-rw-rw-r-- 1 mingo mingo 7.3M May 27 12:35 kernel/sched/core.i
-rw-rw-r-- 1 mingo mingo 6.4M May 27 12:36 kernel/sched/build_utility.i
-rw-rw-r-- 1 mingo mingo 6.3M May 27 12:36 kernel/sched/fair.i
-rw-rw-r-- 1 mingo mingo 5.8M May 27 12:36 kernel/sched/build_policy.i
This better balances build time for scheduler subsystem rebuilds.
I build-tested this new file as a standalone syscalls.o file for a bit,
to make sure all the encapsulations & abstractions are robust.
Also update/add my copyright notices to these files.
Build time measurements:
# -Before/+After:
kepler:~/tip> perf stat -e 'cycles,instructions,duration_time' --sync --repeat 5 --pre 'rm -f kernel/sched/*.o' m kernel/sched/built-in.a >/dev/null
Performance counter stats for 'm kernel/sched/built-in.a' (5 runs):
- 71,938,508,607 cycles ( +- 0.17% )
+ 71,992,916,493 cycles ( +- 0.22% )
- 106,214,780,964 instructions # 1.48 insn per cycle ( +- 0.01% )
+ 105,450,231,154 instructions # 1.46 insn per cycle ( +- 0.01% )
- 5,878,232,620 ns duration_time ( +- 0.38% )
+ 5,290,085,069 ns duration_time ( +- 0.21% )
- 5.8782 +- 0.0221 seconds time elapsed ( +- 0.38% )
+ 5.2901 +- 0.0111 seconds time elapsed ( +- 0.21% )
Build time improvement of -11.1% (duration_time) is expected: the
parallel build time of the scheduler subsystem is determined by the
largest, slowest to build object file, which is kernel/sched/core.o.
By moving ~15% of its complexity into another build unit, we reduced
build time by -11%.
Measured cycles spent on building is within its ~0.2% stddev noise envelope.
The -0.7% reduction in instructions spent on building the scheduler is
statistically reliable and somewhat surprising - I can only speculate:
maybe compilers aren't that efficient at building & optimizing 10+ KLOC files
(core.c), and it's an overall win to balance the linecount a bit.
Anyway, this might be a data point that suggests that reducing the linecount
of our largest files will improve not just code readability and maintainability,
but might also improve build times a bit.
Code generation got a bit worse, by 0.5kb text on an x86 defconfig build:
# -Before/+After:
kepler:~/tip> size vmlinux
text data bss dec hex filename
-26475475 10439178 1740804 38655457 24dd5e1 vmlinux
+26476003 10439178 1740804 38655985 24dd7f1 vmlinux
kepler:~/tip> size kernel/sched/built-in.a
text data bss dec hex filename
- 76056 30025 489 106570 1a04a kernel/sched/core.o (ex kernel/sched/built-in.a)
+ 63452 29453 489 93394 16cd2 kernel/sched/core.o (ex kernel/sched/built-in.a)
44299 2181 104 46584 b5f8 kernel/sched/fair.o (ex kernel/sched/built-in.a)
- 42764 3424 120 46308 b4e4 kernel/sched/build_policy.o (ex kernel/sched/built-in.a)
+ 55651 4044 120 59815 e9a7 kernel/sched/build_policy.o (ex kernel/sched/built-in.a)
44866 12655 2192 59713 e941 kernel/sched/build_utility.o (ex kernel/sched/built-in.a)
44866 12655 2192 59713 e941 kernel/sched/build_utility.o (ex kernel/sched/built-in.a)
This is primarily due to the extra functions exported, and the size
gets exaggerated somewhat by __pfx CFI function padding:
ffffffff810cc710 <__pfx_enqueue_task>:
ffffffff810cc710: 90 nop
ffffffff810cc711: 90 nop
ffffffff810cc712: 90 nop
ffffffff810cc713: 90 nop
ffffffff810cc714: 90 nop
ffffffff810cc715: 90 nop
ffffffff810cc716: 90 nop
ffffffff810cc717: 90 nop
ffffffff810cc718: 90 nop
ffffffff810cc719: 90 nop
ffffffff810cc71a: 90 nop
ffffffff810cc71b: 90 nop
ffffffff810cc71c: 90 nop
ffffffff810cc71d: 90 nop
ffffffff810cc71e: 90 nop
ffffffff810cc71f: 90 nop
AFAICS the cost is primarily not to core.o and fair.o though (which contain
most performance sensitive scheduler functions), only to syscalls.o
that get called with much lower frequency - so I think this is an acceptable
trade-off for better code separation.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Link: https://lore.kernel.org/r/20240407084319.1462211-2-mingo@kernel.org
2024-04-07 10:43:15 +02:00
|
|
|
* @pid: pid of the process.
|
2024-05-27 16:54:52 +02:00
|
|
|
* @interval: userspace pointer to the time-slice value.
|
sched/syscalls: Split out kernel/sched/syscalls.c from kernel/sched/core.c
core.c has become rather large, move most scheduler syscall
related functionality into a separate file, syscalls.c.
This is about ~15% of core.c's raw linecount.
Move the alloc_user_cpus_ptr(), __rt_effective_prio(),
rt_effective_prio(), uclamp_none(), uclamp_se_set()
and uclamp_bucket_id() inlines to kernel/sched/sched.h.
Internally export the __sched_setscheduler(), __sched_setaffinity(),
__setscheduler_prio(), set_load_weight(), enqueue_task(), dequeue_task(),
check_class_changed(), splice_balance_callbacks() and balance_callbacks()
methods to better facilitate this.
Move the new file's build to sched_policy.c, because it fits there
semantically, but also because it's the smallest of the 4 build units
under an allmodconfig build:
-rw-rw-r-- 1 mingo mingo 7.3M May 27 12:35 kernel/sched/core.i
-rw-rw-r-- 1 mingo mingo 6.4M May 27 12:36 kernel/sched/build_utility.i
-rw-rw-r-- 1 mingo mingo 6.3M May 27 12:36 kernel/sched/fair.i
-rw-rw-r-- 1 mingo mingo 5.8M May 27 12:36 kernel/sched/build_policy.i
This better balances build time for scheduler subsystem rebuilds.
I build-tested this new file as a standalone syscalls.o file for a bit,
to make sure all the encapsulations & abstractions are robust.
Also update/add my copyright notices to these files.
Build time measurements:
# -Before/+After:
kepler:~/tip> perf stat -e 'cycles,instructions,duration_time' --sync --repeat 5 --pre 'rm -f kernel/sched/*.o' m kernel/sched/built-in.a >/dev/null
Performance counter stats for 'm kernel/sched/built-in.a' (5 runs):
- 71,938,508,607 cycles ( +- 0.17% )
+ 71,992,916,493 cycles ( +- 0.22% )
- 106,214,780,964 instructions # 1.48 insn per cycle ( +- 0.01% )
+ 105,450,231,154 instructions # 1.46 insn per cycle ( +- 0.01% )
- 5,878,232,620 ns duration_time ( +- 0.38% )
+ 5,290,085,069 ns duration_time ( +- 0.21% )
- 5.8782 +- 0.0221 seconds time elapsed ( +- 0.38% )
+ 5.2901 +- 0.0111 seconds time elapsed ( +- 0.21% )
Build time improvement of -11.1% (duration_time) is expected: the
parallel build time of the scheduler subsystem is determined by the
largest, slowest to build object file, which is kernel/sched/core.o.
By moving ~15% of its complexity into another build unit, we reduced
build time by -11%.
Measured cycles spent on building is within its ~0.2% stddev noise envelope.
The -0.7% reduction in instructions spent on building the scheduler is
statistically reliable and somewhat surprising - I can only speculate:
maybe compilers aren't that efficient at building & optimizing 10+ KLOC files
(core.c), and it's an overall win to balance the linecount a bit.
Anyway, this might be a data point that suggests that reducing the linecount
of our largest files will improve not just code readability and maintainability,
but might also improve build times a bit.
Code generation got a bit worse, by 0.5kb text on an x86 defconfig build:
# -Before/+After:
kepler:~/tip> size vmlinux
text data bss dec hex filename
-26475475 10439178 1740804 38655457 24dd5e1 vmlinux
+26476003 10439178 1740804 38655985 24dd7f1 vmlinux
kepler:~/tip> size kernel/sched/built-in.a
text data bss dec hex filename
- 76056 30025 489 106570 1a04a kernel/sched/core.o (ex kernel/sched/built-in.a)
+ 63452 29453 489 93394 16cd2 kernel/sched/core.o (ex kernel/sched/built-in.a)
44299 2181 104 46584 b5f8 kernel/sched/fair.o (ex kernel/sched/built-in.a)
- 42764 3424 120 46308 b4e4 kernel/sched/build_policy.o (ex kernel/sched/built-in.a)
+ 55651 4044 120 59815 e9a7 kernel/sched/build_policy.o (ex kernel/sched/built-in.a)
44866 12655 2192 59713 e941 kernel/sched/build_utility.o (ex kernel/sched/built-in.a)
44866 12655 2192 59713 e941 kernel/sched/build_utility.o (ex kernel/sched/built-in.a)
This is primarily due to the extra functions exported, and the size
gets exaggerated somewhat by __pfx CFI function padding:
ffffffff810cc710 <__pfx_enqueue_task>:
ffffffff810cc710: 90 nop
ffffffff810cc711: 90 nop
ffffffff810cc712: 90 nop
ffffffff810cc713: 90 nop
ffffffff810cc714: 90 nop
ffffffff810cc715: 90 nop
ffffffff810cc716: 90 nop
ffffffff810cc717: 90 nop
ffffffff810cc718: 90 nop
ffffffff810cc719: 90 nop
ffffffff810cc71a: 90 nop
ffffffff810cc71b: 90 nop
ffffffff810cc71c: 90 nop
ffffffff810cc71d: 90 nop
ffffffff810cc71e: 90 nop
ffffffff810cc71f: 90 nop
AFAICS the cost is primarily not to core.o and fair.o though (which contain
most performance sensitive scheduler functions), only to syscalls.o
that get called with much lower frequency - so I think this is an acceptable
trade-off for better code separation.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Link: https://lore.kernel.org/r/20240407084319.1462211-2-mingo@kernel.org
2024-04-07 10:43:15 +02:00
|
|
|
*
|
2024-05-27 16:54:52 +02:00
|
|
|
* this syscall writes the default time-slice value of a given process
|
sched/syscalls: Split out kernel/sched/syscalls.c from kernel/sched/core.c
core.c has become rather large, move most scheduler syscall
related functionality into a separate file, syscalls.c.
This is about ~15% of core.c's raw linecount.
Move the alloc_user_cpus_ptr(), __rt_effective_prio(),
rt_effective_prio(), uclamp_none(), uclamp_se_set()
and uclamp_bucket_id() inlines to kernel/sched/sched.h.
Internally export the __sched_setscheduler(), __sched_setaffinity(),
__setscheduler_prio(), set_load_weight(), enqueue_task(), dequeue_task(),
check_class_changed(), splice_balance_callbacks() and balance_callbacks()
methods to better facilitate this.
Move the new file's build to sched_policy.c, because it fits there
semantically, but also because it's the smallest of the 4 build units
under an allmodconfig build:
-rw-rw-r-- 1 mingo mingo 7.3M May 27 12:35 kernel/sched/core.i
-rw-rw-r-- 1 mingo mingo 6.4M May 27 12:36 kernel/sched/build_utility.i
-rw-rw-r-- 1 mingo mingo 6.3M May 27 12:36 kernel/sched/fair.i
-rw-rw-r-- 1 mingo mingo 5.8M May 27 12:36 kernel/sched/build_policy.i
This better balances build time for scheduler subsystem rebuilds.
I build-tested this new file as a standalone syscalls.o file for a bit,
to make sure all the encapsulations & abstractions are robust.
Also update/add my copyright notices to these files.
Build time measurements:
# -Before/+After:
kepler:~/tip> perf stat -e 'cycles,instructions,duration_time' --sync --repeat 5 --pre 'rm -f kernel/sched/*.o' m kernel/sched/built-in.a >/dev/null
Performance counter stats for 'm kernel/sched/built-in.a' (5 runs):
- 71,938,508,607 cycles ( +- 0.17% )
+ 71,992,916,493 cycles ( +- 0.22% )
- 106,214,780,964 instructions # 1.48 insn per cycle ( +- 0.01% )
+ 105,450,231,154 instructions # 1.46 insn per cycle ( +- 0.01% )
- 5,878,232,620 ns duration_time ( +- 0.38% )
+ 5,290,085,069 ns duration_time ( +- 0.21% )
- 5.8782 +- 0.0221 seconds time elapsed ( +- 0.38% )
+ 5.2901 +- 0.0111 seconds time elapsed ( +- 0.21% )
Build time improvement of -11.1% (duration_time) is expected: the
parallel build time of the scheduler subsystem is determined by the
largest, slowest to build object file, which is kernel/sched/core.o.
By moving ~15% of its complexity into another build unit, we reduced
build time by -11%.
Measured cycles spent on building is within its ~0.2% stddev noise envelope.
The -0.7% reduction in instructions spent on building the scheduler is
statistically reliable and somewhat surprising - I can only speculate:
maybe compilers aren't that efficient at building & optimizing 10+ KLOC files
(core.c), and it's an overall win to balance the linecount a bit.
Anyway, this might be a data point that suggests that reducing the linecount
of our largest files will improve not just code readability and maintainability,
but might also improve build times a bit.
Code generation got a bit worse, by 0.5kb text on an x86 defconfig build:
# -Before/+After:
kepler:~/tip> size vmlinux
text data bss dec hex filename
-26475475 10439178 1740804 38655457 24dd5e1 vmlinux
+26476003 10439178 1740804 38655985 24dd7f1 vmlinux
kepler:~/tip> size kernel/sched/built-in.a
text data bss dec hex filename
- 76056 30025 489 106570 1a04a kernel/sched/core.o (ex kernel/sched/built-in.a)
+ 63452 29453 489 93394 16cd2 kernel/sched/core.o (ex kernel/sched/built-in.a)
44299 2181 104 46584 b5f8 kernel/sched/fair.o (ex kernel/sched/built-in.a)
- 42764 3424 120 46308 b4e4 kernel/sched/build_policy.o (ex kernel/sched/built-in.a)
+ 55651 4044 120 59815 e9a7 kernel/sched/build_policy.o (ex kernel/sched/built-in.a)
44866 12655 2192 59713 e941 kernel/sched/build_utility.o (ex kernel/sched/built-in.a)
44866 12655 2192 59713 e941 kernel/sched/build_utility.o (ex kernel/sched/built-in.a)
This is primarily due to the extra functions exported, and the size
gets exaggerated somewhat by __pfx CFI function padding:
ffffffff810cc710 <__pfx_enqueue_task>:
ffffffff810cc710: 90 nop
ffffffff810cc711: 90 nop
ffffffff810cc712: 90 nop
ffffffff810cc713: 90 nop
ffffffff810cc714: 90 nop
ffffffff810cc715: 90 nop
ffffffff810cc716: 90 nop
ffffffff810cc717: 90 nop
ffffffff810cc718: 90 nop
ffffffff810cc719: 90 nop
ffffffff810cc71a: 90 nop
ffffffff810cc71b: 90 nop
ffffffff810cc71c: 90 nop
ffffffff810cc71d: 90 nop
ffffffff810cc71e: 90 nop
ffffffff810cc71f: 90 nop
AFAICS the cost is primarily not to core.o and fair.o though (which contain
most performance sensitive scheduler functions), only to syscalls.o
that get called with much lower frequency - so I think this is an acceptable
trade-off for better code separation.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Link: https://lore.kernel.org/r/20240407084319.1462211-2-mingo@kernel.org
2024-04-07 10:43:15 +02:00
|
|
|
* into the user-space timespec buffer. A value of '0' means infinity.
|
|
|
|
*
|
2024-05-27 16:54:52 +02:00
|
|
|
* Return: On success, 0 and the time-slice is in @interval. Otherwise,
|
sched/syscalls: Split out kernel/sched/syscalls.c from kernel/sched/core.c
core.c has become rather large, move most scheduler syscall
related functionality into a separate file, syscalls.c.
This is about ~15% of core.c's raw linecount.
Move the alloc_user_cpus_ptr(), __rt_effective_prio(),
rt_effective_prio(), uclamp_none(), uclamp_se_set()
and uclamp_bucket_id() inlines to kernel/sched/sched.h.
Internally export the __sched_setscheduler(), __sched_setaffinity(),
__setscheduler_prio(), set_load_weight(), enqueue_task(), dequeue_task(),
check_class_changed(), splice_balance_callbacks() and balance_callbacks()
methods to better facilitate this.
Move the new file's build to sched_policy.c, because it fits there
semantically, but also because it's the smallest of the 4 build units
under an allmodconfig build:
-rw-rw-r-- 1 mingo mingo 7.3M May 27 12:35 kernel/sched/core.i
-rw-rw-r-- 1 mingo mingo 6.4M May 27 12:36 kernel/sched/build_utility.i
-rw-rw-r-- 1 mingo mingo 6.3M May 27 12:36 kernel/sched/fair.i
-rw-rw-r-- 1 mingo mingo 5.8M May 27 12:36 kernel/sched/build_policy.i
This better balances build time for scheduler subsystem rebuilds.
I build-tested this new file as a standalone syscalls.o file for a bit,
to make sure all the encapsulations & abstractions are robust.
Also update/add my copyright notices to these files.
Build time measurements:
# -Before/+After:
kepler:~/tip> perf stat -e 'cycles,instructions,duration_time' --sync --repeat 5 --pre 'rm -f kernel/sched/*.o' m kernel/sched/built-in.a >/dev/null
Performance counter stats for 'm kernel/sched/built-in.a' (5 runs):
- 71,938,508,607 cycles ( +- 0.17% )
+ 71,992,916,493 cycles ( +- 0.22% )
- 106,214,780,964 instructions # 1.48 insn per cycle ( +- 0.01% )
+ 105,450,231,154 instructions # 1.46 insn per cycle ( +- 0.01% )
- 5,878,232,620 ns duration_time ( +- 0.38% )
+ 5,290,085,069 ns duration_time ( +- 0.21% )
- 5.8782 +- 0.0221 seconds time elapsed ( +- 0.38% )
+ 5.2901 +- 0.0111 seconds time elapsed ( +- 0.21% )
Build time improvement of -11.1% (duration_time) is expected: the
parallel build time of the scheduler subsystem is determined by the
largest, slowest to build object file, which is kernel/sched/core.o.
By moving ~15% of its complexity into another build unit, we reduced
build time by -11%.
Measured cycles spent on building is within its ~0.2% stddev noise envelope.
The -0.7% reduction in instructions spent on building the scheduler is
statistically reliable and somewhat surprising - I can only speculate:
maybe compilers aren't that efficient at building & optimizing 10+ KLOC files
(core.c), and it's an overall win to balance the linecount a bit.
Anyway, this might be a data point that suggests that reducing the linecount
of our largest files will improve not just code readability and maintainability,
but might also improve build times a bit.
Code generation got a bit worse, by 0.5kb text on an x86 defconfig build:
# -Before/+After:
kepler:~/tip> size vmlinux
text data bss dec hex filename
-26475475 10439178 1740804 38655457 24dd5e1 vmlinux
+26476003 10439178 1740804 38655985 24dd7f1 vmlinux
kepler:~/tip> size kernel/sched/built-in.a
text data bss dec hex filename
- 76056 30025 489 106570 1a04a kernel/sched/core.o (ex kernel/sched/built-in.a)
+ 63452 29453 489 93394 16cd2 kernel/sched/core.o (ex kernel/sched/built-in.a)
44299 2181 104 46584 b5f8 kernel/sched/fair.o (ex kernel/sched/built-in.a)
- 42764 3424 120 46308 b4e4 kernel/sched/build_policy.o (ex kernel/sched/built-in.a)
+ 55651 4044 120 59815 e9a7 kernel/sched/build_policy.o (ex kernel/sched/built-in.a)
44866 12655 2192 59713 e941 kernel/sched/build_utility.o (ex kernel/sched/built-in.a)
44866 12655 2192 59713 e941 kernel/sched/build_utility.o (ex kernel/sched/built-in.a)
This is primarily due to the extra functions exported, and the size
gets exaggerated somewhat by __pfx CFI function padding:
ffffffff810cc710 <__pfx_enqueue_task>:
ffffffff810cc710: 90 nop
ffffffff810cc711: 90 nop
ffffffff810cc712: 90 nop
ffffffff810cc713: 90 nop
ffffffff810cc714: 90 nop
ffffffff810cc715: 90 nop
ffffffff810cc716: 90 nop
ffffffff810cc717: 90 nop
ffffffff810cc718: 90 nop
ffffffff810cc719: 90 nop
ffffffff810cc71a: 90 nop
ffffffff810cc71b: 90 nop
ffffffff810cc71c: 90 nop
ffffffff810cc71d: 90 nop
ffffffff810cc71e: 90 nop
ffffffff810cc71f: 90 nop
AFAICS the cost is primarily not to core.o and fair.o though (which contain
most performance sensitive scheduler functions), only to syscalls.o
that get called with much lower frequency - so I think this is an acceptable
trade-off for better code separation.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Link: https://lore.kernel.org/r/20240407084319.1462211-2-mingo@kernel.org
2024-04-07 10:43:15 +02:00
|
|
|
* an error code.
|
|
|
|
*/
|
|
|
|
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
|
|
|
|
struct __kernel_timespec __user *, interval)
|
|
|
|
{
|
|
|
|
struct timespec64 t;
|
|
|
|
int retval = sched_rr_get_interval(pid, &t);
|
|
|
|
|
|
|
|
if (retval == 0)
|
|
|
|
retval = put_timespec64(&t, interval);
|
|
|
|
|
|
|
|
return retval;
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef CONFIG_COMPAT_32BIT_TIME
|
|
|
|
SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
|
|
|
|
struct old_timespec32 __user *, interval)
|
|
|
|
{
|
|
|
|
struct timespec64 t;
|
|
|
|
int retval = sched_rr_get_interval(pid, &t);
|
|
|
|
|
|
|
|
if (retval == 0)
|
|
|
|
retval = put_old_timespec32(&t, interval);
|
|
|
|
return retval;
|
|
|
|
}
|
|
|
|
#endif
|